Science.gov

Sample records for analytical ultracentrifugation gel

  1. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

    PubMed Central

    Cole, James L.; Lary, Jeffrey W.; Moody, Thomas; Laue, Thomas M.

    2009-01-01

    Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity, the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape and interactions of macromolecules. Sedimentation equilibrium is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use sedimentation velocity to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions. PMID:17964931

  2. Characterization of polymeric nanomaterials using analytical ultracentrifugation.

    PubMed

    Diaz, Leosveys; Peyrot, Caroline; Wilkinson, Kevin J

    2015-06-16

    The characterization of nanomaterials represents a complex analytical challenge due to their dynamic nature (small size, high reactivity, and instability) and the low concentrations in the environment, often below typical analytical detection limits. Analytical ultracentrifugation (AUC) is especially useful for the characterization of small nanoparticles (1-10 nm), which are often the most problematic for the commonly used techniques such as electron microscopy or dynamic light scattering. In this study, small polymeric nanomaterials (allospheres) that are used commercially to facilitate the distribution of pesticides in agricultural fields were characterized under a number of environmentally relevant conditions. Under most of the studied conditions, the allospheres were shown to have a constant hydrodynamic diameter (dH) of about 7.0 nm. Only small increases in diameter were observed, either at low pH or very high ionic strength or hardness, demonstrating their high physicochemical stability (and thus high mobility in soils). Furthermore, natural organic matter had little effect on the hydrodynamic diameters of the allospheres. The concentration of the nanoparticles was an important parameter influencing their agglomeration-results obtained using dynamic light scattering at high particle concentrations showed large agglomerate sizes and significant particle losses through sedimentation, clearly indicating the importance of characterizing the nanomaterials under environmentally relevant conditions. PMID:25988704

  3. 3D-Printing for Analytical Ultracentrifugation.

    PubMed

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  4. 3D-Printing for Analytical Ultracentrifugation

    PubMed Central

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J.; Zhao, Huaying

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  5. Modifiers of radiation action on DNA screened by analytical ultracentrifugation

    SciTech Connect

    Cobreros, G.; Lopez Zumel, M.C.; Usobiaga, P.

    1982-11-01

    The effect of daunomycin, chromomycin A/sub 3/, anthramycin, cis-dichlorodiammineplatinum(II) (cisplatin), mitomycin C, and chloroquine on the frequency of radioninduced strand breaks in X-irradiated aqueous solutions of DNA was studied primarily by analytical ultracentrifugation using the sedimentation velocity method. The results show a potent radiosensitizing effect for daunomycin and chromomycin, a protective action for chloroquine and mitomycin, and a nonmodifying effect for anthramycin. Cisplatin forms a highly aggregated complex with DNA which prevents this kind of study.

  6. Characterization of Intrinsically Disordered Proteins by Analytical Ultracentrifugation.

    PubMed

    Scott, David J; Winzor, Donald J

    2015-01-01

    Intrinsically disordered proteins have traditionally been largely neglected by structural biologists because a lack of rigid structure precludes their study by X-ray crystallography. Structural information must therefore be inferred from physicochemical studies of their solution behavior. Analytical ultracentrifugation yields important information about the gross conformation of an intrinsically disordered protein. Sedimentation velocity studies provide estimates of the weight-average sedimentation and diffusion coefficients of a given macromolecular state of the protein. PMID:26412654

  7. Improved measurement of the rotor temperature in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Balbo, Andrea; Metger, Howard; Clary, Robert; Ghirlando, Rodolfo; Schuck, Peter

    2014-04-15

    Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81-95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control. PMID:24530285

  8. Improved Measurement of the Rotor Temperature in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Balbo, Andrea; Metger, Howard; Clary, Robert; Ghirlando, Rodolfo; Schuck, Peter

    2014-01-01

    Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study, comparing various analytical ultracentrifuges, we have shown that external calibration of the scan time, radial magnification, and temperature are critically important for accurate measurements (Anal. Biochem., 2013, doi: 10.1016/j.ab.2013.05.011). To achieve accurate temperature calibration, we have introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton ™) that can be inserted in an ultracentrifugation cell assembly and spun at low rotor speeds. In the present work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allows for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000 rpm. We demonstrate the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration, and the reverse process upon rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control. PMID:24530285

  9. Dynamic range multiwavelength particle characterization using analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Peukert, Wolfgang

    2016-04-14

    We demonstrate how a sophisticated data analysis methodology enables us to perform multiwavelength evaluations of dynamic rotor speed gradient experiments obtained by analytical ultracentrifugation equipped with a multiwavelength detector. Our data evaluation tool HDR-MULTIFIT allows for the accurate analysis of sedimentation coefficient distributions which can be converted to particle size distributions. By means of multiwavelength evaluation, species dependent extinction spectra can be determined even for complex mixtures. Moreover, optical and hydrodynamic properties can be correlated for spherical particles of known optical properties applying multiwavelength evaluation and Mie's theory leading to a significant increase in the dynamic range of the experiment. We provide the theoretical background about the operation principle of our methodology and compare the performance of the multiwavelength analysis to the conventional single wavelength analysis as it is applied in turbidity analysis. We validate our technique using NIST traceable reference particles and show that our technique is universally applicable to materials of known and unknown optical properties, thus clearly extending the possibilities of particle analysis. PMID:26837517

  10. Dynamic range multiwavelength particle characterization using analytical ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Walter, Johannes; Peukert, Wolfgang

    2016-03-01

    We demonstrate how a sophisticated data analysis methodology enables us to perform multiwavelength evaluations of dynamic rotor speed gradient experiments obtained by analytical ultracentrifugation equipped with a multiwavelength detector. Our data evaluation tool HDR-MULTIFIT allows for the accurate analysis of sedimentation coefficient distributions which can be converted to particle size distributions. By means of multiwavelength evaluation, species dependent extinction spectra can be determined even for complex mixtures. Moreover, optical and hydrodynamic properties can be correlated for spherical particles of known optical properties applying multiwavelength evaluation and Mie's theory leading to a significant increase in the dynamic range of the experiment. We provide the theoretical background about the operation principle of our methodology and compare the performance of the multiwavelength analysis to the conventional single wavelength analysis as it is applied in turbidity analysis. We validate our technique using NIST traceable reference particles and show that our technique is universally applicable to materials of known and unknown optical properties, thus clearly extending the possibilities of particle analysis.

  11. Modern analytical ultracentrifugation in protein science: A tutorial review

    PubMed Central

    Lebowitz, Jacob; Lewis, Marc S.; Schuck, Peter

    2002-01-01

    Analytical ultracentrifugation (AU) is reemerging as a versatile tool for the study of proteins. Monitoring the sedimentation of macromolecules in the centrifugal field allows their hydrodynamic and thermodynamic characterization in solution, without interaction with any matrix or surface. The combination of new instrumentation and powerful computational software for data analysis has led to major advances in the characterization of proteins and protein complexes. The pace of new advancements makes it difficult for protein scientists to gain sufficient expertise to apply modern AU to their research problems. To address this problem, this review builds from the basic concepts to advanced approaches for the characterization of protein systems, and key computational and internet resources are provided. We will first explore the characterization of proteins by sedimentation velocity (SV). Determination of sedimentation coefficients allows for the modeling of the hydrodynamic shape of proteins and protein complexes. The computational treatment of SV data to resolve sedimenting components has been achieved. Hence, SV can be very useful in the identification of the oligomeric state and the stoichiometry of heterogeneous interactions. The second major part of the review covers sedimentation equilibrium (SE) of proteins, including membrane proteins and glycoproteins. This is the method of choice for molar mass determinations and the study of self-association and heterogeneous interactions, such as protein–protein, protein–nucleic acid, and protein–small molecule binding. PMID:12192063

  12. Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Brautigam, Chad A.; Ghirlando, Rodolfo; Schuck, Peter

    2013-01-01

    Significant progress in the interpretation of analytical ultracentrifugation (AUC) data in the last decade has led to profound changes in the practice of AUC, both for sedimentation velocity (SV) and sedimentation equilibrium (SE). Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in SV size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of AUC, such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multi-signal modeling and mass conservation approaches in SV and SE, in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multi-protein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current commentary is to supplement previous AUC protocols, Current Protocols in Protein Science 20.3 (1999) and 20.7 (2003), and 7.12 (2008), and provide an update describing the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE. PMID:23377850

  13. Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.

    PubMed

    Ma, Jia; Zhao, Huaying; Sandmaier, Julia; Alexander Liddle, J; Schuck, Peter

    2016-01-01

    Sedimentation velocity (SV) analytical ultracentrifugation is a classical biophysical technique for the determination of the size-distribution of macromolecules, macromolecular complexes, and nanoparticles. SV has traditionally been carried out at a constant rotor speed, which limits the range of sedimentation coefficients that can be detected in a single experiment. Recently we have introduced methods to implement experiments with variable rotor speeds, in combination with variable field solutions to the Lamm equation, with the application to expedite the approach to sedimentation equilibrium. Here, we describe the use of variable-field sedimentation analysis to increase the size-range covered in SV experiments by ∼100-fold with a quasi-continuous increase of rotor speed during the experiment. Such a gravitational-sweep sedimentation approach has previously been shown to be very effective in the study of nanoparticles with large size ranges. In the past, diffusion processes were not accounted for, thereby posing a lower limit of particle sizes and limiting the accuracy of the size distribution. In this work, we combine variable field solutions to the Lamm equation with diffusion-deconvoluted sedimentation coefficient distributions c(s), which further extend the macromolecular size range that can be observed in a single SV experiment while maintaining accuracy and resolution. In this way, approximately five orders of magnitude of sedimentation coefficients, or eight orders of magnitude of particle mass, can be probed in a single experiment. This can be useful, for example, in the study of proteins forming large assemblies, as in fibrillation process or capsid self-assembly, in studies of the interaction between very dissimilar-sized macromolecular species, or in the study of broadly distributed nanoparticles. PMID:26745414

  14. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution.

    PubMed

    Patel, Trushar R; Winzor, Donald J; Scott, David J

    2016-02-15

    Analytical ultracentrifugation, an early technique developed for characterizing quantitatively the solution properties of macromolecules, remains a powerful aid to structural biologists in their quest to understand the formation of biologically important protein complexes at the molecular level. Treatment of the basic tenets of the sedimentation velocity and sedimentation equilibrium variants of analytical ultracentrifugation is followed by considerations of the roles that it, in conjunction with other physicochemical procedures, has played in resolving problems encountered in the delineation of complex formation for three biological systems - the cytoplasmic dynein complex, mitogen-activated protein kinase (ERK2) self-interaction, and the terminal catalytic complex in selenocysteine synthesis. PMID:26555086

  15. [Splitting into two lines: The historical development of the analytical and the gas ultracentrifuge].

    PubMed

    Helmbold, Bernd; Forstner, Christian

    2015-12-01

    In a historical perspective the ultracentrifuge is often taken as perfect example of a research technology according to Shinn and Joerges (Shinn and Joerges 2000, 2002). Research technologies are defined by a generic device, its own metrology and the interstitiality of the historical actors connected with the device. In our paper we give a detailed analysis of the development of the ultracentrifuge and thereby reveal two different lines of development: analytical ultracentrifuges and gas ultra centrifuges used for isotope separation. Surprisingly, we could not find any interstitial and transversal connections for these two lines. The lines end up with two different devices based on two different technical concepts. Moreover, the great majority of the actors stick to one line. These results are in accordance withother authors, who developed the concept of research technologies further and tried to sharpen their definition. PMID:26572680

  16. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    SciTech Connect

    Reid, P.M.; Wilkinson, A.E.; Tipping, E.; Jones, M.N. Freshwater Biological Association, Ambleside, Cumbria )

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average moleuclar weights of the extracted samples range from approximately 2,000 to 17,000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm{sup 3} g{sup {minus}1} as measured by digital densimetry. Al the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  17. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Reid, Patrick M.; Wilkinson, Alan E.; Tipping, Edward; Jones, Malcolm N.

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average molecular weights of the extracted samples range from approximately 2000 to 17000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm 3 g -1 as measured by digital densimetry. All the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  18. Analytical Ultracentrifugation and Its Role in Development and Research of Therapeutical Proteins.

    PubMed

    Liu, Jun; Yadav, Sandeep; Andya, James; Demeule, Barthélemy; Shire, Steven J

    2015-01-01

    The historical contributions of analytical ultracentrifugation (AUC) to modern biology and biotechnology drug development and research are discussed. AUC developed by Svedberg was used to show that proteins are actually large defined molecular entities and also provided the first experimental verification for the semiconservative replication model for DNA initially proposed by Watson and Crick. This chapter reviews the use of AUC to investigate molecular weight of recombinant-DNA-produced proteins, complex formation of antibodies, intermolecular interactions in dilute and high concentration protein solution, and their impact on physical properties such as solution viscosity. Recent studies using a "competitive binding" analysis by AUC have been useful in critically evaluating the design and interpretation of surface plasmon resonance measurements and are discussed. The future of this technology is also discussed including prospects for a new higher precision analytical ultracentrifuge. PMID:26412663

  19. Measurement of the temperature of the resting rotor in analytical ultracentrifugation.

    PubMed

    Ghirlando, Rodolfo; Zhao, Huaying; Balbo, Andrea; Piszczek, Grzegorz; Curth, Ute; Brautigam, Chad A; Schuck, Peter

    2014-08-01

    Accurate measurements of rotor temperature are critical for the interpretation of hydrodynamic parameters in analytical ultracentrifugation. We have recently developed methods for a more accurate determination of the temperature of a spinning rotor using iButton temperature loggers. Here we report that the temperature measured with the iButton on the counterbalance of a resting rotor, following thermal equilibration under high vacuum, closely corresponded to the temperature of the spinning rotor with a precision better than 0.2°C. This strategy offers an inexpensive and straightforward approach to monitor the accuracy of the temperature calibration and determine corrective temperature offsets. PMID:24799348

  20. Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Löhr, Konrad; Karabudak, Engin; Reis, Wieland; Mikhael, Jules; Peukert, Wolfgang; Wohlleben, Wendel; Cölfen, Helmut

    2014-09-23

    The worldwide trend in nanoparticle technology toward increasing complexity must be directly linked to more advanced characterization methods of size, shape and related properties, applicable to many different particle systems in science and technology. Available techniques for nanoparticle characterization are predominantly focused on size characterization. However, simultaneous size and shape characterization is still an unresolved major challenge. We demonstrate that analytical ultracentrifugation with a multiwavelength detector is a powerful technique to address multidimensional nanoparticle analysis. Using a high performance optical setup and data acquisition software, information on size, shape anisotropy and optical properties were accessible in one single experiment with unmatched accuracy and resolution. A dynamic rotor speed gradient allowed us to investigate broad distributions on a short time scale and differentiate between gold nanorod species including the precise evaluation of aggregate formation. We report how to distinguish between different species of single-wall carbon nanotubes in just one experiment using the wavelength-dependent sedimentation coefficient distribution without the necessity of time-consuming purification methods. Furthermore, CdTe nanoparticles of different size and optical properties were investigated in a single experiment providing important information on structure-property relations. Thus, multidimensional information on size, density, shape and optical properties of nanoparticulate systems becomes accessible by means of analytical ultracentrifugation equipped with multiwavelength detection. PMID:25130765

  1. Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analyses.

    PubMed

    Oda, Masayuki; Tanabe, Yoichi; Noda, Masanori; Inaba, Satomi; Krayukhina, Elena; Fukada, Harumi; Uchiyama, Susumu

    2016-08-01

    One of the β-1,3-glucans, laminarin, has been widely used as a substrate for enzymes including endo-1,3-β-glucanase. To obtain quantitative information about the molecular interaction between laminarin and endo-1,3-β-glucanase, the structural properties of laminarin should be determined. The results from pioneering work using analytical ultracentrifugation for carbohydrate analysis showed that laminarin from Laminaria digitata predominantly exists as a single-chain species with approximately 5% of triple-helical species. Differential scanning calorimetry experiments did not show a peak assignable to the transition from triple-helix to single-chain, supporting the notion that a large proportion of laminarin is the single-chain species. The interaction of laminarin with an inactive variant of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, E119A, was quantitatively analyzed using isothermal titration calorimetry. The binding was enthalpically driven and the binding affinity was approximately 10(6) M(-1). The results from binding stoichiometric analysis indicated that on average, E119A binds to laminarin in a 2:1 ratio. This seems to be reasonable, because laminarin mainly exists as a monomer, the apparent molecular mass of laminarin is 3.6 kDa, and E119A would have substrate-binding subsites corresponding to 6 glucose units. The analytical ultracentrifugation experiments could detect different complex species of laminarin and endo-1,3-β-glucanase. PMID:27267066

  2. A novel analytical ultracentrifugation based approach to the low resolution structure of gum arabic.

    PubMed

    Gillis, Richard B; Adams, Gary G; Alzahrani, Qushmua; Harding, Stephen E

    2016-09-01

    Under investigation are the structural properties of gum arabic, an industrially important biopolymer for use as a stabilizer or in drug delivery, using Analytical Ultracentrifugation-a well-established, matrix-free probe for macromolecular size and shape. These results are combined with chromatographically-coupled methods (multi-angle light scattering, differential press imbalance viscometry) to provide a global analysis of its structure in varying ionic strength conditions. This analysis indicates that gum Arabic may have a compact, elliptical structure in solution, the significance of which for biotechnological use is indicated. This modelling method can be applied to other biopolymers and synthetic polymers. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 618-625, 2016. PMID:26899968

  3. Analytic ultracentrifuge calibration and determination of lipoprotein-specific refractive increments

    SciTech Connect

    Talwinder, S.K.; Adamson, G.L.; Glines, L.A.; Lindgren, F.T.; Laskaris, M.A.; Shore, V.G.

    1984-01-01

    Accurate quantification of the major classes and subfractions of human serum lipoproteins is an important analytical need in the characterization and evaluation of therapy of lipid and lipoprotein abnormalities. For calibrating the analytic ultracentrifuge (AnUC), the authors routinely use a Beckman calibration wedge cell with parallel scribed lines 1 cm apart. Such a cell give a rectangular pattern in the schlieren diagram, which determines magnification and also provides an area corresponding to an invariant refractive increment. Complete calibration for AnUC analysis of lipoproteins also requires accurate determination of the specific refractive increments (SRI) of the major lipoprotein classes, namely low density lipoprotein (LDL) and high density lipoprotein (HDL). These are measured in the density in which they are analyzed, i.e., 1.061 g/ml for LDL and 1.200 g/ml for HDL. Five fresh serum samples were fractionated for total LDL and total HDL and their SRI determined. Total lipoprotein mass was determined using precise CHN elemental analysis and compositional analyses. The results yielded corrected SRI of 0.00142 and 0.00135 ..delta..n/g/100 ml for LDL and HDL. Thus, their current values using 0.00154 and 0.00149 ..delta..n/g/100 ml underestimate LDL and HDL by 9% and 11%. Corrections of all previous LDL and HDL AnUC data can be made using appropriate factors of 1.087 and 1.106.

  4. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality. PMID:26414997

  5. Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Casillas, Ernesto; Shroff, Hari; Patterson, George H.; Schuck, Peter

    2013-01-01

    Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system. PMID:24204779

  6. Shape Analysis of DNA-Au Hybrid Particles by Analytical Ultracentrifugation.

    PubMed

    Urban, Maximilan J; Holder, Isabelle T; Schmid, Marius; Fernandez Espin, Vanesa; Garcia de la Torre, Jose; Hartig, Jörg S; Cölfen, Helmut

    2016-08-23

    Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible. PMID:27459174

  7. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Nacken, Thomas J; Damm, Cornelia; Thajudeen, Thaseem; Eigler, Siegfried; Peukert, Wolfgang

    2015-02-18

    In this paper, a method to determine the lateral dimensions of 2D nanosheets directly in suspension by analytical ultracentrifugation (AUC) is shown. The basis for this study is a well-characterized and stable dispersion of graphene oxide (GO) monolayers in water. A methodology is developed to correlate the sedimentation coefficient distribution measured by AUC with the lateral size distribution of the 2D GO nanosheets obtained from atomic force microscopy (AFM). A very high accuracy can be obtained by virtue of counting several thousand sheets, thereby minimizing any coating effects or statistical uncertainties. The AFM statistics are further used to fit the lateral size distribution obtained from the AUC to determine the unknown hydrodynamic sheet thickness or density. It is found that AUC can derive nanosheet diameter distributions with a relative error of the mean sheet diameter of just 0.25% as compared to the AFM analysis for 90 mass% of the particles in the distribution. The standard deviation of the size-dependent error for the total distribution is found to be 3.25%. Based on these considerations, an expression is given to calculate the cut size of 2D nanosheets in preparative centrifugation experiments. PMID:25201557

  8. Simultaneous analysis of hydrodynamic and optical properties using analytical ultracentrifugation equipped with multiwavelength detection.

    PubMed

    Walter, Johannes; Sherwood, Peter J; Lin, Wei; Segets, Doris; Stafford, Walter F; Peukert, Wolfgang

    2015-03-17

    Analytical ultracentrifugation (AUC) has proven to be a powerful tool for the study of particle size distributions, particle shapes, and interactions with high accuracy and unrevealed resolution. In this work we show how the analysis of sedimentation velocity data from the AUC equipped with a multiwavelength detector (MWL) can be used to gain an even deeper understanding of colloidal and macromolecular mixtures. New data evaluation routines have been integrated in the software SEDANAL to allow for the handling of MWL data. This opens up a variety of new possibilities because spectroscopic information becomes available for individual components in mixtures at the same time using MWL-AUC. For systems of known optical properties information on the hydrodynamic properties of the individual components in a mixture becomes accessible. For the first time, the determination of individual extinction spectra of components in mixtures is demonstrated via MWL evaluation of sedimentation velocity data. In our paper we first provide the informational background for the data analysis and expose the accessible parameters of our methodology. We further demonstrate the data evaluation by means of simulated data. Finally, we give two examples which are highly relevant in the field of nanotechnology using colored silica and gold nanoparticles of different size and extinction properties. PMID:25679871

  9. Recent Advances in the Analysis of Macromolecular Interactions Using the Matrix-Free Method of Sedimentation in the Analytical Ultracentrifuge

    PubMed Central

    Harding, Stephen E.; Gillis, Richard B.; Almutairi, Fahad; Erten, Tayyibe; Kök, M. Şamil; Adams, Gary G.

    2015-01-01

    Sedimentation in the analytical ultracentrifuge is a matrix free solution technique with no immobilisation, columns, or membranes required and can be used to study self-association and complex or “hetero”-interactions, stoichiometry, reversibility and interaction strength of a wide variety of macromolecular types and across a very large dynamic range (dissociation constants from 10−12 M to 10−1 M). We extend an earlier review specifically highlighting advances in sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge applied to protein interactions and mucoadhesion and to review recent applications in protein self-association (tetanus toxoid, agrin), protein-like carbohydrate association (aminocelluloses), carbohydrate-protein interactions (polysaccharide-gliadin), nucleic-acid protein (G-duplexes), nucleic acid-carbohydrate (DNA-chitosan) and finally carbohydrate-carbohydrate (xanthan-chitosan and a ternary polysaccharide complex) interactions. PMID:25756246

  10. A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L.; Bakhtina, Marina M.; Becker, Donald F.; Bedwell, Gregory J.; Bekdemir, Ahmet; Besong, Tabot M. D.; Birck, Catherine; Brautigam, Chad A.; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B.; Chaton, Catherine T.; Cölfen, Helmut; Connaghan, Keith D.; Crowley, Kimberly A.; Curth, Ute; Daviter, Tina; Dean, William L.; Díez, Ana I.; Ebel, Christine; Eckert, Debra M.; Eisele, Leslie E.; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A.; Fairman, Robert; Finn, Ron M.; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E.; Cifre, José G. Hernández; Herr, Andrew B.; Howell, Elizabeth E.; Isaac, Richard S.; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A.; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A.; Kwon, Hyewon; Larson, Adam; Laue, Thomas M.; Le Roy, Aline; Leech, Andrew P.; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R.; Ma, Jia; May, Carrie A.; Maynard, Ernest L.; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J.; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K.; Park, Jin-Ku; Pawelek, Peter D.; Perdue, Erby E.; Perkins, Stephen J.; Perugini, Matthew A.; Peterson, Craig L.; Peverelli, Martin G.; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E.; Raynal, Bertrand D. E.; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E.; Rosenberg, Rose; Rowe, Arthur J.; Rufer, Arne C.; Scott, David J.; Seravalli, Javier G.; Solovyova, Alexandra S.; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M.; Streicher, Werner W.; Sumida, John P.; Swygert, Sarah G.; Szczepanowski, Roman H.; Tessmer, Ingrid; Toth, Ronald T.; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F. W.; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H.; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E.; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M.; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies. PMID:25997164

  11. The effects of monovalent metal ions on the conformation of human telomere DNA using analytical ultracentrifugation.

    PubMed

    Gao, Yating; Wu, Sha; Ye, Xiaodong

    2016-07-21

    A human telomere DNA segment (HT-DNA) can fold into a G-quadruplex in the presence of some monovalent cations. These cations can interact with the phosphate groups of the DNA segment and/or with the O6 oxygen atom of guanines, which are called non-specific interactions and specific interactions, respectively. However, until now how these two interactions affect the structure of HT-DNA has not been well understood. In this study, a combination of analytical ultracentrifugation (AUC) and circular dichroism (CD) was used to explore the effects of these two interactions on the structure of a 22-mer single-stranded DNA with a sequence of 5'-AGGG(TTAGGG)3-3'. The results showed that the standard sedimentation coefficient (s20,w) of HT-DNA starts to increase when the concentration of potassium ions (CK(+)) is higher than 10.0 µM due to the formation of a G-quadruplex through specific interactions. Whereas, for a control DNA, a higher CK(+) value of 1.0 mM was needed for increasing s20,w due to non-specific interactions. Moreover, potassium ions could promote the formation of the G-quadruplex much more easily than lithium, sodium and cesium ions, presumably due to its appropriate size in the dehydrated state and easier dehydration. The molar mass of DNA at different cation concentrations was nearly a constant and close to the theoretical value of the molar mass of monomeric HT-DNA, indicating that what we observed is the structural change of individual DNA chains. PMID:27329676

  12. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L; Bakhtina, Marina M; Becker, Donald F; Bedwell, Gregory J; Bekdemir, Ahmet; Besong, Tabot M D; Birck, Catherine; Brautigam, Chad A; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B; Chaton, Catherine T; Cölfen, Helmut; Connaghan, Keith D; Crowley, Kimberly A; Curth, Ute; Daviter, Tina; Dean, William L; Díez, Ana I; Ebel, Christine; Eckert, Debra M; Eisele, Leslie E; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A; Fairman, Robert; Finn, Ron M; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E; Cifre, José G Hernández; Herr, Andrew B; Howell, Elizabeth E; Isaac, Richard S; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A; Kwon, Hyewon; Larson, Adam; Laue, Thomas M; Le Roy, Aline; Leech, Andrew P; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R; Ma, Jia; May, Carrie A; Maynard, Ernest L; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K; Park, Jin-Ku; Pawelek, Peter D; Perdue, Erby E; Perkins, Stephen J; Perugini, Matthew A; Peterson, Craig L; Peverelli, Martin G; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E; Raynal, Bertrand D E; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E; Rosenberg, Rose; Rowe, Arthur J; Rufer, Arne C; Scott, David J; Seravalli, Javier G; Solovyova, Alexandra S; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M; Streicher, Werner W; Sumida, John P; Swygert, Sarah G; Szczepanowski, Roman H; Tessmer, Ingrid; Toth, Ronald T; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F W; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies. PMID:25997164

  13. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium.

    PubMed

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-08-18

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  14. A short-run new analytical ultracentrifugal micromethod for determining low-density lipoprotein sub-fractions using Schlieren refractometry.

    PubMed

    Bozóky, Z; Fülöp, L; Köhidai, L

    2001-01-01

    We have developed a new analytical ultracentrifugal micromethod for the determination of serum low-density lipoprotein (LDL) subclasses directly from ultracentrifugal Schlieren scans. We have used special software for the analysis of this type of single-spin density-gradient ultracentrifugation. The flotation of LDL patterns was obtained by underlayering a physiological salt solution with serum or isolated lipoprotein fractions raised to a density of 1.3 g/mL in the spinning ultracentrifugation capillary band-forming cell. The repeated analysis of Schlieren curves of the same sample from 10 to 100 microL in the 60-100 min full-speed interval time resulted in quite reproducible results. We obtained quantitative results by measuring the Schlieren areas between the sample curves and the reference baseline curve by using computerised numerical and graphic techniques. The decomposition of the integrated curve was carried out using a nonlinear regression program followed by deconvolution algorithm analysis in order to determine the parameters of the composing Gaussian subclasses. The LDL particle concentrations were calculated from the area under the integral of the Gaussian curve using a calibration data constant. The flotation range of the LDL Schlieren curves in the cell was identified with serum from which LDL had been removed by means of precipitation reagents and with centrifugation of isolated LDL aliquots. With this technique, we measured the concentration of LDL and analysed its polydispersity without the need for preceding sequential isolation of the LDL. On the basis of the Schlieren curves, the LDL samples were either physically paucidisperse, having a symmetrical peak within a narrow density range, or were polydisperse, showing an asymmetrical pattern distributed over a broader density region. The described method proved to be useful for a clear and immediate visual presentation of the concentration values of the LDL and for the identification of the

  15. Structural and compositional changes attending the ultracentrifugation of very low density lipoproteins.

    PubMed

    Herbert, P N; Forte, T M; Shulman, R S; La Piana, M J; Gong, E L; Levy, R I; Fredrickson, D S; Nichols, A V

    1975-01-01

    The effects of repetitive ultracentrifugation on the physical and chemical properties of very low density lipoproteins (VLDL) were investigated. VLDL recentrifuged one to seven times were characterized by chemical analyses, analytical ultracentrifugation and electron microscopy. The VLDL content of triglyceride was increased and the proportion of phospholipid decreased by ultracentrifugation. Recentrifugation of VLDL decreased the number of Sf-o 20-100 particles and generated particles of Sf-o greater than 400. The bulk of the material removed from VLDL by ultracentrifugation was lipoprotein having pre-beta mobility on paper electrophoresis, flotation rates of Sf-o 10-100 and a particle size of 300-400 A-O. Two ultracentrifugations separated an average of 14% of the starting VLDL protein. Characterization of the apoproteins in this material by polyacrylamide gel electrophoresis, gel chromatography, immunoprecipitation and amino acid analysis demonstrated a relatively high proportion of beta-apoprotein and relatively little C-apoproteins. PMID:167365

  16. Probing the selectivity of β-hydroxylation reactions in non-ribosomal peptide synthesis using analytical ultracentrifugation.

