Science.gov

Sample records for anatomy magnetic resonance

  1. Elbow magnetic resonance imaging: imaging anatomy and evaluation.

    PubMed

    Hauptfleisch, Jennifer; English, Collette; Murphy, Darra

    2015-04-01

    The elbow is a complex joint. Magnetic resonance imaging (MRI) is often the imaging modality of choice in the workup of elbow pain, especially in sports injuries and younger patients who often have either a history of a chronic repetitive strain such as the throwing athlete or a distinct traumatic injury. Traumatic injuries and alternative musculoskeletal pathologies can affect the ligaments, musculotendinous, cartilaginous, and osseous structures of the elbow as well as the 3 main nerves to the upper limb, and these structures are best assessed with MRI.Knowledge of the complex anatomy of the elbow joint as well as patterns of injury and disease is important for the radiologist to make an accurate diagnosis in the setting of elbow pain. This chapter will outline elbow anatomy, basic imaging parameters, compartmental pathology, and finally applications of some novel MRI techniques. PMID:25835585

  2. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

  3. Correlation of Magnetic Resonance Imaging With Knee Anterolateral Ligament Anatomy

    PubMed Central

    Helito, Camilo Partezani; Helito, Paulo Victor Partezani; Bonadio, Marcelo Batista; Pécora, José Ricardo; Bordalo-Rodrigues, Marcelo; Camanho, Gilberto Luis; Demange, Marco Kawamura

    2015-01-01

    Background: Anatomic and magnetic resonance imaging (MRI) studies have recently characterized the knee anterolateral ligament (ALL). So far, no study has focused on confirming whether the evaluated MRI parameters truly correspond with ALL anatomy. Purpose: To assess the validity of MRI in detecting the ALL using an anatomic evaluation as reference. Study Design: Descriptive laboratory study. Methods: A total of 13 cadaveric knees were subjected to MRI and then to anatomic dissection. Dissection was performed according to previous anatomic study methodology. MRIs were performed with a 0.6- to 1.5-mm slice thickness and prior saline injection. The following variables were analyzed: distance from the origin of the ALL to the origin of the lateral collateral ligament (LCL), distance from the origin of the ALL to its bifurcation point, maximum length of the ALL, distance from the tibial insertion of the ALL to the articular surface of the tibia, ALL thickness, and ALL width. The 2 sets of measurements were analyzed using the Spearman correlation coefficient (ρ) and Bland-Altman plots. Results: The ALL was clearly observed in all dissected knees and MRI scans. It originated anterior and distal to the LCL, close to the lateral epycondile center, and showed an anteroinferior path toward the tibia, inserting between the Gerdy tubercle and the fibular head, around 5 mm under the lateral plateau. The ρ values tended to increase together for all studied variables between the 2 methods, and all were statistically significant, except for thickness (P = .077). Bland-Altman plots showed a tendency toward a reduction of ALL thickness and width by MRI compared with anatomic dissection. Conclusion: MRI scanning as described can accurately assess the ALL and demonstrates characteristics similar to those seen under anatomic dissection. Clinical Relevance: MRI can accurately characterize the ALL in the anterolateral region of the knee, despite the presence of structures that might overlap and thus cause confusion when making assessments based on imaging methods. PMID:26779553

  4. Magnetic resonance imaging (MRI) anatomy of the ovine lumbar spine.

    PubMed

    Nisolle, J F; Wang, X Q; Squlart, M; Hontoir, F; Kirschvink, N; Clegg, P; Vandeweerd, J M

    2014-06-01

    Although the ovine spine is a useful research model for intervertebral disc pathology and vertebral surgery, there is little peer-reviewed information regarding the MRI anatomy of the ovine spine. To describe the lumbar spine MRI anatomy, 10 lumbar segments of cadaver ewes were imaged by 1.5-Tesla MR. Sagittal and transverse sequences were performed in T1 and T2 weighting (T1W, T2W), and the images were compared to gross anatomic sagittal and transverse sections performed through frozen spines. MRI was able to define most anatomic structures of the ovine spine in a similar way as can be imaged in humans. In both T1W and T2W, the signals of ovine IVDs were similar to those observed in humans. Salient anatomic features were identified: (1) a 2- to 3-mm linear zone of hypersignal was noticed on both extremities of the vertebral body parallel to the vertebral plates in sagittal planes; (2) the tendon of the crura of the diaphragm appeared as a hypointense circular structure between hypaxial muscles and the aorta and caudal vena cava; (3) dorsal and ventral longitudinal ligaments and ligamentum flavum were poorly imaged; (4) no ilio-lumbar ligament was present; (5) the spinal cord ended between S1-S2 level, and the peripheral white matter and central grey matter were easily distinguished on T1W and T2W images. This study provides useful reference images to researchers working with ovine models. PMID:23668479

  5. Magnetic Resonance Imaging of Three-Dimensional Cervical Anatomy in the Second and Third Trimester

    PubMed Central

    HOUSE, Michael; BHADELIA, Rafeeque A.; MYERS, Kristin; SOCRATE, Simona

    2009-01-01

    OBJECTIVE Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to 1) construct three-dimensional anatomic models during normal pregnancy and 2) use the models to compare cervical anatomy in the second and third trimester. STUDY DESIGN A cross sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. RESULTS Fourteen patients were imaged and divided into two groups according to gestational age: 20 24 weeks (n=7)) and 31 36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac. (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These 3-dimensional changes were associated with a cervix that appeared shorter in the third trimester. CONCLUSION We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment. PMID:19297070

  6. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1. 5 Tesla

    SciTech Connect

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-02-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH/sub 2/-) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain.

  7. Computed Tomography and Magnetic Resonance Anatomy of the Normal Orbit and Eye of the Horse.

    PubMed

    D'Août, C; Nisolle, J F; Navez, M; Perrin, R; Launois, T; Brogniez, L; Clegg, P; Hontoir, F; Vandeweerd, J M

    2015-10-01

    Traumatic and infectious diseases of the eye and orbit can occur in horses. For diagnosis and monitoring of such diseases, medical imaging is useful including computed tomography (CT) and magnetic resonance imaging (MRI). The aim of the current study was to describe CT and MRI anatomy of the equine orbit and ocular globe. The heads from four adult horses were scanned with a 6-slice Emotion 6 CT (Siemens, Erlangen), and a 3.0 Tesla Siemens Verio 6 MRI using T1 and T2-weighted sequences. To validate CT and MR reference images, these were compared with anatomical models and gross anatomical sections. The bony limits of the orbital cavity, the relationship of the orbit with sinuses and foramina of the skull were well identified by CT. MRI was useful to observe soft tissues and was able to identify adnexae of the ocular globe (eyelids, periorbital fat, extraocular muscles, lacrymal and tarsal glands). Although MRI was able to identify all components of the eye (including the posterior chamber), it could not differentiate sclera from choroid and retina. The only nerve identified was the optic nerve. Vessels were not seen in this series of cadaver heads. This study showed that CT and MRI are useful techniques to image the equine orbit and eye that can have clinical applications. PMID:25294111

  8. Atlas of fetal sectional anatomy with ultrasound and magnetic resonance imaging

    SciTech Connect

    Isaacson, G.; Mintz, M.C.; Crelin, E.S.

    1986-01-01

    Here is an atlas of sectional anatomy for the fetus featuring correlated anatomy and imaging, transverse coronal and sagittal views, a guide to development of the brain, cardiac anatomy in standard plans of study and, over 280 illustrations.

  9. Anatomy of the cranioencephalic structures of the camel (Camelus dromedarius L.) by imaging techniques: a magnetic resonance imaging study.

    PubMed

    Arencibia, A; Rivero, M A; Gil, F; Ramrez, J A; Corbera, J A; Ramrez, G; Vzquez, J M

    2005-02-01

    The objective of this study was to define the anatomy of the cranioencephalic structures and associated formations in camel using magnetic resonance imaging (MRI). MR images were acquired in sagittal, transverse and oblique dorsal planes, using spin-echo techniques, a magnet of 1.5 T and a standard human body coil. MR images were compared with corresponding frozen cross-sections of the head. Different anatomic structures were identified and labelled at each level. The resulting images provided excellent soft tissue contrast and anatomic detail of the brain and associated structures of the camel head. Annotated MR images from this study are intended to be a reference for clinical imaging studies of the head of the dromedary camel. PMID:15649228

  10. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging

    PubMed Central

    Ziegler, Alexander; Faber, Cornelius; Mueller, Susanne; Bartolomaeus, Thomas

    2008-01-01

    Background Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Results Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea). For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders) of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. Conclusion The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology. PMID:18651948

  11. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    SciTech Connect

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-04-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT.

  12. Anatomy, Variants, and Pathologies of the Superior Glenohumeral Ligament: Magnetic Resonance Imaging with Three-Dimensional Volumetric Interpolated Breath-Hold Examination Sequence and Conventional Magnetic Resonance Arthrography

    PubMed Central

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL. PMID:25053912

  13. Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration

    PubMed Central

    Krishna, Murali C.; English, Sean; Yamada, Kenichi; Yoo, John; Murugesan, Ramachandran; Devasahayam, Nallathamby; Cook, John A.; Golman, Klaes; Ardenkjaer-Larsen, Jan Henrik; Subramanian, Sankaran; Mitchell, James B.

    2002-01-01

    An efficient noninvasive method for in vivo imaging of tumor oxygenation by using a low-field magnetic resonance scanner and a paramagnetic contrast agent is described. The methodology is based on Overhauser enhanced magnetic resonance imaging (OMRI), a functional imaging technique. OMRI experiments were performed on tumor-bearing mice (squamous cell carcinoma) by i.v. administration of the contrast agent Oxo63 (a highly derivatized triarylmethyl radical) at nontoxic doses in the range of 27 mmol/kg either as a bolus or as a continuous infusion. Spatially resolved pO2 (oxygen concentration) images from OMRI experiments of tumor-bearing mice exhibited heterogeneous oxygenation profiles and revealed regions of hypoxia in tumors (<10 mmHg; 1 mmHg = 133 Pa). Oxygenation of tumors was enhanced on carbogen (95% O2/5% CO2) inhalation. The pO2 measurements from OMRI were found to be in agreement with those obtained by independent polarographic measurements using a pO2 Eppendorf electrode. This work illustrates that anatomically coregistered pO2 maps of tumors can be readily obtained by combining the good anatomical resolution of water proton-based MRI, and the superior pO2 sensitivity of EPR. OMRI affords the opportunity to perform noninvasive and repeated pO2 measurements of the same animal with useful spatial (?1 mm) and temporal (2 min) resolution, making this method a powerful imaging modality for small animal research to understand tumor physiology and potentially for human applications. PMID:11854518

  14. Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration

    NASA Astrophysics Data System (ADS)

    Krishna, Murali C.; English, Sean; Yamada, Kenichi; Yoo, John; Murugesan, Ramachandran; Devasahayam, Nallathamby; Cook, John A.; Golman, Klaes; Ardenkjaer-Larsen, Jan Henrik; Subramanian, Sankaran; Mitchell, James B.

    2002-02-01

    An efficient noninvasive method for in vivo imaging of tumor oxygenation by using a low-field magnetic resonance scanner and a paramagnetic contrast agent is described. The methodology is based on Overhauser enhanced magnetic resonance imaging (OMRI), a functional imaging technique. OMRI experiments were performed on tumor-bearing mice (squamous cell carcinoma) by i.v. administration of the contrast agent Oxo63 (a highly derivatized triarylmethyl radical) at nontoxic doses in the range of 2-7 mmol/kg either as a bolus or as a continuous infusion. Spatially resolved pO2 (oxygen concentration) images from OMRI experiments of tumor-bearing mice exhibited heterogeneous oxygenation profiles and revealed regions of hypoxia in tumors (<10 mmHg; 1 mmHg = 133 Pa). Oxygenation of tumors was enhanced on carbogen (95% O2/5% CO2) inhalation. The pO2 measurements from OMRI were found to be in agreement with those obtained by independent polarographic measurements using a pO2 Eppendorf electrode. This work illustrates that anatomically coregistered pO2 maps of tumors can be readily obtained by combining the good anatomical resolution of water proton-based MRI, and the superior pO2 sensitivity of EPR. OMRI affords the opportunity to perform noninvasive and repeated pO2 measurements of the same animal with useful spatial (≈1 mm) and temporal (2 min) resolution, making this method a powerful imaging modality for small animal research to understand tumor physiology and potentially for human applications.

  15. Magnetic resonance imaging of the low rectum: defining the radiological anatomy.

    PubMed

    Salerno, G; Daniels, I R; Brown, G

    2006-09-01

    Low rectal cancer provides a particular surgical challenge of local tumour control and sphincter preservation. Histopathological studies have shown that an involved circumferential resection margin (CRM) and depth of extramural invasion are independent markers of poor prognosis and correlate with high local recurrence rates due to residual microscopic disease [1]. Recent data suggests that a CRM at risk of tumour involvement can be reliably seen on the pre-operative magnetic resonance imaging (MRI) scan with good correlation with the histological specimen [2-5]. In published series, low rectal cancers have a higher incidence of involved resection margins, with rates up to 30% for abdomino-perineal excision (APE) vs 10% for low anterior resection (LAR) [6-9]. This has been attributed to narrow surgical planes deep within the pelvis as the mesorectum becomes narrowed and tapered, forming a bare muscle tube at the level of the anal sphincter complex. The challenge for the surgeon is to undertake careful removal of a cylinder of tissue beyond the rectal wall without perforating the tumour. An overall local recurrence rate of 10% after APE for all stages of rectal cancer has been reported and this low rate was attributed to the surgical technique that included a wide peri-anal dissection and lateral division of the levator ani. The abdominal dissection was stopped above the tumour, taking care to avoid separation of the tumour from the levator ani to reduce the risk of inadvertent tumour cell spillage [8]. Therefore, rates of involved surgical margins from APE specimens may be reduced when a cuff of levators is taken compared with standard resection. In this review, we will discuss how MRI of the low rectum can aid in the staging and optimization of the best treatment strategy for low rectal cancer. PMID:16813585

  16. Perineal body anatomy in living women: 3-D analysis using thin-slice magnetic resonance imaging

    PubMed Central

    Larson, Kindra A.; Yousuf, Aisha; Lewicky-Gaupp, Christina; Fenner, Dee E.; DeLancey, John O.L.

    2012-01-01

    Objective To describe a framework for visualizing the perineal body's complex anatomy using thin-slice MR imaging. Study Design Two mm-thick MR images were acquired in 11 women with normal pelvic support and no incontinence/prolapse symptoms. Anatomic structures were analyzed in axial, sagittal and coronal slices. 3-D models were generated from these images. Results Three distinct perineal body regions are visible on MRI: (1) a superficial region at the level of the vestibular bulb, (2) a mid region at the proximal end of the superficial transverse perineal muscle, and (3) a deep region at the level of the midurethra and puborectalis muscle. Structures are best visualized on axial scans while cranio-caudal relationships are appreciated on sagittal scans. The 3-D model further clarifies inter-relationships. Conclusion Advances in MR technology allow visualization of perineal body anatomy in living women and development of 3D models which enhance our understanding of its three different regions: superficial, mid and deep. PMID:21055513

  17. Correlative investigations of craniospinal anatomy and pathology with computed tomography, magnetic resonance imaging and cryomicrotomy.

    PubMed

    Pech, P

    1988-01-01

    A correlative computed tomographic-anatomic method was applied to multiplanar anatomic studies. The method was particularly valuable for comparative anatomic investigations of complex regions of the central nervous system. The description of CT and MR anatomy in this thesis is based either on direct CT-anatomic correlation of the same specimen, or on indirect MR-anatomic correlation with cryosectional images from cadavers. In sagittal partial saturation MR images with short repetition times, the pituitary fossa in 41 normal volunteers appeared inhomogeneous. A postero-inferiorly located high intensity signal correlated with an intrasellar fat pad in sagittal cryosectional images. The height of the pituitary gland in 38 normal volunteers was usually less than 8 mm and its upper surface was flat or concave. The cavernous sinus anatomy was studied in coronal and axial MR planes in seven normal volunteers and 15 patients in correlation with cryosectional images. The intracavernous cranial nerves were best shown in the coronal plane, in partial saturation and inversion recovery sequences and displayed as foci of high signals intensity. MR signs of a parasellar mass included obliteration of intracavernous venous spaces, displacement of the intracavernous portion of the internal carotid artery and bulging of the lateral wall of the cavernous sinus. The topographic anatomy of the cervical neuroforamina was investigated in axial, sagittal, coronal and oblique planes in a correlative CT-anatomic investigation in 19 specimens. In four normal volunteers, the surface coil MR images of the cervical neuroforamina were correlated with cryosectional images. Surface coil MR images in a plane perpendicular to the cervical nerve roots allowed to determine their relationship to intraforaminal structures and the boundaries of the foramen. The dorsal and ventral nerve roots were demonstrated with both CT and MRI. They were located in the lower half of the foramen at and below the intervertebral disc space. The dorsal nerve roots were in contact with the superior articular process. The ventral nerve roots abutted the uncinate process and the inferior portion of the foramen. In a biomechanical cervical spinal trauma study, experimental fractures were studied with CT in axial and sagittal planes. Sagittal anatomic images showed the fractures and soft tissue injuries. Non-displaced and horizontal fractures were generally difficult to detect on axial CT scans alone. In two pathologic spine specimens CT scans in axial, sagittal and coronal planes were compared with reformatted scans and cryosectional images. Direct CT images revealed four cervical spinal fractures whereas the reformatted images only showed one displaced pedicle fracture.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2979290

  18. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  19. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  20. Magnetic Resonance

    Cancer.gov

    Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

  1. Magnetic resonance anatomy of the carpus of the horse described from images acquired from low-field and high-field magnets.

    PubMed

    Nagy, Annamaria; Dyson, Sue

    2011-01-01

    Cadaver carpi of 30 mature horses with no history of carpal or proximal metacarpal pain were examined using low-field (0.27?T) and high-field (1.5?T) magnetic resonance imaging (MRI). Normal MRI anatomy in transverse, sagittal, and dorsal plane images was determined by comparison with anatomical specimens and standard texts. Subchondral bone and cortical bone thickness measurements were obtained from standardised sites. There was variable subchondral bone thickness in the radius and carpal bones; subchondral bone thickness was consistently larger at dorsal compared with palmar sites in the proximal row of carpal bones. The endosteal surface of the subchondral bone was smooth. The shape of the ulnar carpal bone was variable and one or more small osseous fragments were identified palmar to the bone in 5/30 limbs. There was no evidence to suggest that these were pathological fractures or avulsions of the lateral palmar intercarpal ligament. The amount of muscle tissue in the superficial and deep digital flexor tendons in the proximal aspect of the carpus varied, but none was present at the level of the middle carpal joint and distally. Several structures could be evaluated that cannot be imaged using radiography, ultrasonography, or arthroscopy, including the transverse intercarpal ligaments, the radiocarpal ligament, the short palmar carpal ligaments, and the carpometacarpal ligaments. Anatomical variations not previously described were identified, including the layers of the medial aspect of the carpal fascia. Knowledge of the variation in MRI appearance of the carpus of nonlame horses is helpful for interpretation of MR images of lame horses. PMID:21554475

  2. Pulmonary Valve Anatomy and Abnormalities: A Pictorial Essay of Radiography, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI).

    PubMed

    Jonas, Samuel N; Kligerman, Seth J; Burke, Allen P; Frazier, Aletta Ann; White, Charles S

    2016-01-01

    Given its inconspicuous appearance on radiography, computed tomography (CT), and magnetic resonance imaging (MRI) the pulmonary valve (PV) is often overlooked as an important cause of both cardiac and pulmonary disease. In this pictorial essay, we review the normal appearance of the PV as well as various congenital anomalies including pulmonary atresia, pulmonary stenosis, and valvular fusion anomalies. Infectious entities, degenerative conditions, and malignant lesions are also depicted. We discuss surgical techniques used to repair both congenital and acquired pulmonary valvular diseases and describe postoperative appearances of the PV on imaging. PMID:26656195

  3. Anatomy and three-dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images.

    PubMed

    Marino, L; Murphy, T L; Deweerd, A L; Morris, J A; Fobbs, A J; Humblot, N; Ridgway, S H; Johnson, J I

    2001-04-01

    Magnetic resonance imaging offers a means of observing the internal structure of the brain where traditional procedures of embedding, sectioning, staining, mounting, and microscopic examination of thousands of sections are not practical. Furthermore, internal structures can be analyzed in their precise quantitative spatial interrelationships, which is difficult to accomplish after the spatial distortions often accompanying histological processing. For these reasons, magnetic resonance imaging makes specimens that were traditionally difficult to analyze, more accessible. In the present study, images of the brain of a white whale (Beluga) Delphinapterus leucas were scanned in the coronal plane at 119 antero-posterior levels. From these scans, a computer-generated three-dimensional model was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of "virtual" sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of such structures as the corpus callosum, internal capsule, cerebral peduncles, cerebral ventricles, certain thalamic nuclear groups, caudate nucleus, ventral striatum, pontine nuclei, cerebellar cortex and white matter, and all cerebral cortical sulci and gyri. PMID:11275973

  4. The Role of Magnetic Resonance Imaging and Cardiac Computed Tomography in the Assessment of Left Atrial Anatomy, Size, and Function

    PubMed Central

    Kuchynka, Petr; Podzimkova, Jana; Masek, Martin; Lambert, Lukas; Cerny, Vladimir; Danek, Barbara; Palecek, Tomas

    2015-01-01

    In the last decade, there has been increasing evidence that comprehensive evaluation of the left atrium is of utmost importance. Numerous studies have clearly demonstrated the prognostic value of left atrial volume for long-term outcome. Furthermore, advances in catheter ablation procedures used for the treatment of drug-refractory atrial fibrillation require the need for detailed knowledge of left atrial and pulmonary venous morphology as well of atrial wall characteristics. This review article discusses the role of cardiac magnetic resonance and computed tomography in assessment of left atrial size, its normal and abnormal morphology, and function. Special interest is paid to the utility of these rapidly involving noninvasive imaging methods before and after atrial fibrillation ablation. PMID:26221583

  5. 7-T magnetic resonance imaging of the inner ear's anatomy by using dual four-element radiofrequency coil arrays and the VIBE sequence

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-02-01

    An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.

  6. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  7. Sports health magnetic resonance imaging challenge.

    PubMed

    Howell, Gary A; Stadnick, Michael E; Awh, Mark H

    2010-11-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians. PMID:23015984

  8. Sports Health Magnetic Resonance Imaging Challenge

    PubMed Central

    Howell, Gary A.; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians. PMID:23015984

  9. MRI (Magnetic Resonance Imaging)

    MedlinePLUS

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents More ...

  10. Volume and planar gated cardiac magnetic resonance imaging: a correlative study of normal anatomy with Thallium-201 SPECT and cadaver sections

    SciTech Connect

    Go, R.T.; MacIntyre, W.J.; Yeung, H.N.

    1984-01-01

    Magnetic resonance (MR) gated cardiac imaging was performed in ten subjects using a prototype 0.15-T resistive magnet imaging system. Volume and planar imaging techniques utilizing saturation recovery, proton TI-weighted relaxation time pulse sequences produced images of the heart and great vessels with exquisite anatomic detail that showed excellent correlation with cadaver sections of the heart. The left ventricular myocardial segments also showed excellent correlation with cadaver sections of the heart. The left ventricular myocardial segments also showed excellent correlation with the thallium-201 cardiac single photon emission computed tomography images. Volume acquisition allowed postprocessing selection of tomographic sections in various orientations to optimize visualization of a particular structure of interest. The excellent spatial and contrast resolution afforded by MR volume imaging, which does not involve the use of ionizing radiation and iodinated contrast material, should assure it a significant role in the diagnostic assessment of the cardiovascular system.

  11. Volume and planar gated cardiac magnetic resonance imaging: a correlative study of normal anatomy with thallium-201 SPECT and cadaver sections

    SciTech Connect

    Go, R.T.; MacIntyre, W.J.; Yeung, H.N.; Kramer, D.M.; Geisinger, M.; Chilcote, W.; George, C.; O'Donnell, J.K.; Moodie, D.S.; Meaney, T.F.

    1984-01-01

    Magnetic resonance (MR) gated cardiac imaging was performed in ten subjects using a prototype 0.15-T resistive magnet imaging system. Volume and planar imaging techniques utilizing saturation recovery, proton Tl-weighted relaxation time pulse sequences produced images of the heart and great vessels with exquisite anatomic detail that showed excellent correlation with cadaver sections of the heart. The left ventricular myocardial segments also showed excellent correlation with the thallium-201 cardiac single photon emission computed tomography images. Volume acquisition allowed postprocessing selection of tomographic sections in various orientations to optimize visualization of a particular structure of interest. The excellent spatial and contrast resolution afforded by MR volume imaging, which does not involve the use of ionizing radiation and iodinated contrast material, should assure it a significant role in the diagnostic assessment of the cardiovascular system.

  12. Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: a susceptibility gene for moyamoya disease.

    PubMed

    Sonobe, Shinya; Fujimura, Miki; Niizuma, Kuniyasu; Nishijima, Yasuo; Ito, Akira; Shimizu, Hiroaki; Kikuchi, Atsuo; Arai-Ichinoi, Natsuko; Kure, Shigeo; Tominaga, Teiji

    2014-03-13

    Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with unknown etiology. Recent genome-wide and locus-specific association studies identified RNF213 as an important MMD susceptibility gene. However, the exact mechanism by which an abnormality in RNF213 leads to MMD is unknown. To evaluate the role of RNF213 in the etiology of MMD, we generated RNF213-deficient mice (RNF213-/-) by deleting exon 32 of RNF213 by the Cre-lox system, and investigated whether they developed MMD. The temporal profile of cervical/intracranial arteries was evaluated by 9.4-T magnetic resonance angiography (MRA). The anatomy of the circle of Willis was analyzed by a trans-cardiac injection of carbon black dye. The common carotid arteries (CCA) were sectioned and the arterial wall thickness/thinness was evaluated by Elastica-Masson staining before and after CCA ligation, which selectively induced vascular hyperplasia. As a result, RNF213-/- grew normally, and no significant difference was observed in MRA findings, the anatomy of the circle of Willis, or vascular wall thickness/thinness between RNF-/- and wild-type littermates (Wt.) under normal conditions until 64 weeks of age. However, Elastica-Masson staining demonstrated that both the intima and medial layer were significantly thinner after CCA ligation in RNF213-/- than in Wt. after 14 days (P<0.01). In conclusion, mice lacking the RNF213 gene did not spontaneously develop MMD, indicating that a functional loss of RNF213 did not sufficiently induce MMD. Suppression of vascular remodeling in RNF213-/- requires further examination to clarify the role of RNF213. PMID:24440776

  13. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  14. Mapping the anatomy of the immunodominant domain of the human immunodeficiency virus gp41 transmembrane protein: peptide conformation analysis using monoclonal antibodies and proton nuclear magnetic resonance spectroscopy.

    PubMed Central

    Oldstone, M B; Tishon, A; Lewicki, H; Dyson, H J; Feher, V A; Assa-Munt, N; Wright, P E

    1991-01-01

    Thirty-six monoclonal antibodies from mice and three from rats were raised against a peptide corresponding to the immunodominant domain of the transmembrane gp41 protein of human immunodeficiency virus (HIV) type 1 (LGLWGCSGKLIC; amino acid residues 598 to 609). Of these, three monoclonal antibodies from the mice and one from a rat also reacted with the corresponding peptide derived from the HIV type 2 transmembrane gp41 protein (amino acid residues 593 to 603; NSWGCAFRQVC). Immunochemical studies using a variety of synthetic peptides indicated that the cross-reactivity was due to antibody binding to CSGKLIC of HIV type 1 or CAFRQVC of HIV type 2. Single amino acid substitutions for a cysteine at either the amino or the carboxy end of the peptide interrupted antibody binding, indicating that the site recognized was the Cys-XXXXX-Cys loop. Similar results were obtained when the 11-mer HIV type 2 gp41 peptide (amino acids 593 to 603) was inoculated into mice to raise monoclonal antibodies. In this instance, of 30 monoclonal antibodies developed, 4 reacted with both HIV type 1 and HIV type 2 peptides. The conformation of a seven-residue peptide, CSGKLIC, corresponding to residues 603 to 609 of the gp41 immunodominant epitope of HIV-1 was investigated by proton nuclear magnetic resonance spectroscopy. The immunologically active form of CSGKLIC contains an intramolecular disulfide bond and maintains a preference for a folded conformation, apparently including a type I reverse turn about the residues SGKL. No such preference is observed for the reduced form of the peptide, which contains two thiol groups. The presence of the disulfide bond is thus integral to the formation of the structure of the loop in solution. In agreement with this finding, elimination of the possibility of loop formation by substitution of S for C at the amino or carboxy termini of the 7-mer is accompanied by the failure of antibody binding to this peptide. PMID:2002540

  15. Nanoscale magnetic resonance imaging

    PubMed Central

    Degen, C. L.; Poggio, M.; Mamin, H. J.; Rettner, C. T.; Rugar, D.

    2009-01-01

    We have combined ultrasensitive magnetic resonance force microscopy (MRFM) with 3D image reconstruction to achieve magnetic resonance imaging (MRI) with resolution <10 nm. The image reconstruction converts measured magnetic force data into a 3D map of nuclear spin density, taking advantage of the unique characteristics of the resonant slice that is projected outward from a nanoscale magnetic tip. The basic principles are demonstrated by imaging the 1H spin density within individual tobacco mosaic virus particles sitting on a nanometer-thick layer of adsorbed hydrocarbons. This result, which represents a 100 million-fold improvement in volume resolution over conventional MRI, demonstrates the potential of MRFM as a tool for 3D, elementally selective imaging on the nanometer scale. PMID:19139397

  16. Nanoscale Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2011-03-01

    Magnetic resonance imaging (MRI), based on the sensitive detection of nuclear spins, enables three dimensional imaging without radiation damage. Conventional MRI techniques achieve spatial resolution that is at best a few micrometers due to sensitivity limitations of conventional inductive detection. The advent of ultrasensitive nanoscale magnetic sensing opens the possibility of extending MRI to the nanometer scale. If this can be pushed far enough, one can envision taking 3D images of individual biomolecules and, perhaps, even solving molecular structures of proteins. In this talk we will discuss issues related to nanoscale magnetic resonance imaging, especially its implementation using magnetic resonance force microscopy (MRFM). We will also consider the future possibility of using NV centers in diamond for detection of nanoMRI. This work was performed in collaboration with John Mamin, Mark Sherwood, Christian Degen, Martino Poggio and Ginel Hill.

  17. Nanoscale magnetic resonance imaging.

    PubMed

    Degen, C L; Poggio, M; Mamin, H J; Rettner, C T; Rugar, D

    2009-02-01

    We have combined ultrasensitive magnetic resonance force microscopy (MRFM) with 3D image reconstruction to achieve magnetic resonance imaging (MRI) with resolution <10 nm. The image reconstruction converts measured magnetic force data into a 3D map of nuclear spin density, taking advantage of the unique characteristics of the "resonant slice" that is projected outward from a nanoscale magnetic tip. The basic principles are demonstrated by imaging the (1)H spin density within individual tobacco mosaic virus particles sitting on a nanometer-thick layer of adsorbed hydrocarbons. This result, which represents a 100 million-fold improvement in volume resolution over conventional MRI, demonstrates the potential of MRFM as a tool for 3D, elementally selective imaging on the nanometer scale. PMID:19139397

  18. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  19. Resonant and non-resonant magnetic scattering

    SciTech Connect

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  20. Resonant and non-resonant magnetic scattering

    SciTech Connect

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  1. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  2. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  3. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  4. Magnetic resonance fingerprinting.

    PubMed

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy. PMID:23486058

  5. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques

  6. Temporal profile of the vascular anatomy evaluated by 9.4-tesla magnetic resonance angiography and histological analysis in mice with the R4859K mutation of RNF213, the susceptibility gene for moyamoya disease.

    PubMed

    Kanoke, Atsushi; Fujimura, Miki; Niizuma, Kuniyasu; Ito, Akira; Sakata, Hiroyuki; Sato-Maeda, Mika; Morita-Fujimura, Yuiko; Kure, Shigeo; Tominaga, Teiji

    2015-10-22

    Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology. Recent genome-wide and locus-specific association studies identified the RNF213 gene (RNF213) as an important susceptibility gene of MMD among East Asian populations; however, the mechanism by which an abnormality in RNF213 leads to MMD has not yet been elucidated. Therefore, we herein generated Rnf213-knock-in mice (RNF213-KI) expressing a missense mutation in mouse Rnf213, p. R4828K, on Exon 61, corresponding to human RNF213, p. R4859K, on Exon 60, in MMD patients, and investigated whether they developed MMD. We assessed the temporal profile of intracranial arteries by 9.4-T magnetic resonance angiography (MRA) continuously in the same mouse up to 64 weeks of age. The ratios of the outer diameter of the internal carotid artery (ICA)/basilar artery (BA) and middle cerebral artery (MCA)/BA were evaluated histopathologically. The common carotid arteries (CCA) were sectioned and arterial wall thickness/thinness was evaluated by Elastica-Masson staining before and after CCA ligation, which selectively induced vascular hyperplasia. The results obtained showed that RNF213-KI grew normally, with no significant difference being observed in MRA findings or the anatomy of the circle of Willis between homozygous RNF213-KI and wild-type (Wt) littermates. Furthermore, no significant difference was noted in the diameter of the intracranial vasculature (ICA/BA; p=0.82, MCA/BA; p=0.27) or in vascular remodeling after CCA ligation. Therefore, RNF213-KI did not spontaneously develop MMD. Multiple secondary insults such as environmental factors may contribute to the onset of MMD in addition to genetic factors. PMID:26315378

  7. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  8. Magnetic Resonance Imaging (MRI): Brain

    MedlinePLUS

    ... All About Food Allergies Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  9. [Cardiovascular magnetic resonance imaging].

    PubMed

    Teraoka, Kunihiko; Suzuki, Yoshinori; Yamashina, Akira

    2014-07-01

    Cardiac magnetic resonance imaging (CMR) evolves and is occupying an important status in cardiovascular diagnostic imaging. In particular, in the estimation of the cause of heart failure, or evaluation of severity-of-illness and prognostic presumption, utility is high clinically. In this chapter, about a selection sequence for taking image according to the purpose, description of findings, and its clinical utility are introduced. And the role which this imaging plays will be discussed in the near future. PMID:25138928

  10. Magnetic resonance imaging of optic nerve.

    PubMed

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  11. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  12. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    ERIC Educational Resources Information Center

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  13. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  14. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  15. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  16. Magnetic resonance colonography.

    PubMed

    Graser, Anno

    2013-01-01

    Magnetic resonance colonography (MRC) is performed on a whole body scanner after laxative-based purgation and distension of the large bowel with water. To achieve good image quality, acquisition of sequences within a comfortable breath-hold time is essential. Frequently, fast 3D fat-saturated T1-weighted techniques with parallel imaging are used to meet this demand, providing "dark lumen" contrast of the bowel with high signal intensity of the bowel wall after intravenous injection of contrast agent. This article sheds light on MRC technique, image acquisition, post processing, and normal findings, relevant pathologies, and differential diagnoses of the most frequent pathologies encountered at MRC. PMID:23182511

  17. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  18. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  19. Magnetic Resonance Elastography

    PubMed Central

    Litwiller, Daniel V.; Mariappan, Yogesh K.; Ehman, Richard L.

    2015-01-01

    Often compared to the practice of manual palpation, magnetic resonance elastography is an emerging technology for quantitatively assessing the mechanical properties of tissue as a basis for characterizing disease. The potential of MRE as a diagnostic tool is rooted in the fact that normal and diseased tissues often differ significantly in terms of their intrinsic mechanical properties. MRE uses magnetic resonance imaging (MRI) in conjunction with the application of mechanical shear waves to probe tissue mechanics. This process can be broken down into three essential steps: inducing shear waves in the tissue,imaging the propagating shear waves with MRI, andanalyzing the wave data to generate quantitative images of tissue stiffness MRE has emerged as a safe, reliable and noninvasive method for staging hepatic liver fibrosis, and is now used in some locations as an alternative to biopsy. MRE is also being used in the ongoing investigations of numerous other organs and tissues, including, for example, the spleen, kidney, pancreas, brain, heart, breast, skeletal muscle, prostate, vasculature, lung, spinal cord, eye, bone, and cartilage. In the article that follows, some fundamental techniques and applications of MRE are summarized. PMID:26361467

  20. Magnetic resonance cell

    SciTech Connect

    Kwon, T.M.; Volk, C.H.

    1984-05-01

    There is disclosed a nuclear magnetic alignment device for use in a nuclear magnetic resonance gyroscope and the like. One embodiment includes a container for gas having a layer of rubidium hydride on its inner surface. The container comprising a spherical portion and a tip portion, is rotationally symmetric about an axis of symmetry. Enclosed within the container is a nuclear moment gas having a nuclear electric quadrupole moment, such as xenon-131, and an optically pumpable substance, such as rubidium. A portion of the rubidium is a vapor. The remainder is a condensed pellet which is deposited in the tip of the container such that the pellet is also rotationally symmetric about the axis of symmetry of the container. A layer of rubidium hydride is deposited on the inner surface of the container. The device further includes means for orienting the symmetry axis of the container at an angle to an applied magnetic field such that the relaxation time constant of the aligned nuclear moment gas is substantially at a maximum.

  1. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  2. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols.

    PubMed

    Castillo, Mauricio

    2005-07-01

    In this article, I will review the normal anatomy of the pituitary gland starting with a brief review of aspects of its origin and development that are pertinent to radiologists. The anatomy of the anterior and posterior lobes will be addressed as will be that of the surrounding structures and of the vascular structures of the gland. Radiologists need to be familiar with the normal magnetic resonance imaging appearance of the gland and the changes that it undergoes throughout life. The normal patterns of contrast enhancement by the gland are described. Normal pituitary variations and incidental conditions are discussed, and the article finishes by describing appropriate imaging protocols. PMID:16785841

  3. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  4. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  5. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  6. Noncontrast Magnetic Resonance Lymphography.

    PubMed

    Arriv, Lionel; Derhy, Sarah; El Mouhadi, Sana; Monnier-Cholley, Laurence; Menu, Yves; Becker, Corinne

    2016-01-01

    Background?Different imaging techniques have been used for the investigation of the lymphatic channels and lymph glands. Noncontrast magnetic resonance (MR) lymphography has significant advantages in comparison with other imaging modalities. Methods?Noncontrast MR lymphography uses very heavily T2-weighted fast spin echo sequences which obtain a nearly complete signal loss in tissue background and specific display of lymphatic vessels with a long T2 relaxation time. The raw data can be processed with different algorithms such as maximum intensity projection algorithm to obtain an anatomic representation. Results?Standard T2-weighted MR images easily demonstrate the location of edema. It appears as subcutaneous infiltration of soft tissue with a classical honeycomb pattern. True collection around the muscular area may be demonstrated in case of severe lymphedema. Lymph nodes may be normal in size, number, and signal intensity; in other cases, lymph nodes may be smaller in size or number of lymph nodes may be restricted. MR lymphography allows a classification of lymphedema in aplasia (no collecting vessels demonstrated); hypoplasia (a small number of lymphatic vessels), and numerical hyperplasia or hyperplasia (with an increased number of lymphatic vessels of greater and abnormal diameter). Conclusion?Noncontrast MR lymphography is a unique noninvasive imaging modality for the diagnosis of lymphedema. It can be used for positive diagnosis, differential diagnosis, and specific evaluation of lymphedema severity. It may also be used for follow-up evaluation after treatment. PMID:25826439

  7. Cranial and spinal magnetic resonance imaging: A guide and atlas

    SciTech Connect

    Daniels, D.L.; Haughton, V.M.