    PubMed

    Kokona, Bashkim; Winesett, Emily S; von Krusenstiern, A Nikolai; Cryle, Max J; Fairman, Robert; Charkoudian, Louise K

    2016-02-15

    Bacteria and fungi use non-ribosomal peptide synthetases (NRPSs) to produce peptides of broad structural diversity and biological activity, many of which have proven to be of great importance for human health. The impressive diversity of non-ribosomal peptides originates in part from the action of tailoring enzymes that modify the structures of single amino acids and/or the mature peptide. Studying the interplay between tailoring enzymes and the peptidyl carrier proteins (PCPs) that anchor the substrates is challenging owing to the transient and complex nature of the protein-protein interactions. Using sedimentation velocity (SV) methods, we studied the collaboration between the PCPs and cytochrome P450 enzyme that results in the installation of β-hydroxylated amino acid precursors in the biosynthesis of the depsipeptide skyllamycin. We show that SV methods developed for the analytical ultracentrifuge are ideally suited for a quantitative exploration of PCP-enzyme equilibrium interactions. Our results suggest that the PCP itself and the presence of substrate covalently tethered to the PCP together facilitate productive PCP-P450 interactions, thereby revealing one of nature's intricate strategies for installing interesting functionalities using natural product synthetases. PMID:26655390

  17. Investigation of pH-induced conformational change and hydration of poly(methacrylic acid) by analytical ultracentrifugation.

    PubMed

    Wang, Xiaoyan; Ye, Xiaodong; Zhang, Guangzhao

    2015-07-14

    Analytical ultracentrifugation was performed on poly(methacrylic acid) (PMAA) with a series of weight average molar masses (Mw) in aqueous solutions as a function of pH. The scales of the sedimentation coefficient (s) and the diffusion coefficient (D) to Mw at infinite dilutions were obtained at different pH values, indicating that PMAA chains adopt a collapsed structure at low pH values, and stretch at pH higher than 5.2. Our results show that the sedimentation coefficient exhibits a minimum at pH ∼ 6.0, presumably due to the effect of the conformational change and the hydration state of PMAA chains. When pH increases from 6.0 to 8.5, PMAA chains with high molar mass shrink a little bit, presumably because the sodium ions act as a bridging agent between nonadjacent carboxylate groups. Furthermore, the weight average molar mass of PMAA at pH 8.5 increases by one fold than that at pH 4.0, indicating the condensation of sodium ions and the increase in the number of hydration water molecules around carboxylate groups at high pH values. PMID:26059391

  18. Characterizing the Effect of Salt and Surfactant Concentration on the Counterion Atmosphere around Surfactant Stabilized SWCNTs Using Analytical Ultracentrifugation.

    PubMed

    Lam, Stephanie; Zheng, Ming; Fagan, Jeffrey A

    2016-04-26

    Accurate characterization of dispersed-phase nanoparticle properties such as density, size, solvation, and charge is necessary for their utilization in applications such as medicine, energy, and materials. Herein, analytical ultracentrifugation (AUC) is used to quantify bile salt surfactant adsorption on length sorted (7,6) single-wall carbon nanotubes (SWCNTs) as a function of bulk surfactant concentration and in the presence of varying quantities of a monovalent salt-sodium chloride. These measurements provide high precision adsorbed surfactant density values in the literature for only the second SWCNT structure to date and report the quantity of adsorbed surfactant across a broad range of bulk surfactant concentrations utilized in SWCNT dispersion processing. Second, the measurements presented herein unambiguously demonstrate, via AUC, a direct relation between the size of the counterion cloud around a surfactant-stabilized SWCNT and solution ionic strength. The results show that changes in the size of the counterion cloud around surfactant-stabilized SWCNT are attributable to electrostatic phenomenon and not to changes in the quantity of adsorbed surfactant with salt addition. These results provide important reference values for projecting SWCNT dispersion behavior as a function of solution conditions and extend the range of nanoparticle properties measurable via AUC. PMID:27031248

  19. Quantifying Trace Amounts of Aggregates in Biopharmaceuticals Using Analytical Ultracentrifugation Sedimentation Velocity: Bayesian Analyses and F Statistics.

    PubMed

    Wafer, Lucas; Kloczewiak, Marek; Luo, Yin

    2016-07-01

    Analytical ultracentrifugation-sedimentation velocity (AUC-SV) is often used to quantify high molar mass species (HMMS) present in biopharmaceuticals. Although these species are often present in trace quantities, they have received significant attention due to their potential immunogenicity. Commonly, AUC-SV data is analyzed as a diffusion-corrected, sedimentation coefficient distribution, or c(s), using SEDFIT to numerically solve Lamm-type equations. SEDFIT also utilizes maximum entropy or Tikhonov-Phillips regularization to further allow the user to determine relevant sample information, including the number of species present, their sedimentation coefficients, and their relative abundance. However, this methodology has several, often unstated, limitations, which may impact the final analysis of protein therapeutics. These include regularization-specific effects, artificial "ripple peaks," and spurious shifts in the sedimentation coefficients. In this investigation, we experimentally verified that an explicit Bayesian approach, as implemented in SEDFIT, can largely correct for these effects. Clear guidelines on how to implement this technique and interpret the resulting data, especially for samples containing micro-heterogeneity (e.g., differential glycosylation), are also provided. In addition, we demonstrated how the Bayesian approach can be combined with F statistics to draw more accurate conclusions and rigorously exclude artifactual peaks. Numerous examples with an antibody and an antibody-drug conjugate were used to illustrate the strengths and drawbacks of each technique. PMID:27184576

  20. Self-association equilibria of Escherichia coli UvrD helicase studied by analytical ultracentrifugation.

    PubMed

    Maluf, Nasib K; Lohman, Timothy M

    2003-01-31

    The Escherichia coli UvrD protein (helicase II) is an SF1 superfamily helicase required for methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized quantitatively the self-assembly equilibria of the UvrD protein as a function of [NaCl], [glycerol], and temperature (5-35 degrees C; pH 8.3) using analytical sedimentation velocity and equilibrium techniques, and find that UvrD self-associates into dimeric and tetrameric species over a range of solution conditions (t

  1. Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB

    PubMed Central

    Salvay, Andrés G.; Santamaria, Monica; le Maire, Marc

    2008-01-01

    We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca++-ATPase and ExbB solubilized with DDM (dodecyl-β-d-maltoside). SV is extremely well suited for characterizing sample heterogeneity. DDM micelles (s20w = 3.1 S) and complexes (Ca++-ATPase: s20w = 7.3 S; ExbB: s20w = 4 S) are easily distinguished. Using different detergent and protein concentrations, SV does not detect any evidence of self-association for the two proteins. An estimate of bound detergent of 0.9 g/g for Ca++-ATPase and 1.5 g/g for ExbB is obtained from the combined analysis of SV profiles obtained using absorbance and interference optics. Combining s20w with values of the hydrodynamic radius, Rs = 5.5 nm for Ca++-ATPase or Rs = 3.4 nm for ExbB, allows the determination of buoyant molar masses, Mb. In view of their Mb and composition, Ca++-ATPase and ExbB are monomers in our experimental conditions. We conclude that one of the main advantages of SV versus other techniques is the possibility to ascertain the homogeneity of the samples and to focus on a given complex even in the presence of other impurities or aggregates. The relative rapidity of SV measurements also allows experiments on unstable samples. PMID:19669527

  2. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.

    PubMed

    Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey

    2011-10-25

    Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results

  3. Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2002-11-26

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  4. Sol-gel matrices for direct colorimetric detection of analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  5. Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation

    PubMed Central

    2011-01-01

    The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular “wire” with a maximum protein dimension (Dmax) of 104 Å and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell. PMID:21838277

  6. Interaction of the DNA-binding domain of Drosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation.

    PubMed Central

    Kim, S. J.; Tsukiyama, T.; Lewis, M. S.; Wu, C.

    1994-01-01

    Heat shock transcription factor (HSF) mediates the activation of heat shock genes by binding to its cognate sites with high affinity and specificity. The high-affinity binding of HSF is dependent on the formation of an HSF homotrimer, which interacts specifically with the heat shock response element (HSE), comprised of 3 inverted repeats of the 5-bp sequence NGAAN. In order to investigate the thermodynamic basis of the interaction between HSF and HSE, we have overexpressed and purified a polypeptide (dHSF(33-163)) encompassing only the DNA-binding domain of HSF from Drosophila and analyzed its binding to DNA by equilibrium analytical ultracentrifugation using a multiwavelength scan technique. We demonstrate that dHSF(33-163) can bind as a monomer with 1:1 stoichiometry to a synthetic 13-bp DNA containing a single NGAAN sequence. The values of the thermodynamic parameters obtained from the temperature dependence of the equilibrium binding constants indicate that the changes of free energy for the binding of dHSF(33-163) to the wild-type site and a mutant DNA site are predominantly characterized by substantial negative changes of enthalpy. Binding to the wild-type DNA is characterized by a significant positive change of entropy, whereas binding to the mutant DNA is distinguished by a negative change of entropy of comparable magnitude. The binding to the mutant DNA was also highly sensitive to increasing salt concentrations, indicating a dominance of ionic interactions. The sequence-specific, 1:1 binding of dHSF(33-163) to the NGAAN sequence provides a basis for the analysis of higher order interactions between HSF trimers and the HSE. PMID:7920249

  7. Lipid Exchange by Ultracentrifugation.

    PubMed

    Drachmann, Nikolaj Düring; Olesen, Claus

    2016-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipid species with varying aliphatic chain lengths and saturation, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization of the protein in the presence of a target lipid of interest. PMID:26695050

  8. Analytical solution for one-dimensional chemo-mechanical coupling behavior of intelligent polymer gel

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Tian, Hui

    2011-11-01

    As an intelligent material, polymer gel is able to respond to external stimulus, including temperature, chemical concentration, pH, etc. The theoretical framework of chemo-mechanical coupling behavior for intelligent polymer gel is emphasized in this paper. Analytical solutions of the displacement and concentration function are found for one dimensional chemo-mechanical coupling problem. It is shown that the present chemo-mechanical theory can be applied to model chemo-mechanical coupling behavior of intelligent polymer gel. This study has important significance to reveal the mechanism of chemo-mechanical coupling behavior of the polymer gel.

  9. Analytical solution for one-dimensional chemo-mechanical coupling behavior of intelligent polymer gel

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Tian, Hui

    2012-04-01

    As an intelligent material, polymer gel is able to respond to external stimulus, including temperature, chemical concentration, pH, etc. The theoretical framework of chemo-mechanical coupling behavior for intelligent polymer gel is emphasized in this paper. Analytical solutions of the displacement and concentration function are found for one dimensional chemo-mechanical coupling problem. It is shown that the present chemo-mechanical theory can be applied to model chemo-mechanical coupling behavior of intelligent polymer gel. This study has important significance to reveal the mechanism of chemo-mechanical coupling behavior of the polymer gel.

  10. A Sedimentation Experiment Using a Preparative Ultracentrifuge

    ERIC Educational Resources Information Center

    Boudreau, Raymond E.; And Others

    1975-01-01

    Describes an experiment that illustrates the use of the preparative ultracentrifuge in isolating and purifying bacterial ribosomes, determines the sedimentation coefficients of the ribonucleoprotein particles, and demonstrates the subunit structure of the 70-S ribosome and the role of the magnesium ion in the association of subunits. (Author/GS)

  11. Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: analytical polyacrylamide gel electrophoresis

    SciTech Connect

    Takai, N.A.; Filetti, S.; Rapoport, B.

    1981-01-01

    Highly purified bovine TSH (stored in solution at -70 C) was radioiodinated by the stoichiometric chloroamine-T method. The iodinated material ws subjected to analytical polyacrylamide disc gel electrophoresis. TSH was eluted from gel slices (1 mm width) and was analyzed for radioactivity and bioactivity. The latter was determined using the cultured thyroid cell cAMP response assay. Radioactivity in the TSH preparation migrated separately from bioactivity, but concordant with the protein bands observed in gels run in parallel. Further studies performed on bovine TSH purified in our laboratory, as well as on a different TSH preparation of exceptionally high potency (both stored as lyophilized powder) revealed a different pattern, with TSH bioactivity and radioactivity eluting concurrently. Iodination of TSH did not alter its electrophoretic migration on disc gel electrophoresis. In all preparations polymorphism of TSH bioactivity was observed, with at least four separate protein bands containing TSH bioactivity being present in our preparation. The relationship between the degree of iodination and retention of TSH bioactivity was examined. Incorporation of /sup 125/I into TSH was greatly different at two different concentrations of chloramine-T. Despite this, however, the progressive loss of TSH bioactivity was similar at both concentrations, indicating that incorporation of iodine into the TSH molecule is not itself responsible for the decrease in bioactivity. These studies indicate variability among different TSH preparations in terms of their retention of bioactivity. Significant loss of TSH bioactivity appears to occur during storage in solution. The damage to the biological activity of TSH during the iodination procedure is more likely related to the oxidation process than to the incorporation of iodine.

  12. Separation of the principal HDL subclasses by iodixanol ultracentrifugation

    PubMed Central

    Harman, Nicola L.; Griffin, Bruce A.; Davies, Ian G.

    2013-01-01

    HDL subclasses detection, in cardiovascular risk, has been limited due to the time-consuming nature of current techniques. We have developed a time-saving and reliable separation of the principal HDL subclasses employing iodixanol density gradient ultracentrifugation (IxDGUC) combined with digital photography. HDL subclasses were separated in 2.5 h from prestained plasma on a three-step iodixanol gradient. HDL subclass profiles were generated by digital photography and gel scan software. Plasma samples (n = 46) were used to optimize the gradient for the resolution of HDL heterogeneity and to compare profiles generated by IxDGUC with gradient gel electrophoresis (GGE); further characterization from participants (n = 548) with a range of lipid profiles was also performed. HDL subclass profiles generated by IxDGUC were comparable to those separated by GGE as indicated by a significant association between areas under the curve for both HDL2 and HDL3 (HDL2, r = 0.896, P < 0.01; HDL3, r = 0.894, P < 0.01). The method was highly reproducible, with intra- and interassay coefficient of variation percentage < 5 for percentage area under the curve HDL2 and HDL3, and < 1% for peak Rf and peak density. The method provides time-saving and cost-effective detection and preparation of the principal HDL subclasses. PMID:23690506

  13. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation.

    PubMed

    Guo, Yufei; Cheng, Anchun; Wang, Mingshu; Zhou, Yi

    2009-10-01

    Anatid herpesvirus 1 (AHV-1) infection causes substantial economic losses to the world-wide waterfowl production. However, little is known about the efficient method used to study the purification of AHV-1 and the negative staining morphology of the purified virus particles. This lack of knowledge is one of the important factors that have affected the progress of research studies on AHV-1 molecular virology to such an extent that they are lagging far behind those on other members of the same family Herpesviridae. Therefore, an efficient method for purifying AHV-1 from cell-culture medium has been developed. Abundant AHV-1 particles, whose morphological features match those of herpesvirus, were obtained by using the following procedures: (1) conventional differential centrifugation for removal of debris after cell disruption, (2) tangential-flow ultrafiltration coupled with sucrose density gradient ultracentrifugation for isolation of the virus, and (3) conventional differential ultracentrifugation for virus concentration. The purified AHV-1 particles were subjected to transmission electron microscopy (TEM), infectivity and recovery tests, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting assay, and agar gel diffusion test (AGDT). The results of examinations revealed that purified AHV-1 particles were free of visible contamination or degradation. The purified AHV-1 particles were biologically active and were successful in initiating infection upon inoculation into susceptible duck embryo fibroblast. The procedures are reliable technically and feasible for purification of large volumes of viruses. PMID:19152808

  14. Application of Cassette Ultracentrifugation Using Non-labeled Compounds and Liquid Chromatography-Tandem Mass Spectrometry Analysis for High-Throughput Protein Binding Determination.

    PubMed

    Kieltyka, Kasia; McAuliffe, Brian; Cianci, Christopher; Drexler, Dieter M; Shou, Wilson; Zhang, Jun

    2016-03-01

    Membrane-based devices typically used for serum protein binding determination are not fully applicable to highly lipophilic compounds because of nonspecific binding to the device membrane. Ultracentrifugation, however, completely eliminates the issue by using a membrane-free approach, although its wide application has been limited. This lack of utilization is mainly attributed to 2 factors: the high cost in acquiring and handling of radiolabeled compounds and low assay throughput owing to the difficulties in process automation. To overcome these challenges, we report a high-throughput workflow by cassette ultracentrifugation of nonradiolabeled compounds followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Twenty compounds with diverse physicochemical and protein binding properties were selected for the evaluation of the workflow. To streamline the working process, approaches of matrix balancing for all the samples for LC-MS/MS analysis and determining free fraction without analytical calibration curves were adopted. Both the discrete ultracentrifugation of individual compounds and cassette ultracentrifugation of all the test compounds followed by simultaneous LC-MS/MS analysis exhibited a linear correlation with literature values, demonstrating respectively the validity of the ultracentrifugation process and the cassette approach. The cassette ultracentrifugation using nonradiolabeled compounds followed by LC-MS/MS analysis has greatly facilitated its application for high-throughput protein binding screening in drug discovery. PMID:26886323

  15. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  16. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  17. Chemical and physicochemical properties of the high cohesive silicone gel from Poly Implant Prothèse (PIP) breast prostheses after explantation: a preliminary, comparative analytical investigation.

    PubMed

    Beretta, Giangiacomo; Malacco, Matteo

    2013-05-01

    Aim of this work was to gain a deeper insight into the analytical profile of the macromolecular and LMW fractions of polymeric silicones present in breast implants. The study was conducted on silicone gel samples from (i) breast prostheses (Poly Implant Prothèse, PIP) explanted from a patient that needed their therapeutical removal, (ii) from a virgin Mc Ghan 410 MX prosthesis and (iii) from a sample of technical-grade non-cohesive silicone. The gels were analysed using rheological techniques, attenuated total reflectance infrared spectroscopy (ATR-FT-IR), nuclear magnetic resonance ((1)H NMR), gas chromatography coupled to mass spectrometry (GC-MS) and flow injection electrospray mass spectrometry (FI-ESI-MS). Our results demonstrate that, compared to the virgin McGhan gel, the silicone present the PIP prostheses lacks a significant part of the cross-linking sites necessary for the high-cohesive properties of the gel, significant amounts of cholesterol have been absorbed from the breast tissue by the silicone material, demonstrating the lack of impermeability of its elastomer shell. The potential implications and consequences of these analytical results are discussed. PMID:23454600

  18. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using "Spherical Particle Model".

    PubMed

    Okazaki, Mitsuyo; Yamashita, Shizuya

    2016-01-01

    Recently, we developed an analytical method for determining the lipid levels and particle numbers in lipoprotein subclasses covering a wide size range from chylomicrons to small high density lipoproteins, by using gel permeation high-performance liquid chromatography (GP-HPLC). The challenges in analytical methods on lipoprotein subclasses have been addressed from 1980 by Hara and Okazaki using commercial TSK gel permeation columns. Later, the improvements in the hardware, separation and detection of lipoproteins, and the data processing software, using a Gaussian distribution approximation to calculate lipid levels of lipoprotein subclasses, have been extensively utilized in these analytical methods for over thirty years. In this review, we describe on the recent advances in analytical methods on lipoprotein subclasses based on various techniques, and the calculation of particle numbers from lipid levels by GPHPLC using the "spherical particle model". Free/ester ratio of cholesterol in particular lipoprotein subclass was accurately estimated from triglyceride, total cholesterol (free and esterified) and the size of the particle based on this model originally proposed by Shen and Kezdy. PMID:27041512

  19. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  20. Isolation of plasma lipoproteins by zonal ultracentrifugation in the B14 and B15 titanium rotors.

    PubMed

    Wilcox, H G; Heimberg, M

    1970-01-01

    detectable. Even though the mean density of the HDL from dogs or chickens was not different from that of man or rabbits, the visibility of this lipoprotein in dogs and chickens was probably due to its high concentration in the plasma of these species. When plasma from the rat was centrifuged under similar conditions, the HDL was also clearly in evidence. Although rat plasma contained a relatively small concentration of HDL, the lipoprotein had a lower mean density than did the HDL of the other species and was therefore more easily separable from the dense plasma proteins. The procedure of zonal ultracentrifugation for the isolation of lipoproteins by flotation is simultaneously preparative and analytical and should find useful application in the investigation of the soluble lipoproteins from plasma and tissues. PMID:4189439

  1. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry.

    PubMed

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-08-20

    This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3-4 solutions containing 1.0×10(-6) M of heavy metal ions at a flow rate of 5.0 mL min(-1). Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05-0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu(2+), Zn(2+), and Pb(2+) by 50-fold. This new enrichment system successfully performed the separation and determination of Cu(2+) (5.0×10(-8)M) and Zn(2+) (5.7×10(-8) M) in a river water sample and Pb(2+) (3.8×10(-9) M) in a ground water sample. PMID:25086892

  2. SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge

    PubMed Central

    Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.

    2014-01-01

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936

  3. On the general concept of buoyancy in sedimentation and ultracentrifugation.

    PubMed

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-01

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such 'macromolecular crowding', however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This 'generalized Archimedes principle' may provide a tool to devise novel separation methods sensitive to particle size and shape. PMID:23913160

  4. Characterization of chick serum lipoproteins isolated by density gradient ultracentrifugation.

    PubMed

    Rodriguez-Vico, F; Lopez, J M; Castillo, M; Zafra, M F; Garcia-Peregrin, E

    1992-01-01

    Serum lipoproteins from 12h fasted male chicks (15-day-old) were separated into 20 fractions by isopycnic density gradient ultracentrifugation. A new procedure was described by collecting the different fractions from the bottom of tube instead of by aspiration from the meniscus of each tube. Analyses of chemical composition of serum lipoproteins have permitted to reevaluate the density limits of major classes: VHDL, d greater than 1.132 g/ml; HDL, d 1.132-1.084 g/ml; LDL, d 1.084-1.038; IDL, d 1.038-1.022; and VLDL d less than 1.022. HDL fractions clearly predominated (approx. 77% of total lipoproteins) while IDL and VLDL were present at low percentage. LDL was the fraction richest in cholesterol; triacylglycerol content clearly increased from HDL to VLDL, while protein content decreased. All the chemical components of chick serum lipoproteins were accumulated in HDL, although triacylglycerol was relatively distributed in all the lipoprotein classes. PMID:1380327

  5. Molecular fractionation of starch by density-gradient ultracentrifugation.

    PubMed

    Yoon, Jae Wook; Lim, Seung Taik

    2003-03-28

    Amylose and amylopectin in corn and potato starches were fractionated by centrifugation at 124,000g for 3-72 h at 40 degrees C in a gradient media, Nycodenz, based on their sedimentation rate differences. The fractions were collected from a centrifuge tube, and then analyzed by the phenol-sulfuric acid method and iodine-binding test. Amylopectin, a large and highly branched starch molecule, migrated faster than amylose and quickly reached its isopycnic point with a buoyant density of about 1.25 g/mL, exhibiting a sharp and stable carbohydrate peak. Amylose, which is a relatively small and linear molecule, however, migrated slowly in a broad density range and continued moving to higher density regions, eventually overlapping with amylopectin peak as the centrifugation continued. This could indicate that the buoyant density of amylose is similar to that of amylopectin. Under centrifugal conditions of 3 h and 124,000g, amylose and amylopectin molecules were clearly separated, and the presence of intermediate starch molecules (11.5 and 7.7% for corn and potato starch, respectively) was also observed between amylose and amylopectin fractions. The amylose content of corn and potato starches was 22.6 and 21.1%, respectively, based on the total carbohydrate analysis after the ultracentrifugation for 3 h. In alkaline gradients (pH 11 or 12.5), the sedimentation rate of starch molecules and the buoyant density of amylopectin were reduced, possibly due to the structural changes induced by alkali. PMID:12644374

  6. Ultracentrifugation-free chromatography-mediated large-scale purification of recombinant adeno-associated virus serotype 1 (rAAV1)

    PubMed Central

    Tomono, Taro; Hirai, Yukihiko; Okada, Hironori; Adachi, Kumi; Ishii, Akiko; Shimada, Takashi; Onodera, Masafumi; Tamaoka, Akira; Okada, Takashi

    2016-01-01

    Recombinant adeno-associated virus (rAAV) is an attractive tool for gene transfer and shows potential for use in human gene therapies. The current methods for the production and purification of rAAV from the transfected cell lysate are mainly based on cesium chloride and iodixanol density ultracentrifugation, although those are not scalable. Meanwhile, chromatography-based systems are more scalable. Therefore, in this study, we developed a novel method for the production and purification of rAAV serotype 1 (rAAV1) from serum-free culture supernatant based on ion-exchange and gel-filtration chromatography to obtain highly purified products with an ultracentrifugation-free technique towards Good Manufacturing Practice (GMP) production. The purified rAAV1 displayed three clear and sharp bands (VP1, VP2, and VP3) following sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and more than 90% of rAAV1 particles contained fully packaged viral genomes according to negative-stain electron micrographic analysis. Consequently, the resultant genomic titer of the purified rAAV1 was 3.63 × 1013 v.g./ml (the total titer was 4.17 × 1013 v.g.) from the 4 × 109 HEK293 cells. This novel chromatography-based method will facilitate scale-up of manufacturing for clinical applications in gene therapy. PMID:26913289

  7. Ultracentrifugation-free chromatography-mediated large-scale purification of recombinant adeno-associated virus serotype 1 (rAAV1).

    PubMed

    Tomono, Taro; Hirai, Yukihiko; Okada, Hironori; Adachi, Kumi; Ishii, Akiko; Shimada, Takashi; Onodera, Masafumi; Tamaoka, Akira; Okada, Takashi

    2016-01-01

    Recombinant adeno-associated virus (rAAV) is an attractive tool for gene transfer and shows potential for use in human gene therapies. The current methods for the production and purification of rAAV from the transfected cell lysate are mainly based on cesium chloride and iodixanol density ultracentrifugation, although those are not scalable. Meanwhile, chromatography-based systems are more scalable. Therefore, in this study, we developed a novel method for the production and purification of rAAV serotype 1 (rAAV1) from serum-free culture supernatant based on ion-exchange and gel-filtration chromatography to obtain highly purified products with an ultracentrifugation-free technique towards Good Manufacturing Practice (GMP) production. The purified rAAV1 displayed three clear and sharp bands (VP1, VP2, and VP3) following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and more than 90% of rAAV1 particles contained fully packaged viral genomes according to negative-stain electron micrographic analysis. Consequently, the resultant genomic titer of the purified rAAV1 was 3.63 × 10(13) v.g./ml (the total titer was 4.17 × 10(13) v.g.) from the 4 × 10(9) HEK293 cells. This novel chromatography-based method will facilitate scale-up of manufacturing for clinical applications in gene therapy. PMID:26913289

  8. Quantification of PEGylated proteases with varying degree of conjugation in mixtures: An analytical protocol combining protein precipitation and capillary gel electrophoresis.

    PubMed

    Morgenstern, Josefine; Busch, Markus; Baumann, Pascal; Hubbuch, Jürgen

    2016-09-01

    PEGylation, i.e. the covalent attachment of chemically activated polyethylene glycol (PEG) to proteins, is a technique commonly used in biopharmaceutical industry to improve protein stability, pharmacokinetics and resistance to proteolytic degradation. Therefore, PEGylation represents a valuable strategy to reduce autocatalysis of biopharmaceutical relevant proteases during production, purification and storage. In case of non-specific random conjugation the existence of more than one accessible binding site results in conjugates which vary in position and number of attached PEG molecules. These conjugates may differ considerably in their physicochemical properties. Optimizing the reaction conditions with respect to the degree of PEGylation (number of linked PEG molecules) using high-throughput screening (HTS) technologies requires a fast and reliable analytical method which allows stopping the reaction at defined times. In this study an analytical protocol for PEGylated proteases is proposed combining preservation of sample composition by trichloroacetic acid (TCA) precipitation with high-throughput capillary gel electrophoresis (HT-CGE). The well-studied protein hen egg-white lysozyme served as a model system for validating the newly developed analytical protocol for 10kDa mPEG-aldehyde conjugates. PEGamer species were purified by chromatographic separation for calibrating the HT-CGE system. In a case study, the serine protease Savinase(®) which is highly sensitive to autocatalysis was randomly modified with 5kDa and 10kDa mPEG-aldehyde and analyzed. Using the presented TCA protocol baseline separation between PEGamer species was achieved allowing for the analysis of heterogeneous PEGamer mixtures while preventing protease autocatalysis. PMID:27521256

  9. Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol

    PubMed Central

    Hutcheson, Joshua D.; Goettsch, Claudia; Pham, Tan; Iwashita, Masaya; Aikawa, Masanori; Singh, Sasha A.; Aikawa, Elena

    2014-01-01

    Calcifying extracellular vesicles (EVs) released from cells within atherosclerotic plaques have received increased attention for their role in mediating vascular calcification, a major predictor of cardiovascular morbidity and mortality. However, little is known about the difference between this pathologic vesicle population and other EVs that contribute to physiological cellular processes. One major challenge that hinders research into these differences is the inability to selectively isolate calcifying EVs from other vesicle populations. In this study, we hypothesized that the formation of mineral within calcifying EVs would increase the density of the vesicles such that they would pellet at a faster rate during ultracentrifugation. We show that after 10 min of ultracentrifugation at 100,000×g, calcifying EVs are depleted from the conditioned media of calcifying coronary artery smooth muscle cells and are enriched in the pelleted portion. We utilized mass spectrometry to establish functional proteomic differences between the calcifying EVs enriched in the 10 min ultracentrifugation compared to other vesicle populations preferentially pelleted by longer ultracentrifugation times. The procedures established in this study will allow us to enrich the vesicle population of interest and perform advanced proteomic analyses to find subtle differences between calcifying EVs and other vesicle populations that may be translated into therapeutic targets for vascular calcification. Finally, we will show that the differences in ultracentrifugation times required to pellet the vesicle populations can also be used to estimate physical differences between the vesicles. PMID:25491249

  10. Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references.

    PubMed

    Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H; Lewis, Marc S; Brautigam, Chad A; Schuck, Peter; Zhao, Huaying

    2013-09-01

    Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724

  11. Improving the Thermal, Radial and Temporal Accuracy of the Analytical Ultracentrifuge through External References

    PubMed Central

    Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H.; Lewis, Marc S.; Brautigam, Chad A.; Schuck, Peter; Zhao, Huaying

    2013-01-01

    Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724

  12. ESR studies of spin-labeled membranes aligned by isopotential spin-dry ultracentrifugation: lipid-protein interactions.

    PubMed Central

    Ge, M; Budil, D E; Freed, J H

    1994-01-01

    Electron spin resonance (ESR) studies have been performed on spin-labeled model membranes aligned using the isopotential spin-dry ultracentrifugation (ISDU) method of Clark and Rothschild. This method relies on sedimentation of the membrane fragments onto a gravitational isopotential surface with simultaneous evaporation of the solvent in a vacuum ultracentrifuge to promote alignment. The degree of alignment obtainable using ISDU, as monitored by ESR measurements of molecular ordering for both lipid (16-PC) and cholestane spin labels (CSL), in dipalmitoylphosphatidylcholine (DPPC) model membranes compares favorably with that obtainable by pressure-annealing. The much gentler conditions under which membranes may be aligned by ISDU greatly extends the range of macroscopically aligned membrane samples that may be investigated by ESR. We report the first ESR study of an integral membrane protein, bacteriorhodopsin (BR) in well-aligned multilayers. We have also examined ISDU-aligned DPPC multilayers incorporating a short peptide gramicidin A' (GA), with higher water content than previously studied. 0.24 mol% BR/DPPC membranes with CSL probe show two distinct components, primarily in the gel phase, which can be attributed to bulk and boundary regions of the bilayer. The boundary regions show sharply decreased molecular ordering and spectral effects comparable to those observed from 2 mol% GA/DPPC membranes. The boundary regions for both BR and GA also exhibit increased fluidity as monitored by the rotational diffusion rates. The high water content of the GA/DPPC membranes reduces the disordering effect as evidenced by the reduced populations of the disordered components. The ESR spectra obtained slightly below the main phase transition of DPPC from both the peptide- and protein-containing membranes reveals a new component with increased ordering of the lipids associated with the peptide or protein. This increase coincides with a broad endothermic peak in the DSC

  13. Sol-gel approach for fabrication of coated anodized titanium wire for solid-phase microextraction: highly efficient adsorbents for enrichment of trace polar analytes.