    1987-01-01

    This atlas provides a clinical guide to interpreting cranial and spinal magnetic resonance images. The book includes coverage of the cerebrum, temporal bone, and cervical, thoracic, and lumbar spine, with more than 400 scan images depicting both normal anatomy and pathologic findings. Introductory chapters review the practical physics of magnetic resonance (MR) imaging, offer guidelines for interpreting cranial MR scans, and provide coverage of each anatomic region of the cranium and spine. For each region, scans accompanied by captions, show normal anatomic sections matched with MR images. These are followed by MR scans depicting various disease states.

  8. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  9. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  10. Orthopaedic Magnetic Resonance Imaging Challenge

    PubMed Central

    Kjellin, Ingrid; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Apophyseal avulsion injuries of the hip and pelvis are frequent athletic injuries in children and adolescents, most commonly associated with explosive movement or sprinting. This article details typically encountered apophyseal injuries and their appearance on magnetic resonance imaging. PMID:23015945

  11. Nuclear magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.T.; Weinstein, M.A.; Pavlicek, W.; Starnes, D.L.; Duchesneau, P.M.; Boumphrey, F.; Hardy, R.J. Jr.

    1984-01-01

    Forty subjects were examined to determine the accuracy and clinical usefulness of nuclear magnetic resonance (NMR) examination of the spine. The NMR images were compared with plain radiographs, high-resolution computed tomograms, and myelograms. The study included 15 patients with normal spinal cord anatomy and 25 patients whose pathological conditions included canal stenosis, herniated discs, metastatic tumors, primary cord tumor, trauma, Chiari malformations, syringomyelia, and developmental disorders. Saturation recovery images were best in differentiating between soft tissue and cerebrospinal fluid. NMR was excellent for the evaluation of the foramen magnum region and is presently the modality of choice for the diagnosis of syringomyelia and Chiari malformation. NMR was accurate in diagnosing spinal cord trauma and spinal canal block.

  12. MRI (Magnetic Resonance Imaging)

    MedlinePLUS

    ... a patients body. (In open-MRI devices, permanent magnets are used.) Radio waves are sent from and ... before performing or undergoing an MRI scan: The magnet may cause pacemakers, artificial limbs, and other implanted ...

  13. Magnetic Resonance Imaging (MRI)

    MedlinePLUS

    ... the body's organs and structures. MRI uses a magnetic field and radio waves to create detailed pictures of ... things might cause a problem near the strong magnetic field. You won't be able to take your ...

  14. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  15. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  16. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  17. Optically detected magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-01

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  18. Magnetic Resonance Imaging (MRI)

    MedlinePLUS

    ... Leukodystrophy Become a Member or Renew Your Membership Testimonials Medical ... Resonance Imaging. It is an important tool used in many fields of medicine, and is capable of generating a detailed image ...

  19. Ellipsoidal Coil for Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernandez, R.; Rodriguez, A. O.; Salgado, P.; Barrios, F. A.

    2003-09-01

    We developed an ellipse-shaped surface coil for magnetic resonance spectroscopy for a 1.5 T clinical MR Imager. This coil is to be used to obtain spectra from arms and legs. Standard volume and single-loop coils provide a poor signal because they can not be placed close to the region of interest and their shapes do not fit the anatomy of human extremities. The coil design proposed has more anatomical shape which allows to be placed closer to the region of interest. A higher signal-to-noise ratio can then be achieved resulting in better-quality spectra. Spectra from a phantom and from the arm of a healthy volunteer were acquired to show viability. A 1.5 T clinical scanner (Signa LX equipped with V. 5.8, General Electric Medical System) together with standard spin-echo sequences were used to perform all the spectroscopy experiments. This receiver coil can generate high resolution MR spectra of a spectroscopy phantom and is fully compatible with clinical magnetic resonance systems and standard pulse sequences.

  20. Advances in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Price, R. R.

    1996-05-01

    Nuclear Magnetic Resonance (NMR) Imaging, now more commonly referred to as Magnetic Resonance Imaging (MRI), developed into an important clinical modality between the years of 1978 and 1985. In 1945 it was demonstrated independently by Bloch(F. Bloch, The Principle of Nuclear Induction, Nobel Lectures in Physics: 1946-1962 New York, Elsevier Science Publishing Co., Inc. 1964.) and Purcell(E.M. Purcell, Research in Nuclear Magnetism, Nobel Lectures in Physics: 1946-1962, New York. Elsevier Science Publishing Co., Inc. 1964.) that magnetic nuclei in a sample when placed in a static magnetic field exhibit a characteristic resonance frequency which is proportional to the field strength and unique to nuclei of the same type and same environment. The net magnetization of the sample when irradiated by an RF wave at the resonance frequency could thus be manipulated to produce an induced "NMR signal" in a conducting loop placed near the sample. In the early 1970's, methods were developed whereby the NMR signal could be spatially encoded in both frequency and phase by means of superimposed linear magnetic field gradients to produce NMR images. NMR image contrast is a function of nuclear concentration and magnetic relaxation times (T1 and T2). MRI became the first medical imaging modality to provide both high resolution and high contrast images of soft tissue. Current clinical MRI systems produce images of the distribution of ^1H nuclei (primarily water) within the body. Other biologically important nuclei (^13C, ^23N, ^31P), as well as the imaging of hyperpolarized inert gases (^3He, ^129Xe) are under investigation. Recent developments in ^1H-MRI have included chemical shift imaging (hydrogen containing metabolites), blood flow imaging (MR angiography), ultra high-speed imaging (Echo Planar), and imaging of brain function based upon magnetic susceptibility differences resulting from blood oxygenation changes during brain activity.

  1. Interventional Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Saikus, Christina E.; Lederman, Robert J.

    2010-01-01

    Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic. PMID:19909937

  2. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A. (Los Alamos, NM); Cooper, Richard K. (Los Alamos, NM)

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  3. Spectroscopy in Magnetic Resonance Tomography

    SciTech Connect

    Verkhoglazova, E. V.; Kupriyanov, D. A.

    2007-11-26

    The magnetic resonance (MR) tomography is giving general picture of concentration and distribution of nuclei and spectroscopy analysis adds information about metabolites of examined nuclei. Such data enable more detailed diagnosis of diseases and treatment follow-up to be carried out in vivo.

  4. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  5. Magnetic Resonance Study of Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Panich, A. M.; Kempiski, W.; Baidakova, M. V.; Osipov, V. Yu.; Enoki, T.; Vul', A. Ya.

    Magnetic resonance techniques, namely Electron Paramagnetic Resonance (EPR) and solid state Nuclear Magnetic Resonance (NMR), are powerful non-destructive tools for studying electron-nuclear and crystalline structure, inherent electronic and magnetic properties and transformations in carbon-based nanomaterials. EPR allows to control purity of ultradispersed diamond (UDD) samples, to study the origin, location and spin-lattice relaxation of radical-type carbon-inherited paramagnetic centers (RPC) as well as their transformation during the process of temperature driven diamond-to-graphite conversion. Solid state NMR on 1H and 13C nuclei provide one with information on the crystalline quality, allows quantitative estimation of the number of different allotropic forms, and reveals electron-nuclear interactions within the UDD samples under study. Results of recent EPR and 13C NMR study of pure and transition metal doped UDD samples, obtained by detonation technique, are reported and discussed. In addition to characteristic EPR signals, originated form para- and ferromagnetic impurities and doping ions, the UDD samples show a high concentration of RPC (up to 1020 spin/gram), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. In-situ EPR sample's vacuumization experiment in conjunction with precise SQUID magnetization measurements allowed concluding that each UDD particle carries a single spin (dangling bond) per each from 8 crystal (111) facets bounded the particle.

  6. Magnetic Resonance Reporter Gene Imaging

    PubMed Central

    Lee, Sheen-Woo; Lee, Sang-Hoon; Biswal, Sandip

    2012-01-01

    Molecular imaging has undergone an explosive advancement in recent years, due to the tremendous research efforts made to understand and visualize biological processes. Molecular imaging by definition assesses cellular and molecular processes in living subjects, with the targets of following metabolic, genomic, and proteomic events. Furthermore, reporter gene imaging plays a central role in this field. Many different approaches have been used to visualize genetic events in living subjects, such as, optical, radionuclide, and magnetic resonance imaging. Compared with the other techniques, magnetic resonance (MR)-based reporter gene imaging has not occupied center stage, despite its superior three-dimensional depictions of anatomical details. In this article, the authors review the principles and applications of various types of MR reporter gene imaging technologies and discuss their advantages and disadvantages. PMID:22539936

  7. The fundamentals of fetal magnetic resonance imaging: Part 2.

    PubMed

    Plunk, Matthew R; Chapman, Teresa

    2014-01-01

    Careful assessment of fetal anatomy by a combination of ultrasound and fetal magnetic resonance imaging offers the clinical teams and counselors caring for the patient information that can be critical for the management of both the mother and the fetus. In the second half of this 2-part review, we focus on space-occupying lesions in the fetal body. Because developing fetal tissues are programmed to grow rapidly, mass lesions can have a substantial effect on the formation of normal adjacent organs. Congenital diaphragmatic hernia and lung masses, fetal teratoma, and intra-abdominal masses are discussed, with an emphasis on differential etiologies and on fundamental management considerations. PMID:24974309

  8. Magnetic Resonance Imaging of the Elbow

    PubMed Central

    Sampath, Srinath C.; Sampath, Srihari C.; Bredella, Miriam A.

    2013-01-01

    Context: The elbow is a complex joint and commonly injured in athletes. Evaluation of the elbow by magnetic resonance imaging (MRI) is an important adjunct to the physical examination. To facilitate accurate diagnosis, a concise structured approach to evaluation of the elbow by MRI is presented. Evidence Acquisition: A PubMed search was performed using the terms elbow and MR imaging. No limits were set on the range of years searched. Articles were reviewed for relevance with an emphasis of the MRI appearance of normal anatomy and common pathology of the elbow. Results: The spectrum of common elbow disorders varies from obvious acute fractures to chronic overuse injuries whose imaging manifestations can be subtle. MRI evaluation should include bones; lateral, medial, anterior, and posterior muscle groups; the ulnar and radial collateral ligaments; as well as nerves, synovium, and bursae. Special attention should be paid to the valgus extension overload syndrome and the MRI appearance of associated injuries when evaluating throwing athletes. Conclusion: MRI evaluation of the elbow should follow a structured approach to facilitate thoroughness, accuracy, and speed. Such an approach should cover bone, cartilage, muscle, tendons, ligaments, synovium, bursae, and nerves. PMID:24381699

  9. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  10. Cardiovascular applications of magnetic resonance imaging

    PubMed Central

    Pflugfelder, Peter W.; Wisenberg, Gerald; Prato, Frank S.

    1985-01-01

    Magnetic resonance (MR) imaging is a unique imaging modality that is gaining rapid acceptance for a variety of medical indications. Diagnostic information is obtained noninvasively, without the potential hazards of ionizing radiation. The spatial resolution and anatomic detail of MR imaging rival those of other currently available imaging methods. By gating to an electrocardiographic signal cardiac imaging is possible. Since March 1983 the authors have had experience with cardiac MR imaging in both animals and humans. Cardiac anatomy is well shown by this technique, which allows detection and characterization of intracardiac masses, congenital heart disease and anomalies of the great vessels. Myocardial infarction has been detected in both animals and humans without the use of contrast agents, and acute cardiac transplant rejection has been visualized in an animal model. Limitations of MR imaging primarily have been lengthy imaging times and the sensitivity of the images to motion. With further investigation and experience this technique may become useful for studying a wide variety of cardiovascular disorders. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:3904969

  11. Clinical applications of magnetic resonance imaging - current status

    SciTech Connect

    Cammoun, D.; Hendee, W.R.; Davis, K.A.

    1985-12-01

    Magnetic resonance imaging has far-reaching real and possible clinical applications. Its usefulness has been best explored and realized in the central nervous system, especially the posterior fossa and brain stem, where most abnormalities are better identified than with computed tomography. Its lack of ionizing radiation and extreme sensitivity to normal and abnormal patterns of myelination make magnetic resonance imaging advantageous for diagnosing many neonatal and pediatric abnormalities. New, reliable cardiac gating techniques open the way for promising studies of cardiac anatomy and function. The ability to image directly in three orthogonal planes gives us new insight into staging and follow-up of pelvic tumors and other pelvic abnormalities. Exquisite soft tissue contrast, far above that attainable by other imaging modalities, has made possible the early diagnosis of traumatic ligamentous knee injury, avascular necrosis of the hip and diagnosis, treatment planning and follow-up of musculoskeletal neoplasms. 59 references, 9 figures.

  12. Magnetic resonance imaging: Atlas of the head, neck and spine

    SciTech Connect

    Mills, C.M.; De Groot, J.; Posin, J.P.

    1987-01-01

    The purpose of this atlas is to provide the reader with a means to complement existing sources of information and to correlate the superb soft tissue contrast realized in magnetic resonance images with the appropriate anatomic and functional structures. Where appropriate, pathologic examples have been included to complement normal images. In addition, since MRI (magnetic resonance imaging) clearly separates gray from white matter, and thus accurately visualizes the position of functional tracts as they extend from cortex to spinal cord, a separate section on functional neuroanatomy has been provided. Likewise, the improved visualization of vascular structures and associated pathologic processes has led to the inclusion of vascular anatomy and associated perfusion territories. These additions will be of particular use in clinical practice, as precise lesion identification and localization can now be correlated to specific clinical symptomatology.

  13. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  14. PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging.

    PubMed

    Drevs, Joachim; Mller-Driver, Ralph; Wittig, Christine; Fuxius, Stefan; Esser, Norbert; Hugenschmidt, Harald; Konerding, Moritz A; Allegrini, Peter R; Wood, Jeanette; Hennig, Jrgen; Unger, Clemens; Marm, Dieter

    2002-07-15

    Antiangiogenic therapy is a promising new strategy of inhibiting tumor growthand formation of metastases. Recently, a number of compounds with different effects on tumor endothelial cells have entered clinical trials and revealed the need for diagnostic methods to detect their biological activity. Dynamic enhanced magnetic resonance imaging (dyMRI) is used in most clinical trials with antiangiogenic active compounds. We evaluated this method by using PTK787/ZK 222584, a specific inhibitor of the VEGF-receptor tyrosine kinases, which showed antitumoral and antiangiogenic activity in a murine renal cell carcinoma (RENCA) model. After intrarenal application of RENCA cells, mice developed a primary tumor and metastases to the lung and abdominal lymph nodes. After daily oral therapy for 21 days with either PTK787/ZK 222584 at a dose of 50 mg/kg or vehicle, primary tumors of all animals were analyzed by dyMRI. Gadolinium-DOTA (Dotarem) was used as a contrast agent to detect vessel permeability and contrast agent extravasation, whereas intravascular iron oxide nanoparticles (Endorem) were used to detect partial tumor blood volume. Additionally, vessel density, architecture, diameter, and blood flow velocity were investigated by appropriate methods. Surprisingly, no changes in extravasation occurred under treatment with PTK787/ZK 222584 as compared with the control group, whereas a significant decrease in vessel permeability occurred. Furthermore, an increase in partial blood volume was found in the PTK787/ZK 222584-treated group, although vessel density was reduced as seen by histology. Using the corrosion cast technique, reduction in vessel density was significant but not very pronounced and predominantly attributable to the loss of microvessels only. This finding correlated with a shift to large vessel diameters in the primary tumors of PTK787/ZK 222584-treated animals and with reduction of blood flow velocity in the tumor feeding renal artery. From these findings, we conclude that the treatment with PTK787/ZK 222584 primarily reduces the number of tumor microvessels, accompanied by a hemodynamic dilation of the remaining vessels. This dilation could influence the result of dyMRI such that no change in extravasation or even an increase in partial tumor blood volume could be observed. PMID:12124335

  15. Placental evaluation with magnetic resonance.

    PubMed

    Allen, Brian C; Leyendecker, John R

    2013-11-01

    Because of the high maternal morbidity and mortality of undiagnosed placental abnormalities, there is a need for accurate antenatal diagnosis. Important placental features amenable to investigation with magnetic resonance (MR) imaging include variant placental location and morphology, and abnormal implantation or invasion of placenta into the myometrium. MR imaging features permit the diagnosis of abnormal placentation include placental lobulation with uterine contour deformity, interruption of the inner low signal-intensity myometrial layer, and placental heterogeneity resulting from dark intraplacental bands and abnormal vascularity. PMID:24210438

  16. Nuclear magnetic resonance gyro development

    NASA Astrophysics Data System (ADS)

    Karwacki, F. A.

    1980-05-01

    The Nuclear Magnetic Resonance Gyro (NMRG) is a rate integrating single axis gyro that obtains its rotational information from the dynamic angular motion of atomic nuclei. The gyro is being developed by the Naval Air Development Center as a candidate for utilization as a strapdown sensor because of its potential for high reliability, as well as low acquisition and life cycle costs. Several engineering models have been constructed and are being evaluated at the contractor's facilities. NMRG performance characteristics have shown improvement over the past several years and indicate the potential for aircraft navigation applications.

  17. Pharmacological Stress Cardiovascular Magnetic Resonance

    PubMed Central

    Chotenimitkhun, Runyawan; Hundley, W. Gregory

    2013-01-01

    Over the past decade, cardiovascular magnetic resonance (CMR) has evolved into a cardiac stress testing modality that can be used to diagnose myocardial ischemia using intravenous dobutamine or vasodilator perfusion agents such as adenosine or dipyridamole. Because CMR produces high-resolution tomographic images of the human heart in multiple imaging planes, it has become a highly attractive noninvasive testing modality for those suspected of having myocardial ischemia. The purpose of this article is to review the clinical, diagnostic, and prognostic utility of stress CMR testing for patients with (or suspected of having) coronary artery disease. PMID:21566427

  18. Evanescent Waves Nuclear Magnetic Resonance.

    PubMed

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  19. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  20. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  1. Magnetic resonance imaging of acquired cardiac disease.

    PubMed Central

    Carrol, C L; Higgins, C B; Caputo, G R

    1996-01-01

    Over the last 15 years, advances in magnetic resonance imaging techniques have increased the accuracy and applicability of cardiovascular magnetic resonance imaging. These advances have improved the utility of magnetic resonance imaging in evaluating cardiac morphology, blood flow, and myocardial contractility, all significant diagnostic features in the evaluation of the patient with acquired heart disease. Utilization of cardiovascular magnetic resonance imaging has been limited, primarily due to clinical reliance upon nuclear scintigraphy and echocardiography. Recent developments in fast and ultrafast imaging should continue to enhance the significance of magnetic resonance imaging in this field. Widespread use of magnetic resonance imaging in the evaluation of the cardiovascular system will ultimately depend upon its maturation into a comprehensive, noninvasive imaging technique for the varying manifestations of acquired heart disease, including cardiomyopathy, ischemic heart disease, and acquired valvular disease. Images PMID:8792545

  2. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  3. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  4. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  5. Superconducting magnets for whole body magnetic resonance imaging

    SciTech Connect

    Murphy, M.F.

    1989-03-01

    Superconducting magnets have achieved preeminence in the magnetic resonance imaging (MRI) industry. Further growth in this market will depend on reducing system costs, extending medical applications, and easing the present siting problem. New magnet designs from Oxford address these issues. Compact magnets are economical to build and operate. Two 4 Tesla whole body magnets for research in magnetic resonance spectroscopy (MRS) are now in operation. Active-Shield magnets, by drastically reducing the magnetic fringe fields, will allow MRI systems with superconducting magnets to be located in previously inaccessible sites.

  6. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  7. Advances in mechanical detection of magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-02-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  8. Advances in mechanical detection of magnetic resonance.

    PubMed

    Kuehn, Seppe; Hickman, Steven A; Marohn, John A

    2008-02-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  9. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices. PMID:26564851

  10. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  11. Magnetic resonance imaging in pancreatitis.