    PubMed

    Jia, Jing; Xu, Lili; Wang, Shuai; Wang, Licheng; Liu, Xia

    2014-05-01

    Nanotubular titania film was prepared in situ on titanium wire and was used as the fiber substrate for solid-phase microextraction (SPME) because of its high surface-to-volume ratio, easy preparation, and mechanical stability. Three different functional coatings, β-cyclodextrin (β-CD), β-cyclodextrin-co-poly(ethylenepropylene glycol) (β-CD/PEG), and polyethylene glycol (PEG)-based sorbents were chemically bonded to the nanostructured wire surface via sol-gel technology to further enhance the absorbing capability and extraction selectivity. Coupled to gas chromatography-flame ionic detection (GC-FID), the prepared SPME fibers were investigated using diverse compounds. The results indicated that the fibers showed good mechanical strength, excellent thermal stability, and wonderful capacity and selectivity to polar compounds, including polar aromatic compounds, alcohols, and ketones. Combining the superior hydrophilic property of a bonded functional molecule and the highly porous structure of a fiber coating, the prepared PEG-coated SPME fiber showed much higher adsorption affinity to ephedrine and methylephedrine than β-CD and β-CD/PEG fibers. The as-established PEG-coated SPME-GC analytical method provided excellent sensitivity (LODs, 0.004 and 0.001 ng mL(-1) for ephedrine and methylephedrine, respectively) and better linear range (0.01-2 000 μg L(-1)). In addition, it has surprising repeatability and reproducibility. Finally, the present approach was used to analyze ephedrine and methylephedrine from real urine samples, and reliable results were obtained. PMID:24682230

  14. Purification of the Moloney and Rauscher Murine Leukemia Viruses by Use of Zonal Ultracentrifuge Systems

    PubMed Central

    Toplin, I.

    1967-01-01

    The B-IV and B-IX zonal ultracentrifuge rotors were applied to the concentration and purification of the Moloney and Rauscher murine leukemia viruses from large volumes of infected tissue culture fluids and animal materials. Potassium tartrate, potassium citrate and sucrose gradients were used to obtain viral concentrates from the density 1.16 to 1.18 zone. Proteolytic enzyme digestion of tissue culture preparations prior to zonal ultracentrifuge processing was effective in releasing virus from cell debris and producing highly purified, though nonleukemogenic, viral concentrates. Infected Rauscher mouse plasma was processed to give highly purified infectious virus fractions. A single centrifugation of crude Rauscher mouse spleen homogenates resulted in partially purified infectious concentrates with high virus particle counts. Images Fig. 4 PMID:6035050

  15. Purification of very high density lipoproteins by differential density gradient ultracentrifugation.

    PubMed

    Haunerland, N H; Ryan, R O; Law, J H; Bowers, W S

    1987-03-01

    Differential density gradient ultracentrifugation procedures, utilizing a vertical rotor, were developed for the preparative purification of very high density lipoproteins (VHDL, density greater than 1.21 g/ml). The VHDLs of several insect species were purified as follows. An initial density gradient ultracentrifugation step removed lipoproteins of lower density from the VHDL-fraction, which partially separated from the nonlipoproteins present in the infranatant. A complete separation was achieved by a second centrifugation step employing a modified gradient system. The use of a vertical rotor and specially designed discontinuous gradients allows a relatively fast, efficient, and economical isolation of the class of very high density lipoproteins. Similar gradient systems should be useful for the detection and purification of VHDLs from other sources. PMID:3578796

  16. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  17. A procedure for large-scale plasmid isolation without using ultracentrifugation.

    PubMed

    Chakrabarti, A; Sitaric, S; Ohi, S

    1992-10-01

    An expedient procedure for large-scale plasmid isolation from Escherichia coli strains without using ultracentrifugation or special setups or reagents is described. The protocol, which utilizes a modified alkaline extraction procedure as well as differential precipitations by isopropanol and lithium chloride, is simple and rapid and yet produces plasmid DNA with a yield of about 2 mg/liter culture. The isolated plasmids consisted of mostly monomeric and dimeric covalently closed circular DNA. The plasmids could be digested by various restriction endonucleases and were compatible with gene cloning, transfection-gene expression, and viral production. PMID:1333773

  18. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation

    PubMed Central

    Yuana, Yuana; Levels, Johannes; Grootemaat, Anita; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) facilitate intercellular communication by carrying bioactive molecules such as proteins, messenger RNA, and micro (mi)RNAs. Recently, high-density lipoproteins (HDL) isolated from human plasma were also reported to transport miRNA to other cells. HDL, when isolated from human plasma, ranges in density between 1.063 and 1.21 g/mL, which grossly overlap with the reported density of EVs. Consequently, HDL and EV will be co-isolated when using density gradient ultracentrifugation. Thus, more stringent isolation/separation procedures of EV and HDL are essential to know their relative contribution to the pool of circulating bioactive molecules. PMID:25018865

  19. Combining Ultracentrifugation and Peptide Termini Group-specific Immunoprecipitation for Multiplex Plasma Protein Analysis

    PubMed Central

    Volk, Sonja; Schreiber, Thomas D.; Eisen, David; Wiese, Calvin; Planatscher, Hannes; Pynn, Christopher J.; Stoll, Dieter; Templin, Markus F.; Joos, Thomas O.; Pötz, Oliver

    2012-01-01

    Blood plasma is a valuable source of potential biomarkers. However, its complexity and the huge dynamic concentration range of its constituents complicate its analysis. To tackle this problem, an immunoprecipitation strategy was employed using antibodies directed against short terminal epitope tags (triple X proteomics antibodies), which allow the enrichment of groups of signature peptides derived from trypsin-digested plasma. Isolated signature peptides are subsequently detected using MALDI-TOF/TOF mass spectrometry. Sensitivity of the immunoaffinity approach was, however, compromised by the presence of contaminant peaks derived from the peptides of nontargeted high abundant proteins. A closer analysis of the enrichment strategy revealed nonspecific peptide binding to the solid phase affinity matrix as the major source of the contaminating peptides. We therefore implemented a sucrose density gradient ultracentrifugation separation step into the procedure. This yielded a 99% depletion of contaminating peptides from a sucrose fraction containing 70% of the peptide-antibody complexes and enabled the detection of the previously undetected low abundance protein filamin-A. Assessment of this novel approach using 15 different triple X proteomics antibodies demonstrated a more consistent detection of a greater number of targeted peptides and a significant reduction in the intensity of nonspecific peptides. Ultracentrifugation coupled with immunoaffinity MS approaches presents a powerful tool for multiplexed plasma protein analysis without the requirement for demanding liquid chromatography separation techniques. PMID:22527512

  20. Interactions between rheumatoid factor and native γG-globulins studied in the ultracentrifuge

    PubMed Central

    Normansell, D. E.; Stanworth, D. R.

    1968-01-01

    Interactions between a rheumatoid factor preparation and native human (normal and myeloma) and animal γG-globulins have been studied in the ultracentrifuge. Using pooled normal γG-globulin or a myeloma γG-globulin, the extent of reaction has been shown to be dependent upon the reactant concentration employed, a four-fold excess, by weight, of γG-globulin over rheumatoid factor being required to ensure maximum production of 22S complex. All native myeloma γG-globulins tested reacted to give a 22S complex, the majority showing similar reactivity to the normal γG-globulin control. A small proportion, however, showed significantly different reactivities. Of the animal γG-globulins tested, only rhesus monkey γG-globulin showed reactivity similar to human γG-globulin. The other species showed decreased reactivity. The importance of these findings is discussed. ImagesFIG. 2 PMID:4972180

  1. Universal Parameter Optimization of Density Gradient Ultracentrifugation Using CdSe Nanoparticles as Tracing Agents.

    PubMed

    Li, Pengsong; Huang, Jinyang; Luo, Liang; Kuang, Yun; Sun, Xiaoming

    2016-09-01

    Density gradient ultracentrifugation (DGUC) has recently emerged as an effective nanoseparation method to sort polydispersed colloidal NPs mainly according to their size differences to reach monodispersed fractions (NPs), but its separation modeling is still lack and the separation parameters' optimization mainly based on experience of operators. In this paper, we gave mathematical descriptions on the DGUC separation, which suggested the best separation parameters for a given system. The separation parameters, including media density, centrifuge speed and time, which affected the separation efficiency, were discussed in details. Further mathematical optimization model was established to calculate and yield the "best" (optimized) linear gradient for a colloidal system with given size and density. The practical experiment results matched well with theoretical prediction, demonstrating the DGUC method, an efficient, practical, and predictable separation technique with universal utilization for colloid sorting. PMID:27457445

  2. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.

    PubMed

    Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong

    2016-10-14

    Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm(-3). Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change. PMID:27595315

  3. Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus.

    PubMed

    Sviben, Dora; Forčić, Dubravko; Kurtović, Tihana; Halassy, Beata; Brgles, Marija

    2016-06-01

    Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research. PMID:26935920

  4. Polyelectrolyte gels

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1995-06-01

    Polyelectrolyte (PE) gels are swollen polymer/solvent networks that undergo a reversible volume collapse/expansion through various types of stimulation. Applications that could exploit this large deformation and solvent expulsion/absorption characteristics include robotic {open_quotes}fingers{close_quotes} and drug delivery systems. The goals of the research were to first explore the feasibility of using the PE gels as {open_quotes}smart materials{close_quotes} - materials whose response can be controlled by an external stimulus through a feedback mechanism. Then develop a predictive capability to simulate the dynamic behavior of these gels. This involved experimentally characterizing the response of well-characterized gels to an applied electric field and other stimuli to develop an understanding of the underlying mechanisms which cause the volume collapse. Lastly, the numerical analysis tool was used to simulate various potential engineering devices based on PE gels. This report discusses the pursuit of those goals through experimental and computational means.

  5. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kang, Joohoon; Seo, Jung-Woo T.; Alducin, Diego; Ponce, Arturo; Yacaman, Miguel Jose; Hersam, Mark C.

    2014-11-01

    Two-dimensional transition metal dichalcogenides have emerged as leading successors to graphene due to their diverse properties, which depend sensitively on sample thickness. Although solution-based exfoliation methods hold promise for scalable production of these materials, existing techniques introduce irreversible structural defects and/or lack sufficient control over the sample thickness. In contrast, previous work on carbon nanotubes and graphene has shown that isopycnic density gradient ultracentrifugation can produce structurally and electronically monodisperse nanomaterial populations. However, this approach cannot be directly applied to transition metal dichalcogenides due to their high intrinsic buoyant densities when encapsulated with ionic small molecule surfactants. Here, we overcome this limitation and thus demonstrate thickness sorting of pristine molybdenum disulfide (MoS2) by employing a block copolymer dispersant composed of a central hydrophobic unit flanked by hydrophilic chains that effectively reduces the overall buoyant density in aqueous solution. The resulting solution-processed monolayer MoS2 samples exhibit strong photoluminescence without further chemical treatment.

  6. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation.

    PubMed

    Kang, Joohoon; Seo, Jung-Woo T; Alducin, Diego; Ponce, Arturo; Yacaman, Miguel Jose; Hersam, Mark C

    2014-01-01

    Two-dimensional transition metal dichalcogenides have emerged as leading successors to graphene due to their diverse properties, which depend sensitively on sample thickness. Although solution-based exfoliation methods hold promise for scalable production of these materials, existing techniques introduce irreversible structural defects and/or lack sufficient control over the sample thickness. In contrast, previous work on carbon nanotubes and graphene has shown that isopycnic density gradient ultracentrifugation can produce structurally and electronically monodisperse nanomaterial populations. However, this approach cannot be directly applied to transition metal dichalcogenides due to their high intrinsic buoyant densities when encapsulated with ionic small molecule surfactants. Here, we overcome this limitation and thus demonstrate thickness sorting of pristine molybdenum disulfide (MoS2) by employing a block copolymer dispersant composed of a central hydrophobic unit flanked by hydrophilic chains that effectively reduces the overall buoyant density in aqueous solution. The resulting solution-processed monolayer MoS2 samples exhibit strong photoluminescence without further chemical treatment. PMID:25391315

  7. Ultracentrifugal crystallization of proteins: transport-kinetic modelling, and experimental behavior of catalase

    NASA Astrophysics Data System (ADS)

    Lenhoff, A. M.; Pjura, P. E.; Dilmore, J. G.; Godlewski, T. S.

    1997-09-01

    Although ultracentrifugal crystallization (UC) of proteins has been demonstrated previously and its main advantages established, a clear quantitative understanding of the phenomena involved has not been presented. This issue is addressed here by development of a model accounting for the key transport (sedimentation, diffusion) and kinetic (nucleation, growth) effects in UC. Numerical solution of the governing equations shows how the protein concentration profile changes with time, and how it interacts with the crystallization kinetic phenomena near the bottom of the tube to give rise to protein crystals. It is shown that the centrifugal speed and the initial protein concentration represent the most convenient parameters to use in manipulating crystallization behavior. Some of the predicted features of UC behavior were explored experimentally using bovine liver catalase. Crystal size increased and optical activity improved as the initial protein concentration was reduced. Crystallization was very robust to the presence of appreciable quantities of impurities. UC appears to be an underused route to protein crystallization, and the availability of a quantitative model may aid in its application to novel protein systems.

  8. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  9. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  10. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

    PubMed Central

    Papageorgiou, A C; Oikonomakos, N G; Leonidas, D D; Bernet, B; Beer, D; Vasella, A

    1991-01-01

    Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring. PMID:1900987

  11. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  12. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    -linked gels becomes increasingly inhomogeneous with the approach to the cross-link saturation threshold at which the heterogeneity parameter diverges. Analytical expressions for the correlators of deformed gels are derived in both the long wavelength and the short wavelength limits and an exact expression for the total static structure factor, valid for arbitrary wavelengths, is obtained for gels in the state of preparation. We adapt the RPA results to gels permeated by free labelled chains and to gels in good solvents (in the latter case, excluded volume effects are taken into account exactly) and make predictions which can be directly tested by scattering and thermodynamic experiments. Finally, we discuss the limitations and the possible extensions of our work.

  13. Testosterone Nasal Gel

    MedlinePlus

    Testosterone nasal gel is used to treat symptoms of low testosterone in men who have hypogonadism (a condition in which the body does not produce enough natural testosterone). Testosterone nasal gel is used only for men ...

  14. Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li3VO4/MWCNT Composites for Hybrid Supercapacitors.

    PubMed

    Iwama, Etsuro; Kawabata, Nozomi; Nishio, Nagare; Kisu, Kazuaki; Miyamoto, Junichi; Naoi, Wako; Rozier, Patrick; Simon, Patrice; Naoi, Katsuhiko

    2016-05-24

    Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications. PMID:27158830

  15. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes

    PubMed Central

    ZHANG, ZHUOYUAN; WANG, CHENXING; LI, TANG; LIU, ZHE; LI, LONGJIANG

    2014-01-01

    The aim of the present study was to compare the method of ultracentrifugation and density gradient separation for isolating Tca8113 human tongue squamous cell carcinoma cell line-derived exosomes. The exosomes were obtained from the culture supernatant of cultured Tca8113 cells, respectively, followed by identification with transmission electron microscopy observation and western blot analysis. The two different methods were then compared by the morphology, the distribution range of the particle size and the concentration of proteins of the extracted exosomes. In vitro, Tca8113 cells can secrete a large amount of vesicle-like structures, which are identified as exosomes by the presence of the surface markers, Hsp-70 and Alix. The protein profile of the two products are almost the same, however the particle size distribution of the exosomes extracted with density gradient centrifugation are more limited, between 40–120 nm, and these have a higher protein concentration. The results indicate that Tca8113 cells can secrete exosomes in vitro, and the density gradient separation methods for purifying exosomes is improved, which is helpful for future research and application of exosomes. PMID:25202395

  16. Effects of ultracentrifugation on plasma biochemical values of prefledged wild peregrine falcons (Falco peregrinus) in northeastern Illinois.

    PubMed

    Pond, Joel; Thompson, Steve; Hennen, Mary; Pauley, John; Gamble, Kathryn C

    2012-09-01

    Centrifugation is performed on whole blood samples to obtain serum or plasma for biochemical analysis. Although blood samples centrifuged in a microhematocrit tube may maximize recovery of plasma from small-volume samples, plasma biochemical values from such samples have been implicated as causing erroneous results. To compare blood biochemical values obtained by microhematocrit centrifugation and centrifugation with a commercial tilt-rotor machine, blood samples were collected from peregrine falcon (Falco peregrinus) eyases aged 32-40 days (n=51). The samples were separated into 2 equal aliquots with 1 aliquot centrifuged in a tilt-rotor machine and the other aliquot ultracentrifuged in microhematocrit tubes. Separated plasma from both processes was sent to a commercial veterinary reference laboratory for routine clinical biochemical analysis. No significant differences were found in the biochemical results of the paired samples by the 2 centrifugation methods. These results show that the centrifugation method has no effect on the plasma quality for biochemical analysis in young peregrine falcons. PMID:23156975

  17. Simultaneous Enrichment of Plasma Soluble and Extracellular Vesicular Glycoproteins Using Prolonged Ultracentrifugation-Electrostatic Repulsion-hydrophilic Interaction Chromatography (PUC-ERLIC) Approach*

    PubMed Central

    Sok Hwee Cheow, Esther; Hwan Sim, Kae; de Kleijn, Dominique; Neng Lee, Chuen; Sorokin, Vitaly; Sze, Siu Kwan

    2015-01-01

    Plasma glycoproteins and extracellular vesicles represent excellent sources of disease biomarkers, but laboratory detection of these circulating structures are limited by their relatively low abundance in complex biological fluids. Although intensive research has led to the development of effective methods for the enrichment and isolation of either plasma glycoproteins or extracellular vesicles from clinical materials, at present it is not possible to enrich both structures simultaneously from individual patient sample, a method that affords the identification of biomarker combinations from both entities for the prediction of clinical outcomes will be clinically useful. We have therefore developed an enrichment method for use in mass spectrometry-based proteomic profiling that couples prolonged ultracentrifugation with electrostatic repulsion-hydrophilic interaction chromatography, to facilitate the recovery of both glycoproteins and extracellular vesicles from nondepleted human plasma. Following prolonged ultracentrifugation, plasma glycoproteins and extracellular vesicles were concentrated as a yellow suspension, and simultaneous analyses of low abundant secretory and vesicular glycoproteins was achieved in a single LC-MS/MS run. Using this systematic prolonged ultracentrifugation-electrostatic repulsion-hydrophilic interaction chromatography approach, we identified a total of 127 plasma glycoproteins at a high level of confidence (FDR ≤ 1%), including 48 glycoproteins with concentrations ranging from pg to ng/ml. The novel enrichment method we report should facilitate future human plasma-based proteome and glycoproteome that will identify novel biomarkers, or combinations of secreted and vesicle-derived biomarkers, that can be used to predict clinical outcomes in human patients. PMID:25862729

  18. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.

    PubMed

    Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J

    2015-01-01

    Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers). PMID:25820723

  19. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods

    PubMed Central

    Baranyai, Tamás; Herczeg, Kata; Onódi, Zsófia; Voszka, István; Módos, Károly; Marton, Nikolett; Nagy, György; Mäger, Imre; Wood, Matthew J.; El Andaloussi, Samir; Pálinkás, Zoltán; Kumar, Vikas; Nagy, Péter; Kittel, Ágnes; Buzás, Edit Irén; Ferdinandy, Péter; Giricz, Zoltán

    2015-01-01

    Background Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. Aim Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). Methods and Results Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. Conclusion Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield. PMID:26690353

  20. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  1. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  2. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  3. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  4. Ultracentrifugation-based approaches to study regulation of Sec6/8 (exocyst) complex function during development of epithelial cell polarity.

    PubMed

    Yeaman, Charles

    2003-07-01

    The Sec6/8 (exocyst) complex is an essential component of the exocytic apparatus and plays an evolutionarily conserved role in polarized membrane growth. During development of epithelial cell polarity, this cytosolic protein complex is recruited to plasma membrane sites of cell-cell contact, where it facilitates exocytosis to the lateral membrane domain. However, the identity of membrane binding sites for Sec6/8 complex, mechanisms regulating association of Sec6/8 complex with these sites, and the precise function of the complex in polarized trafficking are not known. Biochemical strategies involving differential, rate-zonal, and isopycnic density gradient ultracentrifugation are providing clues to these questions. PMID:12798134

  5. Chirality-dependent densities of carbon nanotubes by in situ 2D fluorescence-excitation and Raman characterisation in a density gradient after ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Cambré, Sofie; Muyshondt, Pieter; Federicci, Remi; Wenseleers, Wim

    2015-11-01

    Density gradient ultracentrifugation (DGU) becomes increasingly important for the sorting of nanomaterials according to the particles' density, hence structure and dimensions, which determine their unique properties, but the further development of this separation technique is hindered by the limited precision with which the densities could be characterized. In this work, we determine these densities by position-dependent 2D wavelength-dependent IR fluorescence-excitation and resonant Raman spectroscopy measured directly in the density gradient after ultracentrifugation. We apply this method to study the diameter and chirality-dependent sorting of empty and water-filled single-walled carbon nanotubes coated with two different surfactants, sodium cholate (SC) and sodium deoxycholate (DOC). The results elucidate the long standing contradiction that SC would provide better diameter sorting, while DOC is the most efficient surfactant to solubilise the nanotubes. A more predictable separation is obtained for empty DOC-coated nanotubes since their density is found to vary very smoothly with diameter. The accurate and chirality-dependent densities furthermore provide information on the surfactant coating, which is also important for other separation techniques, and allow to determine the mass percentage of water encapsulated inside the nanotubes.Density gradient ultracentrifugation (DGU) becomes increasingly important for the sorting of nanomaterials according to the particles' density, hence structure and dimensions, which determine their unique properties, but the further development of this separation technique is hindered by the limited precision with which the densities could be characterized. In this work, we determine these densities by position-dependent 2D wavelength-dependent IR fluorescence-excitation and resonant Raman spectroscopy measured directly in the density gradient after ultracentrifugation. We apply this method to study the diameter and chirality

  6. Ultrafast Nanocrystalline-TiO2 (B)/Carbon Nanotube Hyperdispersion Prepared via Combined Ultracentrifugation and Hydrothermal Treatments for Hybrid Supercapacitors.

    PubMed

    Naoi, Katsuhiko; Kurita, Takayuki; Abe, Masayuki; Furuhashi, Takumi; Abe, Yuta; Okazaki, Keita; Miyamoto, Junichi; Iwama, Etsuro; Aoyagi, Shintaro; Naoi, Wako; Simon, Patrice

    2016-08-01

    Anisotropically grown (b-axis short) single-nano TiO2 (B), uniformly hyper-dispersed on the surface of multiwalled carbon nanotubes (MWCNT), was successfully synthesized via an in situ ultracentrifugation (UC) process coupled with a follow-up hydrothermal treatment. The uc-TiO2 (B)/MWCNT composite materials enable ultrafast Li(+) intercalation especially along the b-axis, resulting in a capacity of 235 mA h g(-1) per TiO2 (B) even at 300C (1C = 335 mA g(-1) ). PMID:27229372

  7. Modeling chemoresponsive polymer gels.

    PubMed

    Kuksenok, Olga; Deb, Debabrata; Dayal, Pratyush; Balazs, Anna C

    2014-01-01

    Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources. PMID:24498954

  8. Analytical testing

    NASA Technical Reports Server (NTRS)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  9. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    PubMed

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte. PMID:27380296

  10. Toward sol-gel-based sensors

    SciTech Connect

    Jordan, J.D.; Ingersoll, C.M.; Dunbar, R.A.

    1995-12-31

    Advances in biotechnology have produced a variety of antibodies and other biomolecules that possess selective recognition capabilities. Current techniques for the immobilization of these biomolecules typically involve multistep derivatization of a primary substrate, which is labor intensive and often requires large volumes of costly reagents. Further, these immobilization chemistries often adversely affect the characteristic properties of the protein (e.g., the binding affinity). As a result, the need for fast, accurate, inexpensive, and simple to operate diagnostic assays escalates. Because of their room temperature processing, transparency, inertness, and tunable pore structure, sol-gel-derived composites represent promising chemical and biosensing platforms. To date, many researchers have entrapped proteins and enzymes in sol-gel monoliths, and found that they retain some of their native properties. Our group first reported on the affinity of a sol-gel entrapped antibody. However, although these biogel monoliths were promising, analyte diffusion through the monolith matrix is slow, resulting in long response times. Thus, it is clear that the next level of sol-gel-derived biosensor must depend on thin film technology. In the current work, the affinity of fluorescein entrapped within a sol-gel derived thin film for the anti fluorescent hapten, 5- (and 6-)-carboxy 4{prime}, 5{prime}-dimethylfluorescein, is investigated. A novel film preparation technique will be introduced, and the response and response times of these films as a function of processing and storage conditions will be discussed.

  11. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  12. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  13. Testosterone Nasal Gel

    MedlinePlus

    ... enough natural testosterone). Testosterone nasal gel is used only for men with low testosterone levels caused by ... is a controlled substance. Prescriptions may be refilled only a limited number of times; ask your pharmacist ...

  14. Microfluidics with Gel Emulsions

    NASA Astrophysics Data System (ADS)

    Priest, Craig; Surenjav, Enkhtuul; Herminghaus, Stephan; Seemann, Ralf

    2006-03-01

    Microfluidic processing is usually achieved using single phase liquids. Instead, we use monodisperse emulsions to compartment liquids within microchannel geometries. At low continuous phase volume fractions, droplets self-organize to form well-defined arrangements, analogous to foam. While it is well-known that confined geometries can induce rearrangement of foam compartments at the millimeter-scale, similar dynamics are also expected for gel emulsions. We have studied online generation, organization and manipulation of gel emulsions using a variety of microchannel geometries. ``Passive'' reorganization, based on fixed channel geometries, can be supplemented by ``active'' manipulation by incorporating a ferrofluid phase. A ferromagnetic phase facilitates reorganization of liquid compartments on demand using an electromagnetic trigger. Moreover, coalescence between adjacent compartments within a gel emulsion can be induced using electrical potential. Microfluidics using gel emulsions will be well-suited for combinatorial chemistry, DNA sequencing, drug screening and protein crystallizations.

  15. Preparation of chitosan gel

    NASA Astrophysics Data System (ADS)

    Moussaoui, Y.; Mnasri, N.; Elaloui, E.; Ben Salem, R.; Lagerge, S.; de Menorval, L. C.

    2012-06-01

    Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  16. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  17. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  18. Polyacrylamide gel electrophoresis.

    PubMed

    Chrambach, A; Rodbard, D

    1971-04-30

    Polyacrylamide gel electrophoresis (PAGE) provides a versatile, gentle, high resolution method for fractionation and physical-chemical characterization of molecules on the basis of size, conformation, and net charge. The polymerization reaction can be rigorously controlled to provide uniform gels of reproducible, measurable pore size over a wide range. This makes it possible to obtain reproducible relative mobility (Rf) values as physical-chemical constants. Application and extension of Ogston's (random fiber) model for a gel allows for calculation of molecular volume, surface area, or radius, free mobility, and valence from RJ measurements at several gel concentrations, to calculate gel concentration for optimal resolution, and to predict behavior of macromolecules on gel gradients by computerized methods. Extension of classical moving boundary theory has been used to generate multiphasic buffer systems (providing selective stacking, unstacking, restacking, and preparative steady-state-stacking) with known operating characteristics for any pH at 0 degrees and 25 degrees C. A general strategy for isolation of macromolecules and for macromolecular mapping has been developed. Preparative scale PAGE is operational for milligram loads and feasible for gram quantities. PMID:4927678

  19. Nonlinear Elasticity and Cavitation of a Triblock Copolymer Gel

    NASA Astrophysics Data System (ADS)

    Kundu, Santanu; Hashemnejad, Seyed Meysam; Zabet, Mahla; Mishra, Satish

    2015-03-01

    Polymer gels are subjected to large-strain deformation during their applications. The gel deformation at large-strain is non-linear and can often lead to failure of the material. Here, we report the large-strain deformation behavior of a physically cross-linked, swollen polymer gel, which displays unique strain-stiffening response at large-strain. Investigations were performed using large amplitude oscillatory shear (LAOS) and custom developed cavitation rheology techniques. Gent constitutive model, which considers finite extensibility of midblock, was fitted with the LAOS data, therefore, linking the estimated parameters from LAOS analysis to the structure of the gel. Cavitation experiments were conducted as a function of temperature. Both analytical method and finite-element based modeling have been implemented to capture the pressure response in cavitation experiments. Our results provide a critical understanding of gel failure mechanism at large-strain.

  20. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  1. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  2. Analytical Searching.

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    1995-01-01

    Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…

  3. Analytical sedimentology

    SciTech Connect

    Lewis, D.W. . Dept. of Geology); McConchie, D.M. . Centre for Coastal Management)

    1994-01-01

    Both a self instruction manual and a cookbook'' guide to field and laboratory analytical procedures, this book provides an essential reference for non-specialists. With a minimum of mathematics and virtually no theory, it introduces practitioners to easy, inexpensive options for sample collection and preparation, data acquisition, analytic protocols, result interpretation and verification techniques. This step-by-step guide considers the advantages and limitations of different procedures, discusses safety and troubleshooting, and explains support skills like mapping, photography and report writing. It also offers managers, off-site engineers and others using sediments data a quick course in commissioning studies and making the most of the reports. This manual will answer the growing needs of practitioners in the field, either alone or accompanied by Practical Sedimentology, which surveys the science of sedimentology and provides a basic overview of the principles behind the applications.

  4. Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, M.; Fischer, J.; Werner, M.; Sommer, J.-U.

    2014-06-01

    The swelling equilibrium of Olympic gels, which are composed of entangled cyclic polymers, is studied by Monte Carlo simulations. In contrast to chemically cross-linked polymer networks, we observe that Olympic gels made of chains with a larger degree of polymerization, N, exhibit a smaller equilibrium swelling degree, Q∝N-0.28ϕ0-0.72, at the same polymer volume fraction ϕ0 at network preparation. This observation is explained by a desinterspersion (reorganization with release of nontrapped entanglements) process of overlapping nonconcatenated rings upon swelling.

  5. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  6. Swelling-induced and controlled curving in layered gel beams.

    PubMed

    Lucantonio, A; Nardinocchi, P; Pezzulla, M

    2014-11-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  7. Swelling-induced and controlled curving in layered gel beams

    PubMed Central

    Lucantonio, A.; Nardinocchi, P.; Pezzulla, M.

    2014-01-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  8. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  9. Rapid on-line determination of cholesterol distribution among plasma lipoproteins after high-performance gel filtration chromatography.