    PubMed

    Balci, Numan Cem; Bieneman, B Kirke; Bilgin, Mehmet; Akduman, Isin E; Fattahi, Rana; Burton, Frank R

    2009-02-01

    Pancreatitis can occur in acute and chronic forms. Magnetic resonance imaging (MRI) plays an important role in the early diagnosis of both conditions and complications that may arise from acute or chronic inflammation of the gland. Standard MRI techniques including T1-weighted and T2-weighted fat-suppressed imaging sequences together with contrast-enhanced imaging can both aid in the diagnosis of acute pancreatitis and demonstrate complications as pseudocysts, hemorrhage, and necrosis. Combined use of MRI and MR cholangiopancreatography can show both parenchymal findings that are associated with chronic pancreatitis including pancreatic size and signal and arterial enhancements, all of which are diminished in chronic pancreatitis. The degree of main pancreatic duct dilatation and/or the number of side branch ectasia determines the diagnosis of chronic pancreatitis and its severity. In this paper, we report the spectrum of imaging findings of acute and chronic pancreatitis on MRI and MR cholangiopancreatography. PMID:19687723

  12. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  13. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  14. Functional Magnetic Resonance Imaging Methods.

    PubMed

    Chen, Jingyuan E; Glover, Gary H

    2015-09-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the "resting state"). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  15. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.

  16. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  17. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  18. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  19. Magnetic resonance of the spine

    SciTech Connect

    Enzmann, D.R.; De La Paz, R.L.; Rubin, J.R.

    1990-01-01

    This book contains 12 chapters. Three chapters discuss principles of cerebrospinal fluid flow, spinal imaging techniques, and the physical basis and anatomic correlates of signal intensity in the spine. There are chapters on normal anatomy, congenital anomalies, trauma, tumors, infection, demyelinating disease, degenerative disease, vascular conditions, and syringomyelia.

  20. Force detection of nuclear magnetic resonance

    SciTech Connect

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D. )

    1994-06-10

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10[sup 13] protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging.

  1. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  2. A Demonstration Model of Magnetic Resonance

    ERIC Educational Resources Information Center

    Sandhu, H. S.; Peemoeller, H.

    1974-01-01

    Describes a simple and inexpensive model to demonstrate the pulsed magnetic resonance phenomenon. Gives the details of construction of the device which can provide a direct demonstration of the precessional motion of a magnetic moment in a steady magnetic field. (Author/GS)

  3. Artifacts in Magnetic Resonance Imaging

    PubMed Central

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Summary Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature. PMID:25745524

  4. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  5. Nuclear magnetic resonance in oncology.

    PubMed

    Turner, D A

    1985-04-01

    The application of nuclear magnetic resonance (NMR) techniques to the diagnosis of cancer was first explored by Damadian, who proposed that benign and malignant tissues could be differentiated on the basis of characteristic differences in spin-lattice and spin-spin relaxation times (T1 and T2) as determined in vitro with NMR spectrometers. Damadian's thesis was very controversial and never gained widespread acceptance. Not all investigators were able to confirm his findings. Moreover, it was improbable that NMR would ever play an important role in the diagnosis of malignancy as long as biopsy was necessary to obtain material for analysis. However, the potential usefulness of NMR in oncology was enhanced considerably by the work of Lauterbur, who showed that NMR signals could be spatially encoded to produce images of the examined object. NMR imaging has made feasible the measurement of the T1 and T2 of lesions without biopsy. Unfortunately, initial efforts at characterizing tissues by in vivo determination of proton relaxation times have yielded disappointing results. Nonetheless, NMR imaging will be a powerful tool for evaluating patients with malignant disease because of the unique anatomic information it can provide without exposure of the patient to ionizing radiation. In vivo NMR spectroscopy of 31P and other sensitive nuclei may add a new dimension to clinical and experimental oncology. PMID:3890188

  6. Cardiovascular magnetic resonance for amyloidosis.

    PubMed

    Fontana, Marianna; Chung, Robin; Hawkins, Philip N; Moon, James C

    2015-03-01

    Cardiac involvement drives the prognosis and treatment in systemic amyloid. Echocardiography, the mainstay of current cardiac imaging, defines cardiac structure and function. Echocardiography, in conjunction with clinical phenotype, electrocardiogram and biomarkers (brain natriuretic peptide and troponin), provides an assessment of the likelihood and extent of cardiac involvement. Two tests are transforming our understanding of cardiac amyloidosis, bone tracer scanning and cardiovascular magnetic resonance (CMR). CMR provides a "second opinion" on the heart's structure and systolic function with better accuracy and more precision than echocardiography but is unable to assess diastolic function and is not as widely available. Where CMR adds unique advantages is in evaluating myocardial tissue characterisation. With administration of contrast, the latest type of late gadolinium enhancement imaging (phase-sensitive inversion recovery sequence) is highly sensitive and specific with images virtually pathognomonic for amyloidosis. CMR is also demonstrating that the range of structural and functional changes in cardiac amyloid is broader than traditionally thought. CMR with T1 mapping, a relatively new CMR technique, can measure the amyloid burden and the myocyte response to infiltration (hypertrophy/cell loss) with advantages for tracking change (e.g. the wall thickness can stay the same but the composition can change) over time or during therapy. Such techniques hold great promise for advancing drug development in this arena and providing new prognostic insights. CMR with tissue characterisation is rewriting our understanding of cardiac amyloidosis and may lead to the development of new classification, therapies and prognostic systems. PMID:25549885

  7. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  8. Nanoscale ferromagnetic resonance imaging using magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Inhee

    Nanoscale patterned magnetic structures and multi-component magnetic devices have been studied actively for applications of highly efficient data storage and non-volatile magnetic memory devices. Those studies demand high resolution magnetic imaging tools which can characterize complex, often buried nanoscale structures. Ferromagnetic Resonance (FMR) is a powerful spectroscopic tool which provides the magnetic characterizing parameters of spectroscopically identified magnetic materials with high precision. However, FMR studies of nanoscale samples are limited due to insufficient sensitivity and lack of imaging capabilities. Scanned probe FMR using Magnetic Resonance Force Microscopy (MRFM) is an excellent tool for understanding nanoscale ferromagnetic structures based on its high sensitivity and high resolution. Non-interacting electron and nuclear spins in MRFM can be excited selectively in the thin sensitive slice defined by the high magnetic field gradient of the magnetic probe tip. The sensitive slice as a probe enables high resolution three-dimensional imaging. However, for ferromagnets, the mechanism for magnetic resonance imaging is quite different due to the strong spin-spin interactions which lead to collective spin wave excitation. Our recent studies of Ferromagnetic Resonance Force Microscopy (FMRFM) have shown that the magnetic probe tip not only detects the FMRFM force, but also perturbs FMR modes, and even distorts or spatially localizes FMR modes using the strongly inhomogeneous probe field. This strong perturbation of probe field enables us to achieve and image quantitative magnetic information in the local region of ferromagnetic structures. In this thesis I will present various FMRFM imaging techniques using the strong inhomogeneous magnetic field of the micromagnetic probe tip. First, FMRFM imaging in a weak probe field will be discussed. In this case, the shapes of magnetostatic modes in FMR are determined by a confined sample structure while the effect of probe field is ignorable. However, FMR peak positions are shifted by the probe field, which allows encoding of the spatial mode profile of magnetostatic modes into FMR resonance field. On the other hand, in a strong probe field, the shapes of FMR modes can be distorted or spatially localized. In particular, localized modes are suitable for FMRFM imaging which provides a map of intrinsic magnetic properties existing within the local area of the sample. Concerning these localized modes, I will present our recent observations, quantitative analysis and their application for FMR imaging with high field sensitivity of the internal field in a ferromagnetic film. Furthermore, I will discuss other quantitative local magnetic characterization methods such as magnetic force microscopy (MFM) induced by a strong inhomogeneous probe tip field and suppressed or distorted FMR modes FMRFM.

  9. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  10. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  11. Miniature Magnet for Electron Spin Resonance Experiments

    ERIC Educational Resources Information Center

    Rupp, L. W.; And Others

    1976-01-01

    Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

  12. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jrg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  13. Nuclear magnetic resonance data of CHF3

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Brnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  14. International Society for Magnetic Resonance in Medicine

    MedlinePLUS

    ... the ISMRM Annual Meeting in Singapore, including “The Road to Singapore,” a Blog by Mark Griswold, 2016 ... Society for Magnetic Resonance in Medicine 2300 Clayton Road, Suite 620 | Concord, CA, 94520 USA Phone: +1. ...

  15. Magnetic resonance angiography in subclavian steal syndrome

    PubMed Central

    Flynn, Paul D; Delany, David J; Gray, Huon H

    1993-01-01

    A case is reported of a patient with the subclavian steal syndrome in whom the reversed blood flow of the vertebral artery was shown by phase encoded magnetic resonance angiography. Images PMID:8038034

  16. Cardiovascular magnetic resonance: applications in daily practice.

    PubMed

    Jiji, Ronny S; Kramer, Christopher M

    2011-01-01

    Over the last 10 years, the development of newer pulse sequences and applications in new clinical areas has enabled cardiovascular magnetic resonance to emerge as a powerful tool for the physicians to both diagnose and guide treatments of various cardiac pathologies. The greatest strengths of cardiovascular magnetic resonance include the assessment of ischemia and viability, evaluation of nonischemic cardiomyopathies, including myocarditis, pericardial disease, congenital heart disease, and tissue characterization of cardiac masses. PMID:21808168

  17. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  18. High resolution neurography of the lumbosacral plexus on 3T magneteic resonance imaging.

    PubMed

    Cejas, C; Escobar, I; Serra, M; Barroso, F

    2015-01-01

    Magnetic resonance neurography is a technique that complements clinical and electrophysiological study of the peripheral nerves and brachial and lumbosacral plexuses. Numerous focal processes (inflammatory, traumatic, primary tumors, secondary tumors) and diffuse processes (diabetic polyneuropathy, chronic idiopathic demyelinating polyneuropathy due to amyloidosis or Charcot-Marie-Tooth disease) can involve the lumbosacral plexus. This article reviews the anatomy of the lumbosacral plexus, describes the technique for neurography of the plexus at our institution, and shows the diverse diseases that affect it. PMID:25447367

  19. Ferromagnetic resonance in ?-Co magnetic composites

    NASA Astrophysics Data System (ADS)

    Chalapat, Khattiya; Timonen, Jaakko V. I.; Huuppola, Maija; Koponen, Lari; Johans, Christoffer; Ras, Robin H. A.; Ikkala, Olli; Oksanen, Markku A.; Seppl, Eira; Paraoanu, G. S.

    2014-12-01

    We investigate the electromagnetic properties of assemblies of nanoscale ?-cobalt crystals with size range between 5 to 35 nm, embedded in a polystyrene matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance (FMR) with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittel's FMR theory for non-interacting uniaxial spherical particles combined with the Landau-Lifshitz-Gilbert equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure.

  20. Magnetic Resonance Imaging Evaluation of Fetal Neural Tube Defects.

    PubMed

    Egloff, Alexia; Bulas, Dorothy

    2015-12-01

    Spinal dysraphism occurs early in gestation because of an abnormality in the closure of the neural tube. Defects can be classified as open or closed lesions based on clinical and imaging features. Biochemical evaluation and ultrasound studies are used as screening tools for neural tube defects. Ultrasound alone can accurately diagnose most neural tube lesions. Magnetic resonance imaging has increasingly been used as an adjuvant study and is useful in the assessment of the degree of hindbrain herniation and evaluation of the fetal brain and spinal cord anatomy when ultrasound is limited. This additional information can be useful in counseling, helping to determine if fetal surgery is an option as well as helping to plan delivery and postnatal management. PMID:26614132

  1. Primate comparative neuroscience using magnetic resonance imaging: promises and challenges

    PubMed Central

    Mars, Rogier B.; Neubert, Franz-Xaver; Verhagen, Lennart; Sallet, Jérôme; Miller, Karla L.; Dunbar, Robin I. M.; Barton, Robert A.

    2014-01-01

    Primate comparative anatomy is an established field that has made rich and substantial contributions to neuroscience. However, the labor-intensive techniques employed mean that most comparisons are often based on a small number of species, which limits the conclusions that can be drawn. In this review we explore how new developments in magnetic resonance imaging have the potential to apply comparative neuroscience to a much wider range of species, allowing it to realize an even greater potential. We discuss (1) new advances in the types of data that can be acquired, (2) novel methods for extracting meaningful measures from such data that can be compared between species, and (3) methods to analyse these measures within a phylogenetic framework. Together these developments will allow researchers to characterize the relationship between different brains, the ecological niche they occupy, and the behavior they produce in more detail than ever before. PMID:25339857

  2. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    SciTech Connect

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help.

  3. Fano resonances in magnetic metamaterials

    SciTech Connect

    Naether, Uta; Molina, Mario I.

    2011-10-15

    We study the scattering of magnetoinductive plane waves by internal (external) capacitive (inductive) defects coupled to a one-dimensional split-ring resonator array. We examine a number of simple defect configurations where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling to second neighbors is necessary for the occurrence of Fano resonance. For external inductive defects, Fano resonances are commonplace, and they can be tuned by changing the relative orientation or distance between the defect and the SSR array.

  4. Coherence of magnetic resonators in a metamaterial

    SciTech Connect

    Hou, Yumin

    2013-12-15

    The coherence of periodic magnetic resonators (MRs) under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.

  5. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  6. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  7. Nuclear magnetic resonance apparatus for pulsed high magnetic fields.

    PubMed

    Meier, Benno; Kohlrautz, Jonas; Haase, Jrgen; Braun, Marco; Wolff-Fabris, Frederik; Kampert, Erik; Herrmannsdrfer, Thomas; Wosnitza, Joachim

    2012-08-01

    A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T. PMID:22938280

  8. Cyclotron resonance in an inhomogeneous magnetic field

    SciTech Connect

    Albert, J.M. )

    1993-08-01

    Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.

  9. Clinical Applications of Magnetic Resonance ImagingCurrent Status

    PubMed Central

    Cammoun, Driss; Davis, Kathleen A.; Hendee, William R.

    1985-01-01

    Magnetic resonance imaging has far-reaching real and possible clinical applications. Its usefulness has been best explored and realized in the central nervous system, especially the posterior fossa and brain stem, where most abnormalities are better identified than with computed tomography. Its lack of ionizing radiation and extreme sensitivity to normal and abnormal patterns of myelination make magnetic resonance imaging advantageous for diagnosing many neonatal and pediatric abnormalities. New, reliable cardiac gating techniques open the way for promising studies of cardiac anatomy and function. The ability to image directly in three orthogonal planes gives us new insight into staging and follow-up of pelvic tumors and other pelvic abnormalities. Exquisite soft tissue contrast, far above that attainable by other imaging modalities, has made possible the early diagnosis of traumatic ligamentous knee injury, avascular necrosis of the hip and diagnosis, treatment planning and follow-up of musculoskeletal neoplasms. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9. PMID:3911592

  10. 170 nm nuclear magnetic resonance imaging using magnetic resonance force microscopy.

    TOXLINE Toxicology Bibliographic Information

    Thurber KR; Harrell LE; Smith DD

    2003-06-01

    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nm slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nm. This was achieved by force detection of the magnetic resonance, magnetic resonance force microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs created spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5K and 4T. The experiment was sensitive to sample volumes of 50 microm(3) containing approximately 4 x 10(11)71 Ga/Hz. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.

  11. 170 nm nuclear magnetic resonance imaging using magnetic resonance force microscopy.

    PubMed

    Thurber, Kent R; Harrell, Lee E; Smith, Doran D

    2003-06-01

    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nm slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nm. This was achieved by force detection of the magnetic resonance, magnetic resonance force microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs created spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5K and 4T. The experiment was sensitive to sample volumes of 50 microm(3) containing approximately 4 x 10(11)71 Ga/Hz. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures. PMID:12810017

  12. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  13. [Nuclear magnetic resonance imaging. Clinical applications].

    PubMed

    Laval-Jeantet, M; Crooks, L E; Davis, P L; Kaufman, L; Margulis, A R

    1982-09-01

    Nuclear magnetic resonance (NMR) imaging is based on selective excitation of proton magnetic properties by means of a dual magnetic field. In the human body, NMR gives sectional images which represent hydrogen atom densities in the different tissues. The first results obtained in tomography of the brain, spinal cord, intrathoracic and abdominal organs and some vessels have been remarkable. The magnetic fields ans radiofrequency waves involved appear to be harmless. NMR imaging favourably compares with X-ray computerized tomography or with ultrasonography and will no doubt be increasingly used for its special qualities. PMID:6982457

  14. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  15. Magnetic resonance imaging of breast implants.

    PubMed

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications. PMID:25463409

  16. Focal renal masses: magnetic resonance imaging

    SciTech Connect

    Choyke, P.L.; Kressel, H.Y.; Pollack, H.M.; Arger, P.M.; Axel, L.; Mamourian, A.C.

    1984-08-01

    Thirty patients with focal renal masses were evaluated on a .12-Tesla resistive magnetic resonance unit using partial saturation and spin echo pulse sequence. Fifteen patients had cystic lesions, nine patients had renal cell carcinoma, two had metastatic lesions, one had an angiomyolipoma, and three had focal bacterial infection. Renal cell carcinomas demonstrated areas of increased signal using a partial saturation sequence. Magnetic resonance imaging accurately detected perinephric extension and vascular invasion in all patients. Metastatic disease to the kidney was uniformly low in signal, in contrast to primary renal cell carcinoma; an angiomyolipoma demonstrated very high signal intensity. Two masses resulting from acute focal bacterial nephritis were uniformly low in signal. Magnetic resonance imaging appears to be an accurate way of detecting, identifying, and staging focal renal masses.

  17. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  18. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  19. Nasal Anatomy

    MedlinePLUS

    ... Statement FIND A DOCTOR RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Anatomy Justin ...

  20. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  1. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  2. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  3. Cardiovascular magnetic resonance for the clinical cardiologist

    PubMed Central

    Larose, Eric; Rods-Cabau, Josep; Delarochelliere, Robert; Barbeau, Gerald; Noel, Bernard; Bertrand, Olivier

    2007-01-01

    Cardiovascular magnetic resonance is a noninvasive imaging modality that provides superior anatomical and functional information in the absence of ionizing radiation. The cardiovascular magnetic resonance imaging program has been active at the Quebec Heart Institute at Laval Hospital for two years, now providing advanced imaging studies to over 42 referral centres from eastern and central Quebec as well as providing training for national and international fellows. The program benefits from the collborative work of cardiologists and radiologists, who both bring to the table their unique expertise. The following text reviews current clinical applications useful in the daily practice of the cardiovascular specialist. PMID:17932594

  4. Magnetic resonance imaging in traumatic hip subluxation

    PubMed Central

    Flanigan, David C; De Smet, Arthur A; Graf, Ben

    2011-01-01

    Athletic traumatic hip subluxations are rare. Classic radiographic features have been well described. This case highlights the potential pitfalls of immediate magnetic resonance imaging. Femoral head contusions and acetabular rim fractures are common associated findings usually apparent with magnetic resonance imaging (MRI). However, in this case an MRI done 3 hours post injury failed to show any edema in either location, making the appearance of these findings on subsequent MRIs difficult to interpret. An acute MRI more than 48 hours post injury may have been more helpful. PMID:21559109

  5. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  6. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  7. A biosensor based on magnetic resonance relaxation

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Prorok, B. C.

    2015-06-01

    This work describes a biosensor based on magnetic resonance relaxation switching. The method leverages a large body of work involving nanoscale contrast agents employed in nuclear magnetic resonance (NMR) imaging. The aim was to develop a detection approach that mimics the human immune response to an invading pathogen, the release of 109 to 1012 specific antigens to guarantee quick contact with the pathogen. The technique employs magnetic nanoparticle contrast agents conjugated with specific capture agents to achieve a similar contact goal. Detection of the species involves monitoring the average relaxation time (T2) of water protons in the solution, which is highly sensitive to the concentration and distribution of the magnetic nanoparticles present. With multiple nanoparticles attaching to each individual target species their distribution will be altered, and correspondingly, the average proton relaxation time will change

  8. Localized ferromagnetic resonance using Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jongjoo

    Magnetic Resonance Force Microscopy (MRFM) is a novel approach to scanned probe imaging, combining the advantages of Magnetic Resonance Imaging (MRI) with Scanning Probe Microscopy (SPM) [1]. It has extremely high sensitivity that has demonstrated detection of individual electron spins [2] and small numbers of nuclear spins [3]. Here we describe our MRFM experiments on Ferromagnetic thin film structures. Unlike ESR and NMR, Ferromagnetic Resonance (FMR) is defined not only by local probe field and the sample structures, but also by strong spin-spin dipole and exchange interactions in the sample. Thus, imaging and spatially localized study using FMR requires an entirely new approach. In MRFM, a probe magnet is used to detect the force response from the sample magnetization and it provides local magnetic field gradient that enables mapping of spatial location into resonance field. The probe field influences on the FMR modes in a sample, thus enabling local measurements of properties of ferromagnets. When sufficiently intense, the inhomogeneous probe field defines the region in which FMR modes are stable, thus producing localized modes. This feature enables FMRFM to be important tool for the local study of continuous ferromagnetic samples and structures. In our experiments, we explore the properties of the FMR signal as the strength of the local probe field evolves from the weak to strong perturbation limit. This underlies the important new capability of Ferromagnetic resonance imaging, a powerful new approach to imaging ferromagnet. The new developed FMR imaging technique enables FMR imaging and localized FMR spectroscopy to combine spectroscopy and lateral information of ferromagnetic resonance images [4][5]. Our theoretical approach agrees well with spatially localized spectroscopy and imaging results. This approach also allows analysis and reconstruction of FMR modes in a sample. Finally we consider the effect of strong probe fields on FMR modes. In this regime the probe field significantly modifies the FMR modes. In particular we observe the complete local suppression of the FMR mode under the probe. This provides as a new tool for local study of continuous ferromagnetic thin films and microstructures.

  9. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  10. Cardiovascular magnetic resonance: physics and terminology.

    PubMed

    Rodgers, Christopher T; Robson, Matthew D

    2011-01-01

    Cardiovascular magnetic resonance (CMR) is the branch of magnetic resonance imaging (MRI) whose acquisition methods are adapted to surmount the particular challenges caused by motion of the heart and blood in vivo. Magnetic resonance imaging is supremely flexible; it can produce images showing the spatial distribution of diverse tissue characteristics, for example, proton density, T(1), T(2), T(2)(?), fat concentration, flow rate, and diffusion parameters. The image contrast may usefully be modified by intravenous infusion of contrast agents. Magnetic resonance imaging permits 2-dimensional or 3-dimensional acquisitions with arbitrary slice orientation. Unfortunately, MRI's flexibility is matched by a remarkable complexity not only in its fundamental principles but also in the optimization of applications in the clinic. This article attempts to demystify the basic principles of CMR and provides a primer on the terminology used in CMR. Complete confidence in the principles of CMR is not essential to use the technology. Nevertheless, knowledge of the principal terminology of MRI is a valuable first step when seeking to understand and apply modern methods in a clinical or research setting. Thus, the article closes with a glossary of terminology and references to high-quality educational resources. PMID:22014486

  11. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  12. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition

  13. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and

  14. [Functional magnetic resonance imaging of the kidneys].

    PubMed

    Lanzman, R S; Notohamiprodjo, M; Wittsack, H J

    2015-12-01

    Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors. PMID:26628260

  15. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to

  16. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  17. Off-center magnetic resonance imaging with permanent magnets

    NASA Astrophysics Data System (ADS)

    Abele, Manlio G.; Rusinek, Henry

    2008-04-01

    Magnets for magnetic resonance imaging are currently designed as structures that are symmetric with respect to the geometric center O of the magnet cavity. This symmetry results in a symmetric field configuration, where point O coincides with the imaging center S defined as the point where the field gradient is zero. However, in many clinical applications such as breast or spine imaging, the region of interest is displaced from the geometric center. We present a design method for yokeless permanent magnets, where the position of point S is dictated by the imaging requirements. The magnet is composed of uniformly magnetized triangular prisms and it does not require a ferromagnetic yoke to channel the magnetic flux. Given an arbitrary polygonal cavity, the design depends on the position of point F, where the magnetostatic potential is assumed to be equal to the magnetostatic potential of the external medium. For a long magnet, the position of the imaging center S coincides with point F. As an example of the off-center design, we analyze a three-dimensional yokeless magnet with cavity of width=length=80cm and height=45cm. The magnet generates a field above 0.5T when constructed using the NdFeB alloy of remanence larger than 1.3T. The off-center configuration offers flexibility in magnet design that makes it possible to focus on a particular region of the human body, without increasing magnet cavity, magnet size, or its weight

  18. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  19. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization

    PubMed Central

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2015-01-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 ?m diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxides electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signals dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients. PMID:26097251

  20. The market for magnetic resonance spectroscopy

    SciTech Connect

    Carlson, L.

    1990-01-01

    The medical market is, at present, the most dominant market for low T{sub c} superconductors. Indeed, without magnetic resonance imaging (MRI), there would hardly be a low T{sub c} superconductor market at all. According to the author, any development that can expand the medical market for MRI machines would be a welcome one. This paper reports how the recent advances in magnetic resonance spectroscopy (MRS) are such a development. While the principle of MRS has bee around as long as MRI, only recently have advances in technique, computer programming and magnet technology allowed MRS to advance to a point where it may become an important technology-one that could increase the medical market for superconductors. The author discussed how MRS can be used to analyze oil core samples for their oil content, oil/water ratios, how the oil is bound and how to extract it.

  1. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  2. Volume coil based on hybridized resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jouvaud, C.; Abdeddaim, R.; Larrat, B.; de Rosny, J.

    2016-01-01

    We present an electromagnetic device based on hybridization of four half-wavelength dipoles which increases the uniformity and the strength of the radio-frequency (RF) field of a Magnetic Resonant Imaging (MRI) apparatus. Numerical results show that this Hybridized Coil (HC) excited with a classical loop coil takes advantage of the magnetic hybrid modes. The distribution of the RF magnetic field is experimentally confirmed on a 7-T MRI with a gelatin phantom. Finally, the HC is validated in vivo by imaging the head of an anesthetized rat. We measure an overall increase of the signal to noise ratio with up to 2.4 fold increase in regions of interest far from the active loop coil.

  3. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; Gonzlez, O. Jorge J.; Mrquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  4. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  5. Spin echo magnetic resonance imaging.

    PubMed

    Jung, Bernd Andr; Weigel, Matthias

    2013-04-01

    The spin echo sequence is a fundamental pulse sequence in MRI. Many of today's applications in routine clinical use are based on this elementary sequence. In this review article, the principles of the spin echo formation are demonstrated on which the generation of the fundamental image contrasts T1, T2, and proton density is based. The basic imaging parameters repetition time (TR) and echo time (TE) and their influence on the image contrast are explained. Important properties such as the behavior in multi-slice imaging or in the presence of flow are depicted and the basic differences with gradient echo imaging are illustrated. The characteristics of the spin echo sequence for different magnetic field strengths with respect to clinical applications are discussed. PMID:23526758

  6. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues key among them bone are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the authors laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  7. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  8. Magnetic resonance velocity mapping: clinical application of a new technique.

    PubMed Central

    Underwood, S R; Firmin, D N; Klipstein, R H; Rees, R S; Longmore, D B

    1987-01-01

    Magnetic resonance velocity mapping is a new technique which provides a display of velocity within the cardiovascular system at any point of the cardiac cycle. A short field echo sequence with even echo rephasing is used to obtain a signal from rapidly moving blood and a cine display is provided by rapid repetition of the sequence. The amplitude image shows the anatomy, with blood giving a high signal and areas of turbulent flow no signal. The phase image is a map of velocities at each point in the image plane. Thirteen cases are described in which the technique either provided a diagnosis or helped in functional assessment. Flow through atrial and ventricular septal defects was seen, although turbulent flow distal to the ventricular shunts led to some loss of quantitative information. In three patients with valve disease jets of abnormal flow were seen because of signal loss and it is suggested that the size of the area of turbulence may be used to quantify the severity of regurgitation. Velocities were measured in four coronary artery bypass grafts in two patients, and low velocity was seen in a graft with distal disease that supplied the infarcted territory. Velocity was reduced distal to an aortic coarctation and it was increased at the site of narrowing caused by thrombosis in a deep vein. The speed and direction of flow in the central vessels in a patient with complex congenital heart disease helped to establish the anatomy. The technique provides useful information in a wide range of disorders of the cardiovascular system, and in some cases may avoid the need for invasive investigation. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 PMID:3496109

  9. Cadmium ferrite ionic magnetic fluid: Magnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Silva, O.; Lima, E. C. D.; Morais, P. C.

    2003-05-01

    In contrast to all magnetic resonance investigations previously performed using magnetic fluids (MFs) based on spinel ferrite nanoparticles, cadmium-ferrite-based MFs present an intense, relatively sharp resonance line near g=4, in addition to the typical, broad structure near g=2. The broad resonance structure is associated with larger cadmium-ferrite nanoparticles, whereas the sharp resonance line is associated with ultrasmall cadmium-ferrite nanoparticles. Transmission electron microscopy (TEM) data confirm the bimodal particle size distribution in the sample investigated. The temperature T dependence of the resonance field HR is almost linear, for both high-field (HF) and low-field (LF) resonance lines, in the range of 100-300 K. In support of the identification of the HF line (around g=2) and LF line (around g=4) with larger and smaller Cd-ferrite nanoparticles, respectively, the slope of the HR versus T curve is lower for the HF line (1.3 G/K) compared to the LF line (1.69 G/K), whereas the intercept constant of the HF line (3050 G) is higher than the intercept constant of the LF line (1130 G).

  10. In Vivo Microtesla Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Mle, Michael

    2005-03-01

    We have developed a magnetic resonance imaging (MRI) system which operates at magnetic fields of 132 microtesla, corresponding to proton Larmor frequencies of 5.6 kHz. The main advantages of performing MRI at low magnetic fields (< 10 mT) are the reduced costs compared to conventional high- field MRI, and the reduction of nuclear magnetic resonance line broadening caused by inhomogeneous magnetic fields and susceptibility variations in the sample. Our technique combines prepolarization of the nuclear spins in a magnetic field up to 300 mT and signal detection at 132 microtesla using an untuned superconducting input circuit coupled to a superconducting quantum interference device (SQUID) to achieve a signal amplitude independent of the measurement field. We employ a standard spin-echo pulse sequence to acquire three-dimensional images in less than 6 minutes. Using encoding gradients of about 100 ?T/m we obtain images of bell peppers and water phantoms with a resolution of 2 mm x 2 mm x 8 mm. Three- dimensional images of a human forearm were acquired at 132 microtesla with an average prepolarization field of 50 mT showing a signal-to-noise ratio (SNR) of 10 and an in-plane resolution of 3 mm x 3 mm. We have shown that for certain materials the longitudinal relaxation time (T1) contrast is greatly enhanced at low magnetic fields. This enhancement is expected to lead to novel applications in specialized clinical imaging of human subjects, for example, low-cost tumor screening. To make such applications feasible further improvements of the SNR and resolution of the system are necessary. By employing a SQUID detector with a lower magnetic field noise and by raising the maximum polarizing field, an improvement of the SNR by an order of magnitude should be possible.

  11. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in 10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  12. Resonantly detecting axion-mediated forces with nuclear magnetic resonance.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2014-10-17

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 10(9) and 10(12) GeV or axion masses between 10(-6) and 10(-3) eV, independent of the cosmic axion abundance. PMID:25361250

  13. Portable nuclear magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Rokitta, Markus; Rommel, Eberhard; Zimmermann, Ulrich; Haase, Axel

    2000-11-01

    A portable nuclear magnetic resonance (NMR) imaging system has been designed for noninvasive investigations of immobile objects, e.g., living plants in their natural environment, a human finger or similar objects not exceeding a diameter of 12 mm. The NMR spectrometer is equipped with a permanent magnet, flat biplanar gradient coils, and a battery powered amplifier network with a phase-encoding unit, capable of imaging experiments on volumes of (1 cm)3 with a spatial resolution of 63 ?m. The total weight of the instrument is approximately 90 kg. First applications of this system include spin-echo images of phantoms and living plants in a greenhouse.

  14. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can nowwithin a few minutesacquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  15. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  16. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  17. [Functional magnetic resonance and neuropsychology: basic concepts].

    PubMed

    Ros-Lago, M

    2008-01-01

    This paper describes the specific tasks of the neuropsychologist in a medical imaging department during the study of the relations between the brain and behavior. The neuropsychologist's role as a member of a multidisciplinary team centers on paradigm design (motor, visual, language, memory, etc.), supervising subjects' (patients' or controls') behavior during functional magnetic resonance acquisition, and interpreting the results. Thus, it is essential for the neuropsychologist to know the characteristics, possibilities, and limitations of the imaging technique as well as aspects directly related to neuropsychology, such as cognitive processes and their components. We also introduce some common concepts in functional magnetic resonance and review some of the paradigms that are most frequently employed in clinical concepts. PMID:19055911

  18. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  19. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  20. Posterior fossa lesions: magnetic resonance imaging

    SciTech Connect

    Lee, B.C.P.; Kneeland, J.B.; Deck, M.D.F.; Cahill, P.T.

    1984-10-01

    Studies of 40 patients with abnormalities of the posterior fossa shown on magnetic resonance (MR) imaging were reviewed and compared with CT scans. Thirteen lesions were demonstrated on MR only. Twenty-four lesions were shown on CT but MR provided more data. Three lesions were better shown on CT than on MR. MR is superior to CT because of the lack of streak artifacts and better contrast discrimination. At least two imaging sequences are required for evaluation of the lesions.

  1. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  2. Breast magnetic resonance imaging: current clinical indications.

    PubMed

    Yeh, Eren D

    2011-03-01

    Breast magnetic resonance (MR) is highly sensitive in the detection of invasive breast malignancies. As technology improves, as interpretations and reporting by radiologists become standardized through the development of guidelines by expert consortiums, and as scientific investigation continues, the indications and uses of breast MR as an adjunct to mammography continue to evolve. This article discusses the current clinical indications for breast MR including screening for breast cancer, diagnostic indications for breast MR, and MR guidance for interventional procedures. PMID:21419332

  3. Cardiac magnetic resonance imaging in Alstrm syndrome

    PubMed Central

    Loudon, Margaret A; Bellenger, Nicholas G; Carey, Catherine M; Paisey, Richard B

    2009-01-01

    Background A case series of the cardiac magnetic resonance imaging findings in seven adult Alstrm patients. Methods Seven patients from the National Specialist Commissioning Group Centre for Alstrm Disease, Torbay, England, UK, completed the cardiac magnetic resonance imaging protocol to assess cardiac structure and function in Alstrm cardiomyopathy. Results All patients had some degree of left and right ventricular dysfunction. Patchy mid wall gadolinium delayed enhancement was demonstrated, suggesting an underlying fibrotic process. Some degree of cardiomyopathy was universal. No evidence of myocardial infarction or fatty infiltration was demonstrated, but coronary artery disease cannot be completely excluded. Repeat scanning after 18 months in one subject showed progression of fibrosis and decreased left ventricular function. Conclusion Adult Alstrm cardiomyopathy appears to be a fibrotic process causing impairment of both ventricles. Serial cardiac magnetic resonance scanning has helped clarify the underlying disease progression and responses to treatment. Confirmation of significant mutations in the ALMS1 gene should lead to advice to screen the subject for cardiomyopathy, and metabolic disorders. PMID:19515241

  4. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  5. Magnetic resonance imaging of the heart: positioning and gradient angle selection for optimal imaging planes

    SciTech Connect

    Dinsmore, R.E.; Wismer, G.L.; Levine, R.A.; Okada, R.D.; Brady, T.J.

    1984-12-01

    Electrocardiographically gated magnetic resonance images were acquired in 20 subjects using a spin-echo pulse sequence. For optimizing the display of cardiac anatomy, a technique was developed which uses patients positioning in addition to alteration of gradient angle to select image planes. High-quality images were acquired in three basic cardiac projections: (1) the long axis of the left ventricle, through the aortic valve and apex, parallel to the interventricular septum, (2) the long axis of the left ventricle, perpendicular to the septum, and (3) the short axis of the left ventricle at multiple levels including outflow, papillary muscle, and apex. Images of the aorta included axial images at multiple levels and long-axis images oriented to display the plane of the aortic arch. Images of these planes are easily achieved and, in contrast to standard images orthogonal to the chest wall, provide a reproductible and logical display of cardiac anatomy.

  6. Anatomical delineation of congenital heart disease using 3D magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Adams Bornemeier, Renee; Fellows, Kenneth E.; Fogel, Mark A.; Weinberg, Paul M.

    1994-05-01

    Anatomic delineation of the heart and great vessels is a necessity when managing children with congenital heart disease. Spatial orientation of the vessels and chambers in the heart and the heart itself may be quite abnormal. Though magnetic resonance imaging provides a noninvasive means for determining the anatomy, the intricate interrelationships between many structures are difficult to conceptualize from a 2-D format. Taking the 2-D images and using a volumetric analysis package allows for a 3-D replica of the heart to be created. This model can then be used to view the anatomy and spatial arrangement of the cardiac structures. This information may be utilized by the physicians to assist in the clinical management of these children.

  7. Magnetic resonance imaging characteristics of equine head disorders: 84 cases (2000-2013).

    PubMed

    Manso-Díaz, Gabriel; Dyson, Sue J; Dennis, Ruth; García-López, José M; Biggi, Marianna; García-Real, M Isabel; San Román, Fidel; Taeymans, Olivier

    2015-01-01

    The equine head is an anatomically complex area, therefore advanced tomographic imaging techniques, such as computed tomography or magnetic resonance imaging (MRI), are often required for diagnosis and treatment planning. The purpose of this multicenter retrospective study was to describe MRI characteristics for a large sample of horses with head disorders. Horses imaged over a period of 13 years were recruited. Eighty-four horses met the inclusion criteria, having neurological (n = 65), sinonasal (n = 14), and soft tissue (n = 5) disorders. Magnetic resonance imaging accurately depicted the anatomy and allowed identification of the primary lesion and associated changes. There were good correlations between MRI findings and intraoperative or postmortem results. Magnetic resonance imaging showed the exact localization of the lesions, their size, and relation to surrounding structures. However, in the neurological group, there were 45 horses with no MRI abnormalities, 29 of which had a history of recurrent seizures, related to cryptogenic epilepsy. Magnetic resonance imaging was otherwise a valuable diagnostic tool, and can be used for studying a broad range of head disorders using either low-field or high-field magnets. PMID:25139131

  8. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 0.02 for control strips to a maximum value of 0.31 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  9. Artifacts in magnetic resonance imaging from metals

    NASA Astrophysics Data System (ADS)

    Bennett, L. H.; Wang, P. S.; Donahue, M. J.

    1996-04-01

    Metallic biomedical implants, such as aneurysm clips, endoprostheses, and internal orthopedic devices give rise to artifacts in the magnetic resonance image (MRI) of patients. Such artifacts impair the information contained in the image in precisely the region of most interest, namely near the metallic device. Ferromagnetic materials are contraindicated because of the hazards associated with their movement during the MRI procedure. In less-magnetic metals, it has been suggested that the extent of the artifact is related to the magnetic susceptibility of the metal, but no systematic data appear to be available. When the susceptibility is sufficiently small, an additional artifact due to electrical conductivity is observed. We present an initial systematic study of MRI artifacts produced by two low susceptibility metals, titanium (relative permeability ?r?1.0002) and copper (?r?0.99998), including experimental, theoretical, and computer simulation results.

  10. Dissection of Retroesophageal Aortic Diverticulum and Descending Aorta in a Patient with Right Aortic Arch: Magnetic Resonance Demonstration

    SciTech Connect

    Ko, S.-F.; Ng, S.-H.; Fu, Morgan; Lo, P.-H.; Cheng, Y.-F.; Lee, T.-Y.