    PubMed

    Kieft, K A; Bocan, T M; Krause, B R

    1991-05-01

    A high-performance gel chromatography (HPGC) system has been developed which allows the unattended on-line determination of lipoprotein cholesterol distribution (VLDL-C, LDL-C, HDL-C), within 40 min, in microliter quantities of plasma using a single, relatively inexpensive column (Superose 6HR). The FAST cholesterol reagent (Sclavo) and a knitted PFTE Kratos reaction coil (Applied Biosystems) were found to provide optimal sensitivity, linearity, resolution, and dispersion characteristics. Validation is provided by comparison to target values for human quality control reference sera, and by comparing the values obtained by HPGC to the beta-quant method (LRC). The utility of the system is illustrated by comparing profiles from seven different species with normal or elevated plasma cholesterol concentrations. This technique allows rapid analysis of samples, regardless of species, without the use of precipitating agents or the ultracentrifuge. It could also be applied for the direct clinical determination of LDL-cholesterol. PMID:2072044

  10. Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes

    PubMed Central

    Rohringer, Philip; Shi, Lei; Liu, Xianjie; Yanagi, Kazuhiro; Pichler, Thomas

    2014-01-01

    We studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter ⩽0.8 nm can be identified in absorption measurements. This is in stark contrast to the result after sonicating at higher intensities, where also bigger inner tubes can be found. Furthermore, by comparing PL properties of samples centrifugated either with or without a gradient medium, we found that applying DGU greatly enhances the PL intensity, whereas centrifugation at even higher speeds but without a gradient medium results in lower intensities. This can be explained by extraction of inner tubes from their host outer tubes in a two-stage process: the different shearing forces from the sonication treatments result in some DWCNT to be opened, whereas others stay uncut. A subsequent application of DGU leads to the extraction of the inner tubes or not if the host nanotube stayed uncut or no gradient medium was used. This work shows a pathway to avoid this phenomenon to unravel the intrinsic PL from inner tubes of DWCNT. PMID:25843961

  11. Clarification Procedure for Gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.; Simpson, Norman R.

    1987-01-01

    Procedure developed to obtain transparent gels with consistencies suitable for crystal growth, by replacing sodium ions in silicate solution with potassium ions. Clarification process uses cation-exchange resin to replace sodium ions in stock solution with potassium ions, placed in 1M solution of soluble potassium salt. Slurry stirred for several hours to allow potassium ions to replace all other cations on resin. Supernatant solution decanted through filter, and beads rinsed with distilled water. Rinsing removes excess salt but leaves cation-exchange beads fully charged with potassium ions.

  12. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  13. Foam and gel decontamination techniques

    SciTech Connect

    McGlynn, J.F.; Rankin, W.N.

    1989-01-01

    The Savannah River Site is investigating decontamination technology to improve current decontamination techniques, and thereby reduce radiation exposure to plant personnel, reduce uptake of radioactive material, and improve safety during decontamination and decommissioning activities. When decontamination chemicals are applied as foam and gels, the contact time and cleaning ability of the chemical increases. Foam and gel applicators apply foam or gel that adheres to the surface being decontaminated for periods ranging from fifteen minutes (foam) to infinite contact (gel). This equipment was started up in a cold environment. The desired foam and gel consistency was achieved, operators were trained in its proper maintenance and operation, and the foam and gel were applied to walls, ceilings, and hard to reach surfaces. 17 figs.

  14. Polyacrylamide Gel Electrophoresis for Purification of Large Amounts of RNA.

    PubMed

    Meyer, Mélanie; Masquida, Benoît

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) constitutes a powerful technique for the efficient purification of RNA molecules dedicated to applications that require high purity levels. PAGE allows for the fractionation of RNA obtained from cell extracts, chemical or enzymatic synthesis, or modification experiments. Native or denaturing conditions can be chosen for analytical or preparative-scale separations and the nucleotide resolution can be tuned by changing the percentage and reticulation of the gel material. In this protocol, we focus on the preparation of milligram-scale amounts of ~200 nucleotides (nt) RNA molecules that were used in subsequent crystallization experiments. PMID:26227037

  15. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  16. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  17. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  18. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  19. Colloidal thermoresponsive gel forming hybrids.

    PubMed

    Liu, Ruixue; Tirelli, Nicola; Cellesi, Francesco; Saunders, Brian R

    2010-09-15

    Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions. PMID:20561633

  20. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  1. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  2. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  3. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  4. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  5. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  6. Bouncing gel balls: Impact of soft gels onto rigid surface

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yamazaki, Y.; Okumura, K.

    2003-07-01

    After being thrown onto a solid substrate, very soft spherical gels bounce repeatedly. Separate rheological measurements suggest that these balls can be treated as nearly elastic. The Hertz contact deformation expected in the static (elastic) limit was observed only at very small impact velocities. For larger velocities, the gel ball deformed into flattened forms like a pancake. We measured the size of the gel balls at the maximal deformation and the contact time as a function of velocities for samples different in the original spherical radius and the Young modulus. The experimental results revealed a number of scaling relations. To interpret these relations, we developed scaling arguments to propose a physical picture.

  7. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates.

    PubMed

    Fiala, Gina J; Schamel, Wolfgang W A; Blumenthal, Britta

    2011-01-01

    Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes. PMID:21403626

  8. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  9. Addressing new analytical challenges in protein formulation development.

    PubMed

    Mach, Henryk; Arvinte, Tudor

    2011-06-01

    As the share of therapeutic proteins in the arsenal of modern medicine continue increasing, relatively little progress has been made in the development of analytical methods that would address specific needs encountered during the development of these new drugs. Consequently, the researchers resort to adaptation of existing instrumentation to meet the demands of rigorous bioprocess and formulation development. In this report, we present a number of such adaptations as well as new instruments that allow efficient and precise measurement of critical parameters throughout the development stage. The techniques include use of atomic force microscopy to visualize proteinacious sub-visible particles, use of extrinsic fluorescent dyes to visualize protein aggregates, particle tracking analysis, determination of the concentration of monoclonal antibodies by the analysis of second-derivative UV spectra, flow cytometry for the determination of subvisible particle counts, high-throughput fluorescence spectroscopy to study phase separation phenomena, an adaptation of a high-pressure liquid chromatography (HPLC) system for the measurement of solution viscosity and a variable-speed streamlined analytical ultracentrifugation method. An ex vivo model for understanding the factors that affect bioavailability after subcutaneous injections is also described. Most of these approaches allow not only a more precise insight into the nature of the formulated proteins, but also offer increased throughput while minimizing sample requirements. PMID:21392580

  10. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  11. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  12. Structural evolution and stability of sol gel biocatalysts

    NASA Astrophysics Data System (ADS)

    Rodgers, L. E.; Knott, R. B.; Holden, P. J.; Pike, K. J.; Hanna, J. V.; Foster, L. J. R.; Bartlett, J. R.

    2006-11-01

    Immobilisation strategies for catalytic enzymes are important as they allow recovery and reuse of the biocatalysts. In this work, sol-gel matrices have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme. The sol-gel bioencapsulate is produced through fluoride-catalysed hydrolysis of mixtures of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS) in the presence of CALB, yielding materials with controlled pore sizes and surface chemistries. Sol-gel matrices prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analytical techniques applied to date. Small angle neutron scattering (SANS) allows such multi-component systems to be characterised through contrast matching. In the sol-gel bioencapsulate system at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35%. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. Essentially, the inclusion of CALB modulates silicate speciation during evolution of the inorganic network, leading to associated variations in SANS contrast. The SANS protocol developed here may be applied more generally to other encapsulated enzyme systems.

  13. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  14. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  15. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  16. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  17. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  18. Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization.

    PubMed

    Galli, Matteo; Fornasiere, Elvis; Cugnoni, Joël; Oyen, Michelle L

    2011-05-01

    Hydrogels are promising materials for bioengineering applications, and are good model materials for the study of hydrated biological tissues. As these materials often have a structural function, the measurement of their mechanical properties is of fundamental importance. In the present study gelatin gels reinforced with ceramic microspheres are produced and their poroviscoelastic response in spherical indentation is studied. The constitutive responses of unreinforced gels are determined using inverse finite element modeling in combination with analytical estimates of material parameters. The behavior of composite gels is assessed by both analytical and numerical homogenization. The results of the identification of the constitutive parameters of unreinforced gels show that it is possible to obtain representative poroviscoelastic parameters by spherical indentation without the need for additional mechanical tests. The agreement between experimental results on composite gelatin and the predictions from homogenization modeling show that the adopted modeling tools are capable of providing estimates of the poroviscoelastic response of particle-reinforced hydrogels. PMID:21396610

  19. Let's Talk... Analytics

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  20. Analytics for Education

    ERIC Educational Resources Information Center

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  1. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  2. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  3. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  4. Alternative imaging modalities for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, Andrew

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  5. Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials

    PubMed Central

    Takada, Akihiko; Kadokawa, Jun-ichi

    2015-01-01

    A review of the fabrication of polysaccharide ion gels with ionic liquids is presented. From various polysaccharides, the corresponding ion gels were fabricated through the dissolution with ionic liquids. As ionic liquids, in the most cases, 1-butyl-3-methylimidazolium chloride has been used, whereas 1-allyl-3methylimidazolium acetate was specifically used for chitin. The resulting ion gels have been characterized by suitable analytical measurements. Characterization of a pregel state by viscoelastic measurement provided the molecular weight information. Furthermore, the polysaccharide ion gels have been converted into value-added sustainable materials by appropriate procedures, such as exchange with other disperse media and regeneration. PMID:25793912

  6. Synthesis and characterization of nitric oxide-releasing sol-gel microarrays.

    PubMed

    Robbins, Mary E; Hopper, Erin D; Schoenfisch, Mark H

    2004-11-01

    Diazeniumdiolate-modified sol-gel microarrays capable of releasing low levels of nitric oxide are reported as a viable means for improving the blood compatibility of a surface without fully modifying the underlying substrate. Several parameters are characterized including: (1) NO surface flux as a function of sol-gel composition and microarray geometry; (2) microstructure dimensions and spacing for optimal blood compatibility; and (3) the effect of sol-gel surface modification on analyte accessibility to platinum electrodes. The sol-gel microarrays release biologically relevant levels of NO under physiological conditions for >24 h. In vitro platelet adhesion assays indicate that a NO surface flux of 2.2 pmol cm(-2) s(-1) effectively reduces platelet adhesion to glass substrates modified with sol-gel microstructures separated by 50 microm. The blood compatibility observed for these micropatterned surfaces is comparable to NO-releasing sol-gel films. When the separation between NO-releasing microstructures is reduced to 10 microm, the NO surface flux required to reduce platelet adhesion is lowered to 0.4 pmol cm(-2) s(-1). Finally, the oxygen response of platinum electrodes modified with NO-releasing sol-gel microarrays indicates that selective modification via micropatterning enhances analyte accessibility to the sensor surface. PMID:15518528

  7. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  8. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  9. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  10. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  11. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    NASA Technical Reports Server (NTRS)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  12. Gel placement in fractured systems

    SciTech Connect

    Seright, R.S.

    1995-11-01

    This paper examines several factors that can have an important effect on gel placement in fractured systems, including gelant viscosity, degree of gelation, and gravity. For an effective gel treatment, the conductivity of the fracture must be reduced and a viable flow path must remain open between the wellbore and mobile oil in the reservoir. During placement, the gelant that``leaks off`` from the fracture into the rock plays an important role in determining how well a gel treatment will reduce channeling. For a given volume of gelant injected the distance of gelant leakoff is greater for a viscous gelant than for a low-viscosity gelant. In one method to minimize gelant leakoff, sufficient gelation is designed to occur before the gelant leaves the wellbore. The authors investigated this approach in numerous experiments with both fractured and unfractured cores. They studied Cr(III)/acetate/hydrolyzed polyacrylamide (HPAM), resorcinol/formaldehyde, Cr(III)/xanthan, aluminum/citrate/HPAM, and other gelants and gels with various delay times between gelant preparation and injection. Their results suggest both hope and caution concerning the injection of gels into fractured systems.

  13. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  14. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  15. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  16. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  17. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  18. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  19. Solution structure determination of monomeric human IgA2 by X-ray and neutron scattering, analytical ultracentrifugation and constrained modelling: a comparison with monomeric human IgA1.

    PubMed

    Furtado, Patricia B; Whitty, Patrick W; Robertson, Alexis; Eaton, Julian T; Almogren, Adel; Kerr, Michael A; Woof, Jenny M; Perkins, Stephen J

    2004-05-14

    Immunoglobulin A (IgA), the most abundant human immunoglobulin, mediates immune protection at mucosal surfaces as well as in plasma. It exists as two subclasses IgA1 and IgA2, and IgA2 is found in at least two allotypic forms, IgA2m(1) or IgA2m(2). Compared to IgA1, IgA2 has a much shorter hinge region, which joins the two Fab and one Fc fragments. In order to assess its solution structure, monomeric recombinant IgA2m(1) was studied by X-ray and neutron scattering. Its Guinier X-ray radius of gyration R(G) is 5.18 nm and its neutron R(G) is 5.03 nm, both of which are significantly smaller than those for monomeric IgA1 at 6.1-6.2 nm. The distance distribution function P(r)for IgA2m(1) showed a broad peak with a subpeak and gave a maximum dimension of 17 nm, in contrast to the P(r) curve for IgA1, which showed two distinct peaks and a maximum dimension of 21 nm. The sedimentation coefficients of IgA1 and IgA2m(1) were 6.2S and 6.4S, respectively. These data show that the solution structure of IgA2m(1) is significantly more compact than IgA1. The complete monomeric IgA2m(1) structure was modelled using molecular dynamics to generate random IgA2 hinge structures, to which homology models for the Fab and Fc fragments were connected to generate 10,000 full models. A total of 104 compact best-fit IgA2m(1) models gave good curve fits. These best-fit models were modified by linking the two Fab light chains with a disulphide bridge that is found in IgA2m(1), and subjecting these to energy refinement to optimise this linkage. The averaged solution structure of the arrangement of the Fab and Fc fragments in IgA2m(1) was found to be predominantly T-shaped and flexible, but also included Y-shaped structures. The IgA2 models show full steric access to the two FcalphaRI-binding sites at the Calpha2-Calpha3 interdomain region in the Fc fragment. Since previous scattering modelling had shown that IgA1 also possessed a flexible T-shaped solution structure, such a T-shape may be common to both IgA1 and IgA2. The final models suggest that the combination of the more compact IgA2m(1) and the more extended IgA1 structures will enable human IgA to access a broader range of antigens than either acting alone. The hinges of both IgA subclasses appear to show reduced flexibility when compared to their equivalents in IgG, and this may be important for maintaining an extended IgA structure. PMID:15111057

  20. Sedimentation equilibria of ferrofluids: I. Analytical centrifugation in ultrathin glass capillaries.

    PubMed

    Luigjes, Bob; Thies-Weesie, Dominique M E; Philipse, Albert P; Erné, Ben H

    2012-06-20

    Analytical centrifugation is used for the first time to measure sedimentation equilibrium concentration profiles of a ferrofluid, a concentrated colloidal dispersion of strongly absorbing magnetic nanoparticles. To keep the optical absorbance from becoming too strong, the optical path length is restricted to 50 μm by placing the dispersion in a flat glass capillary. The concentration profile is kept from becoming too steep, despite the relatively high buoyant mass of the nanoparticles, by making novel use of a low-velocity analytical centrifuge that was not designed to measure equilibrium profiles. The experimental approach is validated by comparison with profiles obtained using an analytical ultracentrifuge. At concentrations of a few hundred grams per liter, the osmotic pressures calculated from the equilibrium profiles are lower than expected for hard spheres or non-interacting particles, due to magnetic dipolar interactions. By following the presented experimental approach, it will now also be possible to characterize the interparticle interactions of other strongly absorbing colloidal particles not studied before by analytical centrifugation. PMID:22617483

  1. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  2. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  3. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  4. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  5. A clarified gel for crystal growth

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Simpson, N. R.

    1985-01-01

    A procedure for preparing clarified sodium silicate gels suitable for crystal growth is described. In the method described here, the silicate stock is clarified by pretreating it with cation exchange resins before preparing the gels. Also, a modified recipe is proposed for preparing gels to achieve improved transparency.

  6. Characteristics of platelet gels combined with silk.

    PubMed

    Pallotta, Isabella; Kluge, Jonathan A; Moreau, Jodie; Calabrese, Rossella; Kaplan, David L; Balduini, Alessandra

    2014-04-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel-forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  7. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  8. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  9. Analytical Chemistry in Industry.

    ERIC Educational Resources Information Center

    Kaiser, Mary A.; Ullman, Alan H.

    1988-01-01

    Clarifies the roles of a practicing analytical chemist in industry: quality control, methods and technique development, troubleshooting, research, and chemical analysis. Lists criteria for success in industry. (ML)

  10. Protein/Arabinoxylans Gels: Effect of Mass Ratio on the Rheological, Microstructural and Diffusional Characteristics

    PubMed Central

    Berlanga-Reyes, Claudia M.; Carvajal-Millan, Elizabeth; Hicks, Kevin B.; Yadav, Madhav P.; Rascón-Chu, Agustín; Lizardi-Mendoza, Jaime; Toledo-Guillén, Alma R.; Islas-Rubio, Alma R.

    2014-01-01

    Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10−7 to 3.20 × 10−7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick’s law. PMID:25338049

  11. Protein/arabinoxylans gels: effect of mass ratio on the rheological, microstructural and diffusional characteristics.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millan, Elizabeth; Hicks, Kevin B; Yadav, Madhav P; Rascón-Chu, Agustín; Lizardi-Mendoza, Jaime; Toledo-Guillén, Alma R; Islas-Rubio, Alma R

    2014-01-01

    Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10-7 to 3.20 × 10-7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick's law. PMID:25338049

  12. The Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Fischer, Jakob; Werner, Marco; Sommer, Jens-Uwe

    2014-03-01

    The swelling equilibrium of Olympic gels is studied by Monte Carlo Simulations. We observe that gels consisting of flexible cyclic molecules of a higher degree of polymerization N show a smaller equilibrium swelling degree Q ~N - 0 . 28φ0- 0 . 72 for the same monomer volume fraction φ0 at network preparation. This observation is explained by a disinterpenetration process of overlapping non-concatenated polymers upon swelling. In the limit of a sufficiently large number of concatenations per cyclic molecule we expect that the equilibrium degree of swelling becomes proportional to φ0- 1 / 2 independent of N. Our results challenge current textbook models for the equilibrium degree of swelling of entangled polymer networks. Now at: Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department for Mathematics and Computer Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany.

  13. Supercoiling transformation of chemical gels.

    PubMed

    Asai, Makoto; Katashima, Takuya; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-09-28

    The swelling/deswelling behavior of chemical gels has been an unsolved problem disputed over for a long time. The Obukhov-Rubinstein-Colby model depicts the influence that swelling/deswelling has on elasticity, but its physical picture is too complicated to be sufficiently validated by experiment. In this study, we use molecular dynamics simulation to verify the validity of the molecular picture of network strands predicted by the Obukhov-Rubinstein-Colby model. We conclude that the physical picture of the Obukhov-Rubinstein-Colby model is reasonable, and furthermore the simulation can reveal the details of conformational changes in network strands during the supercoiling transformation. Our findings not only reveal the validity, but also give a better understanding of the dynamics of the swelling/deswelling behavior of chemical gels. PMID:26279149

  14. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  15. Multiscale modeling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Wittel, Falk K.; Kröplin, Bernd H.

    2006-03-01

    Electrolyte polymer gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties having a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a considerably large change of volume. Due to this capability, they can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically and electrically stimulated polymer gels in a solution bath are investigated. To describe the different complicated phenomena occurring in these gels adequately, the modeling can be conducted on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a multi-field model and a discrete element formulation are derived. A refinement of the different theories from global macroscopic to microscopic are presented in this paper: The statistical theory is a macroscopic theory capable to describe the global swelling or bending e.g. of a gel film, while the general theory of porous media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. The TPM is a homogenized model, i.e. all geometrical and physical quantities can be seen as statistical averages of the real quantities. The presented chemo-electro-mechanical multi-field formulation is a mesoscopic theory. It is capable of giving the concentrations and the electric potential in the whole domain. Finally the (micromechanical) discrete element (DE) theory is employed. In this case, the continuum is represented by distributed particles with local interaction relations combined with balance equations for the chemical field. This method is predestined for problems involving large displacements, strains and discontinuities. The presented formulations are compared and conclusions on their

  16. Polymer networks and gels: Simulation and theory

    NASA Astrophysics Data System (ADS)

    Kenkare, Nirupama Ramamurthy

    1998-12-01

    network pressure is treated as the sum of liquid-like and elastic components. The liquid-like component is obtained by extending the Generalized Flory-Dimer theory to networks, and the elastic component is obtained by treating the network as a set of interpenetrated tree-like structures and using a ideal chain-spring analogy to calculate the free energy. The theoretical predictions for network pressure are in very good agreement with simulation data. Our simulation results for the network chain properties show that the chain end-to-end vectors scale affinely with macroscopic deformation at large densities, but show a weaker-than-affine scaling at low densities. A combined discontinuous molecular dynamics and Monte Carlo simulation technique is used to study the swelling of trifunctional networks of chain lengths 20 and 35 in an athermal solvent. The swelling simulations are conducted under conditions of constant pressure and chemical potential. The gel packing fraction and solvent fraction at swelling equilibrium were found to increase with pressure as expected. We present a simple, analytical theory for gel swelling, grounded in our previous theoretical work for solvent-free networks. The predictions of this theory for the gel properties at swelling equilibrium show remarkably good agreement with simulation results.

  17. Process Analytical Chemistry.

    ERIC Educational Resources Information Center

    Callis, James B.; And Others

    1987-01-01

    Discusses process analytical chemistry as a discipline designed to supply quantitative and qualitative information about a chemical process. Encourages academic institutions to examine this field for employment opportunities for students. Describes the five areas of process analytical chemistry, including off-line, at-line, on-line, in-line, and…

  18. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  19. Learning Analytics Considered Harmful

    ERIC Educational Resources Information Center

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  20. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  1. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  2. Validating Analytical Methods

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)

  3. Teaching the Analytical Life

    ERIC Educational Resources Information Center

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  4. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  5. Selective gel system for permeability profile control

    SciTech Connect

    Shu, P.

    1990-02-27

    This patent describes a process for closing pores in a more permeable zone of a formation. It comprises: placing into an aqueous solution a first composition sufficient to form ex-situ a size selective, shear thinning first gel which comprises a xanthan biopolymer, and a transitional metal ion; placing into the aqueous solution a second composition sufficient to form thermally a second in-situ gel which is substantially more resistant to formation conditions than the first gel. The composition comprises an aldehyde, and a phenolic compound; allowing the aqueous solution sufficient time to form the ex-situ gel; and injecting the aqueous solution containing the gel into the permeable zone where it reheals, is heated by the formation and thereafter forms a solid gel substantially more resistant to formation conditions than the first gel.

  6. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  7. In vitro studies of the efficacy of reversed phase silica gel as a sorbent for hemo- and plasmaperfusion.

    PubMed

    Murugavel, S

    1992-01-01

    The clearance capacities of reversed phase silica gel, widely used in analytical chemistry, were studied in vitro. The plasma clearances of amitriptyline, quinidine, digoxin, digitoxin, methaqualone, phenobarbital and phenytoin were determined at typical toxic plasma levels. Between 88.8 and 99.5% of the drugs were eliminated from plasma by reversed phase silica gel, which compares favorably with amberlite XAD-4 and coated activated charcoal. The biocompatibility of reversed phase silica gel was also evaluated in vitro. Thrombocytopenia and leukopenia were noted while coagulation parameters, electrolytes, acid-base balance, glucose, urea, creatinine, uric acid, total protein, albumin, bilirubin, cholesterol and triglycerides were not significantly affected. Preliminary results in vitro support the high clearance capacity of reversed phase silica gel and suggest a biocompatibility similar to that of other sorbents currently in use. Further investigation of the clearance capacities and biocompatibility of reversed phase silica gel seems justified. PMID:1311776

  8. Fixed charges in the gel matrix of sensor chips and dissociation in diffusion gradients influence the detection of fast protein-protein interactions.

    PubMed

    Glaser, Ralf W; Schönherr, Roland; Heinemann, Stefan H

    2014-02-01

    In molecular interaction studies based on surface plasmon resonance (SPR) measurements, the ligand is often immobilized in a thin carboxydextran gel matrix. Here we investigated the influence of the charged gel on the results of such SPR measurements. At physiological ionic strength, analytes with a net charge of more than about 5 are considerably enriched or depleted due to the Donnan potential under commonly applied experimental conditions. Below physiological ionic strength, enrichment was found to be even stronger than predicted by Donnan theory. The influence of the gel matrix on the apparent binding is prevented in competition experiments, in which SPR measurements are only used to discriminate between free and complexed analyte while the interaction between analyte and ligand is studied in solution. However, if the analyte-ligand interaction is very fast, thermodynamic equilibrium is disturbed near the interface where free analyte binds to the immobilized ligand due to mass transport limitation. Consequently, the soluble analyte-ligand complex dissociates, which results in an overestimation of free analyte. In experiments of calmodulin binding to fragments of the KCNH1 ion channel protein this mass-transport-induced dissociation led to a systematic underestimation of the affinity. We conclude that the insufficient discrimination between the true analyte-ligand binding and the complex interactions of the analyte with the gel phase may result in systematic errors. The theoretical framework for recognizing and avoiding such errors is provided. PMID:24342363

  9. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices

    PubMed Central

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-01-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584

  10. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  11. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  12. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  13. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  14. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  15. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  16. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  17. Selective gel system for permeability profile control

    SciTech Connect

    Shu, P.

    1990-10-16

    This patent describes a selective gel for closing pores in a more permeable zone of a formation. It comprises: an aqueous solution of a first composition sufficient to form ex-situ a size selective, shear thinning first gel which comprises a xanthan biopolymer, and a transitional metal ion; and an aqueous solution of a second composition sufficient to form thermally a second in-situ gel that which comprises and aldehyde, and a phenolic compound which solutions are combined and allowed to form a shearable, rehealable ex-situ gel which can be injected into the permeable zone where it reheals when heated by the formation and thereafter forms a solid gel substantially more resistant to formation conditions than the first gel.

  18. Synthesis of oligomeric models of coal-derived materials for use with GPC calibration. Quarterly report, June-August 1982. [Gel permeation chromatography

    SciTech Connect

    Baltisberger, R J; Jones, M B

    1982-09-01

    One important facet of the characterization of coal-derived materials is that of molecular weight determination. Number average molecular weight is usually obtained by vapor pressure osmometry measurements. However, no satisfactory method is available for determining weight average molecular weights. The latter values are useful in predicting rheological properties. Gel permeation chromatography (GPC) is a technique which should be most readily adaptable for this measurement. The other techniques of ultracentrifugation and light scattering are not as readily available as GPC. At this time, satisfactory GPC calibration standards which possess chemical structures similar to coal derived mterials are non-existent. The purpose of this study is to develop a useful set of GPC calibration standards for asphaltene and preaspaltene analyses. Our previous results suggest models in which coal derived preasphaltenes and asphaltenes are composed of oligomeric aromatic ethers of both diaryl and furan types. We plan to synthesize a series of model oligomers that are in agreement with the average structural formulas of some selected coal preasphaltenes as determined by pmr, elemental analyses and various oxygen derivatization procedures. These model compounds will be tested for use as calibration standards for both high pressure gel permeation chromatographic and vapor pressure osmometric procedures. Their response and retention times will be compared with coal preasphaltenes to determine the suitability of the model compounds as calibration standards.

  19. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  20. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    NASA Astrophysics Data System (ADS)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  1. Microfluidics of soft granular gels

    NASA Astrophysics Data System (ADS)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  2. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  3. [Electron microscopy study of artificial vitreous gel].

    PubMed

    Ehgartner, E M; Schmut, O; Hofmann, H

    1986-04-01

    Artificial gels prepared from Cu2+-ions and hyaluronic acid were studied in the electron microscope and compared with the native vitreous body. Additionally, the authors attempted to produce transparent gels from the native constituents of the vitreous body, namely collagen and hyaluronic acid. Mixing of solutions of these constituents formed no gels but white precipitates. The ultrastructure of these precipitates was also studied in the electron microscope. PMID:3723971

  4. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  5. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  6. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  7. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  8. Functional behavior of isotropic magnetorheological gels

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, P.; Maniprakash, S.; Srinivasan, S. M.; Srinivasa, A. R.

    2010-08-01

    Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1-0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.

  9. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  10. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  11. Structure of chitosan gels mineralized by sorption

    NASA Astrophysics Data System (ADS)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  12. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis.

    PubMed

    Heng, See Kah; Heng, Chua Kek; Puthucheary, S D

    2009-01-01

    Pulsed field gel electrophoresis (PFGE), the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time) by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used. PMID:19384038

  13. Terpolymer smart gels: synthesis and characterizations

    NASA Astrophysics Data System (ADS)

    Bag, Dibyendu S.; Alam, Sarfaraz; Mathur, G. N.

    2004-10-01

    Two smart terpolymer gels, MS-1 and MS-2, were synthesized such that the same gel can respond to more than one external environmental condition, such as pH, temperature, solvent composition, electric field. So two terpolymers gels of vinyl monomers such as sodium acrylate, acrylamide and N-isopropyl acrylamide were synthesized by using ammonium persulfate (APS) as an initiator, N,N,N',N'-tetramethyl ethylene diamine (TMEDA) as an accelerator and methylene bisacrylamide as a cross-linker. These terpolymers were characterized by elemental and Fourier transform infrared analysis. The swelling behavior of these terpolymer smart gels was evaluated by changing the pH, temperature and solvent composition. The variation of the swelling behavior with time was evaluated in an aqueous medium at room temperature. The time taken for maximum swelling (tm) was about 20 min for the gel MS-2. However the tm value for the gel MS-1 is higher than that of MS-2. The swelling behavior remains almost unchanged over a temperature range of 22-50 °C for both the gels. The discontinuous volume transitions were observed at pH 7.6 and 8.2 for the two gels, MS-1 and MS-2, respectively. The gel MS-1 suddenly shrinks below and swells above pH 7.6. Correspondingly, the pH is 8.2 for the case of MS-2. Volume transitions in an acetone-water mixture were also observed for these gels. The swelling behaviors of these two smart gels are almost parallel above the 40% acetone concentration.

  14. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  15. Viscoelastic Properties of Vitreous Gel

    NASA Astrophysics Data System (ADS)

    Pirouz Kavehpour, H.; Sharif-Kashani, Pooria

    2010-11-01

    We studied the rheological properties of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment at body temperature to mimic in-vivo conditions. We modeled the creep deformation using a two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a separate response to the applied stress was obtained from each component. The short time scale was associated with the collagen structure, while the longer time scale was related to the microfibrilis and hyaluronan network. We were able to distinguish the role of each main component from the overall rheological properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy.

  16. Gel transitions in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bergenholtz, J.; Fuchs, M.

    1999-12-01

    The idealized mode-coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures, MCT predicts a slowing down of the local dynamics and ergodicity-breaking transitions. The non-ergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the non-ergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical non-ergodicity parameters; this is motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low-temperature MCT non-ergodicity transitions.

  17. New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation

    NASA Astrophysics Data System (ADS)

    Walter, Johannes; Thajudeen, Thaseem; Süß, Sebastian; Segets, Doris; Peukert, Wolfgang

    2015-04-01

    Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles.

  18. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  19. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  20. Chain Release Behavior of Gellan Gels

    NASA Astrophysics Data System (ADS)

    Hossain, Khandker S.; Nishinari, Katsuyoshi

    The chain release behavior from gellan gels was studied by immersing the gel into water and monitoring the mass loss as a function of time. Concentration of released gellan in the external solution was determined for gels of different sizes using phenol-sulfuric acid method. The chain release process became faster with increasing total surface area and volume. However the concentration of released chain normalized by surface area and volume suggests that the chain release itself is governed not only by the ionic effect and the amount of unassociated chains in gel but other factors such as osmotic pressure may play an important role on the chain release from the gels. The diffusion coefficient was estimated from the chain release process which is in the same order of magnitude reported for an isolated gellan chain by light scattering. Rheological measurements also suggest that the unassociated gellan chains are released out when immersed in pure water while unassociated chains are restricted to release out when immersed in salt solution due to the intrusion of cations which is responsible for further association of the unassociated gellan chains being in agreement with the previously published results. The elastic modulus of gels was increased by immersion of gels in water and in salt solutions, which can be attributed as the stiffening of network chains due to gel swelling and the conversion from free and unassociated chains into network chains, respectively, leading to an increase in elastic modulus with time.

  1. Sol-gel kinetics by NMR

    SciTech Connect

    Assink, R.A.; Kay, B.D.

    1991-01-01

    The chemical synthesis of advanced ceramic and glass materials by the sol-gel process has become an area of increasing activity in the field of material science. The sol-gel process provides a means to prepare homogeneous, high purity materials with tailored chemical and physical properties. This paper surveyed the nuclear magnetic resonance (NMR) studies of silicon-based sol-gel kinetics. A review of the various models which have been used to analyze the chemical kinetics of various sol-gel systems was presented. The utility of NMR spectroscopy was demonstrated in investigating the influence that various reaction conditions have on the reaction pathways by which sol-gel derived materials are synthesized. By observing in a direct fashion the chemical pathway of the sol-gel, it is often possible to relate the final properties of the material to the formulation and reaction conditions of the sol-gel. The study of reaction kinetics by NMR is expected to play an increasingly important role in understanding sol-gel processing and material properties. 15 refs. (DP)

  2. A Short-Duration Gel Diffusion Experiment.

    ERIC Educational Resources Information Center

    Mulcahy, D. E.

    1980-01-01

    Described is a gel diffusion experiment that permits the completion of duplicate diffusion runs within a three-hour laboratory session. Information included for the short-duration gel diffusion experiment is the diffusion cell, the experiment, data treatment, and the expected results of the experiment. (Author/DS)

  3. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  4. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  5. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  6. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  7. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  8. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  9. Thermotropic nanostructured "gel in gel" systems for improved oil recovery and water shutoff

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Stasyeva, L. A.

    2015-10-01

    Thermotropic nanostructured system with two gel-forming components has been created based on inorganic hydroxypolymer and organic polymer with a lower critical solution temperature of "aluminum salt-cellulose ether-carbamide-water", forming at heating a bound-dispersed nano-sized "gel in gel" structure. The studies on the kinetics of gelation and rheological properties of solutions and gels in this system have shown that the gels have a higher viscosity and elasticity and thereby are promising for creating deflecting screens in oil reservoirs, redistribution of filtration flows, improved oil recovery and for water shutoff.

  10. Drop spreading and resorbtion on gel surfaces

    NASA Astrophysics Data System (ADS)

    Banaha, Mehdi; Daerr, Adrian; Limat, Laurent

    2008-03-01

    We have studied the dynamics of liquid drops on agar gels, using a visualisation method which captures the evolution of the free surface. A first remarquable observation is that drops of water deposited on the surface do not spread, although the gel consists of up to 99.7% water and as low as 0.3% agarose. Instead, the drop slowly de-wets and resorbs into the gel which swells locally. If the deposited drop contains surfactants, the dynamics is very different. A sharp circular swelling front develops and progressively invades the whole surface. We study the propagation of this front as a function of surfactant and agarose concentration, and compare its typical properties to similar fronts appearing during mass swarming events of bacterial colonies under the same conditions. The observations reveal the complex nature of gel surface physico-chemistry and its aging, and may be related to recent friction measurements at gel interfaces.

  11. Photoswitchable gel assembly based on molecular recognition.

    PubMed

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  12. Photoswitchable gel assembly based on molecular recognition

    PubMed Central

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  13. Improving immobilized biocatalysts by gel phase polymerization

    SciTech Connect

    Kuu, W.Y.; Polack, J.A.

    1983-08-01

    A new method is presented for the treatment of gel-type supports, used for immobilizing microbial cells and enzymes, to obtain high mechanical strength. It is particularly useful for ethanol fermentation over gel beads containing immobilized viable cells, where the beads can be ruptured by gas production and the growth of cells within the gels. This method consists of treating agar or carrageenan gel with polyacrylamide to form a rigid support which retains the high catalytic activity characteristic of the untreated biocatalysts. The size and shape of the biocatalyst is unaffected by this treatment. The method involves the diffusion of acrylamide, N,N'-methylenebisacrylamide and BETA-dimethylaminopropionitrile (or N,N,N',N'-tetramethylethylenediamine) into the preformed biocatalyst beads followed by the addition of an initiator to cause polymerization within the beads. Treated gels have been used for the continuous fermentation of glucose to ethanol in a packed column for over two months.

  14. Generation of inkjet drop of particulate gel

    NASA Astrophysics Data System (ADS)

    Yoo, Hansol; Kim, Chongyoup

    2015-08-01

    The generation of inkjet drops of colloidal gels is studied experimentally. Particle suspensions are prepared by dispersing spherical polystyrene particles of 620 nm in the 1:1 mixture of deionized water and ethylene glycol. The gels are prepared by adding polyethylene oxide to the suspensions by inducing the depletion interaction between particles. It is demonstrated that inkjet drops can be generated by using the colloidal gels. It is found that the ligament extended from the inkjet nozzle is stabilized so that the drop can be generated without satellite droplets behind the main drop and the velocity of the gel drop is faster than that of the polymer solution at the same concentration. The gel drop generation characteristics are found to be sensitive to input voltage.

  15. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Vetcher, Alexandre A.; Srinivasan, Srimeenakshi; Vetcher, Ivan A.; Abramov, Semen M.; Kozlov, Mikhail; Baughman, Ray H.; Levene, Stephen D.

    2006-08-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  16. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  17. Dewatering fine coal slurries by gel extraction

    SciTech Connect

    Gehrke, S.H.; Lyu, Lii-Hurng.

    1990-01-01

    A new technology called gel extraction has been evaluated to determine its economic viability in dewatering the fine and ultrafine coal slurries generated upon separation of sulfur and ash from clean coal during the physical coal cleaning process. Water must be removed from such slurries prior to transportation and combustion but the dewatering costs are substantial, especially for the fine particles below 28 mesh (0.6 mm). Gel extraction is a potential breakthrough in slurry dewatering technology. The goal of this project was to acquire the qualitative and quantitative data needed to estimate the potential of gel extraction for dewatering coal slurries. The specific objectives were to determine the maximum extents of dewatering (minimum surface moisture in the coal product), the clarity of the water removed (minimum solids content), the speed of the dewatering cycles, the service lifetime of the gels, and the factors which influence all of these. With the results obtained, an economic analysis of Ohio coal cleaning plant dewatering technologies was carried out. The polymer gel at the heart of this project, poly (N-isopropylacrylamide) (PNIPA), can swell several times its shrunken weight at 32[degrees]C by absorbing water at 25[degrees]C. In gel extraction, a shrunken NIPA gel is contacted with a slurry at ambient temperature or cooler; the gel swells by absorbing water from the slurry. The gel is then removed from the dewatered slurry and warmed above its critical temperature of 33[degrees]C, which returns it to the shrunken state by releasing the absorbed water. The facts that the gel is reusable and the process is simple and driven by low-grade energy (warm temperatures), and not inherently limited by particle size, made the process an attractive possible alternative to centrifugation, screening, filtration, etc. for slurry dewatering.

  18. Analytical Services Management System

    SciTech Connect

    Church, Shane; Nigbor, Mike; Hillman, Daniel

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.

  19. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  20. Analytical Services Management System

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standardmore » chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.« less

  1. Analytics: Changing the Conversation

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2013-01-01

    In this third and concluding discussion on analytics, the author notes that we live in an information culture. We are accustomed to having information instantly available and accessible, along with feedback and recommendations. We want to know what people think and like (or dislike). We want to know how we compare with "others like me."…

  2. Social Learning Analytics

    ERIC Educational Resources Information Center

    Buckingham Shum, Simon; Ferguson, Rebecca

    2012-01-01

    We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers. Online social…

  3. Challenges for Visual Analytics

    SciTech Connect

    Thomas, James J.; Kielman, Joseph

    2009-09-23

    Visual analytics has seen unprecedented growth in its first five years of mainstream existence. Great progress has been made in a short time, yet great challenges must be met in the next decade to provide new technologies that will be widely accepted by societies throughout the world. This paper sets the stage for some of those challenges in an effort to provide the stimulus for the research, both basic and applied, to address and exceed the envisioned potential for visual analytics technologies. We start with a brief summary of the initial challenges, followed by a discussion of the initial driving domains and applications, as well as additional applications and domains that have been a part of recent rapid expansion of visual analytics usage. We look at the common characteristics of several tools illustrating emerging visual analytics technologies, and conclude with the top ten challenges for the field of study. We encourage feedback and collaborative participation by members of the research community, the wide array of user communities, and private industry.

  4. Ada & the Analytical Engine.

    ERIC Educational Resources Information Center

    Freeman, Elisabeth

    1996-01-01

    Presents a brief history of Ada Byron King, Countess of Lovelace, focusing on her primary role in the development of the Analytical Engine--the world's first computer. Describes the Ada Project (TAP), a centralized World Wide Web site that serves as a clearinghouse for information related to women in computing, and provides a Web address for…

  5. Analytical Instrument Obsolescence Examined.

    ERIC Educational Resources Information Center

    Haggin, Joseph

    1982-01-01

    The threat of instrument obsolescence and tight federal budgets have conspired to threaten the existence of research analytical laboratories. Despite these and other handicaps most existing laboratories expect to keep operating in support of basic research, though there may be serious penalties in the future unless funds are forthcoming. (Author)

  6. Sol–gel composite material characteristics caused by different dielectric constant sol–gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol–gel composite method have been investigated in the field of nondestructive testing (NDT). Sol–gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol–gel composite with desirable characteristics has been developed. Three kinds of sol–gel composite materials composed of different dielectric constant sol–gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol–gel composite with the highest dielectric constant sol–gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  7. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  8. Improving immobilized biocatalysts by gel phase polymerization

    SciTech Connect

    Kuu, W.Y.; Polack, J.A.

    1983-08-01

    A new method is presented for the treatment of gel-type supports, used for immobilizing microbial cells and enzymes, to obtain high mechanical strength. It is particularly useful for ethanol fermentation over gel beads containing immobilized viable cells, where the beads can be ruptured by gas production and the growth of cells within the gels. This method consists of treating agar or carrageenan gel with polyacrylamide to form a rigid support which retains the high catalytic activity characteristic of the untreated biocatalysts. The size and shape of the biocatalyst is unaffected by this treatment. The method involves the diffusion of acrylamide, N,N'-methylenebisacrylamide and ..beta..-dimethylaminopropionitrile (or N,N,N',N'-tetramethylethylenediamine) into the preformed biocatalyst beads followed by the addition of an initiator to cause polymerization within the beads. Treated gels have been used for the continuous fermentation of glucose to ethanol in a packed column for over two months. During this operation, the gel beads maintained their rigidity, and the maximum productivity was as high as 50 gh/sup -1/ L/sup -1/ gel. There was no appreciable decay of cell activity.

  9. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  10. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  11. Electroacoustics of Particles Dispersed in Polymer Gel

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-27

    This study examines the acoustic electrophoresis of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μd (obtained in terms of colloid vibration current, CVI), is the same as in water. For the case of particles larger than the gel mesh size, μd is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its crosslink density, the latter being characterized as the storage modulus, G’. The dependence of mobility on G’, for systems of a given particle size, and on particle size, for gels of a given G’, are investigated. The measured mobility remains constant as G’ is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G’ approximately 100 Pa. In this case, the measured μd is found to be effectively constant over the particle size range studied (14-120 nm), i.e., it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.

  12. Polyacrylamide Slab Gel Electrophoresis of Soluble Proteins for Studies of Bacterial Floras

    PubMed Central

    Moore, W. E. C.; Hash, D. E.; Holdeman, Lillian V.; Cato, Elizabeth P.

    1980-01-01

    A polyacrylamide slab gel electrophoresis procedure was used to compare cellular proteins from bacterial isolates of gingival crevice floras. Isolates with identical protein patterns consistently were shown to be members of the same species. When used to screen isolates, the procedure reduced total analytical time and expense without sacrificing accuracy, and it provided additional verification of the identity of strains characterized by conventional phenotypic tests. Images PMID:16345555

  13. Sampling and Sensing Systems for High Priority Analytes

    SciTech Connect

    Brinker, C.Jeffrey; Frye-Mason, Gregory C.; Kottenstette, Richard J.; Lewis, Patrick R.; Sasaki, Darryl Y.; Sellinger, Alan

    1999-04-01

    This reports summarizes the results from a Laboratory Directed Research and Development effort to develop selective coastings for detecting high priority analytes (HPAs), such as chemical warfare (CW) agents and their precursors, in the presence of common interferents. Accomplishments during this project included synthesis and testing of new derivatized sol-gel coatings for surface acoustic wave sensors (SAWs). Surfactant modified and fluoroalcohol derivatized sol-gel oxides were coated onto SAW devices and tested with volatile organic compounds (VOCs). Theses modified sol-gel coatings improved SAW sensitivity to DMMP by over three orders of magnitude when compared to standard polymeric oatings such as polyisobutylene and by over two orders of magnitude compared with polymers tailor made for enhanced sensitivity to phosphonates. SAW sensors coated with these materials exhibit highly sensitive reversible behavior at elevated temperatures (>90 degree C), possibly leading to low detection levels for semivolatile analytes while remaining insensitive to volatile organic interferants. Additionally, we have investigated the use of reactive polymers for detection of volatile and reactive CW agent precursors (Chemical Weapons Convention Schedule 3 Agents) such as phosphouous oxychloride (POCl(3)). The results obtained in this study find that sensitive and selective responses can be obtained for Schedule 3 agents using commercially available polymers and chemical guidelines from solution phase chemistry.

  14. Analytical caustic surfaces

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1987-01-01

    This document discusses the determination of caustic surfaces in terms of rays, reflectors, and wavefronts. Analytical caustics are obtained as a family of lines, a set of points, and several types of equations for geometries encountered in optics and microwave applications. Standard methods of differential geometry are applied under different approaches: directly to reflector surfaces, and alternatively, to wavefronts, to obtain analytical caustics of two sheets or branches. Gauss/Seidel aberrations are introduced into the wavefront approach, forcing the retention of all three coefficients of both the first- and the second-fundamental forms of differential geometry. An existing method for obtaining caustic surfaces through exploitation of the singularities in flux density is examined, and several constant-intensity contour maps are developed using only the intrinsic Gaussian, mean, and normal curvatures of the reflector. Numerous references are provided for extending the material of the present document to the morphologies of caustics and their associated diffraction patterns.

  15. Requirements for Predictive Analytics

    SciTech Connect

    Troy Hiltbrand

    2012-03-01

    It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

  16. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  17. Analytic holographic superconductor

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.

    2010-06-01

    We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1-dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin-two holographic superconductor.

  18. Avatars in Analytical Gaming

    SciTech Connect

    Cowell, Andrew J.; Cowell, Amanda K.

    2009-08-29

    This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

  19. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  20. Normoxic polymer gels: are they magic?

    NASA Astrophysics Data System (ADS)

    Amin, M. N.; Bonnett, D. E.; Horsfield, M. A.

    2004-01-01

    In the last few years there has been considerable interest in the use of polymer gels to measure complex dose distributions in radiotherapy. Despite considerable advantages they are still not widely used in clinical situations. This is due primarily to the difficulty in manufacture, particularly the need to exclude oxygen both from the gel and the manufacturing process, the limited number of suitable phantom materials and the need for easy access to an MRI facility. The purpose of this paper is to report on an investigation of the basic properties of MAGIC gels namely: linearity of response, effects of temperature and stability.

  1. Phantom for moving organ dosimetry with gel

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul; Mahata, Anurupa; Suman Babu, Ebenezer

    2009-05-01

    The displacements caused by the cardiac and respiratory motions cause smearing of the dose distribution that defeats the purpose of high precision radiotherapy. A phontom that holds a gel cylinder and radiochromic film, was designed and developed to simulate the respiratory motion in the superior and inferior directions. The effect of lung movement on dose distribution was studied by exposing gel as well as a radiochromic film using the phantom. The results obtained with Gel was comparable to those obtained with the radiochromic films.

  2. Competing on analytics.

    PubMed

    Davenport, Thomas H

    2006-01-01

    We all know the power of the killer app. It's not just a support tool; it's a strategic weapon. Companies questing for killer apps generally focus all their firepower on the one area that promises to create the greatest competitive advantage. But a new breed of organization has upped the stakes: Amazon, Harrah's, Capital One, and the Boston Red Sox have all dominated their fields by deploying industrial-strength analytics across a wide variety of activities. At a time when firms in many industries offer similar products and use comparable technologies, business processes are among the few remaining points of differentiation--and analytics competitors wring every last drop of value from those processes. Employees hired for their expertise with numbers or trained to recognize their importance are armed with the best evidence and the best quantitative tools. As a result, they make the best decisions. In companies that compete on analytics, senior executives make it clear--from the top down--that analytics is central to strategy. Such organizations launch multiple initiatives involving complex data and statistical analysis, and quantitative activity is managed atthe enterprise (not departmental) level. In this article, professor Thomas H. Davenport lays out the characteristics and practices of these statistical masters and describes some of the very substantial changes other companies must undergo in order to compete on quantitative turf. As one would expect, the transformation requires a significant investment in technology, the accumulation of massive stores of data, and the formulation of company-wide strategies for managing the data. But, at least as important, it also requires executives' vocal, unswerving commitment and willingness to change the way employees think, work, and are treated. PMID:16447373

  3. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  4. Optical sensors based on sol-gel derived, laminate planar waveguide structures

    SciTech Connect

    Yang, Lin; Armstrong, N.R.; Dunphy, D.R.; Saavedra, S.S.

    1995-12-31

    A new optical sensing platform based on a combination of planar and sol-gel processing technologies is described. The sensing element is a planar integrated optical waveguide (IOW) composed of two, submicron thick glass layers coated on glass substrate; both layers are fabricated via the sol-gel method. The lower layer is a densified titania-silica composite. The upper layer is an undensified silica doped with an optical indicator that is physically entrapped yet sterically accessible to dissolved analytes that can diffuse into the pore network. Formation of an analyte-indicator complex is detected via attenuated total reflection (ATR) of light guided in the IOW. The sensor response is both sensitive and rapid, features that are difficult to achieve simultaneously in monolithic sol-gel glass sensors. In the IOW-ATR geometry, these features are realized simultaneously because the primary axes of light propagation and analyte diffusion are orthogonal. The overall approach is technically simple, inexpensive, and applicable to a wide variety of indicator chemistries.

  5. Chemical sensing using sol-gel derived planar waveguides and indicator phases

    SciTech Connect

    Yang, L.; Saavedra, S.S.

    1995-04-15

    A new optical sensing platform based on a combination of planar waveguiding and sol-gel processing technologies is described. The sensing element consists of two, submicrometer thick glass layers supported on an optically thick glass substrate; both layers were fabricated using a sol-gel coating method. The lower layer is a densified glass that functions as a planar integrated optical waveguide (IOW). The upper layer is an undensified glass of lower index doped with an optical indicator that is immobilized, yet remains sterically accessible to analytes that diffuse into the pore network. Formation of a complex between the analyte and indicator is detected via attenuated total reflection (ATR) of light guided in the IOW. Feasibility was evaluated by constructing IOW-ATR sensors for Pb{sup 2+} and pH, based on immobilized xylenol orange and bromocresol purple, respectively. The response of both sensors was sensitive and rapid, features that are difficult to achieve simultaneously in monolithic sol-gel glass sensors. In the IOW-ATR geometry, these features are realized simultaneously because the primary axes of light propagation and analyte diffusion are orthogonal. The overall approach is technically simple, inexpensive, and applicable to a wide variety of indicator chemistries. 48 refs., 8 figs.

  6. Simian Virus 40 Deoxyribonucleic Acid Synthesis: Analysis by Gel Electrophoresis

    PubMed Central

    Tegtmeyer, Peter; Macasaet, Francisco

    1972-01-01

    An agarose-gel electrophoresis technique has been developed to study simian virus 40 deoxyribonucleic acid (DNA) synthesis. Superhelical DNA I, relaxed DNA II, and replicative intermediate (RI) molecules were clearly resolved from one another for analytical purposes. Moreover, the RI molecules could be identified as early or late forms on the basis of their electrophoretic migration in relation to that of DNA II. The technique has been utilized to study the kinetics of simian virus 40 DNA synthesis in pulse and in pulse-chase experiments. The average time required to complete the replication of prelabeled RI molecules and to convert them into DNA I was approximately 10 min under the experimental conditions employed. PMID:4343542

  7. Competing on talent analytics.

    PubMed

    Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy

    2010-10-01

    Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise. PMID:20929194

  8. Heterogeneous integration of gels into microfluidics using a mesh carrier.

    PubMed

    Eker, Bilge; Temiz, Yuksel; Delamarche, Emmanuel

    2014-12-01

    The incorporation of hydrogels inside microfluidics is a promising method for localizing receptors inside microfluidic structures for many bio-analytical applications as well as for working with cells. However, current methods rely on the in situ polymerization of hydrogels and therefore necessitate optical masks and extensive post-polymerization steps for example for washing uncrosslinked gel precursors and receptors. Here, we report a simple and efficient method for the integration of hydrogels to microfluidic chips. Small volumes of poly(ethylene)glycol-based acrylamide (PEGACA) hydrogels are photopolymerized on a mesh, rinsed, partially dried and transferred to microfluidic structures by simple contact. The gels can be derivatized before transfer with receptors such as streptavidin, antibodies, or can entrap beads as small as 200 nm. We detail the role of meshes relative to the mesh density and wettability and demonstrate how hydrogels can be transferred into capillary-driven microfluidic chips, which are easily sealed using a dry-film resist. By analogy to microfabrication strategies wherein critical components are produced separately and then combined, our method introduces the concept of heterogeneous integration of critical (bio)chemicals to microfluidic chips using an intermediate mesh carrier. PMID:24999091

  9. Stability measurements of antisense oligonucleotides by capillary gel electrophoresis.

    PubMed

    Bruin, G J; Börnsen, K O; Hüsken, D; Gassmann, E; Widmer, H M; Paulus, A

    1995-08-11

    The approach of using antisense oligonucleotides as potential drugs is based on hybridization of a short chemically-modified oligonucleotide with complementary cellular DNA or RNA sequences. A critical question is the stability of chemically modified antisense oligonucleotides in cellular environments. In a model system, resistance against various nucleases was evaluated by capillary gel electrophoresis (CGE). For some of the samples, matrix assisted laser desorption and ionization mass spectrometry (MALDI-MS) was used as an additional analytical tool to perform stability measurements. Using CGE, the enzymatic degradation of single nucleotides from the oligomer can be followed after different incubation times. 10% T polyacrylamide gels give baseline resolution for oligonucleotides ranging between 5 and 30 bases in length. The kinetic influence of a specific nuclease concentration and the antisense oligonucleotide structure on the cleavage reaction are discussed. Also, a simple desalting method to improve the injection efficiency and sensitivity of the method are described. Examples of measurements of chemically modified antisense 19-mers are presented. PMID:7581844

  10. Phase diagram of a reentrant gel of patchy particles

    SciTech Connect

    Roldán-Vargas, Sándalo; Smallenburg, Frank; Sciortino, Francesco; Kob, Walter

    2013-12-28

    We study the phase diagram of a binary mixture of patchy particles which has been designed to form a reversible gel. For this we perform Monte Carlo and molecular dynamics simulations to investigate the thermodynamics of such a system and compare our numerical results with predictions based on the analytical parameter-free Wertheim theory. We explore a wide range of the temperature-density-composition space that defines the three-dimensional phase diagram of the system. As a result, we delimit the region of thermodynamic stability of the fluid. We find that for a large region of the phase diagram the Wertheim theory is able to give a quantitative description of the system. For higher densities, our simulations show that the system is crystallizing into a BCC structure. Finally, we study the relaxation dynamics of the system by means of the density and temperature dependences of the diffusion coefficient. We show that there exists a density range where the system passes reversibly from a gel to a fluid upon both heating and cooling, encountering neither demixing nor phase separation.

  11. Fractionation of salivary micelle-like structures by gel chromatography.

    PubMed

    Rykke, M; Young, A; Devold, T; Smistad, G; Rölla, G

    1997-10-01

    Globular structures have been demonstrated in human parotid saliva by transmission electron microscopy and photon correlation spectroscopy. The aim of this study was to fractionate these salivary globular structures for analytical and preparative purposes using a gel-filtration material capable of separating spherical particles up to 300-400 nm in diameter. Freshly obtained parotid saliva was applied to a Sephacryl S-1000 column. Peak fractions were collected and prepared for transmission electron microscopy (TEM) or for amino acid analysis. Bovine milk was included as the casein micelles by TEM appear to be similar to the salivary aggregates and their elution profiles are known. The salivary globular structures were eluted in one major peak. TEM of negatively stained samples from the peak fractions demonstrated globular protein aggregates consistent with the salivary structures in parotid saliva. Amino acid analysis showed characteristic amino acid profiles with unusual high levels of proline, 40-45%. The casein micelles were eluted in one major peak and separated from the whey proteins. This study indicates that the salivary globular structures can be isolated by gel chromatography. The amino acid analysis indicates that proline-rich proteins may be an important fraction of the salivary globular structures. PMID:9395115

  12. Chromatography of Penicillins, Penicilloates, and Penicilloylamides on Dextran Gels

    PubMed Central

    Hyslop, Newton E.; Milligan, Richard J.

    1974-01-01

    The factors influencing the chromatographic behavior on dextran gels of penicillins and their derivatives were investigated by comparing elution profiles and partition coefficients (KD and KAV) of penicillins differing in side-chain structure and among penicillin derivatives of identical side-chain but different nuclear structure. Under the conditions of pH and ionic strength employed (pH 7.4, 0.145 M NaCl, 0.05 M PO4), side-chain adsorptive effects best explained the anomalous behavior of benzylpenicillin and of oxacillin and its chlorine-substituted analogues. Polar side-chain substituents, such as the amino group of ampicillin and the carboxyl group of carbenicillin, and cleavage of the β-lactam ring, exemplified by penicilloates and penicilloylamines, both appeared to interfere with side-chain-directed adsorption. The differential adsorption of penicillins and their derivatives to dextran gels is not only of theoretical interest relative to the mechanism of chromatography but of practical application to analytical and preparative procedures in penicillin chemistry. PMID:15825415

  13. Cell response to silica gels with varying mechanical properties

    NASA Astrophysics Data System (ADS)

    Lefebvre, Molly Ann

    Sol-gel encapsulation has a variety of applications in biotechnology and medicine: creating biosensors, biocatalysts, and bioartificial organs. However, encapsulated cell viability is a major challenge. Consequently, interactions between cells and their 3D microenvironment were studied through rheological, metabolic activity, and extraction studies to aid in the development of new gel protocols. The cells were encapsulated in variations of three silica sol-gels with varying stiffness. It was hypothesized that the cell viability and the amount of extracted cells would depend on gel stiffness. For two gels, there was no apparent correlation between the gel stiffness and the cell viability and extracted cell quantity. These gels did strongly depend on the varying gel ingredient, polyethylene glycol. The third gel appeared to follow the hypothesized correlation, but it was not statistically significant. Finally, one gel had a significantly longer period of cell viability and higher quantity of extracted cells than the other gels.

  14. Influence of gel dimensions on resolution and sample throughput on two-dimensional gels.

    PubMed

    Lee, KiBeom; Pi, KyungBae; Lee, Hong-Gu

    2008-04-01

    To achieve high throughput and economical format of 2-D PAGE, comparison between gel size and resolution was conducted on human breast carcinoma cell line (MCF-7/AZ) proteins. SDS gel length showed a weaker influence of separation length on resolution in the second dimension, and there was little benefit of separation distances greater than 15 to 19 cm. IPG strip separation distances were very important with dramatic increase in resolution of longer gels compared with smaller gels, and maximal resolution was obtained using 18- and 24-cm IPG strips. Loading optimal amount of proteins on 2-D gels can also increase the number of detected spots. Therefore, taken together, compromise 2-D gels are crucial for higher capacity and higher throughput. PMID:18457572

  15. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    PubMed Central

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-01-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme–cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes. PMID:26537172

  16. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  17. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  18. Magnetic Hyperthermia in ferrofluid-gel composites

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Wadehra, Anshu; Dixit, Ambesh; Regmi, Rajesh; Vaishnava, Prem; Lawes, Gavin; Naik, Ratna

    2012-02-01

    Magnetic hyperthermia is the generation of heat by an external magnetic field using superparamagnetic nanoparticles. However, there are still questions concerning magnetic hyperthermia in tissue; in particular the confinement of the nanoparticles at mesoscopic scales. We used Agarose and Alginate gels as models for human tissue and embedded magnetic nanoparticles in them. We report the synthesis and characterization of dextran coated iron oxide (Fe3O4) nanoparticles. Characterization of these nanoparticles was done using X-ray diffraction, transmission electron microscopy, magnetometry, and hyperthermia measurements. Temperature dependent susceptibility measurements reveal a sharp anomaly in the ferrofluid sample at the freezing temperature. This is conspicuously absent in the ferrofluid-gel composites. Heat generation studies on these superparamagnetic gel-composites revealed a larger heat production in the ferrofluids(˜4W/g) as compared to the gels(˜1W/g), which we attribute to a reduction in Brownian relaxation for the nanoparticles embedded in Agarose and Alginate.

  19. Turbidimetric studies of Limulus coagulin gel formation.

    PubMed Central

    Moody, T P; Donovan, M A; Laue, T M

    1996-01-01

    The turbidity during trypsin-induced coagulin gel formation was studied over a range of wavelengths. The range of wavelengths used (686-326 nm) also made it possible to investigate the dependence of turbidity on wavelength (the wavelength exponent). Using the results from that work, and structural information on coagulin and the coagulin gel from other studies, a model gel-forming system was designed that consists of species for which the turbidity can be calculated relatively simply. These species include small particles (small in all dimensions relative to the wavelength of incident light); long rods and long random coils (particles that are large in just one dimension relative to the wavelength of incident light); and reflective regions (aggregated material that is large in more than one dimension relative to the wavelength of incident light). The turbidimetric characteristics of the real coagulin gel-forming system are compared with those of the model system. PMID:8889175

  20. Elastocapillary Deformations and Fracture of Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  1. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  2. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  3. Sol-gel deposited electrochromic coatings

    SciTech Connect

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  4. K-Basin gel formation studies

    SciTech Connect

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  5. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  6. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  7. Gel pad application for automated breast sonography.