    1996-11-15

    An acute aortic dissection involved the retroesophageal aortic diverticulum (RAD) and descending thoracic aorta in a patient with right aortic arch. The RAD, which was separated into false and true lumens by an intimal flap-the classic diagnostic sign of aortic dissection-was overlooked on transesophageal echocardiography and computed tomography but was clearly depicted on magnetic resonance imaging (MRI). It was found that MRI can delineate the anatomy of a congenital arch anomaly complicated by great vessels disease.

  11. Magnetic resonance imaging (MRI): A review of genetic damage investigations.

    PubMed

    Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver

    2015-01-01

    Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. PMID:26041266

  12. Differentiation of radiation fibrosis from recurrent pulmonary neoplasm by magnetic resonance imaging

    SciTech Connect

    Glazer, H.S.; Levitt, R.G.; Lee, J.K.T.; Emami, B.; Gronemeyer, S.; Murphy, W.A.

    1984-10-01

    Recent reports have shown the value of magnetic resonance imaging (MRI) in demonstrating normal and abnormal mediastinal and hilar anatomy. The potential role of MRI in evaluating patients who have undergone prior chest irradiation for pulmonary neoplasm has not been emphasized. The MRI appearance of mediastinal fibrosis after treatment of a patient with Hodgkin disease has been illustrated. Although plain chest radiographs and CT can demonstrate radiation-induced changes within the thorax, it is often difficult to distinguish radiation fibrosis from residual tumor. The authors report a case in which MRI differentiated fibrosis from recurrent tumor, thus confirming both the conventional radiographic and CT suspicions of recurrent neoplasm.

  13. Sonography of Abdominal Wall Masses and Masslike Lesions: Correlation With Computed Tomography and Magnetic Resonance Imaging.

    PubMed

    Ahn, Sung Eun; Park, Seong Jin; Moon, Sung Kyoung; Lee, Dong Ho; Lim, Joo Won

    2016-01-01

    Sonography is usually regarded as a first-line imaging modality for masses and masslike lesions in the abdominal wall. A dynamic study focusing on a painful area or palpable mass and the possibility of ultrasound-guided aspiration or biopsy are the major advantages of sonography. On the other hand, cross-sectional imaging clearly shows anatomy of the abdominal wall; thereby, it is valuable for diagnosing and evaluating the extent of diseases. Cross-sectional imaging can help differentiate neoplastic lesions from non-neoplastic lesions. This pictorial essay focuses on sonographic findings of abdominal wall lesions compared with computed tomographic and magnetic resonance imaging findings. PMID:26657747

  14. Magnetic resonance imaging of primary intracranial tumors: a review

    SciTech Connect

    Holland, B.A.; Brant-Zawadzki, M.; Norman, D.; Newton, T.H.

    1985-02-01

    The experience in magnetic resonance (MR) imaging of primary intracranial neoplasia at University of California, San Francisco is reviewed. Seventy patients have been evaluated by MR and computerized tomography (CT). MR scans were performed using a multi-slice spin echo technique with a long pulse repetition time (TR = 2000 msec), and long echo sampling delay (TE = 56 msec). This method was most sensitive in differentiating normal gray and white matter and in detecting both cerebral edema and abnormal tissue with prolonged T/sub 2/ characteristics. More sensitive to slight alterations in normal tissue, MR may detect a focal lesion in cases in which CT shows only mass effect. Moreover, MR may demonstrate more thoroughly the extent of tumor infiltration and broaden the characterization of abnormal tissue. Posterior fossa and brainstem anatomy are invariably better depicted by MR. The major limitations of MR include its inability to detect foci of tumor calcification, demonstrate the severity of bone destruction, or reliably distinguish tumor nidus from surrounding edema.

  15. Heart valve disease: investigation by cardiovascular magnetic resonance.

    PubMed

    Myerson, Saul G

    2012-01-01

    Cardiovascular magnetic resonance (CMR) has become a valuable investigative tool in many areas of cardiac medicine. Its value in heart valve disease is less well appreciated however, particularly as echocardiography is a powerful and widely available technique in valve disease. This review highlights the added value that CMR can bring in valve disease, complementing echocardiography in many areas, but it has also become the first-line investigation in some, such as pulmonary valve disease and assessing the right ventricle. CMR has many advantages, including the ability to image in any plane, which allows full visualisation of valves and their inflow/outflow tracts, direct measurement of valve area (particularly for stenotic valves), and characterisation of the associated great vessel anatomy (e.g. the aortic root and arch in aortic valve disease). A particular strength is the ability to quantify flow, which allows accurate measurement of regurgitation, cardiac shunt volumes/ratios and differential flow volumes (e.g. left and right pulmonary arteries). Quantification of ventricular volumes and mass is vital for determining the impact of valve disease on the heart, and CMR is the 'Gold standard' for this. Limitations of the technique include partial volume effects due to image slice thickness, and a low ability to identify small, highly mobile objects (such as vegetations) due to the need to acquire images over several cardiac cycles. The review examines the advantages and disadvantages of each imaging aspect in detail, and considers how CMR can be used optimally for each valve lesion. PMID:22260363

  16. Magnetic resonance imaging and contrast enhancement. Scientific report

    SciTech Connect

    Swenberg, C.E.; Movius, E.G.

    1988-01-01

    Chapters II through VI of this report discuss: Relaxation of Nuclear Spins; Echo Techniques; Basic Imaging Pulse Sequences; Partial Saturation Recovery; Inversion Recovery; Spin Echo; Effects of Pulse Sequence on Image Contrast; Contrast Agents; Theoretical Aspects; Pharmacokinetics and Toxicity; and Physiological Rationale for Agent Selection. One of the major goals in all medical imaging techniques is to maximize one's ability to visualize and differentiate adjacent tissue regions in the body on the basis of differences in anatomy, physiology, or various pathological processes. Magnetic resonance (MR) imaging offers distinct advantages over conventional x-ray imaging because of the possibility of selecting specific pulse sequences that can differentiate adjacent structures on the basis of differences in proton density, T/sub 1/ or T/sub 2/ relaxation rates, or flow. As a result of applying these various pulse sequences, numerous images have been obtained of the brain and other organs that demonstrate considerably more-detailed anatomical structure than had previously been available with computerized tomography, ultrasound, or nuclear medicine techniques. In some situations it is clearly superior, such as in the diagnosis of multiple sclerosis.

  17. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  18. Magnetic resonance imaging of live freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Michael, Holliman F.; Davis, D.; Bogan, A.E.; Kwak, T.J.; Gregory, Cope W.; Levine, J.F.

    2008-01-01

    We examined the soft tissues of live freshwater mussels, Eastern elliptio Elliptio complanata, via magnetic resonance imaging (MRI), acquiring data with a widely available human whole-body MRI system. Anatomical features depicted in the profile images included the foot, stomach, intestine, anterior and posterior adductor muscles, and pericardial cavity. Noteworthy observations on soft tissue morphology included a concentration of lipids at the most posterior aspect of the foot, the presence of hemolymph-filled fissures in the posterior adductor muscle, the presence of a relatively large hemolymph-filled sinus adjacent to the posterior adductor muscle (at the ventral-anterior aspect), and segmentation of the intestine (a diagnostic description not reported previously in Unionidae). Relatively little is known about the basic biology and ecological physiology of freshwater mussels. Traditional approaches for studying anatomy and tissue processes, and for measuring sub-lethal physiological stress, are destructive or invasive. Our study, the first to evaluate freshwater mussel soft tissues by MRI, clarifies the body plan of unionid mussels and demonstrates the efficacy of this technology for in vivo evaluation of the structure, function, and integrity of mussel soft tissues. ?? 2008, The American Microscopical Society, Inc.

  19. Multiplane magnetic resonance imaging of the heart and major vessels: studies in normal volunteers

    SciTech Connect

    Higgins, C.B.; Stark, D.; McNamara, M.; Lanzer, P.; Crooks, L.E.; Kaufman, L.

    1984-04-01

    The feasibility of magnetic resonance imaging for defining anatomy of internal cardiac structures and major blood vessels was assessed in 14 normal subjects. Both electrocardiogram-gated and standard spin-echo images were obtained. Gated images provided better visualization of internal cardiac morphology and of upper mediastinal vessels than did nongated images. Trabecular detail and components of the mitral valve could be resolved. All segments of the left ventricular wall could be evaluated by combining axial, coronal, and sagittal images. Gated acquisition of magnetic resonance images did not increase imaging time; five transverse slices of the left ventricle were obtained in 6.0-8.5 min. The good image quality, ease of gated acquisition, large field of view, capability of direct imaging in multiple planes, and noninvasiveness of the technique suggest that it will be an important imaging method in cardiovascular disease.

  20. Electron Spin Magnetic Resonance Force Microscopy of Nitroxide Spin Labels

    NASA Astrophysics Data System (ADS)

    Moore, Eric W.; Lee, Sanggap; Hickman, Steven A.; Wright, Sarah J.; Marohn, John A.

    2009-03-01

    Nitroxide spin labels are widely used in electron spin resonance studies of biological and polymeric systems. Magnetic resonance force microscopy (MRFM) is a magnetic resonance technique that couples the high spatial resolution of a scanning probe microscope with the species selectivity of magnetic resonance. We report on our investigations of 4-amino TEMPO, a nitroxide spin label, by force-gradient MRFM. Our microscope operates at high vacuum in liquid helium, using a custom fabricated ultra-soft silicon cantilever in the magnet-on-cantilever geometry. An 18 GHz gap coupled microstripline resonator supplies the transverse field.

  1. Portal biliopathy, magnetic resonance imaging and magnetic resonance cholangiopancreatography findings: a case series

    PubMed Central

    Baskan, Ozdil; Erol, Cengiz; Sahingoz, Yusuf

    2016-01-01

    Portal biliopathy (PB) is a rare disorder, characterized by biliary ductal and gallbladder wall abnormalities seen in patients with portal hypertension. It most commonly occurs due to idiopathic extrahepatic portal vein obstruction (EHPVO). The abnormalities consist mainly of bile duct compression, stenoses, fibrotic strictures and dilation of both extrahepatic and intrahepatic bile ducts, as well as gallbladder varices. PB may mimic cholangiocarcinoma, sclerosing cholangitis, or choledocholithiasis. Misdiagnosis can be avoided using appropriate imaging modalities to prevent complications. We present the magnetic resonance imaging (MRI) and magnetic resonance cholangiography (MRCP) features of three patients with PB. PMID:25216728

  2. Measurement of AC magnetic field distribution using magnetic resonance imaging.

    PubMed

    Ider, Y Z; Muftuler, L T

    1997-10-01

    Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single tone broadband frequency modulated (FM) waveform with the ac magnetic field strength determining the modulation index. An algorithm is developed to calculate the ac magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate ac magnetic field distribution within a conducting sample that is placed in an MRI system. PMID:9368117

  3. Schumann resonances in magnetic field components

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin

    1995-04-01

    The Institut fuer Geophysik Goettingen has facilities to record the time varying magnetic components H and D at extremely low frequencies (ELF) (0.1-20 Hz) continuously over several days, with a sampling rate of 100 Hz. The lower ELF-range is characterized by anthropogenic noise and the first two Schumann resonance modes of the Earth-ionosphere cavity. The local observations near Goettingen are disturbed by thunderstorms during the summer that contribute a small part of the energy to the global thunderstorm activity. Transient natural signals with amplitudes of about 10 pT are superimposed on a continuous noise level of about 1 pT; both exhibit the Schumann resonance periodicities. The signals show a tendency to repeat after about 2 s which may suggest excitation by whistler-trains. The Schumann resonances are investigated by an analysis of the autocovariance matrix yielding a robust estimation of the amplitude, damping and frequency. All these parameters show a characteristic directional dependence and variability during the day. The amplitudes represent the excitation with different source locations of thunderstorm activity around the world, generating a dipole field within the resonator, while the damping and centre-frequency are related to solar activity coupling to the lower ionosphere.

  4. Functional magnetic resonance imaging in nursing research.

    PubMed

    Johnson, L Clark; Richards, Todd L; Archbold, Kristen H; Landis, Carol A

    2006-07-01

    Functional magnetic resonance imaging (fMRI) is a powerful noninvasive neuroimaging technique nurse scientists can use to investigate the structure and cognitive capacities of the brain. A strong magnetic field and intermittent high-frequency pulses cause protons in body tissues to release energy, which can be recorded and processed into images that are sensitive to specific tissue characteristics. Although temporal and spatial resolution constraints define an upper limit to the precision of magnetic resonance (MR) scanners, the primary index of neuronal activity, hemodynamic response, can be efficiently estimated. Characteristics of the experimental environment, the hypothesis of interest, and the physiology of the cognitive process under investigation provide guidance for the design and limit available options. The processing of functional data to remove unwanted variability is briefly described as are the techniques used to estimate statistical effects and control for the rate of false positives in the results. A detailed applied example of nursing research is included to demonstrate the practical application of the theory, methods, and techniques being discussed. A glossary of key terms is also provided. PMID:16766628

  5. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strzik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  6. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  7. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis

    PubMed Central

    Sajja, Balasrinivasa R.; Wolinsky, Jerry S.

    2008-01-01

    Synopsis Proton magnetic resonance spectroscopy (1H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathological changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understanding its pathogenesis, evaluating the disease severity, establishing a prognosis, and objectively evaluating the efficacy of therapeutic interventions. PMID:19064199

  8. Clinical Applications of Magnetic Resonance Imaging

    PubMed Central

    Kumar, Alka; Montanera, Walter; Terbrugge, Karel G.; Willinsky, Robert; Fenton, Paul V.

    1992-01-01

    Magnetic resonance imaging (MRI) is a relatively new diagnostic imaging technique that has substantially affected the diagnosis of a multitude of diseases. It has become the imaging modality of choice for a number of pathologic processes, especially in the central nervous system. The authors discuss the clinical applications of MRI, its current status in radiologic investigations, and radiographic features of some of the common diseases of the central nervous system. ImagesFigure 1Figures 2-3Figure 4Figures 5-6Figure 7Figure 8Figure 9Figure 10Figure 11Figures 12-13 PMID:21229123

  9. Basic principles of magnetic resonance imaging.

    PubMed

    McGowan, Joseph C

    2008-11-01

    Magnetic resonance (MR) imaging has become the dominant clinical imaging modality with widespread, primarily noninvasive, applicability throughout the body and across many disease processes. The flexibility of MR imaging enables the development of purpose-built optimized applications. Concurrent developments in digital image processing, microprocessor power, storage, and computer-aided design have spurred and enabled further growth in capability. Although MR imaging may be viewed as "mature" in some respects, the field is rich with new proposals and applications that hold great promise for future research health care uses. This article delineates the basic principles of MR imaging and illuminates specific applications. PMID:19068405

  10. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  11. Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

    PubMed Central

    Horton, Jonathan C.; Miller, Steven

    2015-01-01

    Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation, in addition to infection of the conjunctival surface. PMID:26022084

  12. Cardiac magnetic resonance assessment of takotsubo cardiomyopathy.

    PubMed

    Abbas, A; Sonnex, E; Pereira, R S; Coulden, R A

    2016-01-01

    Takotsubo cardiomyopathy is an important condition that can be difficult to differentiate from acute coronary syndrome on the basis of clinical, electrocardiogram, and cardiac enzyme assessment alone. Although coronary angiography remains important in the acute assessment of patients with suspected takotsubo cardiomyopathy, cardiac magnetic resonance (CMR) has emerged over the last decade as an important non-invasive imaging tool in the diagnosis and follow-up of this condition. We present a review highlighting the CMR features of takotsubo cardiomyopathy and its complications with particular focus on differentiating this condition from acute myocardial infarction and myocarditis. PMID:26607916

  13. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eyes propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  14. [Magnetic resonance imaging of brain neoplasms].

    PubMed

    Tiutin, L A; Ze?dlits, V N; Pozdniakova, O F; Rokhlin, G D

    1993-01-01

    Magnetic resonance (MR) study of the brain using a low-field imager (0.04 T) was carried out in 1035 patients with suspected brain tumors which were detected and confirmed in 593 cases. The most frequent findings were neuroepithelial tumors, meningiomas, hypophyseal adenomas, and various metastatis lesions. MR features of various types were analyzed. Low-field MR imaging helps detect tumors even of smaller size, localize them, determine their dissemination and the status of the adjacent tissues, thus providing (similarly as high- and middle-field MR imaging) valuable diagnostic information. PMID:7801575

  15. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement. PMID:16924169

  16. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  17. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the

  18. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  19. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  20. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blmich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  1. Three-Magnet Arrays for Unilateral Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Garcia Naranjo, Juan Carlos

    Unilateral Magnetic Resonance (UMR) has become, in different research areas, a powerful tool to interrogate samples of arbitrary size. The three-magnet array developed by the MRI Centre of the University of New Brunswick has features that make it a simple and robust approach for UMR. This thesis introduces a group of solutions to broaden the range of application of this design. Practical applications for non-destructive testing and reservoir core plug characterization are presented. We have shown that it is also possible to monitor the curing process of an epoxy/polyamidoamine system by employing a three-magnet array. A new version of the three-magnet array which features extended constant magnetic field gradients is also introduced. Constant gradients of more than 3 cm extent can be achieved in a very simple, compact and safe design. The application of the three-magnet array in combination with a solenoid as the RF probe for analysis of long core plugs has been presented. Core plugs of different diameter can be analyzed by simply changing the diameter of the RF probe employed for the measurement. Results of an initial survey of selective excitation in UMR are presented. The low SNR and inhomogeneities in the selective spot reduce the effectiveness of selective excitation for UMR.

  2. Browsing Software of the Visible Korean Data Used for Teaching Sectional Anatomy

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Chung, Min Suk; Park, Hyo Seok; Park, Jin Seo; Hwang, Sung Bae

    2011-01-01

    The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and

  3. The Functional Anatomy of Inspection Time: A Pilot fMRI Study.

    ERIC Educational Resources Information Center

    Deary, Ian J.; Simonotto, Enrico; Marshall, Alan; Marshall, Ian; Goddard, Nigel; Wardlaw, Joanna M.

    2001-01-01

    Studied the functional anatomy of inspection time (IT) through functional magnetic resonance imaging of the brain while seven healthy adults performed an IT task. Pilot data encourage further studies of the functional anatomy of inspection time and its relation to psychometric intelligence. (SLD)

  4. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  5. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    PubMed Central

    Braggion-Santos, Maria Fernanda; Koenigkam-Santos, Marcel; Teixeira, Sara Reis; Volpe, Gustavo Jardim; Trad, Henrique Simão; Schmidt, André

    2013-01-01

    Background Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. Objective To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Methods Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Results Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). Conclusion CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility. PMID:23887734

  6. Magnetic Resonance Imaging in Pediatric Pulmonary Hypertension

    PubMed Central

    Olgunturk, Rana; Cevik, Ayhan; Terlemez, Semiha; Kacar, Emre; Oner, Yusuf Ali

    2015-01-01

    The present study aims to determine the efficacy and reliability of cardiovascular magnetic resonance imaging in establishing the diagnosis and prognosis of pulmonary hypertension in children. This is a retrospective comparison of 25 children with pulmonary hypertension and a control group comprising 19 healthy children. The diagnosis of pulmonary hypertension was made when the mean pulmonary artery pressure was ?25 mmHg by catheter angiography. The children with pulmonary hypertension had significantly lower body mass indices than did the healthy children (P=0.048). In addition, the children with pulmonary hypertension had significantly larger main pulmonary artery diameters and ascending aortic diameters (both P=0.001) but statistically similar ratios of main pulmonary artery diameter-to-ascending aortic diameter. If the main pulmonary artery diameter was ?25 mm, pediatric pulmonary hypertension was diagnosed with 72% sensitivity and 84% specificity. In the event that the ratio of main pulmonary artery diameter-to-ascending aorta diameter was ?1, pediatric pulmonary hypertension was diagnosed with 60% sensitivity and 53% specificity. When compared with children who had New York Heart Association functional class II pulmonary hypertension, the children with functional class III pulmonary hypertension had significantly larger main (P=0.046), right (P=0.036), and left (P=0.003) pulmonary arteries. Cardiovascular magnetic resonance imaging is useful in the diagnosis of children with pulmonary hypertension. Pediatric pulmonary hypertension can be diagnosed with high sensitivity and specificity when the main pulmonary artery diameter measures ?25 mm. PMID:26175631

  7. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  8. Magnetic resonance imaging in cirrhosis: what's new?