    PubMed

    Kim, Yun Ju; Kim, Sung Hun; Jeh, Su Kyung; Choi, Jae Jeong; Kang, Bong Joo; Song, Byung Joo

    2015-04-01

    The purpose of this study was to describe the technical aspects of gel pad application for automated breast sonography and to show its effects on pain relief, scan coverage, and image quality. Twenty patients underwent 2 sets of automated breast sonography with and without gel pad application and were then asked to provide feedback on the examination-related pain. Scan coverage and image quality were compared quantitatively and qualitatively. The degree of pain was significantly decreased after gel pad application (P < .0001). The scan coverage was expanded particularly at the mid-portion of the breast. Image quality was satisfactory without significant differences between the sets. Gel pad application for automated breast sonography is easy and provides significant pain relief. The scan coverage was expanded, while the image quality was maintained. PMID:25792588

  8. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  9. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  10. Sol-Gels for Optical Sensors

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Ulatowska-Jarża, Agnieszka; Müller, Gerhard; Eichler, Hans J.

    Sol-gel process allows for formation of glassy and ceramics materials in temperatures much lower than offered by conventional melting techniques. The first paper on sol-gels was published over 150 years ago by Ebelmen, however, the rapid development of this technology and applications occurred in the last few years. There is a broad range of possible applications of solgel derived materials, what marked this technology as one of the most promising fields of contemporary material sciences

  11. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  12. Treatment of osteochondral injuries with platelet gel

    PubMed Central

    Danieli, Marcus Vinicius; da Rosa Pereira, Hamilton; de Sá Carneiro, Carlos Augusto; Felisbino, Sérgio Luiz; Deffune, Elenice

    2014-01-01

    OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries. PMID:25518022

  13. Basic investigations on LCV micelle gel

    NASA Astrophysics Data System (ADS)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  14. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  15. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    PubMed Central

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  16. MERRA Analytic Services

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  17. Automation of analytical isotachophoresis

    NASA Technical Reports Server (NTRS)

    Thormann, Wolfgang

    1985-01-01

    The basic features of automation of analytical isotachophoresis (ITP) are reviewed. Experimental setups consisting of narrow bore tubes which are self-stabilized against thermal convection are considered. Sample detection in free solution is discussed, listing the detector systems presently used or expected to be of potential use in the near future. The combination of a universal detector measuring the evolution of ITP zone structures with detector systems specific to desired components is proposed as a concept of an automated chemical analyzer based on ITP. Possible miniaturization of such an instrument by means of microlithographic techniques is discussed.

  18. Preparation and characterization of lidocaine rice gel for oral application.

    PubMed

    Okonogi, Siriporn; Kaewpinta, Adchareeya; Yotsawimonwat, Songwut; Khongkhunthian, Sakornrat

    2015-12-01

    The objective of the present study was to prepare buccal anesthetic gels using rice as gelling agent. Rice grains of four rice varieties, Jasmine (JM), Saohai (SH), Homnil (HN), and Doisket (DS) were chemically modified. Buccal rice gels, containing lidocaine hydrochloride as local anesthetic drug were formulated using the respective modified rice varieties. The gels were evaluated for outer appearance, pH, color, gel strength, foaming property, adhesion, in vitro drug release and in vivo efficacy. It was found that the developed rice gels possessed good texture. Rice varieties showed influence on gel strength, color, turbidity, adhesive property, release property, and anesthetic efficacy. JM gel showed the lowest turbidity with light transmission of 86.76 ± 1.18% whereas SH gel showed the highest gel strength of 208.78 ± 10.42 g/cm(2). Lidocaine hydrochloride can cause a decrease in pH and adhesive property but an increase in turbidity of the gels. In vitro drug release profile within 60 min of lidocaine SH gel and lidocaine HN gel showed that lidocaine could be better released from SH gel. Evaluation of in vivo anesthetic efficacy in 100 normal volunteers indicates that both lidocaine rice gels have high efficacy but different levels. Lidocaine SH gel possesses faster onset of duration and longer duration of action than lidocaine HN gel. PMID:26781924

  19. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dimethyl sulfoxide gel. 524.660b Section 524.660b... Dimethyl sulfoxide gel. (a) Specifications. Dimethyl sulfoxide gel, veterinary contains 90 percent dimethyl sulfoxide in an aqueous gel. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter. (c) Conditions...

  20. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  1. Quality Indicators for Learning Analytics

    ERIC Educational Resources Information Center

    Scheffel, Maren; Drachsler, Hendrik; Stoyanov, Slavi; Specht, Marcus

    2014-01-01

    This article proposes a framework of quality indicators for learning analytics that aims to standardise the evaluation of learning analytics tools and to provide a mean to capture evidence for the impact of learning analytics on educational practices in a standardised manner. The criteria of the framework and its quality indicators are based on…

  2. Learning Analytics: Readiness and Rewards

    ERIC Educational Resources Information Center

    Friesen, Norm

    2013-01-01

    This position paper introduces the relatively new field of learning analytics, first by considering the relevant meanings of both "learning" and "analytics," and then by looking at two main levels at which learning analytics can be or has been implemented in educational organizations. Although integrated turnkey systems or…

  3. The analytic renormalization group

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2016-08-01

    Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2 πk / β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct "Analytic Renormalization Group" linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk | < μ (with the possible exception of the zero mode G0), together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk | ≥ μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

  4. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  6. Recycling of superfine resolution agarose gel.

    PubMed

    Seng, T-Y; Singh, R; Faridah, Q Z; Tan, S-G; Alwee, S S R S

    2013-01-01

    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred. PMID:23546970

  7. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). PMID:27251892

  8. Evolution of gel structure during thermal processing of Na-geopolymer gels.

    PubMed

    Duxson, Peter; Lukey, Grant C; van Deventer, Jannie S J

    2006-10-10

    The present work examines how the gel structure and phase composition of Na-geopolymers derived from metakaolin with varied Si/Al ratio evolve with exposure to temperatures up to 1000 degrees C. Gels were thermally treated and characterized using quantitative XRD, DTA, and FTIR to elucidate the changes in gel structure, phase composition, and porosity at each stage of heating. It is found that the phase stability, defined by the amount and onset temperature of crystallization, is improved at higher Si/Al ratios. Two different mechanisms of densification have been isolated by FTIR, related to viscous flow and collapse of the highly distributed pore network in the gel. Gels with low Si/Al ratio only experience viscous flow that correlates with low thermal shrinkage. Gels at a higher Si/Al ratio, which have a homogeneous microstructure composed of a highly distributed porosity, undergo both densification processes corresponding to a large extent of thermal shrinkage during densification. This work elucidates the intimate relationship between gel microstructure, chemistry, and thermal evolution of Na-geopolymer gels. PMID:17014113

  9. Sol-gel processing of metal sulfides

    NASA Astrophysics Data System (ADS)

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  10. VERDE Analytic Modules

    Energy Science and Technology Software Center (ESTSC)

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates servedmore » within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.« less

  11. VERDE Analytic Modules

    SciTech Connect

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates served within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.

  12. Analytical sensor redundancy assessment

    NASA Technical Reports Server (NTRS)

    Mulcare, D. B.; Downing, L. E.; Smith, M. K.

    1988-01-01

    The rationale and mechanization of sensor fault tolerance based on analytical redundancy principles are described. The concept involves the substitution of software procedures, such as an observer algorithm, to supplant additional hardware components. The observer synthesizes values of sensor states in lieu of their direct measurement. Such information can then be used, for example, to determine which of two disagreeing sensors is more correct, thus enhancing sensor fault survivability. Here a stability augmentation system is used as an example application, with required modifications being made to a quadruplex digital flight control system. The impact on software structure and the resultant revalidation effort are illustrated as well. Also, the use of an observer algorithm for wind gust filtering of the angle-of-attack sensor signal is presented.

  13. Normality in Analytical Psychology

    PubMed Central

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  14. Reversible Gel-Sol Transition of a Photo-Responsive DNA Gel.

    PubMed

    Kandatsu, Daisuke; Cervantes-Salguero, Keitel; Kawamata, Ibuki; Hamada, Shogo; Nomura, Shin-Ichiro M; Fujimoto, Kenzo; Murata, Satoshi

    2016-06-16

    Stimuli-responsive DNA gels that can undergo a sol-gel transition in response to photo-irradiation provide a way to engineer functional gel material with fully designed DNA base sequences. We propose an X-shaped DNA motif that turns into a gel by hybridization of self-complementary sticky ends. By embedding a photo-crosslinking artificial base in the sticky-end sequence, repetitive gel-sol transitions are achieved through UV irradiation at different wavelengths. The concentration of the DNA motif necessary for gelation is as low as 40 μm after modification of the geometrical properties of the motif. The physical properties, such as swelling degree and diffusion coefficient, were assessed experimentally. PMID:27123549

  15. Comparison of electrical conductivities of various brain phantom gels: Developing a ‘Brain Gel Model’

    PubMed Central

    Kandadai, Madhuvanthi A.; Raymond, Jason L.; Shaw, George J.

    2012-01-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0–1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100–500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a ‘brain gel model’, for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  16. Comparison of electrical conductivities of various brain phantom gels: Developing a 'Brain Gel Model'

    PubMed

    Kandadai, Madhuvanthi A; Raymond, Jason L; Shaw, George J

    2012-12-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0-1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100-500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a 'brain gel model', for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  17. Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT.

    PubMed

    Graham, Amy L; Carlson, Catherine A; Edmiston, Paul L

    2002-01-15

    Molecularly imprinting sol-gel materials for DDT using both a noncovalent and a covalent approach was examined. A nonpolar porous sol-gel network was created through the use of the bridged polysilsesquioxane, bis-(trimethoxysilylethyl)benzene (BTEB), as the principal sol-gel component. Noncovalent molecular imprinting was deemed unsuccessful, presumably because of the lack of strong intermolecular interactions that can be established between the DDT and the sol-gel precursor. A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of two 3-isocyanatopropyltriethoxysilanes with one of two different template molecules: 4,4'-ethylenedianiline (EDA) or 4,4'-ethylidenebisphenol (EBP). After formation of the sol-gel, the bonds linking the spacer template to the matrix were cleaved in a manner that generated a pocket of the appropriate size bordered by amine groups that could aid in the binding of DDT through weak hydrogen bonding interactions. Experiments indicated that DDT could be bound selectively by such an approch. To generate a sensor, an environmentally sensitive fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole, (NBD) located adjacent to the DDT binding site was used to transduce the binding of analyte. EDA-imprinted sol-gels, deposited as films on glass microscope slides, were shown to quantitatively detect DDT in water to a limit-of-detection of 50 ppt with a response time of <60 s. Repeat measurements could be made with the same sensing films after rinsing with acetone between each measurement. The EDA sensing material was selective for DDT and other structurally similar molecules. However, the sensing film design was limited by the relatively minor changes in fluorescence intensity upon binding DDT. This situation may be remedied by an alternative methodology that can facilitate attachment of the NBD fluorophore in an optimal position proximal to the binding pocket. PMID:11811423

  18. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel. PMID:3394948

  19. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  20. Mucosal effects of tenofovir 1% gel.

    PubMed

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. PMID:25647729

  1. Continuum Models of Stimuli-responsive Gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    Immersed in a solution of small molecules and ions, a network of long-chain polymers may imbibe the solution and swell, resulting in a polymeric gel. Depending on the molecular structure of the polymers, the amount of swelling can be regulated by moisture, mechanical forces, ionic strength, electric field, pH value, and many other types of stimuli. Starting from the basic principles of non-equilibrium thermodynamics, this chapter formulates a field theory of the coupled large deformation and mass transportation in a neutral polymeric gel. The theory is then extended to study polyelectrolyte gels with charge-carrying networks by accounting for the electromechanical coupling and migration of solute ions. While the theoretical framework is adaptable to various types of material models, some representative ones are described through specific free-energy functions and kinetic laws. A specific material law for pH-sensitive gels—a special type of polyelectrolyte gels—is introduced as an example of incorporating chemical reactions in modeling stimuli-responsive gels. Finally, a simplified theory for the equilibrium but inhomogeneous swelling of a polymeric gel is deduced. The theory and the specific material models are illustrated through several examples.

  2. Mucosal effects of tenofovir 1% gel

    PubMed Central

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. Clinical trial registration: NCT01232803. DOI: http://dx.doi.org/10.7554/eLife.04525.001 PMID:25647729

  3. Analytical capillary isotachophoresis: a routine technique for the analysis of lipoproteins and lipoprotein subfractions in whole serum.

    PubMed

    Schmitz, G; Borgmann, U; Assmann, G

    1985-02-22

    A capillary isotachophoretic separation technique was developed for lipoproteins in native serum which, compared with previous electrophoretic techniques, has negligible molecular sieve effects, does not need gel casting, is suitable for whole serum and has a high discriminative power for lipoprotein subfractions. The technique is based on pre-staining whole serum lipoproteins for 30 min at 4 degrees C before separation of 0.5 microliter of the sample in a free-flow capillary system (0.5 mm I.D.) with discontinuous buffer system. In normolipidaemic sera, high-density (HDL) and low-density lipoproteins (VLDL) are separated into two major subpopulations according to their net electric mobility. The identification of these fractions was confirmed by substitution with ultracentrifugally isolated lipoproteins and by their complete absence from Tangier and abetalipoproteinaemic serum. Triglyceride-rich very low-density lipoproteins (VLDL) revealed a defined zone between the HDL and LDL subpopulations. Our preliminary results indicate that the separation of human whole serum lipoproteins by capillary isotachophoresis is a promising method for the determination of lipoprotein subfractions. PMID:4030932

  4. Analytic integrable systems: Analytic normalization and embedding flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    In this paper we mainly study the existence of analytic normalization and the normal form of finite dimensional complete analytic integrable dynamical systems. More details, we will prove that any complete analytic integrable diffeomorphism F(x)=Bx+f(x) in (Cn,0) with B having eigenvalues not modulus 1 and f(x)=O(|) is locally analytically conjugate to its normal form. Meanwhile, we also prove that any complete analytic integrable differential system x˙=Ax+f(x) in (Cn,0) with A having nonzero eigenvalues and f(x)=O(|) is locally analytically conjugate to its normal form. Furthermore we will prove that any complete analytic integrable diffeomorphism defined on an analytic manifold can be embedded in a complete analytic integrable flow. We note that parts of our results are the improvement of Moser's one in J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956) 673-692 and of Poincaré's one in H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré, II, Rend. Circ. Mat. Palermo 11 (1897) 193-239. These results also improve the ones in Xiang Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differential Equations 244 (2008) 1080-1092 in the sense that the linear part of the systems can be nonhyperbolic, and the one in N.T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett. 9 (2002) 217-228 in the way that our paper presents the concrete expression of the normal form in a restricted case.

  5. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  6. Hardening and yielding in colloidal gels

    NASA Astrophysics Data System (ADS)

    Del Gado, Emanuela; Colombo, Jader; Bouzid, Mehdi

    Attractive colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. With interaction strengths comparable to the thermal energy, their stress-bearing network can locally restructure via breaking and reforming inter-particle bonds. We use molecular dynamics simulations of a model system to investigate the strain hardening and the yielding process. During shear start up protocol, the system exhibits strong localization of tensile stresses that may be released through the breaking and formation of new bonds. In this regime, the small amplitude oscillatory shear analysis shows that the storage and the loss modulus follow a power law behavior that are closely reminiscent of experimental observations. At large accumulated strains, the strain-induced reorganization of the gel may trigger flow heterogeneities and eventually lead to the yielding of the gel via a quasi brittle damage of its structure.

  7. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  8. Modeling polymer gel that strengthen under tension

    NASA Astrophysics Data System (ADS)

    Biswas, Santidan; Yashin, Victor V.; Balazs, Anna C.

    We develop a constitutive model of a responsive polymer gel, which can reversibly form additional crosslinks when under tension. We assume that the polymer chains incorporate the folded domains encompassing the reactive functional groups (cryptic sites). Under extension of the network, the domains unfold and expose the cryptic sites, which can then form labile bonds with the linker chains grafted to the network. Once the deformation is removed, the linkers detach from the cryptic sites, and unfolded domains go back to the folded configuration thus hiding the cryptic sites. The gel behavior under applied force is described by the equations of elasticity of the polymer network coupled to the kinetic equations for the folding and binding transitions. The developed model could be used for designing new polymer gel-based materials that exhibit self-strengthening in response to a mechanical action.

  9. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  10. On the scattering properties of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Barrat, Jean-Louis; Joanny, Jean-François; Pincus, Phil

    1992-08-01

    We present a simple model for scattering properties of polyelectrolyte gels at swelling equilibrium. In the weak screening limit where the Debye-Hückel screening length is larger than the mesh size of the gel, the direct electrostatic interactions are negligible and the swelling is driven by the osmotic pressure of the counterions. The tension created by this pressure is transmitted through the crosslinks to the elastic chains which behave as isolated chains with an applied force at their end points. The structure factor of the gel can be split into a frozen component due to the average concentration heterogeneities and a thermodynamic component due to concentration fluctuations. The frozen component has a peak at a wavevector of the order of the mesh size of the gel, the thermodynamic component has a peak at a higher wavevector of the order of the inverse transverse radius of the chains. At infinite times the dynamic structure factor relaxes towards the frozen component of the static structure factor. In the limit of small wavevectors the relaxation is diffusive with a diffusion constant equal to the Stokes diffusion constant of the Pincus blobs of the stretched chains. The diffusion constant shows a minimum at a wavevector of the order of the inverse transverse radius of the chains. Nous présentons un modèle simple pour étudier la diffusion de rayonnement par des gels polylectrolytes à l'équilibre de gonflement. Dans la limite d'écrantage faible où la longueur d'écran de Debye-Hückel est plus grande que la maille du gel, les interactions électrostatiques directes sont négligeables et le gonflement est dû à la pression osmotique des contreions. La tension créée par cette pression est transmise par les noeuds du gel aux chaines élastiques qui se comportent comme des chaines isolées avec une force extérieure appliquée aux extrémités. Le facteur de structure du gel est la somme d'une composante gelée due aux hétérogénéités de concentration

  11. Writing in the granular gel medium

    PubMed Central

    Bhattacharjee, Tapomoy; Zehnder, Steven M.; Rowe, Kyle G.; Jain, Suhani; Nixon, Ryan M.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-01-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  12. Preparation and characterization of hydrophobic superparamagnetic gel.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Pritzker School of Medicine; Chinese Academy of Sciences

    2006-01-01

    The present study describes the preparation and analysis of a highly concentrated hydrophobic oleic acid-coated magnetite gel. By contrast to conventional techniques to prepare magnetic fluids, herein the oleic acid was introduced as a reactant during the initial crystallization phase of magnetite that was obtained by the co-precipitation of Fe(II) and Fe(III) salts by addition of ammonium hydroxide. The resulting gelatinous hydrophobic magnetite was characterized in terms of morphology, particle size, magnetic properties, crystal structure, and hydrophobicity/hydrophilicity. This magnetic gel exhibited superparamagnetism with a saturation magnetization of 46.0 emu/g at room temperature and could be well dispersed both in polar and nonpolar carrier liquids. This protocol produced highly concentrated hydrophobic magnetic gel for biopolymer encapsulations.

  13. Characterizing tunable dynamics in an active gel

    NASA Astrophysics Data System (ADS)

    Henkin, Gil; Decamp, Stephen; Chen, Daniel; Dogic, Zvonimir

    2014-03-01

    We experimentally investigate dynamics of an active gel of bundled microtubules that is driven to far-from-equilibrium steady states by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives this gel to an active, percolating state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel ATP. We extensively characterize how enhanced transport in emergent macroscopic flows depends on relevant molecular parameters, including ATP, motor, and depletant concentrations, microtubule concentration and length, as well as structure of the motor clusters. Our results show that the properties and dynamics of this active isotropic gel are highly tunable, suggesting that this is an ideal system for studying the behavior of active materials.

  14. Writing in the granular gel medium.

    PubMed

    Bhattacharjee, Tapomoy; Zehnder, Steven M; Rowe, Kyle G; Jain, Suhani; Nixon, Ryan M; Sawyer, W Gregory; Angelini, Thomas E

    2015-09-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  15. Analytical techniques for cell fractions

    SciTech Connect

    Pearson, T.; Anderson, L.

    1980-01-15

    Disposable microimmunoadsorbent columns containing Staphylococcus Protein A and monoclonal antibodies were used to bind antigenic proteins from a mixture. Eluates from these columns were directly analyzed by electrophoresis on two-dimensional (2-D) gels. In this way, biochemical and biophysical information on the bound antigen and on the specific antibody can be obtained simultaneously. The microimmunoadsorbents are easy to handle and in conjunction with multiple 2-D gel systems provide a means for screening large numbers of myeloma hybrids for specificity to antigens in complex mixtures.

  16. Reduction of gas and water permeabilities using gels

    SciTech Connect

    Seright, R.S.

    1995-05-01

    The authors investigated how different types of gels reduce permeability to water and gases in porous rock. Five types of gels were studied, including (1) a ``weak`` resorcinol-formaldehyde gel, (2) a ``strong`` resorcinol-formaldehyde gel, (3) a Cr(III)-xanthan gel, (4) a Cr(III)-acetate-HPAM gel, and (5) a colloidal-silica gel. For all gels, extensive coreflood experiments were performed to assess the permeability-reduction characteristics and the stability to repeated water-alternating-gas (WAG) cycles. Studies were performed at pressures up to 1,500 psi using either nitrogen or carbon dioxide as the compressed gas. They developed a coreflood apparatus with an inline high-pressure spectrophotometer that allowed tracer studies to be performed without depressurizing the core. They noted several analogies between the results reported here and those observed during a parallel study of the effects of gel on oil and water permeabilities.

  17. Pouring and running a protein gel by reusing commercial cassettes.

    PubMed

    Hwang, Alexander C; Grey, Paris H; Cuddy, Katrina; Oppenheimer, David G

    2012-01-01

    The evaluation of proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is a common technique used by biochemistry and molecular biology researchers. For laboratories that perform daily analyses of proteins, the cost of commercially available polyacrylamide gels (~$10/gel) can be considerable over time. To mitigate this cost, some researchers prepare their own polyacrylamide gels. Traditional methods of pouring these gels typically utilize specialized equipment and glass gel plates that can be expensive and preclude pouring many gels and storing them for future use. Furthermore, handling of glass plates during cleaning or gel pouring can result in accidental breakage creating a safety hazard, which may preclude their use in undergraduate laboratory classes. Our protocol demonstrates how to pour multiple protein gels simultaneously by recycling Invitrogen Nupage Novex minigel cassettes, and inexpensive materials purchased at a home improvement store. This economical and streamlined method includes a way to store the gels at 4°C for a few weeks. By re-using the plastic gel cassettes from commercially available gels, labs that run frequent protein gels can save significant costs and help the environment. In addition, plastic gel cassettes are extremely resistant to breakage, which makes them ideal for undergraduate laboratory classrooms. PMID:22349047

  18. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  19. Separation performance of single-stranded DNA electrophoresis in photopolymerized cross-linked polyacrylamide gels.

    PubMed

    Lo, Roger C; Ugaz, Victor M

    2006-02-01

    Considerable effort has been directed toward optimizing performance and maximizing throughput in ssDNA electrophoresis because it is a critical analytical step in a variety of genomic assays. Ultimately, it would be desirable to quantitatively determine the achievable level of separation resolution directly from measurements of fundamental physical properties associated with the gel matrix rather than by the trial and error process often employed. Unfortunately, this predictive capability is currently lacking, due in large part to the need for a more detailed understanding of the fundamental parameters governing separation performance (mobility, diffusion, and dispersion). We seek to address this issue by systematically characterizing electrophoretic mobility, diffusion, and dispersion behavior of ssDNA fragments in the 70-1,000 base range in a photopolymerized cross-linked polyacrylamide matrix using a slab gel DNA sequencer. Data are collected for gel concentrations of 6, 9, and 12%T at electric fields ranging from 15 to 40 V/cm, and resolution predictions are compared with corresponding experimentally measured values. The data exhibit a transition from behavior consistent with the Ogston model for small fragments to behavior in agreement with the biased reptation model at larger fragment sizes. Mobility data are also used to estimate the mean gel pore size and compare the predictions of several models. PMID:16331587

  20. A micron-size sol-gel-derived fiber-optic based chemical sensor

    SciTech Connect

    Ingersoll, C.M.; Narang, U.; Bright, F.V.

    1995-12-31

    The development of new chemical and biosensing schemes has been a topic of great interest. In our laboratory, a portion of our work has centered on the use of sol-gels doped with fluorescent dyes as materials for forming small optical fibers used for sensing. We are currently working with pyrene-doped fibers for oxygen sensing and fluorescein-doped fibers to detect changes in pH. These schemes have shown great promise, however, several factors (e.g., cost, size, rigidity, response time, sensitivity) are associated with building practical sensors. It is also critical to understand the actual sol-gel composite gelation process in order to quantitatively determine the appropriate conditions for forming microsensor tips from these sol-gel materials. This presentation will focus on the construction of an inexpensive, micron-size fiber-optic sensor as well as a small flow-cell apparatus for the detection of various analytes. Also, the actual preparation of these sol-gel derived optical fibers will be discussed.

  1. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  2. Dynamic Light Scattering From Colloidal Gels

    NASA Technical Reports Server (NTRS)

    Krall, A. H.; Weitz, David A.

    1996-01-01

    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters.

  3. Neutron detector using sol-gel absorber

    SciTech Connect

    Hiller, J.M.; Wallace, S.A.; Dai, S.

    1999-10-26

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  4. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  5. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  6. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  7. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  8. Alignment and nonlinear elasticity in biopolymer gels

    NASA Astrophysics Data System (ADS)

    Feng, Jingchen; Levine, Herbert; Mao, Xiaoming; Sander, Leonard M.

    2015-04-01

    We present a Landau-type theory for the nonlinear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the nonlinear elastic behavior of these materials to fiber alignment induced by strain. We suggest an application to contact guidance of cell motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good agreement between theory and simulation. We also consider a localized perturbation which is a simple model for a contracting cell in a medium.

  9. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  10. Simple cloud chambers using gel ice packs

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Kubota, Miki

    2012-07-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry ice or liquid nitrogen. The gel can be frozen in normal domestic freezers, and can be used repeatedly by re-freezing. The tracks of alpha-ray particles can be observed continuously for about 20 min, and the operation is simple and easy.

  11. Aggregation-structure-elasticity relationship of gels

    NASA Astrophysics Data System (ADS)

    Ma, Hang-Shing

    Aerogel is a mesoporous, low-density material which is desirable for applications like thermal insulation and low-k interlayer dielectric. However, its lack of mechanical integrity hinders its development. Experiments have shown that aerogels exhibit a scaling relationship E ∝ rho m between modulus E and density rho, with the exponent m usually between 3 and 4. The objective of the dissertation is to use computer modeling to understand how the random aggregation process accounts for the fractal structure and the compliant nature of aerogels. Model gels were created by the diffusion-limited cluster-cluster aggregation (DLCA), which simulates random aggregation leading to the sol-gel transition. Then each resulting structure was modeled as an elastic beam network and numerically compressed using the finite element method (FEM). Analyses showed that the DLCA gels reproduced the scaling relationship after trimming the non-contributive dangling branches from the mechanically efficient looped networks. The dangling bond deflection (DEF) model was therefore developed to model the random rotational movement of the dangling branches and the subsequent loop structure formation. Model gels with extensive loops and negligible dangling branches were simulated by combining the DLCA and DEF models. Representation of the aerogel networks by the DLCADEF models was validated for the resemblance of the fractal geometry and elastic behavior. The lack of mechanical integrity in aerogels is a natural consequence of the random aggregation and the resulting fractal structure. Fractal clusters are created in the early stage of aggregation, each of which is characterized by a dense core and sparse perimeter. These clusters grow in size until they percolate at the gel point by knitting together at the perimeters. The gel structure possesses a "blob-and-link" architecture, with the blobs representing the rigid cores of the fractal clusters, and the links corresponding to the tenuous chains

  12. 2% Lidocaine gel or plain lubricating gel: Which one should be used in male flexible cystoscopy?

    PubMed Central

    Akkoç, Ali; Kartalmış, Mahir; Aydın, Cemil; Topaktaş, Ramazan; Altın, Selçuk; Aykaç, Aykut

    2016-01-01

    Objective To investigate and compare the effects on pain of intraurethral 2% lidocaine gel and plain lubricating gel in male patients underwent flexible cystoscopy. Material and methods The data of 220 male patients who underwent flexible cystoscopy between March 2012 and August 2014 were retrospectively analized. The patients were divided into 2 groups according to using intraurethral gel types. Group I included 120 patients who were underwent flexible cystoscopy with 2% lidocaine gel and Group II was consisted from 100 patients who underwent flexible cystoscopy with plain lubricating gel. The groups were compared according to postprocedure data including pain score, procedure time and age of patients. Results The mean age of the patients in Group I was 50.02±11.87 years while that in Group II was 52.03±13.37 years (p=0.492). The mean procedure times were 6.02±0.787 and 6.28±0.689 minutes in Group I and Group II respectively (p=0.061). Pain perception scores were not statistically different between the groups (Group I: 3.10±0.980, Group II: 3.34±0.789, p=0.132). Conclusion Use of intraurethral 2% lidocaine gel has no advantage over plain lubricating gel in regard to pain control during flexible cystoscopy in men. PMID:27274894

  13. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for Pgel-condensed state at P>Pc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  14. Effect of gel matrix confinement on the solvent dynamics in supramolecular gels.

    PubMed

    Kowalczuk, Joanna; Rachocki, Adam; Bielejewski, Michał; Tritt-Goc, Jadwiga

    2016-06-15

    Supramolecular gels formed by the sugar gelator of methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside (1) with 1,3-propanediol (PG) and 1-butanol (BU) were prepared with different gelator concentrations. The solvent dynamics within gels, characterized by the diffusion coefficient (D) and the spin-lattice relaxation time (T1), was the subject of NMR diffusometry and relaxometry studies. The diffusion was studied as a function of diffusion time and gelator concentrations. The relaxation time was measured as a function of Larmor frequency. The decrease of the diffusion coefficient was observed as a function of diffusion time for both gels and for all studied gelator concentrations. It is indicative of the confinement effect due to the geometrical restrictions of the gel matrix. The relaxation data for PG solvent confined in 1/PG gel revealed the low frequency dispersion (in kHz region) which is a fingerprint of a specific interaction experienced by PG solvents in the presence of the rigid structure of gelator 1 aggregates. The relaxation model, well known from the interpretation of liquid confined in nanopores as reorientations mediated by translational displacements (RMTD), was successfully applied to analyze the data of studied solvents confined in matrices of supramolecular gels. The microstructures of gel matrices were imaged by Polarized Microscopy. PMID:27003500

  15. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  16. Hanford transuranic analytical capability

    SciTech Connect

    McVey, C.B.

    1995-02-24

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections.

  17. Analytics for Metabolic Engineering

    PubMed Central

    Petzold, Christopher J.; Chan, Leanne Jade G.; Nhan, Melissa; Adams, Paul D.