    PubMed

    Barr, Daniel C; Hussain, Hero K

    2014-04-01

    Cirrhosis is the main risk factor for the development of hepatocellular carcinoma (HCC). The major causative factors of cirrhosis in the United States and Europe are chronic hepatitis C infection and excessive alcohol consumption with nonalcoholic steatohepatitis emerging as another important risk factor. Magnetic resonance imaging is the most sensitive imaging technique for the diagnosis of HCC, and the sensitivity can be further improved with the use of diffusion-weighted imaging and hepatocyte-specific contrast agents. The combination of arterial phase hyperenhancement, venous or delayed phase hypointensity "washout feature," and capsular enhancement are features highly specific for HCC with reported specificities of 96% and higher. When these features are present in a mass in the cirrhotic liver, confirmatory biopsy to establish the diagnosis of HCC is not necessary. Other tumors, such as cholangiocarcinoma, sometimes occur in the cirrhotic at a much lower rate than HCC and can mimic HCC, as do other benign lesions such as perfusion abnormalities. In this article, we discuss the imaging features of cirrhosis and HCC, the role of magnetic resonance imaging in the diagnosis of HCC and other benign and malignant lesions that occur in the cirrhotic liver, and the issue of nonspecific arterially hyperenhancing nodules often seen in cirrhosis. PMID:24690617

  9. Metabolic Tumor Imaging Using Magnetic Resonance Spectroscopy

    PubMed Central

    Glunde, Kristine; Bhujwalla, Zaver M.

    2011-01-01

    The adaptability and the genomic plasticity of cancer cells, and the interaction between the tumor microenvironment and co-opted stromal cells, coupled with the ability of cancer cells to colonize distant organs, contribute to the frequent intractability of cancer. It is becoming increasingly evident that personalized molecular targeting is necessary for the successful treatment of this multifaceted and complex disease. Noninvasive imaging modalities such as magnetic resonance (MR), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are filling several important niches in this era of targeted molecular medicine, in applications that span from bench to bedside. In this review we focus on noninvasive magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) and their roles in future personalized medicine in cancer. Diagnosis, the identification of the most effective treatment, monitoring treatment delivery, and response to treatment are some of the broad areas into which MRS techniques can be integrated to improve treatment outcomes. The development of novel probes for molecular imagingin combination with a slew of functional imaging capabilitiesmakes MRS techniques, especially in combination with other imaging modalities, valuable in cancer drug discovery and basic cancer research. PMID:21362514

  10. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  11. [Magnetic resonance imaging in thoracic diseases].

    PubMed

    Nors, J M; Monsegu, M H; Bergal, S; Ameille, J; Rmy, J M; Lacrosnire, L

    1994-10-01

    Most all the thoracic structures are visible with magnetic resonance imaging: the mediastin, the myocardium including the endocardium and the pericardium, the pulmonary parenchyma and hile and the pleural walls. In cases of mediastrinal masses, T1 images clearly delimit their relations with neighbouring organs and vessels. The intensity of the signal is compared with that of the muscles on T1 weighted images of the preceding sections and T2 weighted images of fat. Images of aneurysms and chronic dissections can be synchronized with the ECG allowing three-dimensional measurement of the size and thickness of the vessel walls. Thrombi or extension to other vessels can also be recognized. Small hilar tumours can be differentiated from vessels but the scanner is better for analyzing systematization and bronchial lesions. For lung tissue itself, magnetic resonance imaging can detect nodules greater than one centimeter in diameter, but the low proton density and respiratory movements hinder spatial resolution. MRI is indicated for localizing tumours situated anteriorly or posteriorly or at the apex and to identify parietal extension of peripheral cancers. Spinal, vascular, pericardial, diaphragmatic and lymph node metastases can be recognized. MRI is the noninvasive method of choice for evaluating left ventricular masse, intra and paracardiac mass studies and for investigating congenital and acquired cardiomyopathies. Technical advances have made it possible to evaluate myocardial perfusion and heart function. PMID:7984543

  12. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Clia S; Tth, va

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T1 agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T1 and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters. PMID:26931225

  13. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  14. Micromagnetic Modeling of Ferromagnetic Resonance in Nonuniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pelekhov, D. V.; Martin, I.; Obukhov, Yu.; Kim, J.; Nazaretski, E.; Mewes, T.; Wigen, P. E.; Movshovich, R.; Hammel, P. C.

    2007-03-01

    We compare micromagnetic modeling of Ferromagnetic Resonance (FMR) excitations in thin ferromagnetic samples in the presence of a nonuniform magnetic field to our FMR data obtained with Magnetic Resonance Force Microscopy (MRFM). MRFM is a novel scanned probe technique based on mechanical detection of magnetic resonance. Its extreme sensitivity originates partially from the high magnetic field gradient of the MRFM probe micromagnet. The presence of the high field gradient imposes unusual conditions on the FMR resonance in the sample under investigation. We will discuss their manifestations in both simulations and experimental data.

  15. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna ports--giving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cat's eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0 T, and consequently a Larmor frequency of 128 MHz, the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.

  16. Reciprocity and gyrotropism in magnetic resonance transduction

    NASA Astrophysics Data System (ADS)

    Tropp, James

    2006-12-01

    We give formulas for transduction in magnetic resonancei.e., the appearance of an emf due to Larmor precession of spinsbased upon the modified Lorentz reciprocity principle for gyrotropic (also called nonreciprocal) media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e., (H1xiH1y) , where, e.g., for a single transceive antenna, the H s are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna portsgiving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cats eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0T , and consequently a Larmor frequency of 128MHz , the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.

  17. Optimal design of a self shielded magnetic resonance imaging magnet

    NASA Astrophysics Data System (ADS)

    Souza, M.; Vidigal, C.; Taquin, J.; Sauzade, M.

    1993-11-01

    This paper describes an optimal design of a highly homogeneous resistive coil system for Magnetic Resonance Imaging (MRI). Magnetic material is used to improve field uniformity at the central region and to shield the magnet. The influence of magnetic material is calculated by using a code based on the solution of scalar and vector potentials equations. The obtained result is an axisymmetric coil configuration enveloped by iron whose optimization was made by fixing one of the criteria: the weak stray field near the magnet. It presents a great accessibility to the homogeneous area and satisfies the bore's required dimensions. Dimensions and field charts are given. Cet article prsente une configuration optimale d'un aimant rsistif trs homogne pour I.R.M. Un matriau magntique permet la fois de parfaire l'homognit au centre et de raliser le blindage de l'ensemble. les calculs ont t effectus l'aide d'un code utilisant les notions de potentiels scalaire et vecteur. Le rsultat obtenu concerne un systme de rvolution avec des cylindres de fer entourant les bobines. Conu pour un imageur corps entier, il prsente une grande accessibilit du fait de son faible encombrement en longueur. Les dimensions des diffrents lments et les cartes de champs sont prsentes.

  18. Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal

    PubMed Central

    Schultz, Willibrord Weijmar; van Andel, Pek; Sabelis, Ida; Mooyaart, Eduard

    1999-01-01

    Objective To find out whether taking images of the male and female genitals during coitus is feasible and to find out whether former and current ideas about the anatomy during sexual intercourse and during female sexual arousal are based on assumptions or on facts. Design Observational study. Setting University hospital in the Netherlands. Methods Magnetic resonance imaging was used to study the female sexual response and the male and female genitals during coitus. Thirteen experiments were performed with eight couples and three single women. Results The images obtained showed that during intercourse in the missionary position the penis has the shape of a boomerang and 1/3 of its length consists of the root of the penis. During female sexual arousal without intercourse the uterus was raised and the anterior vaginal wall lengthened. The size of the uterus did not increase during sexual arousal. Conclusion Taking magnetic resonance images of the male and female genitals during coitus is feasible and contributes to understanding of anatomy. PMID:10600954

  19. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  20. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 ?Pa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imagers permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  1. Magnetic Resonance Imaging Methods in Soil Science

    NASA Astrophysics Data System (ADS)

    Pohlmeier, A.; van Dusschoten, D.; Blmler, P.

    2009-04-01

    Magnetic Resonance Imaging (MRI) is a powerful technique to study water content, dynamics and transport in natural porous media. However, MRI systems and protocols have been developed mainly for medical purposes, i.e. for media with comparably high water contents and long relaxation times. In contrast, natural porous media like soils and rocks are characterized by much lower water contents, typically 0 < theta < 0.4, and much faster T1 and T2 relaxation times. So, the usage of standard medical scanners and protocols is of limited benefit. Three strategies can be applied for the monitoring of water contents and dynamics in natural porous media: i) Dedicated high-field scanners (with vertical bore) allowing stronger gradients and faster switching so that shorter echo times can be realized. ii) Special measurement sequences using ultrashort rf- and gradient-pulses like single point imaging derivates (SPI, SPRITE)(1) and multi-echo methods, which monitor series of echoes and allow for extrapolation to zero time(2). Hence, the loss of signal during the first echo period may be compensated to determine the initial magnetization (= water content) as well as relaxation time maps simultaneously. iii) Finally low field( < 1T) scanners also provide longer echo times and hence detect larger fractions of water, since the T2 relaxation time of water in most porous media increases with decreasing magnetic field strength(3). In the presentation examples for all three strategies will be given. References 1) Pohlmeier et al. Vadose Zone J. 7, 1010-1017 (2008) 2) Edzes et al., Magn. Res. Imag. 16, 185-196 (1998) 3) Raich H, and Blmler P, Concepts in Magn. Reson. B 23B, 16-25 (2004) 4) Pohlmeier et al. Magn. Res. Imag. doi:10.1016/j.mri.2008.06.007 (2008)

  2. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The second additional topic is the construction of iterative schemes for narrowband population inversion. The use of sequences that invert spin populations only over a narrow range of rf field amplitudes to spatially localize NMR signals in an rf field gradient is discussed.

  3. Comparative anatomy of dipole magnets or the magnet designer's coloring book

    SciTech Connect

    Meuser, R.B.

    1983-04-01

    A collection of dipole magnet cross sections is presented together with an indication of how they are related geometrically. The relationships indicated do not necessarily imply the actual path of evolutionary development. Brief consideration is given to magnets of higher multipole order, i.e., quadrupole magnets, etc.). The magnets under consideration have currents parallel to the axis except at the ends, and are long. The relationship between current distribution and magnetic field is essentially two-dimensional. The coils are usually surrounded by an iron yoke, but the emphasis is on conductor-dominated configurations capable of producing a rather uniform magnetic field in the aperture; the iron usually has a small effect.

  4. Large kinetic inductance microwave resonators in magnetic field

    NASA Astrophysics Data System (ADS)

    Weides, Martin; Mayer, Philipp; Song, Fengbin; Probst, Sebastian; Rotzinger, Hannes; Ustinov, Alexey

    2013-03-01

    Superconducting resonators of high quality factors are of great interest for photon detection and quantum computation. Conventionally, they operate in or close to the magnetic vacuum. However, for some circuits -for instance resonators coupled to spin ensemble crystals or Majorana fermions- the magnetic field is not negligible and the resonator's field robustness has to be well engineered. The magnetic field dependencies of resonance frequency and quality factor are of considerable interest to improve resonant quantum devices. In this presentation we will discuss thin film titanium nitride resonators operating in a homogeneous magnetic field. Titanium nitride has remarkably high internal microwave quality factors down to single photon levels, and a significant kinetic inductance contribution for thin film resonators. The microwave scattering data of frequency multiplexed resonators was taken in a Helium-3 refrigerator over a large range of photon number levels, temperatures, and magnetic fields. The resonators exhibit strong magnetic hysteresis effects in frequency and quality factor. The magnetic memory -caused by a spatial distribution of trapped vortices- is related to the resonator geometry.

  5. Functional magnetic resonance imaging using RASER

    PubMed Central

    Goerke, Ute; Garwood, Michael; Ugurbil, Kamil

    2010-01-01

    Although functional imaging of neuronal activity by magnetic resonance imaging (fMRI) has become the primary methodology employed in studying the brain, significant portions of the brain are inaccessible by this methodology due to its sensitivity to macroscopic magnetic field inhomogeneities induced near air filled cavities in the head. In this paper, we demonstrate that this sensitivity is eliminated by a novel pulse sequence, RASER (rapid acquisition by sequential excitation and refocusing) (Chamberlain et al., 2007), that can generate functional maps. This is accomplished because RASER acquired signals are purely and perfectly T2 weighted, without any T2*-effects that are inherent in the other image acquisition schemes employed to date. T2-weighted fMRI sequences are also more specific to the site of neuronal activity at ultrahigh magnetic fields than T2*-variations since they are dominated by signal components originating from the tissue in the capillary bed. The RASER based fMRI response is quantified; it is shown to have inherently less noisy time series and to provide fMRI in brain regions, such as the orbitofrontal cortex, which are challenging to image with conventional techniques. PMID:20699123

  6. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Osipov, V. Yu; Boudou, J. P.; Panich, A. M.; von Bardeleben, H. J.; Treussart, F.; Vul', A. Ya

    2015-04-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150??m contain ~5? ?1018?spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp3 C-C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense forbidden g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (~5? ?1017?spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV-). This is supported by EPR observations of the allowed transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (?100?nm), the relative abundance of EPR active NV- defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size <20?nm), which are contained in the dried supernatant of ultracentrifuged aqueous dispersion of FNDs, the NV- content is found to be reduced by one order of magnitude whereas the singlet defects content increases up to ~2? ?1019?spins/g. In addition, another triplet-type defect, which is characterized by the g = 4.00 forbidden line, appears. On reduction of the particle size below the 20?nm limit, the allowed EPR lines become practically unobservable, whereas the forbidden lines remain as a reliable fingerprint of the presence of NV- centers in small ND systems. The same size reduction causes the disappearance of the characteristic hyperfine satellites in the spectra of the P1 centers. We discuss the mechanisms that cause both the strong reduction of the peak intensity of the allowed lines in EPR spectra of triplet defects and the transformation of the P1 spectra.

  7. Human tooth and root canal morphology reconstruction using magnetic resonance imaging

    PubMed Central

    DRĂGAN, OANA CARMEN; FĂRCĂŞANU, ALEXANDRU ŞTEFAN; CÂMPIAN, RADU SEPTIMIU; TURCU, ROMULUS VALERIU FLAVIU

    2016-01-01

    Background and aims Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. Methods The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. Results The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Conclusions Magnetic resonance imaging offers 3D image datasets with more information than the conventional radiographic techniques. Due to its ability of imaging both hard and soft dental tissues, magnetic resonance imaging can be successfully used as a 3D diagnostic imaging technique in dentistry. When choosing the imaging method, dental clinicians should weight the benefit-risk ratio, taking into account the costs associated to magnetic resonance imaging and the harmful effects of ionizing radiations when cone beam computed tomography or conventional x-ray are used. PMID:27004037

  8. Correction of Proton Resonance Frequency Shift Temperature Maps for Magnetic Field Disturbances Caused by Breathing

    NASA Astrophysics Data System (ADS)

    Shmatukha, Andriy V.; Bakker, Chris J. G.

    2006-05-01

    Respiratory Induced Resonance Offset (RIRO) is a periodic disturbance of the magnetic field due to breathing. Such disturbances handicap the accuracy of the Proton Resonance Frequency Shift (PRFS) method of MRI temperature mapping in anatomies situated nearby the lungs and chest wall. In this work, we propose a method capable of minimizing errors caused by RIRO in PRFS temperature maps. In this method, a set of baseline images characterizing RIRO at a variety of respiratory cycle instants is acquired before the thermal treatment starts. During the treatment, the temperature evolution is found from two successive images. Then, the calculated temperature changes are corrected for the additional contribution caused by RIRO using the pre-treatment baseline images acquired at the identical instances of the respiratory cycle. Our method is shown to improve the accuracy and stability of PRFS temperature maps in the presence of RIRO and motion in phantom and volunteer experiments.

  9. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  10. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    PubMed Central

    Petriz, João Luiz Fernandes; Gomes, Bruno Ferraz de Oliveira; Rua, Braulio Santos; Azevedo, Clério Francisco; Hadlich, Marcelo Souza; Mussi, Henrique Thadeu Periard; Taets, Gunnar de Cunto; do Nascimento, Emília Matos; Pereira, Basílio de Bragança; e Silva, Nelson Albuquerque de Souza

    2015-01-01

    Background Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). Conclusion The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death. PMID:25424161

  11. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  12. Chest magnetic resonance imaging: a protocol suggestion.

    PubMed

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza, Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira E

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  13. Musculoskeletal applications of nuclear magnetic resonance

    SciTech Connect

    Moon, K.L. Jr.; Genant, H.K.; Helms, C.A.; Chafetz, N.I.; Crooks, L.E.; Kaufman, L.

    1983-04-01

    Thirty healthy subjects and 15 patients with a variety of musculoskeletal disorders were examined by conventional radiography, computed tomography (CT), and nuclear magnetic resonance (NMR). NMR proved capable of demonstrating important anatomic structures in the region of the lumbosacral spine. Lumbar disk protrusion was demonstrated in three patients with CT evidence of the disease. NMR appeared to differentiate annulus fibrosus from nucleus pulposus in intervertebral disk material. Avascular necrosis of the femoral head was demonstrated in two patients. The cruciate ligaments of the knee were well defined by NMR. Musceles, tendons and ligaments, and blood vessels could be reliably differentiated, and the excellent soft-tissue contrast of NMR proved useful in the evaluation of bony and soft-tissue tumors. NMR holds promise in the evaluation of musculoskeletal disorders.

  14. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. PMID:26614130

  15. [Modern magnetic resonance imaging of the liver].

    PubMed

    Hedderich, D M; Weiss, K; Maintz, D; Persigehl, T

    2015-12-01

    Magnetic resonance imaging (MRI) of the liver has become an essential tool in the radiological diagnostics of both focal and diffuse diseases of the liver and is subject to constant change due to technological progress. Recently, important improvements could be achieved by innovations regarding MR hardware, sequences and postprocessing methods. The diagnostic spectrum of MRI could be broadened particularly due to new examination sequences, while at the same time scanning time could be shortened and image quality has been improved. The aim of this article is to explain both the technological background and the clinical application of recent MR sequence developments and to present the scope of a modern MRI protocol for the liver. PMID:26628259

  16. Myocardial tissue characterization with magnetic resonance imaging.

    PubMed

    Sharma, Vishal; Binukrishnan, Sukumaran; Schoepf, U Joseph; Ruzsics, Balazs

    2014-11-01

    The availability of an accurate, noninvasive method using cardiac magnetic resonance imaging (MRI) to distinguish microscopic myocardial tissue changes at a macroscopic scale is well established. High-resolution in vivo monitoring of different pathologic tissue changes in the heart is a useful clinical tool for assessing the nature and extent of cardiac pathology. Cardiac MRI utilizes myocardial signal characteristics based on relaxation parameters such as T1, T2, and T2 star values. Identifying changes in relaxation time enables the detection of distinctive myocardial diseases such as cardiomyopathies and ischemic myocardial injury. The presented state-of-the-art review paper serves the purpose of introducing and summarizing MRI capability of tissue characterization in present clinical practice. PMID:24394716

  17. Super- QDetection of Transient Magnetic Resonance Signals

    NASA Astrophysics Data System (ADS)

    Suits, B. H.; Garroway, A. N.; Miller, J. B.

    1998-05-01

    The signal-to-noise ratio (SNR) improvements with increasing detection coil quality factor,Q, are examined for the detection of known magnetic resonance signals in noise. It is found that in the absence of amplifier noise, SNR continues to increase with increasingQeven in the "super-Q" limit, when the bandwidth of the tuned detection circuit is smaller than that of the signal to be detected. In the super-Qlimit, the maximum obtainable SNR is thus limited by noise from the amplifiers in the system. This contrasts with typical NMR measurements where the ultimate SNR is limited by thermal noise from the detection circuit. Explicit expressions are derived and are compared to experiments performed using electronically simulated spin echo signals.