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research. PMID:26442249

  18. Protein electrophoretic migration data from custom and commercial gradient gels.

    PubMed

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric M

    2016-12-01

    This paper presents data related to the article "A method for easily customizable gradient gel electrophoresis" (A.J. Miller, B. Roman, E.M. Norstrom, 2016) [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels. PMID:27622203

  19. Mechanical properties and morphology of polymer gels

    NASA Astrophysics Data System (ADS)

    Sliozberg, Yelena; Sirk, Timothy; Brennan, John; Andzelm, Jan; Mrozek, Randy; Lenhart, Joseph

    2012-02-01

    Understanding morphology and mechanical response of polymeric gels is of particular importance to design materials with required energy dissipation characteristics. We will present our latest results for polymer gels based on 1) self-assembled block copolymers and 2) chemically cross-linked polymers. The dissipative particle dynamics (DPD) was used to predict morphology in good agreement with atomic force microscopy. We have performed DPD non-equilibrium oscillatory shear calculations predicting elastic modulus of unentangled gels that correlates well with experimental rheology data. However, this methodology fails to predict mechanics of entangled polymer networks due to unphysical chain crossing brought by the soft potentials used in DPD simulations. Recently, we have introduced an improved segmental repulsion potential that removes the bond crossing allowing for reptation dynamics. The improved DPD method was used in simulations for entangled gels to explore impact of branched architecture of solvent on the mechanical response to the tensile deformation. Novel architectures of solvent resulting in a dramatic increase of the elastic modulus were identified. The topological analysis was applied to understand contributions of chemical cross-links and entanglements to the stress.

  20. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  1. Gel injection successfully shuts off excess water

    SciTech Connect

    1995-11-01

    Unocal applied a high-temperature organic polymer gel in Feather field Well H-43 in the UK North Sea to reduce water production in them more-permeable upper perforated section of the Brent Sand. The operation and technical details of the polymer system developed by Unocal, and how it was applied, are described in paper SPE 30426, ``Water shut off in the North Sea; Testing a new polymer system in the Heather field, UKCS Block 2/5.`` The authors concluded that the new gel system successfully isolated the Upper Brent water production, increasing oil production and decreasing water production. Lower perforations were successfully isolated using sized calcium carbonate suspended in an HEC polymer--a technique difficult to monitor in the deviated well. Batch mixing provided ``excellent`` quality gel, closely matching lab measured performance. And the gel required no pre-cooling in the near-wellbore area. Some 1,100 bbl were injected without excessive wellhead pressure, at 1 bpm. A summary of the paper`s highlights is presented here.

  2. Gel Permeation Chromatography of Fluoroether Polymers

    NASA Technical Reports Server (NTRS)

    Korus, Roger A.; Rosser, Robert W.

    1978-01-01

    A Method is described for determining the molecular weight distribution of fluorinated polymers by gel permeation chromatography. Porous silica-packed columns are used with Freon 113 as the chromatographic solvent. Fluoroether oligomers are used for column calibration in the molecular weight range of 1400 to 12000.

  3. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  4. Aloe vera leaf gel: a review update.

    PubMed

    Reynolds, T; Dweck, A C

    1999-12-15

    Research since the 1986 review has largely upheld the therapeutic claims made in the earlier papers and indeed extended them into other areas. Treatment of inflammation is still the key effect for most types of healing but it is now realized that this is a complex process and that many of its constituent processes may be addressed in different ways by different gel components. A common theme running though much recent research is the immunomodulatory properties of the gel polysaccharides, especially the acetylated mannans from Aloe vera, which are now a proprietary substance covered by many patents. There have also been, however, persistent reports of active glycoprotein fractions from both Aloe vera and Aloe arborescens. There are also cautionary investigations warning of possible allergic effects on some patients. Reports also describe antidiabetic, anticancer and antibiotic activities, so we may expect to see a widening use of aloe gel. Several reputable suppliers produce a stabilized aloe gel for use as itself or in formulations and there may be moves towards isolating and eventually providing verified active ingredients in dosable quantities PMID:10624859

  5. Gel bead composition for metal adsorption

    SciTech Connect

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1991-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  6. Gel bead composition for metal adsorption

    DOEpatents

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  7. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  8. Sol-Gel Derived Hafnia Coatings

    NASA Technical Reports Server (NTRS)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  9. Sol-Gel Synthesis Of Aluminoborosilicate Powders

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Leiser, Daniel; Selvaduray, Guna

    1992-01-01

    Application of sol-gel process to synthesis of aluminoborosilicate powders shows potential for control of microstructures of materials. Development of materials having enhanced processing characteristics prove advantageous in extending high-temperature endurance of fibrous refractory composite insulation made from ceramic fibers.

  10. Xanthan gel system effective for profile modification

    SciTech Connect

    Burkholder, L.

    1985-04-15

    To cope with the problem of optimizing reservoir sweep efficiency, many companies today are utilizing a technique known as profile modification. This technique is based on the premise that a gelled polymer formulation can be injected into the reservoir some distance beyond the well bore where it creates a flow diversion. The successful application of profile modification techniques has resulted in significant increases in incremental oil recovery. The injectant is a xanthan-gum solution precross-linked with a chromium complex to form a gel. The polymer/chromium combination reduces permeability in the thief zones and diverts a higher percentage of the displacing fluids into previously unswept, oil-saturated portions of the reservoir. Although reservoir characteristics and brine composition are key considerations, xanthan/chrome gels can be tailored to meet almost any conditions. Fractures will require strong gels while tight formations, or formations with low parting pressures, will require thinner gels. Slug volume is designed to treat the ''thief'' interval and must be carefully sized to improve sweep efficiency within economical limits.

  11. Growth of hydroxyapatite nanoparticles on silica gels.

    PubMed

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  12. Cell viability in a wet silica gel.

    PubMed

    Nieto, Alejandra; Areva, Sami; Wilson, Timothy; Viitala, Reeta; Vallet-Regi, Maria

    2009-11-01

    A modified two-step sol-gel route using silicon ethoxide (TEOS) has been used to synthesize amorphous sol-gel-derived silica, which has been successfully used as a cell encapsulation matrix for 3T3 mouse fibroblasts and CRL-2595 epithelial cells due to its non-toxicity. The sol-gel procedure comprised a first, low pH hydrolysis step, followed by a neutral condensation-gelation step. A high water-to-TEOS ratio and the addition of d-glucose as a porogen and source of nutrients were chosen to minimize silica dissolution and improve the biocompatibility of the process. Indeed, the cell integrity in the encapsulation process was preserved by alcohol removal from the starting solution. Cells were then added in a buffered medium, causing rapid gelation and entrapment of the cells within a randomly structured siloxane matrix in the shape of a monolith, which was maintained in the wet state. MTT and alamarBlue assays were used to check the cytotoxicity of the silica gels and the viability of entrapped cells at initial times in contact with silica. To improve cell attachment, cell clumping experiments - where groups of cells were formed - were designed, rendering improved viability. The obtained materials are therefore excellent candidates for designing tissue-culture scaffolds and implantable bioreactors for biomedical applications. PMID:19481618

  13. Electrophoretic Porosimetry of Sol-Gels

    NASA Technical Reports Server (NTRS)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  14. Driven Polymer Translocation into a Crosslinked Gel

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary

    2015-03-01

    In a typical polymer translocation setup, a thin membrane is used to separate two chambers and a polyelectrolyte is driven by an electric field to translocate from one side of the membrane to the other via a small nanopore. However, the high translocation rate that results from the forces required to drive this process makes optical and/or electrical analysis of the translocating polymer challenging. Using coarse-grained Langevin Dynamics simulations we investigate how the translocation process can be slowed down by placing a crosslinked gel on the trans-side of the membrane. Since the driving electric field is localized in the neighborhood of the nanopore, electrophoretic migration is only achieved by a ``pushing'' action from the polymer segment residing in the nanopore. For the case of a flexible polymer we find that the polymer fills the gel pores via multiple ``herniation'' processes, whereas for a semi-flexible chain in a tight gel there are no hernias and the polymer follows a smooth curvilinear path. Moreover, for the case of a semi-flexible polymer the gel makes the translocation process more uniform by reducing the acceleration at the end of the process.

  15. Modeling the dynamics of a tracer particle in an elastic active gel

    NASA Astrophysics Data System (ADS)

    Ben-Isaac, E.; Fodor, É.; Visco, P.; van Wijland, F.; Gov, Nir S.

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies.

  16. Modeling the dynamics of a tracer particle in an elastic active gel.

    PubMed

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies. PMID:26274211

  17. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  18. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  19. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  20. New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation.

    PubMed

    Walter, Johannes; Thajudeen, Thaseem; Süss, Sebastian; Segets, Doris; Peukert, Wolfgang

    2015-04-21

    Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles. PMID:25789666

  1. (3-Mercaptopropyl)trimethoxysilane-derived Porous Gel Monolith via Thioacetal Reaction-Assisted Sol-Gel Route

    NASA Astrophysics Data System (ADS)

    Ito, S.; Nishi, M.; Kanamori, K.; Nakanishi, K.; Kurahashi, T.; Matsubara, S.; Shimotsuma, Y.; Miura, K.; Hirao, K.

    2011-10-01

    Porous gel monolith was synthesized by reacting (3-mercaptopropyl)trimethoxysilane (MPTMS) with acetone on acidic conditions. It is known that MPTMS itself is difficult to turn into gel on acidic conditions and instead oligomers are obtained owing to the large mercaptopropyl group. In our system, the gels were obtained since acetone worked as a cross-linker via thioacetal reaction. Additionally, Au ions were selectively adsorbed on the obtained gel. When an obtained white gel was soaked in a chloroauric acid solution, the gel turned brown and was getting dark depending on the soaked time; on the other hand, the color of the solution turned from yellow to colorless.

  2. Effectiveness of Gel Repellents on Feral Pigeons

    PubMed Central

    Stock, Birte; Haag-Wackernagel, Daniel

    2013-01-01

    Simple Summary Feral pigeons live in close association in urban areas. They constitute serious health risks to humans and also lead to high economic loss due to costly damage to buildings, historic monuments, statues and even vegetation. While numerous avian repellent systems are regularly introduced onto the market, scientific proof of efficacy and their use from the point of view of animal welfare is lacking. Therefore, two avian gel repellents were studied on free-living feral pigeons in this study. The focus was set on repellent efficacy and animal welfare concerns. This study’s aim is to contribute to a better understanding of feral pigeon management in our cities. Abstract Millions of feral pigeons (Columba livia) live in close association with the human population in our cities. They pose serious health risks to humans and lead to high economic loss due to damage caused to buildings. Consequently, house owners and city authorities are not willing to allow pigeons on their buildings. While various avian repellents are regularly introduced onto the market, scientific proof of efficacy is lacking. This study aimed at testing the effectiveness of two avian gel repellents and additionally examined their application from animal welfare standpoint. The gels used an alleged tactile or visual aversion of the birds, reinforced by additional sensory cues. We mounted experimental shelves with the installed repellents in a pigeon loft and observed the behavior of free-living feral pigeons towards the systems. Both gels showed a restricted, transient repellent effect, but failed to prove the claimed complete effectiveness. Additionally, the gels’ adhesive effect remains doubtful in view of animal welfare because gluing of plumage presents a risk to feral pigeons and also to other non-target birds. This study infers that both gels lack the promised complete efficacy, conflict with animal welfare concerns and are therefore not suitable for feral pigeon management in

  3. Development of novel Sol-Gel Indicators (SGI`s) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  4. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  5. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  6. The Case for Assessment Analytics

    ERIC Educational Resources Information Center

    Ellis, Cath

    2013-01-01

    Learning analytics is a relatively new field of inquiry and its precise meaning is both contested and fluid (Johnson, Smith, Willis, Levine & Haywood, 2011; LAK, n.d.). Ferguson (2012) suggests that the best working definition is that offered by the first Learning Analytics and Knowledge (LAK) conference: "the measurement, collection,…

  7. Understanding Education Involving Geovisual Analytics

    ERIC Educational Resources Information Center

    Stenliden, Linnea

    2013-01-01

    Handling the vast amounts of data and information available in contemporary society is a challenge. Geovisual Analytics provides technology designed to increase the effectiveness of information interpretation and analytical task solving. To date, little attention has been paid to the role such tools can play in education and to the extent to which…

  8. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis. PMID:7864363

  9. Transverse agarose pore gradient gel electrophoresis of DNA.

    PubMed

    Fawcett, J S; Wheeler, D; Chrambach, A

    1992-06-01

    Transverse agarose pore gradient gels were prepared on GelBond in the concentration range of nominally 0.2-1.5% SeaKem GTG agarose, using density stabilization by glycerol and incorporation of a dye to define the gel concentration at each point on the pore gradient gel. The distribution of the dye was evaluated by photography, video-acquisition and digitization of the gradient mixture and by densitometry of the gel. The gel was applied to the electrophoresis of a 1-kb standard ladder of DNA fragments, using standard submarine apparatus. The method extends to agarose gel electrophoresis the benefits of semi-automated analysis of 'Ferguson curves' described in application to polyacrylamide gel by Wheeler et al. (J. Biochem. Biophys. Methods 24, 171-180). PMID:1640052

  10. Covalent Fusion of layered Incompatible Gels in Immiscible Solvents

    NASA Astrophysics Data System (ADS)

    Biswas, Santidan; Singh, Awaneesh; Matyjaszewski, Krzysztof; Balazs, Anna C.

    We carry out dissipative particle dynamics (DPD) simulations to model a two layered stackable gel where the gels are incompatible and are present in immiscible solvent. The bottom layer of the gel is created first and then a solution of new initiators, monomers and cross-linkers is introduced on top of it. These components then undergo polymerization and form the second gel layer. We study all possible combinations of free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) mechanisms with the two layers of the gel. For example, the bottom layer gel is created via ATRP, whereas the top layer gel follows FRP. Our focus is to do a systematic study of all these combinations and find out the factors responsible for combining two incompatible gels in immiscible solvents.

  11. Monolithic diphasic gels of mullite by sol-gel process under ultrasound stimulation.

    PubMed

    Vollet, D R; Donatti, D A; Domingos, R N; de Oliveira, I

    1998-06-01

    Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (approximately 34 A) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300 degrees C. PMID:11270341

  12. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  13. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  14. Electric field-induced deformation of polyelectrolyte gels

    SciTech Connect

    Adolf, D.; Hance, B.G.

    1995-08-01

    Water-swollen polyelectrolyte gels deform in an electric field. We observed that the sign and magnitude of the deformation is dependent on the nature of the salt bath in which the gel is immersed and electrocuted. These results are compatible with a deformation mechanism based upon creation of ion density gradients by the field which, in turn, creates osmotic pressure gradients within the gel. A consistent interpretation results only if gel mobility is allowed as well as free ion diffusion and migration.

  15. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  16. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  17. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  18. Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Babincová, Melánia; Leszczynska, Danuta; Sourivong, Paul; Čičmanec, Pavol; Babinec, Peter

    2001-01-01

    Heating properties of a magnetically responsive gel in an alternating magnetic field at 217 kHz were evaluated. Superparamagnetic ferrite nanocrystals of approximately 10 nm were formed within the gel network by bridging anionic bis(ethylhexyl) sodium sulfosuccinate reverse micelles. Specific absorption rates up to 150 W/g for ferrite concentrations up to 50 mg/ml were observed. Temperature measurements of the gel without ferrite particles showed no heating effect. Magnetic gels therefore represent a novel promising hyperthermic material.

  19. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  20. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a tooth... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrode gel for pulp testers. 872.1730...

  1. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a tooth... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrode gel for pulp testers. 872.1730...

  2. Electrochemical stimulation and control of electroactive polymer gels

    NASA Astrophysics Data System (ADS)

    Guelch, Rainer W.; Holdenried, Jens; Weible, Andrea; Wallmersperger, Thomas; Kroeplin, Bernd

    2001-07-01

    Direct effects of electrical currents on polyelectrolyte gels are always associated with changes in their Donnan potential. Thus electrical stimulation of gels can be only completely understood if the direct effect of electric fields on the potential profile within the gels are known. The purpose of this study is to present recordings of Donnan potentials in electroactive gels of various compositions, especially under the influence of electric fields. An important finding is that opposite alterations in the Donnan potential simultaneously occur at the current inflow and outflow region of the gel. In anionic gels hyperpolarization, i.e. higher negativity, is induced on the anode-side of the gel, whereas depolarization is found on the cathode-side. As these shifts in the potential are supposed to affect swelling or deswelling of polyelectrolyte gels, they will primarily promote bending motions of the gel. To demonstrate the opposite bending behavior of anionic and cationic polymer gels under the influence of an electric field a short video sequence of an EAP gripper in action is presented. It is made exclusively of polyelectrolyte gel strips taking advantage of the fact that anionic and cationic polyacrylamide gels can be attached firmly to each other without any adhesive.

  3. Retention and release behavior of insulin in chitosan gel beads.

    PubMed

    Kofuji, Kyoko; Akamine, Hiroyuki; Oshirabe, Hitomi; Maeda, Yasuyo; Murata, Yoshifumi; Kawashima, Susumu

    2003-01-01

    Chitosan (CS) gel beads were prepared in a 10% (w/v) aqueous amino acid solution (pH 9.0) as a vehicle for delivering peptide and protein drugs. CS gel beads with a weight-average molecular weight of (16-280) x 10(4) were employed in this study. Preparation of the CS gel beads was affected by properties such as molecular weight and degree of deacetylation. Insulin, which is commonly used to assess protein drug delivery, was retained in the CS gel beads. Drug release from the CS gel beads was governed by diffusion of drug from the gel matrix. Sustained release of insulin from the CS gel beads was observed, despite the fact that insulin is a comparatively water-soluble drug. because insulin formed a complex with CS. Modification of the CS gel matrix by chondroitin sulfate inhibited release of insulin from the gel beads. CS gel beads were implanted into air pouches prepared subcutaneously on the dorsal surface of diabetic mice in order to investigate the efficacy of insulin retained in the CS beads. Blood glucose levels were found to be reduced after implantation of CS gel beads retaining insulin. CS gel beads may possibly improve the stability and control of insulin release. These observations indicate that CS beads are a promising biocompatible and biodegradable vehicle for peptide and protein delivery. PMID:14768911

  4. Formulation and method for preparing gels comprising hydrous aluminum oxide

    SciTech Connect

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  5. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  6. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  7. Laser based on dye-activated silica gel

    SciTech Connect

    Altshuler, G.B.; Bakhanov, V.A.; Dulneva, E.G.; Erofeev, A.V.; Mazurin, O.V.; Roskova, G.P.; Tsekhomskaya, T.S.

    1987-06-01

    Silica gel activated by a dye is used as a new laser medium. The lasin characteristics of rhodamine 6G in silica gel are reported. An important characteristic of the dye laser is its long service life, which is determined by the photostability of the dye in silic gel.(AIP)

  8. 21 CFR 520.1453 - Moxidectin and praziquantel gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Moxidectin and praziquantel gel. 520.1453 Section 520.1453 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and praziquantel gel. (a) Specifications. Each milliliter of gel contains 20 milligrams (mg)...

  9. Multiresidue determination of pesticides in plants by high-performance liquid chromatography following gel permeation chromatographic clean-up.

    PubMed

    Balinova, A

    1998-10-01

    Gel permeation chromatography was applied as a clean-up step in a HPLC multiresidue method for the determination of several pesticides in plants, not amenable to analysis by GC. The pesticides investigated were diflubenzuron, triflumuron, clofentezine, hexythiazox and flufenoxuron. The clean-up technique resulted in a good separation of analytes from co-extractive matrix compounds. Complete HPLC separation of all pesticides was achieved under the conditions selected. The analytical procedure was characterized with high accuracy and precision and acceptable sensitivity to meet requirements for monitoring these pesticides in crops. PMID:9818389

  10. The Science of Analytic Reporting

    SciTech Connect

    Chinchor, Nancy; Pike, William A.

    2009-09-23

    The challenge of visually communicating analysis results is central to the ability of visual analytics tools to support decision making and knowledge construction. The benefit of emerging visual methods will be improved through more effective exchange of the insights generated through the use of visual analytics. This paper outlines the major requirements for next-generation reporting systems in terms of eight major research needs: the development of best practices, design automation, visual rhetoric, context and audience, connecting analysis to presentation, evidence and argument, collaborative environments, and interactive and dynamic documents. It also describes an emerging technology called Active Products that introduces new techniques for analytic process capture and dissemination.

  11. Droplet Spreading with Sol-Gel Transition

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris; Balmforth, Neil J.

    2014-11-01

    The impact and spreading of liquid droplets on a smooth solid substrate is a classical subject with several industrial applications such as ink-jet printing, spray cooling, coating, and many others. For many of these deposition processes, controlling the final shape of the drop is critical. In the current research, a new technique for controlling the spreading of droplets impacting a substrate is presented. This technique exploits the rheology of a thermo-responsive polymer solution that undergoes a reversible sol/gel transition above a critical temperature. Experiments are conducted using a combination of shadowgraphy and micro-PIV to observe spreading drops. It is shown that the final diameter of a droplet can be controlled through the temperature of the substrate and the tunable sol/gel transition temperature of the fluid.A mathematical model is provided to further elucidate the flow dynamics.

  12. Novel carboxy functionalized sol-gel precursors

    SciTech Connect

    Wolter, H.; Storch, W.; Gellermann, C.

    1996-12-31

    A novel family of inorganic-organic copolymers (ORMOCER`s) derived from urethane- and thioether(meth)acrylate alkoxysilanes has been successfully exploited for a variety of diverse applications. In order to widen the range of applications an additional functionality (carboxy group) has been incorporated int his silane type. Conventional sol-gel processing facilitates the formation of an inorganic Si-O-Si-network via hydrolysis and polycondensation reactions of alkoxysilyl moieties and in addition, the (meth)acrylate groups are available for radically induced polymerization to obtain a complementary organic polymer structure. The presence of a carboxy group would appear to have great potential for a range of diverse areas of application, such as an internal catalyst for the sol-gel process, complexation of elements such as Zr and Ti, increasing the adhesion to various substrates and modification of solubility. A number of novel silanes and their syntheses will be described in this paper.

  13. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P. M.

    2016-02-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.

  14. Freezing D2O clay gels.

    PubMed

    Letellier, M

    1998-01-01

    To obtain the T1 surface value in smectites/D2O diluted suspensions or gels, as was obtained on a monolayer deuterated clay, we freeze them. The broad Pake's doublets similar to ice doublets and with the same T1 show that we can separate frozen from unfrozen D2O. The latter exhibits a narrower line and a single T1 and is attributed to the liquid surface water layer in rapid exchange with the nearby supercooled water, the quantity of which diminishes with the lowering of the temperature depending on the gel porosity. It is possible to measure the supercooled water quantity and to correct the T1 measured values to extract the T1 surface. The value extrapolated at room temperature allows the complete clay surface area measurement. The example of a montmorillonite is given and a comparison with laponite is made. PMID:9803898

  15. Carbon Redox-Polymer-Gel Hybrid Supercapacitors.

    PubMed

    Vlad, A; Singh, N; Melinte, S; Gohy, J-F; Ajayan, P M

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  16. Optical-CT scanning of polymer gels

    PubMed Central

    Oldham, M

    2006-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data. PMID:17082823

  17. Molecular recognition in gels, monolayers, and solids

    NASA Astrophysics Data System (ADS)

    Prime, Kevin L.; Chu, Yen-Ho; Schmid, Walther; Seto, Christopher T.; Chen, James K.

    1991-12-01

    This paper describes work in four areas: affinity electrophoresis of carbonic anhydrase in cross-linked polyacrylamide derived gels containing immobilized derivatives of aryl sulfonamides; inhibition of the hemagglutination of erythrocytes induced by influenza virus using water-soluble polyacrylamides bearing sialic acid groups; the application of self-assembled monolayers (SAMs) of alkyl thiolates on gold to the study of protein adsorption on organic surfaces; and the use of networks of hydrogen bonds to generate new classes of non-covalently assembled organic materials, both in solution and in crystals. This paper summarizes research in two areas of molecular recognition: affinity polymers and molecular self assembly. We illustrate these areas by examples drawn from affinity gel electrophoresis, soluble synthetic macromolecular inhibitors of binding of influenza virus to erythrocytes protein adsorption on self assembled monolayers and self assembling hydrogen bonded molecular aggregates.

  18. Comparative proteomics and difference gel electrophoresis.

    PubMed

    Minden, Jonathan

    2007-12-01

    The goal of comparative proteomics is to analyze proteome changes in response to development, disease, or environment. This is a two-step process in which proteins within cellular extracts are first fractionated to reduce sample complexity, and then the proteins are identified by mass spectrometry. Two-dimensional electrophoresis (2DE) is the long-time standard for protein separation, but it has suffered from poor reproducibility and limited sensitivity. Difference gel electrophoresis (DIGE), in which two protein samples are separately labeled with different fluorescent dyes and then co-electrophoresed on the same 2DE gel, was developed to overcome the reproducibility and sensitivity limitations. In this essay, I discuss the principles of comparative proteomics and the development of DIGE. PMID:18251249

  19. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    PubMed Central

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  20. Innovative materials based on sol gel technology

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Saraidarov, Tsiala

    2006-01-01

    We review the sol-gel based new materials which were prepared in our laboratory including: tunable lasers, active waveguides, luminescent solar concentrators, electrochromic, photochromic and gasochromic plates for smart windows, chemical and biological sensors, semiconductor quantum dots and complexes of rare earth ions. In this paper we present the firstly obtained results of the Eu sulfide nanocrystalline (NCs) powder material and doped in the sol-gel based zirconia films. The powder and films were studied by high resolution transmittance electron microscopy (HRTEM), energy dispersive X-ray spectroscopy analysis (EDS) and luminescence spectroscopy. Eu sulfide nanocrystals (NCs) ranging between 8 and 10 nm were obtained as powder and 3-4 nm incorporated in zirconia film.

  1. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  2. Fiber-optic chemical sensors using sol-gel membranes and photocatalysts

    NASA Astrophysics Data System (ADS)

    Nivens, Delana Amber Gajdosik

    Fiber-optic sensors have been developed that incorporate multi-layer organo-silica sol-gel membranes. Multilayer sol-gel sensors have been designed to offer improved stability over other sol-gel membranes and to measure COsb2 and the unreactive analytes trichloroethylene and perchloroethylene. Single layer pH sensors were fabricated using a base-catalyzed organo-silica sol-gel containing organosilane coupling agents. A base catalyst was found to be better suited for complete incorporation of the aminopropyltriethoxysilane used to attach dye molecules. This allows the production of optically transparent gels that respond to pH in less than 15 seconds. Dual layer COsb2 sensors use the pH sol-gel layer overcoated with a hydrophobic ORganically MOdified SIlica sol-gel membrane (ORMOSIL). The ORMOSIL reduces much of the pH cross sensitivity found in gas sensors and allows fast, reversible diffusion of COsb2. The sensors respond to COsb2 gas within 10 seconds and dissolved COsb2 in 2 minutes. COsb2 sensors have been found to be stable and reproducible for 12 months when stored dry and at least 6 months when stored in buffer. Many volatile organochloride compounds (VOC's) have been difficult to measure using current fiber-optic sensor transduction schemes. The three-layer optical sensor described here incorporates a TiOsb2/SiOsb2 membrane to degrade VOC's into smaller, detectable products, Hsp+, Clsp- and COsb2. Upon exposure to UV light, TiOsb2, a semiconductor with a bandgap of 3.2 eV, produces highly reactive electron-hole pairs that photodegrade organic compounds. The products produced on the TiOsb2 surface diffuse into the nearby indicator membrane where they are detected. Carbon dioxide and protons produced are detected by the pH sensitive indicator layer described above. Preliminary data for the measurement of VOC's indicates that the detection limit for PCE is less than 1.65 ppm in the headspace (10 ppm in solution). Photocatalysis is also used to measure uranyl

  3. Diffusion of polyelectrolytes in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Rahalkar, Anand; Muthukumar, Murugappan

    2015-03-01

    Using dynamic light scattering, we have investigated the diffusion coefficient of sodium poly(styrene sulfonate) in a matrix of poly(acrylamide-co-acrylate) gels. The diffusion coefficient of the probe polyelectrolyte exhibits a crossover behavior from a particle-diffusion to entropic-barrier dominated diffusion, as the molecular weight is increased. The effect of electrostatics, by varying the charge density of the matrix, on probe diffusion constant will be presented.

  4. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  5. 3D dosimetry fundamentals: gels and plastics

    NASA Astrophysics Data System (ADS)

    Lepage, M.; Jordan, K.

    2010-11-01

    Many different materials have been developed for 3D radiation dosimetry since the Fricke gel dosimeter was first proposed in 1984. This paper is intended as an entry point into these materials where we provide an overview of the basic principles for the most explored materials. References to appropriate sources are provided such that the reader interested in more details can quickly find relevant information.

  6. Exploratory data analysis groupware for qualitative and quantitative electrophoretic gel analysis over the Internet-WebGel.

    PubMed

    Lemkin, P F; Myrick, J M; Lakshmanan, Y; Shue, M J; Patrick, J L; Hornbeck, P V; Thornwal, G C; Partin, A W

    1999-12-01

    Many scientists use quantitative measurements to compare the presence and amount, of various proteins and nucleotides among series of one- and two-dimensional (1-D and 2-D) electrophoretic gels. These gels are often scanned into digital image files. Gel spots are then quantified using stand-alone analysis software. However, as more research collaborations take place over the Internet, it has become useful to share intermediate quantitative data between researchers. This allows research group members to investigate their data and share their work in progress. We developed a World Wide Web group-accessible software system, WebGel, for interactively exploring qualitative and quantitative differences between electrophoretic gels. Such Internet databases are useful for publishing quantitative data and allow other researchers to explore the data with respect to their own research. Because intermediate results of one user may be shared with their collaborators using WebGel, this form of active data-sharing constitutes a groupware method for enhancing collaborative research. Quantitative and image gel data from a stand-alone gel image processing system are copied to a database accessible on the WebGel Web server. These data are then available for analysis by the WebGel database program residing on that server. Visualization is critical for better understanding of the data. WebGel helps organize labeled gel images into montages of corresponding spots as seen in these different gels. Various views of multiple gel images, including sets of spots, normalization spots, labeled spots, segmented gels, etc. may also be displayed. These displays are active and may be used for performing database operations directly on individual protein spots by simply clicking on them. Corresponding regions between sets of gels may be visually analyzed using Flicker-comparison (Electrophoresis 1997, 18, 122-140) as one of the WebGel methods for qualitative analysis. Quantitative exploratory data

  7. Dielectric properties of gel collected from shark electrosensors

    NASA Astrophysics Data System (ADS)

    Hughes, Mary E.; Brown, Brandon R.; Hutchison, John C.; Murray, Royce W.

    2003-03-01

    To investigate the physical mechanism of the electric sense, we present an initial characterization of the dielectric properties of the glycoprotein gel that fills the electrosensitive organs of marine elasmobranches (sharks, skates, and rays). To ascertain the properties of the gel, low-frequency impedance spectroscopy is used. The impedance data collected from a dialyzed sample show large values of static permittivity and a loss peak corresponding to a long relaxation time (about 1 ms). Impedance measurements of the native (nondialyzed) gel reliable to 0.1 Hz will be presented and compared to the dialyzed gel. Ramifications of the gel's dielectric properties for the electric sense will be explored.

  8. The formation and structure of Olympic gels

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Lang, M.; Sommer, J.-U.

    2015-12-01

    Different methods for creating Olympic gels are analyzed using computer simulations. First ideal reference samples are obtained from freely interpenetrating semi-dilute solutions and melts of cyclic polymers. The distribution of pairwise concatenations per cyclic molecule is given by a Poisson-distribution and can be used to describe the elastic structure of the gels. Several batches of linear chains decorated with different selectively binding groups at their ends are mixed in the "DNA Origami" technique and network formation is realized. While the formation of cyclic molecules follows mean field predictions below overlap of the precursor molecules, an enhanced ring formation above overlap is found that is not explained by mean field arguments. The "progressive construction" method allows to create Olympic gels with a single reaction step from a concentrated mixture of large compressed rings with a low weight fraction of short chains that are below overlap concentration. This method, however, is limited by the difficulty to obtain a sufficiently high degree of polymerization of the large rings.

  9. Micro-size polyacrylamide gel electrophoresis system

    NASA Astrophysics Data System (ADS)

    Hinson, W. G.; Pipkin, J. L.; Anson, J. F.; Casciano, D. A.; Burns, E. R.

    1987-09-01

    The development and characterization of a micro-size two-dimensional polyacrylamide gel electrophoresis system is described. Some of the techniques which have evolved with use of the system are also discussed. This apparatus has unique features which provide advantages over other small scale units. Up to ten first- and second-dimension gels can be processed simultaneously with excellent resolution of protein regions. Consistent reproducibility is possible from protein samples as small as 400 ng and individual protein regions as small as 1 pg can be visualized by silver staining of the two-dimensional gels. Similar sensitivities are achieved in autoradiographs of 3H-labeled proteins extracted from the nuclei of cultured cells. The application of this system in conjunction with flow cytometric examination of nuclear DNA and electrostatic cell sorting of specific cell nuclei to provide homogeneous sample populations, allows subtle variations in isotope incorporation in proteins to be detected; whereas many times in generalized tissue samples these changes are masked. Also, these techniques elucidate the effects of external stimuli (chemicals, drugs, or environment) on protein synthesis and phosphorylation for analyses and comparison. Fabrication drawings are available upon request.

  10. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  11. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  12. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  13. Fibrillar peptide gels in biotechnology and biomedicine

    PubMed Central

    Jung, Jangwook P.; Gasiorowski, Joshua Z.; Collier, Joel H.

    2012-01-01

    Peptides, peptidomimetics, and peptide derivatives that self-assemble into fibrillar gels have received increasing interest as synthetic extracellular matrices for applications in 3D cell culture and regenerative medicine. Recently, several of these fibrillizing molecules have been functionalized with bioactive components such as cell-binding ligands, degradable sequences, drug-eluting compounds, and chemical modifications for cross-linking, producing gels that can reliably display multiple factors simultaneously. This capacity for incorporating precise levels of many different biological and chemical factors is advantageous given the natural complexity of cell-matrix interactions that many current biomaterial strategies seek to mimic. In this review, recent efforts in the area of fibril-forming peptide materials are described, and advantages of biomaterials containing multiple modular elements are outlined. In addition, a few hurdles and open questions surrounding fibrillar peptide gels are discussed, including issues of the materials’ structural heterogeneity, challenges in fully characterizing the diversity of their self-assembled structures, and incomplete knowledge of how the materials are processed in vivo. PMID:20091870

  14. Novel sol-gel bioactive fibers.

    PubMed

    Oréfice, R L; Hench, L L; Clark, A E; Brennan, A B

    2001-06-15

    Bioactive fibers were produced using a sol-gel method. The rheological properties of two different sol compositions prepared from a mixture of TEOS, phosphorous alkoxide and calcium nitrate, or calcium chloride in a water-ethanol solution, are reported. The sols were extruded through a spinneret to produce continuous 10 microm-diameter fibers. Discontinuous fibers and fibrous mats were prepared by air-spraying the multicomponent sols. The sol-gel fibers were converted to the bioactive fibers by three different thermal treatments at either 600 degrees, 700 degrees, or 900 degrees C for 3 h. SEM, BET, EDX, and FTIR were used to characterize the morphology and structure of the fibers. The BET measured surface area of the fibers sintered at 900 degrees C was 0 m(2)/gm compared to a value of 200 m(2)/gm for a typical sol-gel-derived particle of similar composition. Both the continuous and discontinuous fibers exhibited in vitro bioactivity in a simulated body fluid. PMID:11288073

  15. State of water in gelatin Gels

    SciTech Connect

    Naryshkina, E.P.; Izmailova, V.N.; Polinnyi, A.I.

    1986-03-01

    It has been shown on the basis of the variation of the linewidth of water with time in high-resolution NMR spectra of gelatin gels in D/sub 2/O that there is a decrease in the mobility of the water molecules during the formation of the collagen-like helix in the initial stages of gelation. As the concentration of the protein is increased, the linewidth of the water signal ..delta.. increases, and the spin-spin (T/sub 2/) and spin-lattice (T/sub 1/) relaxation times and the self-diffusion coefficient of the water molecules D /SUB S/ in the fully formed gels of gelatin in H/sub 2/O decreases as a result of the immobilization of water by the gelatin macromolecules and the presence of a three-dimensional gel network. The aforementioned parameters vary as a function of the gelatin concentration in parallel with the value of the Flory-Huggins parameter /CHI/.

  16. Semihumid gels as matrices for laser media

    NASA Astrophysics Data System (ADS)

    Larrue, Denis; Zarzycki, J.; Canva, Michael; Georges, Patrick M.; Brun, Alain

    1992-12-01

    Laser dyes were trapped in SiO2 xerogel host matrices to obtain a solid state dye laser. The evolution of the mechanical properties of two kinds of matrices, 'classic' and 'sono' gels, was followed during drying. A new impregnation process was performed on these xerogels: impregnation with a 'sono' sol. The influence of this treatment on certain physical and mechanical properties of the resulting impregnated gels was studied. The results indicate that impregnation substantially improves hardness, elastic modulus and fracture stress. The samples can then be easily polished to obtain optical quality surfaces and be used in a laser cavity. Moreover, optical properties related to laser emission of these materials such as efficiency, lifetime and longevity are better when the laser dye doped xerogels are impregnated. The organic dye molecule used was sulforhodamine 640, and results were obtained six months after their synthesis, with a pump beam working at a 5 Hz repetition rate with 450 (mu) J/pulse energy level. With the first pump shot on a fixed point of the samples, tunability from 600 to 650 nm, 60 (mu) J threshold, 2600 pump shots lifetime and a 10.5% slope efficiency were achieved using an impregnated 'sono' gel matrix.

  17. Trends in Analytical Scale Separations.

    ERIC Educational Resources Information Center

    Jorgenson, James W.

    1984-01-01

    Discusses recent developments in the instrumentation and practice of analytical scale operations. Emphasizes detection devices and procedures in gas chromatography, liquid chromatography, electrophoresis, supercritical fluid chromatography, and field-flow fractionation. (JN)

  18. Liposomes: Technologies and Analytical Applications

    NASA Astrophysics Data System (ADS)

    Jesorka, Aldo; Orwar, Owe

    2008-07-01

    Liposomes are structurally and functionally some of the most versatile supramolecular assemblies in existence. Since the beginning of active research on lipid vesicles in 1965, the field has progressed enormously and applications are well established in several areas, such as drug and gene delivery. In the analytical sciences, liposomes serve a dual purpose: Either they are analytes, typically in quality-assessment procedures of liposome preparations, or they are functional components in a variety of new analytical systems. Liposome immunoassays, for example, benefit greatly from the amplification provided by encapsulated markers, and nanotube-interconnected liposome networks have emerged as ultrasmall-scale analytical devices. This review provides information about new developments in some of the most actively researched liposome-related topics.

  19. Laboratory Workhorse: The Analytical Balance.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    1979-01-01

    This report explains the importance of various analytical balances in the water or wastewater laboratory. Stressed is the proper procedure for utilizing the equipment as well as the mechanics involved in its operation. (CS)

  20. Analytic Methods in Investigative Geometry.

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2001-01-01

    Suggests an alternative proof by analytic methods, which is more accessible than rigorous proof based on Euclid's Elements, in which students need only apply standard methods of trigonometry to the data without introducing new points or lines. (KHR)

  1. Analytical Chemistry: A Literary Approach.

    ERIC Educational Resources Information Center

    Lucy, Charles A.

    2000-01-01

    Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)

  2. Cautions Concerning Electronic Analytical Balances.

    ERIC Educational Resources Information Center

    Johnson, Bruce B.; Wells, John D.

    1986-01-01

    Cautions chemists to be wary of ferromagnetic samples (especially magnetized samples), stray electromagnetic radiation, dusty environments, and changing weather conditions. These and other conditions may alter readings obtained from electronic analytical balances. (JN)

  3. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel

    PubMed Central

    Chen, Meiwan; Yang, Zhiwen; Wu, Hongmei; Pan, Xin; Xie, Xiaobao; Wu, Chuanbin

    2011-01-01

    Purpose The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel) on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Patients and methods This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM), and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis. Results S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA. Conclusion These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research and development in in-vivo studies. PMID:22131833

  4. Formulation and evaluation of curcumin gel for topical application.

    PubMed

    Patel, Nikunjana A; Patel, Natvar J; Patel, Rakesh P

    2009-01-01

    The aim of the present investigation was to develop and study topical gel delivery of curcumin for its anti-inflammatory effects. Carbopol 934P (CRB) and hydroxypropylcellulose (HPC) were used for the preparation of gels. The penetration enhancing effect of menthol (0-12.5% w/w) on the percutaneous flux of curcumin through the excised rat epidermis from 2% w/w CRB and HPC gel system was investigated. All the prepared gel formulations were evaluated for various properties such as compatibility, drug content, viscosity, in vitro skin permeation, and anti-inflammatory effect. The drug and polymers compatibility was confirmed by Differential scanning calorimetry and infrared spectroscopy. The percutaneous flux and enhancement ratio of curcumin across rat epidermis was enhanced markedly by the addition of menthol to both types of gel formulations. Both types of developed topical gel formulations were free of skin irritation. In anti-inflammatory studies done by carrageenan induced rat paw oedema method in wistar albino rats, anti-inflammatory effect of CRB, HPC and standard gel formulations were significantly different from control group (P < 0.05) whereas this effect was not significantly different for CRB and HPC gels formulations to that of standard (diclofenac gel) formulation (P > 0.05). CRB gel showed better % inhibition of inflammation as compared to HPC gel. PMID:18821270

  5. Fabrication, modeling and optimization of an ionic polymer gel actuator

    NASA Astrophysics Data System (ADS)

    Jo, Choonghee; Naguib, Hani E.; Kwon, Roy H.

    2011-04-01

    The modeling of the electro-active behavior of ionic polymer gel is studied and the optimum conditions that maximize the deflection of the gel are investigated. The bending deformation of polymer gel under an electric field is formulated by using chemo-electro-mechanical parameters. In the modeling, swelling and shrinking phenomena due to the differences in ion concentration at the boundary between the gel and solution are considered prior to the application of an electric field, and then bending actuation is applied. As the driving force of swelling, shrinking and bending deformation, differential osmotic pressure at the boundary of the gel and solution is considered. From this behavior, the strain or deflection of the gel is calculated. To find the optimum design parameter settings (electric voltage, thickness of gel, concentration of polyion in the gel, ion concentration in the solution, and degree of cross-linking in the gel) for bending deformation, a nonlinear constrained optimization model is formulated. In the optimization model, a bending deflection equation of the gel is used as an objective function, and a range of decision variables and their relationships are used as constraint equations. Also, actuation experiments are conducted using poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) gel and the optimum conditions predicted by the proposed model have been verified by the experiments.

  6. Dynamic light-scattering monitoring of a transient biopolymer gel

    NASA Astrophysics Data System (ADS)

    Kostko, A. F.; Chen, T.; Payne, G. F.; Anisimov, M. A.

    2003-05-01

    We performed dynamic light-scattering (DLS) monitoring and a rheological study to characterize the formation and destruction of a transient (limited lifetime) gel formed from the biopolymers chitosan and gelatin. Gel formation, initiated by the enzyme tyrosinase, is followed by spontaneous gel breakage. Our DLS results demonstrate that this material passes through five stages in which the gel forms, consolidates, “lives”, softens, and eventually breaks. We speculate that the existence of the transient gel is caused by a competition between two processes: a fast-rate chemical reaction leading to formation of a branched-copolymer network and a slow-rate diffusion-like rearrangement of the gelatin branches resulting in eventual gel breakage. Despite a dramatic difference in the characteristic times of the gel formation ( tg) and gel breakage ( tb)-the ratio tb/ tg is of the order 10 3-DLS has revealed an intrinsic monitoring-time symmetry in the formation and destruction of the gel provided that a proper physical choice of the reduced temporal scale is used. In this scale the slow-mode relaxation time for both sides of the process, gel formation and gel destruction, exhibits a power law in the spirit of percolation theory.

  7. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  8. Visual Analytics Technology Transition Progress

    SciTech Connect

    Scholtz, Jean; Cook, Kristin A.; Whiting, Mark A.; Lemon, Douglas K.; Greenblatt, Howard

    2009-09-23

    The authors provide a description of the transition process for visual analytic tools and contrast this with the transition process for more traditional software tools. This paper takes this into account and describes a user-oriented approach to technology transition including a discussion of key factors that should be considered and adapted to each situation. The progress made in transitioning visual analytic tools in the past five years is described and the challenges that remain are enumerated.

  9. Analytical multikinks in smooth potentials

    NASA Astrophysics Data System (ADS)

    de Brito, G. P.; Correa, R. A. C.; de Souza Dutra, A.

    2014-03-01

    In this work we present an approach that can be systematically used to construct nonlinear systems possessing analytical multikink profile configurations. In contrast with previous approaches to the problem, we are able to do it by using field potentials that are considerably smoother than the ones of the doubly quadratic family of potentials. This is done without losing the capacity of writing exact analytical solutions. The resulting field configurations can be applied to the study of problems from condensed matter to braneworld scenarios.

  10. Phenyl Functionalized Sol-gel Silica Sorbent for Capillary Microextraction and Chromia-Based Sol-gel Ucon Stationary Phase for Capillary Gas Chromatography

    NASA Astrophysics Data System (ADS)

    McLean, Michael M.

    The first chapter of this thesis presents an introduction to sol-gel methodology whose usefulness as a synthetic route will be demonstrated with two applications in chromatography. The first application involves the fabrication of a capillary micro-extraction (CME) device by coating a phenyl functionalized extracting phase on the inner surface of a fused silica capillary for analyte pre-concentration. The device was coupled on-line to a RP-HPLC system and practicality was demonstrated using allergens as target analytes. The allergens chosen as model analytes are typically found in fragrance products and food. Most of the 26 fragrance allergens that are monitored by various government authorities have a phenyl organic moiety (a strong chromophore), thus making them appropriate probes for exploring the extraction efficiency of the coating using a UV detector. The CME device showed ppt level limit of detection which makes it suitable for trace analyses of allergens and similar compounds in a variety of matrices. The second application explores the feasibility of using sol-gel derived chromia-based stationary phase in gas chromatographic columns. The organic moiety of the stationary phase was derived from Ucon 75-H-90,000 while the inorganic backbone was prepared using chromium(III) dichloride hydroxide - methacrylic acid - aqua complex, 40% in isopropanol/acetone . Usefulness of prepared chromia-based GC stationary phase was examined for petrochemical application. Promising results were obtained using aliphatic-aromatics, polyaromatic hydrocarbons, BTEX test mixture, cycloalkanes, branched alkanes and akylbenzenes. The column was able to perform without degradation despite being rinsed multiples times sequentially with the following solvents: dichloromethane, methanol, water and finally methanol again. Maximum theoretical plate number calculated is around 2,400 plates/m. The plate number clearly needs improvement but is a promising result for the newly explored

  11. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  12. Self-oscillating gels beating like a heart muscle

    PubMed Central

    Yoshida, Ryo

    2012-01-01

    So far stimuli-responsive polymer gels and their application to smart materials have been widely studied. On the other hand, as a novel biomimetic gel, we developed gels with an autonomous self-oscillating function like a heart muscle, which was firstly reported in 1996. We designed the self-oscillating polymers and gels by utilizing the oscillating reaction, called the Belousov-Zhabotinsky (BZ) reaction. The self-oscillating polymer is composed of a poly(N-isopropylacrylamide) network in which the catalyst for the BZ reaction is covalently immobilized. In the presence of the reactants, the polymer gel undergoes spontaneous cyclic swelling–deswelling changes without any on–off switching of external stimuli. Potential applications of the self-oscillating polymers and gels include several kinds of functional material systems, such as bio-mimetic actuators and mass transport surface. In this review, recent progress on the polymer gels is introduced.

  13. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  14. Responsive Gel-Gel Phase Transitions in Artificially Engineered Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.

    2012-02-01

    Artificially engineered protein hydrogels provide an attractive platform for biomedical materials due to their similarity to components of the native extracellular matrix. Engineering responsive transitions between shear-thinning and tough gel phases in these materials could potentially enable gels that are both shear-thinning and tough to be produced as novel injectable biomaterials. To engineer a gel with such transitions, a triblock copolymer with thermoresponsive polymer endblocks and an artificially engineered protein gel midblock is designed. Temperature is used to trigger a transition from a single network protein hydrogel phase to a double network phase with both protein and block copolymer networks present at different length scales. The thermodynamics of network formation and resulting structural changes are established using small-angle scattering, birefringence, and dynamic scanning calorimetry. The formation of the second network is shown to produce a large, nonlinear increase in the elastic modulus as well as enhancements in creep compliance and toughness. Although the gels show yielding behavior in both the single and double network regimes, a qualitative change in the deformation mechanism is observed due to the structural changes.

  15. Characterization of silica gel prepared by using sol-gel process

    NASA Astrophysics Data System (ADS)

    Besbes, M.; Fakhfakh, N.; Benzina, M.

    2009-11-01

    We studied the preparation of silica gels from sodium silicate solution mixed with hydrochloric acid by sol-gel process. The obtained gel is washed with water to obtain a 'hydrogel'. The immersion of the last one in alcohol, gives an 'alcogel'. A Hoke D6 experimental design was followed in order to limit the number of tests. pH and the silica concentration represent the most significant factors which control the obtaining of a significant specific surface and thus a great capacity of adsorption. A second order polynomial model was adopted in order to represent the results in the form of three-dimensional surfaces. These results are also topographically illustrated as isoresponses lines. The results showed that the pH effect is more significant than the silica concentration one. We obtained gels with great microporosity and presenting specific surfaces of 657 m2.g-1 when pH is equal to 2. The prepared gel without alcohol presents interesting characteristics for a potential industrial use since its production cost is lowest and has a high specific surface.

  16. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.

    PubMed

    Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2015-06-28

    A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel. PMID:26016677

  17. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  18. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel.

    PubMed

    Arends, Fabienna; Nowald, Constantin; Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  19. The Biophysical Properties of Basal Lamina Gels Depend on the Biochemical Composition of the Gel

    PubMed Central

    Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  20. Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels

    SciTech Connect

    Craig Joseph Fontenot

    2001-12-31

    In general, the peroxovanadate solution sol-gel process can be thought of as consisting of two parts: (1) the decomposition of the peroxo species and (2) cation hydrolysis leading to gelation. By controlling the synthesis conditions, both layered and amorphous compounds can be created. However, the type of water coordination observed in these gels was found to be identical no matter what the long-range order. The current work clarified many of the discrepancies found in the literature and offered much new valuable information. Highlights include the types of vanadium environments present at various stages of hydration, the role of adsorbed water, oxygen exchange from adsorbed water into the gel sites, and the ability to create metastable VMoO solid solution phases. These results could have a variety of impacts on future catalysis research.

  1. Dispersion functions and factors that determine resolution for DNA sequencing by gel electrophoresis

    SciTech Connect

    Sutherland, J.C.; Reynolds, K.J.; Fisk, D.J.

    1996-04-01

    The number of bases that can be read in a single run by a DNA sequencing instrument that detects fluorophore labeled DNA arriving at a ``finish-line`` located a fixed distance from the starting wells is influenced by numerous parameters. Strategies for improving the length-of-read of a DNA sequencer can be based on quantitative models of the separation of DNA by gel electrophoresis. The dispersion function of the electrophoretic system--the relationship between molecular contour length and time of arrival at the detector--is useful in characterizing the performance of a DNA sequencer. We adapted analytical representations of dispersion functions, originally developed for snapshot imaging of DNA gels, (samples electrophoresed for constant time), to finish-line imaging, and demonstrated that a logistic-type function with non-integral exponent is required to describe the experimental data. We use this dispersion function to determine the resolution length and resolving power of a LI-COR DNA sequencing system and a custom built capillary gel electrophoresis system, and discuss the factors that presently limit the number of bases that can be determined reliably in a single sequencing run.

  2. [Preparation and chromatographic performance of a eugenol-bonded silica gel stationary phase for high performance liquid chromatography].

    PubMed

    Xu, Lili; Zhong, Minghua; Chen, Xiaojing

    2015-05-01

    A eugenol-bonded silica gel stationary phase (EGSP) for high performance liquid chromatography ( HPLC) has been synthesized by the solid-liquid successive reaction method. The preparation process included two steps: firstly, γ-glycidoxypropyltrimethoxy-silane (KH-560) was covalently attached to the surface of spherical silica gel. Then the bonded silica gel continued to react with eugenol ligand, which was a plant active component, and obtained EGSP. The structure of EGSP was characterized by elemental analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy. Using naphthalene as a probe, the column efficiency was tested under the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 0.8 mL/min. The chromatographic properties and the retention mechanism of EGSP were evaluated by using neutral, basic and acidic analytes as solute probes. Meanwhile, the comparative study with C18 column and phenyl column was also carried out under the same chromatographic conditions. The result showed that the eugenol ligand was successfully bonded to the surface of silica gel with a 0.28 mmol/g of bonded amount, and the theoretical plate number of EGSP column was about 24 707 N/m. The EGSP appeared to be a kind of excellent reversed-phase stationary phase with suitable hydrophobicity and various synergistic sites. The eugenol ligand bonded on silica gel could first provide π-π interaction sites for different analytes because of its benzene ring and alkenyl. In addition, the methoxy groups of eugenol were responsible for dipole-dipole and hydrogen-bonding interactions between the ligand and solutes in the effective separation process. Comparing with traditional C18 column and phenyl column, EGSP has an advantage in the fast separation of polar compounds under simple experimental conditions. PMID:26387202

  3. Utilizing ATRP to Design Self-Regenerating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Averick, Saadyah; Kuksenok, Olga; Matyjaszewski, Krzysztof; Balazs, Anna

    2014-03-01

    Using newly developed computational approaches, we design a gel system capable of re-growth after a substantial section of the material was cut away. Atom transfer radical polymerization (ATRP) is utilized to form gels with preserved ``living'' chain ends and residual unreacted cross-linking groups. When this ``living'' gel is cut, these active species are exposed to a solution containing monomer, crosslinker, initiator and catalyst. A ``repairing'' polymerization occurs from both the new initiators introduced in the outer solution and the reactive chain ends present at the cut site. This new polymerization results in a covalent linkage between the initial living gel and the new gel prepared in the outer solution, and the connection is promoted by the presence of residual cross-linking groups. By measuring the diffusion of the outer solution into the cut gel and characterizing the width and strength of the interface between the initial and new gels, we identify the optimum parameters that yield a strong interface between the gel layers. Our simulations results are in good agreement with our experimental studies. This strategy not only regenerates ``injured'' gels, but also offers a novel means to engineer multi-layered composite gels.

  4. Fluorescent thin gel films using organic dyes and pigments

    NASA Astrophysics Data System (ADS)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  5. Photo-induced locomotion of chemo-responsive polymer gels

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna C.

    2009-03-01

    The need to translate chemical energy into a mechanical response, a characteristic of many biological processes, has motivated the study of stimuli-responsive polymer gels. Recently, it has been shown experimentally that by coupling the mechanical properties of the gel with the Belousov-Zhabotinsky (BZ) reaction it is possible to induce self-sustained oscillations in the gel. One of the means for controlling these chemical oscillations is using light as an external stimulus. To study the effect of light on the mechanical behavior of the gel, we use our recently developed a 3D gel lattice spring model (gLSM) which couples the BZ reaction kinetics to the gel dynamics. In this model, the polymer-solvent interactions were taken into account by adding a coupling term to the Flory-Huggins free energy. By virtue of this coupling term, the swelling---de-swelling behavior of the gel was captured in 3D. In order to include the effect of the polymer on the reaction kinetics, the Oregonator model for the photo-sensitive BZ reaction was also modified. Using gLSM model, we probed the effect of non-uniform light irradiation on the gel dynamics. We were able to manipulate the direction and velocity of locomotion of the gel using light as a control parameter. This ability to control the movement of the gel can be utilized in a variety of applications, ranging from bio-actuators to controlled drug release systems.

  6. Gel image segmentation based on discontinuity and region information

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2005-10-01

    2-D electrophoresis gel images can be used for identifying and characterizing many forms of a particular protein encoded by a single gene. Conventional approaches to gel analysis require the three steps: (1) Spot detection on each gel; (2) Spot matching between gels; and (3) Spot quantification and comparison. Many researchers and developers attempt to automate all steps as much as possible, but errors in the detection and matching stages are common. In order to carry out gel image analysis, one first needs to accurately detect and measure the protein spots in a gel image. As other image analysis or computer vision areas, image segmentation is still a hard problem. This paper presents algorithms for automatically delineating gel spots. Two types of segmentation algorithms were implemented, the one is edge (discontinuity) based type, and the other is region based type. For the different classes of gel images, the two types of algorithms were tested; the advantages and disadvantages were discussed. Based on the testing and analysis results, authors suggested using a fusion of edge information and region information for gel image segmentation is a good complementary. The primary integration of the two types of image segmentation algorithms have been tested too, the result clearly show that the integrated algorithm can automatically delineate gel not only on a simple image and also on a complex image, and it is much better than that either only edge based algorithm or only region based algorithm.

  7. Climate Analytics as a Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Duffy, Daniel Q.; McInerney, Mark A.; Webster, W. Phillip; Lee, Tsengdar J.

    2014-01-01

    Climate science is a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-performance computing and data-proximal analytics with scalable data management, cloud computing virtualization, the notion of adaptive analytics, and a domain-harmonized API to improve the accessibility and usability of large collections of climate data. MERRA Analytic Services (MERRA/AS) provides an example of CAaaS. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of key climate variables. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, CAaaS is providing the agility required to meet our customers' increasing and changing data management and data analysis needs.

  8. The transfer of analytical procedures.

    PubMed

    Ermer, J; Limberger, M; Lis, K; Wätzig, H

    2013-11-01

    Analytical method transfers are certainly among the most discussed topics in the GMP regulated sector. However, they are surprisingly little regulated in detail. General information is provided by USP, WHO, and ISPE in particular. Most recently, the EU emphasized the importance of analytical transfer by including it in their draft of the revised GMP Guideline. In this article, an overview and comparison of these guidelines is provided. The key to success for method transfers is the excellent communication between sending and receiving unit. In order to facilitate this communication, procedures, flow charts and checklists for responsibilities, success factors, transfer categories, the transfer plan and report, strategies in case of failed transfers, tables with acceptance limits are provided here, together with a comprehensive glossary. Potential pitfalls are described such that they can be avoided. In order to assure an efficient and sustainable transfer of analytical procedures, a practically relevant and scientifically sound evaluation with corresponding acceptance criteria is crucial. Various strategies and statistical tools such as significance tests, absolute acceptance criteria, and equivalence tests are thoroughly descibed and compared in detail giving examples. Significance tests should be avoided. The success criterion is not statistical significance, but rather analytical relevance. Depending on a risk assessment of the analytical procedure in question, statistical equivalence tests are recommended, because they include both, a practically relevant acceptance limit and a direct control of the statistical risks. However, for lower risk procedures, a simple comparison of the transfer performance parameters to absolute limits is also regarded as sufficient. PMID:23978903

  9. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  10. Platelet gel for healing cutaneous chronic wounds.

    PubMed

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  11. Absorption of isoflurane by silica gel.

    PubMed

    Lumb, A B; Landon, M J

    1991-07-01

    We have studied the capacity of the drying agent silica gel (SG) to absorb isoflurane from gas samples. When dry, SG was able to absorb 31 times its own volume of isoflurane vapour, which could be recovered almost completely from the SG by displacement with water vapour. However, we were unable to demonstrate any significant absorption of isoflurane by wet SG. Care must be taken, therefore, when using SG as a drying agent in the sampling line of an analyser during research involving volatile anaesthetic agents. PMID:1650238

  12. Pulsed field gel electrophoresis for dairy propionibacteria.

    PubMed

    Chuat, Victoria; de Freitas, Rosangela; Dalmasso, Marion

    2015-01-01

    Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria. PMID:25862063

  13. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  14. Testosterone nasal gel (Natesto) for hypogonadism.

    PubMed

    2015-05-11

    In one study, Natesto nasal gel administered intranasally 3 times daily was effective in raising low serum testosterone levels into the normal range in patients with hypogonadism. Whether patients will find this method of administration more acceptable than an intramuscular injection every 2-4 weeks or once-daily application to the skin remains to be determined. Based on the lack of convincing evidence of benefit in older men and concerns about its safety, the FDA has warned against using testosterone to treat hypogonadism due solely to aging. PMID:25941957

  15. Fluoride glasses from sol gels. Final report

    SciTech Connect

    Uhlmann, D.R.

    1986-09-15

    The use of sol-gel coatings to strengthen oxide glasses was demonstrated for the case of fused silica. Increases in strength to as much as 2.2 times the strength of uncoated glass were obtained. The strengthening does not involve the annealing of surface microcracks, but rather the filling-in of such flaws. The strengthening does not depend on coating thickness over the range 2000-10000 Angstroms, but does depend significantly upon the state of hydrolysis of the substrate surface.

  16. Silver staining of proteins in polyacrylamide gels

    PubMed Central

    Chevallet, Mireille; Luche, Sylvie; Rabilloud, Thierry

    2006-01-01

    Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It combines excellent sensitivity (in the low nanogram range) whilst using very simple and cheap equipment and chemicals. It is compatible with downstream processing such as mass spectrometry analysis after protein digestion. The sequential phases of silver staining are protein fixation, then sensitization, then silver impregnation and finally image development. Several variants of silver staining are described here, which can be completed in a time range from 2 hours to one day after the end of the electrophoretic separation. Once completed, the stain is stable for several weeks PMID:17487168

  17. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  18. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Navidi, Fatemeh; Beard, Daniel A.; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  19. A Survey of Risk Analytics

    NASA Astrophysics Data System (ADS)

    Picoult, Evan

    2003-03-01

    Risk Analytical Units within Wall Street firms are responsible for developing the methods used to quantify the different forms of risk inherent in the firms' activities. This talk is an overview of risk analytics. It will cover: the function and validation of valuation models; the measurement of market risk; and the measurement of the different aspects of and forms of credit risk, including the simulation of the potential counterparty credit exposure of derivatives, the estimation of obligor default probability and the simulation of the potential loss distribution of loan portfolios. Risk Analytics is an applied field that integrates finance theory, mathematics and statistical analysis. It is a field in that has attracted many physicists and one in which many physicists have flourished. The talk will conclude with an analysis of why this is so.

  20. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957