  18. Magnetic resonance imaging of placenta accreta.

    PubMed

    Varghese, Binoj; Singh, Navdeep; George, Regi A N; Gilvaz, Sareena

    2013-10-01

    Placenta accreta (PA) is a severe pregnancy complication which occurs when the chorionic villi (CV) invade the myometrium abnormally. Optimal management requires accurate prenatal diagnosis. Ultrasonography (USG) and magnetic resonance imaging (MRI) are the modalities for prenatal diagnosis of PA, although USG remains the primary investigation of choice. MRI is a complementary technique and reserved for further characterization when USG is inconclusive or incomplete. Breath-hold T2-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and balanced steady-state free precession imaging in the three orthogonal planes is the key MRI technique. Markedly heterogeneous placenta, thick intraplacental dark bands on half-Fourier acquisition single-shot turbo spin-echo (HASTE), and disorganized abnormal intraplacental vascularity are the cardinal MRI features of PA. MRI is less reliable in differentiating between different degrees of placental invasion, especially between accreta vera and increta. PMID:24604945

  19. Magnetic resonance imaging of placenta accreta

    PubMed Central

    Varghese, Binoj; Singh, Navdeep; George, Regi A.N; Gilvaz, Sareena

    2013-01-01

    Placenta accreta (PA) is a severe pregnancy complication which occurs when the chorionic villi (CV) invade the myometrium abnormally. Optimal management requires accurate prenatal diagnosis. Ultrasonography (USG) and magnetic resonance imaging (MRI) are the modalities for prenatal diagnosis of PA, although USG remains the primary investigation of choice. MRI is a complementary technique and reserved for further characterization when USG is inconclusive or incomplete. Breath-hold T2-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and balanced steady-state free precession imaging in the three orthogonal planes is the key MRI technique. Markedly heterogeneous placenta, thick intraplacental dark bands on half-Fourier acquisition single-shot turbo spin-echo (HASTE), and disorganized abnormal intraplacental vascularity are the cardinal MRI features of PA. MRI is less reliable in differentiating between different degrees of placental invasion, especially between accreta vera and increta. PMID:24604945

  20. Magnetic Resonance Elastography of the Brain

    PubMed Central

    Kruse, Scott A.; Rose, Gregory H.; Glaser, Kevin J.; Manduca, Armando; Felmlee, Joel P.; Jack, Clifford R.; Ehman, Richard L.

    2008-01-01

    The purpose of this study was to obtain normative data using magnetic resonance elastography (MRE) to: [a] obtain estimates of the shear modulus of human cerebral tissue in vivo, and [b] assess a possible age dependence of the shear modulus of cerebral tissue in healthy adult volunteers. MR elastography studies were performed on tissue-simulating gelatin phantoms and 25 healthy adult volunteers. The data were analyzed using spatio-temporal filters and a local frequency estimating algorithm. Statistical analysis was performed using a paired t-test. The mean shear stiffness of cerebral white matter was 13.6 kPa (95% CI 12.3 to 14.8 kPa); while that of gray matter was lower at 5.22 kPa (95% CI 4.76 to 5.66 kPa). The difference was statistically significant (p < 0.0001). PMID:17913514

  1. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  2. Nuclear magnetic resonance parameters of water hexamers.

    PubMed

    Bilalbegovi?, G

    2010-01-21

    Nuclear magnetic resonance (1)H, (16)O, and (17)O chemical shifts, as well as (17)O quadrupolar parameters in several isomers of water hexamer clusters, are studied using density functional theory calculations and the gauge including projector augmented wave (GIPAW) pseudopotential method. The prism, cage, book, bag, chain, and two cyclic isomers are investigated, and structures with (16)O and (17)O nuclei are examined. It is found that the hydrogen and oxygen chemical shifts show a substantial variation. In six more stable hexamers, all quadrupole coupling constants decrease and asymmetry parameters increase in a comparison with bulk water, whereas a chain isomer shows an opposite behavior. The values of NMR parameters are in reasonable agreement with existing results obtained by more computationally demanding methods. PMID:20020771

  3. Molecular magnetic resonance imaging in cancer.

    PubMed

    Haris, Mohammad; Yadav, Santosh K; Rizwan, Arshi; Singh, Anup; Wang, Ena; Hariharan, Hari; Reddy, Ravinder; Marincola, Francesco M

    2015-01-01

    The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care. PMID:26394751

  4. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  5. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  6. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  7. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized. PMID:18465447

  8. Enhanced magnetic resonance imaging in multiple sclerosis.

    PubMed

    Filippi, M

    2000-10-01

    Gadolinium-enhanced magnetic resonance imaging (MRI) is very sensitive in the detection of active lesions of multiple sclerosis (MS) and has become a valuable tool to monitor the evolution of the disease either natural or modified by treatment. In the past few years, several studies, on the one hand, have assessed several ways to increase the sensitivity of enhanced MRI to disease activity and, on the other, have investigated in vivo the nature and evolution of enhancing lesions using different non-conventional MR techniques to better define the relationship between enhancement and tissue loss in MS. The present review is a summary of these studies whose results are discussed in the context of MS clinical trial planning and monitoring. Multiple Sclerosis (2000) 6 320 - 326 PMID:11064441

  9. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  10. Functional magnetic resonance imaging in schizophrenia

    PubMed Central

    Gur, Raquel E.; Gur, Ruben C.

    2010-01-01

    The integration of functional magnetic resonance imaging (fMRI) with cognitive and affective neuroscience paradigms enables examination of the brain systems underlying the behavioral deficits manifested in schizophrenia; there have been a remarkable increase in the number of studies that apply fMRI in neurobiological studies of this disease. This article summarizes features of fMRI methodology and highlights its application in neurobehavioral studies in schizophrenia. Such work has helped elucidate potential neural substrates of deficits in cognition and affect by providing measures of activation to neurobehavioral probes and connectivity among brain regions. Studies have demonstrated abnormalities at early stages of sensory processing that may influence downstream abnormalities in more complex evaluative processing. The methodology can help bridge integration with neuropharmacologic and genomic investigations. PMID:20954429

  11. Towards magnetic resonance imaging guided radiation therapy (MRIgRT)

    NASA Astrophysics Data System (ADS)

    Stanescu, Teodor Marius

    The goal of this work is to address key aspects of the magnetic resonance imaging guided radiation therapy (MRIgRT) process of cancer sites. MRIgRT is implemented by using a system comprised of a magnetic resonance imaging (MRI) scanner coupled with a radiation source, in our case a radiotherapy accelerator (Linac). The potential benefits of MRIgRT are the real-time tracking of the tumor and neighbouring healthy anatomy during treatment irradiation leading to on-line treatment plan optimization. Ultimately, this results in an increased accuracy and efficiency of the overall treatment process. A large research effort is conducted at Cross Cancer Institute to develop a hybrid MRI-Linac system consisting of a bi-planar 0.2 T permanent magnet coupled with a 6 MV Linac. The present work is part of this project and aims to address the following key components: (a) magnetic shielding and dosimetric effects of the MRI-Linac system, (b) measure and correction of scanner-related MR image distortions, and (c) MRI-based treatment planning procedure for intracranial lesions. The first two components are essential for the optimal construction and operation of the MRI-Linac system while the third one represents a direct application of the system. The linac passive shielding was achieved by (a) adding two 10 cm thick steel (1020) plates placed at a distance of 10 cm from the structure on opposite sides of the magnet; and (b) a box lined with a 1 mm MuMetal(TM) wall surrounding the Linac. For our proposed MRI-Linac configuration (i.e. 0.2 T field and rotating bi-planar geometry) the maximum dose difference from zero magnetic field case was found to be within 6% and 12% in a water and water-lung-water phantom, respectively. We developed an image system distortion correction method for MRI that relies on adaptive thresholding and an iterative algorithm to determine the 3D distortion field. Applying this technique the residual image distortions were reduced to within the voxel resolution of the raw imaging data. We investigated a procedure for the MRI Simulation of brain lesions which consists of (a) correction of MR images for 3D distortions, (b) automatic segmentation of head sub-structures (i.e. scalp, bone, and brain) relevant for dosimetric calculations, (c) conversion of MRI datasets into CT-like images by assigning bulk CT values to head sub-structures and MRI-based dose calculations, and (d) RT plan evaluation based on isodose distributions, dosimetric parameters, dose volume histograms, and an RT ranking tool. The proposed MRI-based treatment planning procedure performed similarly to the standard clinical technique, which relies on both CT and MR imaging modalities, and is suitable for the radiotherapy of brain cancer.

  12. ASA monitoring standards and magnetic resonance imaging.

    PubMed

    Jorgensen, N H; Messick, J M; Gray, J; Nugent, M; Berquist, T H

    1994-12-01

    Some patients, often because of age or altered mental state, require general anesthesia or monitored anesthesia care and sedation if adequate magnetic resonance imaging (MRI) is to be accomplished. This study evaluated whether patients can be monitored during MRI with 1.5-tesla scanners in a manner which complies with ASA monitoring standards without causing degradation of image quality. Ten volunteers were scanned in the MRI without sedation. Monitors meeting ASA standards were placed and electronic artifact produced by the magnetic resonance (MR) scanner was evaluated, after which two scans of the head and two of the chest were performed. One of each pair of scans was obtained with the monitors functioning and one with them turned off. Four radiologists, blinded as to whether the monitors were turned on or off, independently evaluated the 20 pairs of scans. Differences in diagnostic quality and image degradation between the scans were evaluated and scores assigned. All monitors functioned appropriately during the scans, with the exception of the electrocardiogram (ECG) which was grossly distorted to the extent that only ventricular rate could be evaluated. None of the head or body scans was nondiagnostic; however, images with the monitors off were of better quality overall than with them on. Two types of noise were generated and are described. During the head scans, three of seven monitoring combinations caused degradation of the images, while four were judged clinically adequate. During the body scans, two of six monitoring combinations created noticeable noise, while four introduced no significant noise. Ungated cardiac scans were nondiagnostic.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7978439

  13. Could magnetic resonance provide in vivo histology?

    PubMed Central

    Dominietto, Marco; Rudin, Markus

    2014-01-01

    The diagnosis of a suspected tumor lesion faces two basic problems: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization. PMID:24454320

  14. Designing and tuning magnetic resonance with exchange interaction.

    PubMed

    Chen, Yunpeng; Fan, Xin; Zhou, Yang; Xie, Yunsong; Wu, Jun; Wang, Tao; Chui, Siu Tat; Xiao, John Q

    2015-02-25

    Exchange interaction at the interface between magnetic layers exhibits significant contribution to the magnetic resonance frequency. The in situ tuning of the resonance frequency, as large as 10 GHz, is demonstrated in a spintronics microwave device through manipulating the interface exchange interaction. PMID:25572962

  15. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance

  16. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...The Food and Drug Administration (FDA) is announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging (MRI) and approaches to mitigate risks. The overall goal is to discuss strategies to minimize patient and staff risk in the MRI...

  17. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  18. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  19. PTFOS: Flexible and Absorbable Intracranial Electrodes for Magnetic Resonance Imaging

    PubMed Central

    Bonmassar, Giorgio; Fujimoto, Kyoko; Golby, Alexandra J.

    2012-01-01

    Intracranial electrocortical recording and stimulation can provide unique knowledge about functional brain anatomy in patients undergoing brain surgery. This approach is commonly used in the treatment of medically refractory epilepsy. However, it can be very difficult to integrate the results of cortical recordings with other brain mapping modalities, particularly functional magnetic resonance imaging (fMRI). The ability to integrate imaging and electrophysiological information with simultaneous subdural electrocortical recording/stimulation and fMRI could offer significant insight for cognitive and systems neuroscience as well as for clinical neurology, particularly for patients with epilepsy or functional disorders. However, standard subdural electrodes cause significant artifact in MRI images, and concerns about risks such as cortical heating have generally precluded obtaining MRI in patients with implanted electrodes. We propose an electrode set based on polymer thick film organic substrate (PTFOS), an organic absorbable, flexible and stretchable electrode grid for intracranial use. These new types of MRI transparent intracranial electrodes are based on nano-particle ink technology that builds on our earlier development of an EEG/fMRI electrode set for scalp recording. The development of MRI-compatible recording/stimulation electrodes with a very thin profile could allow functional mapping at the individual subject level of the underlying feedback and feed forward networks. The thin flexible substrate would allow the electrodes to optimally contact the convoluted brain surface. Performance properties of the PTFOS were assessed by MRI measurements, finite difference time domain (FDTD) simulations, micro-volt recording, and injecting currents using standard electrocortical stimulation in phantoms. In contrast to the large artifacts exhibited with standard electrode sets, the PTFOS exhibited no artifact due to the reduced amount of metal and conductivity of the electrode/trace ink and had similar electrical properties to a standard subdural electrode set. The enhanced image quality could enable routine MRI exams of patients with intracranial electrode implantation and could also lead to chronic implantation solutions. PMID:22984396

  20. Automated Analysis of Craniofacial Morphology Using Magnetic Resonance Images

    PubMed Central

    Chakravarty, M. Mallar; Aleong, Rosanne; Leonard, Gabriel; Perron, Michel; Pike, G. Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tom

    2011-01-01

    Quantitative analysis of craniofacial morphology is of interest to scholars working in a wide variety of disciplines, such as anthropology, developmental biology, and medicine. T1-weighted (anatomical) magnetic resonance images (MRI) provide excellent contrast between soft tissues. Given its three-dimensional nature, MRI represents an ideal imaging modality for the analysis of craniofacial structure in living individuals. Here we describe how T1-weighted MR images, acquired to examine brain anatomy, can also be used to analyze facial features. Using a sample of typically developing adolescents from the Saguenay Youth Study (N?=?597; 292 male, 305 female, ages: 12 to 18 years), we quantified inter-individual variations in craniofacial structure in two ways. First, we adapted existing nonlinear registration-based morphological techniques to generate iteratively a group-wise population average of craniofacial features. The nonlinear transformations were used to map the craniofacial structure of each individual to the population average. Using voxel-wise measures of expansion and contraction, we then examined the effects of sex and age on inter-individual variations in facial features. Second, we employed a landmark-based approach to quantify variations in face surfaces. This approach involves: (a) placing 56 landmarks (forehead, nose, lips, jaw-line, cheekbones, and eyes) on a surface representation of the MRI-based group average; (b) warping the landmarks to the individual faces using the inverse nonlinear transformation estimated for each person; and (3) using a principal components analysis (PCA) of the warped landmarks to identify facial features (i.e. clusters of landmarks) that vary in our sample in a correlated fashion. As with the voxel-wise analysis of the deformation fields, we examined the effects of sex and age on the PCA-derived spatial relationships between facial features. Both methods demonstrated significant sexual dimorphism in craniofacial structure in areas such as the chin, mandible, lips, and nose. PMID:21655288

  1. PTFOS: flexible and absorbable intracranial electrodes for magnetic resonance imaging.

    PubMed

    Bonmassar, Giorgio; Fujimoto, Kyoko; Golby, Alexandra J

    2012-01-01

    Intracranial electrocortical recording and stimulation can provide unique knowledge about functional brain anatomy in patients undergoing brain surgery. This approach is commonly used in the treatment of medically refractory epilepsy. However, it can be very difficult to integrate the results of cortical recordings with other brain mapping modalities, particularly functional magnetic resonance imaging (fMRI). The ability to integrate imaging and electrophysiological information with simultaneous subdural electrocortical recording/stimulation and fMRI could offer significant insight for cognitive and systems neuroscience as well as for clinical neurology, particularly for patients with epilepsy or functional disorders. However, standard subdural electrodes cause significant artifact in MRI images, and concerns about risks such as cortical heating have generally precluded obtaining MRI in patients with implanted electrodes. We propose an electrode set based on polymer thick film organic substrate (PTFOS), an organic absorbable, flexible and stretchable electrode grid for intracranial use. These new types of MRI transparent intracranial electrodes are based on nano-particle ink technology that builds on our earlier development of an EEG/fMRI electrode set for scalp recording. The development of MRI-compatible recording/stimulation electrodes with a very thin profile could allow functional mapping at the individual subject level of the underlying feedback and feed forward networks. The thin flexible substrate would allow the electrodes to optimally contact the convoluted brain surface. Performance properties of the PTFOS were assessed by MRI measurements, finite difference time domain (FDTD) simulations, micro-volt recording, and injecting currents using standard electrocortical stimulation in phantoms. In contrast to the large artifacts exhibited with standard electrode sets, the PTFOS exhibited no artifact due to the reduced amount of metal and conductivity of the electrode/trace ink and had similar electrical properties to a standard subdural electrode set. The enhanced image quality could enable routine MRI exams of patients with intracranial electrode implantation and could also lead to chronic implantation solutions. PMID:22984396

  2. Pattern recognition of magnetic resonance images with application to atherosclerosis

    SciTech Connect

    Carman, C.S.

    1989-01-01

    Magnetic resonance imaging provides excellent soft tissue contrast enabling the non-invasive visualization of soft tissue diseases. The quantification of tissues visible in MR images would significantly increase the diagnostic information available. While tissue selection methods exist for CT images, those same methods do not work with MR images. This dissertation focuses on the application of image processing and pattern recognition techniques to MR images for the identification and quantification of soft tissues, atherosclerosis in particular. Atherosclerosis is a chronic disease of human arteries responsible for significant mortality and medical expense. Current diagnostic methods are invasive and carry significant risk. Supervised pattern recognition methods were investigated for tissue identification in MR images. The classifiers were trained A Fisher linear classifier successfully identified the tissues of interest from MR images of excised arteries, performing better than a minimum distance to the means classifier. Quantitative measures of the disease state were computed from the results and 3-D displays were generated of the diseased anatomy. For tissue in vivo, adequate histology can be difficult to collect, increasing the difficulty of training the classifiers and making the results less accurate. Cluster analysis was used in this dissertation to generate the training information. A new cluster analysis method was developed. ISODATA was modified to use hierarchical stopping rules. The new method was tested in a Monte Carlo study and with real world data sets. Comparisons were made with published methods using the same data. An information theoretic criterion, the CAIC, was found to be an excellent criteria for hierarchical stopping rules.

  3. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.

    PubMed

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 810(6)spins/?Hz at room temperature. PMID:24182133

  4. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  5. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya

    2014-12-01

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  6. Current applications of magnetic resonance in coal liquefaction research

    SciTech Connect

    Retcofsky, H.L.; Lett, R.G.; Finseth, D.H.; Sprecher, R.F.

    1982-01-01

    Some applications of magnetic resonance in coal liquefaction research described briefly are: (1) investigation of the nature of carbon deposits on used coal-liquefaction catalysts, (2) determination of the fate of hydrogen during coal liquefaction, and (3) observation of transient free radicals during coal pyrolysis. The first two applications make use of cross-polarization /sup 13/C magnetic resonance combined with magic angle spinning, and the third application is an electron spin resonance study. (BLM)

  7. Cardiac imaging using gated magnetic resonance

    SciTech Connect

    Lanzer, P.; Botvinick, E.H.; Schiller, N.B.

    1984-01-01

    To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested; an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.

  8. Pulmonary magnetic resonance imaging for airway diseases.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Nishio, Mizuho; Matsumoto, Sumiaki; Iwasawa, Tae; Sugimura, Kazuro

    2011-11-01

    Pulmonary magnetic resonance (MR) imaging has been put forward as a new research and diagnostic tool mainly to overcome the limitations of computed tomography and nuclear medicine studies. However, pulmonary MR imaging has been difficult to use because of inherently low proton density, a multitude of air-tissue interfaces, which create significant magnetic field distortions and are commonly referred to as susceptibility artifacts; diminishing signal in the lung; and respiratory and/or cardiac motion artifacts. To overcome these drawbacks of pulmonary MR imaging, technical advances made during the last decade in sequencing, scanner and coil, adaptation of parallel imaging techniques, and utilization of contrast media have been reported as being useful for functional and morphologic assessment of various pulmonary diseases including airway diseases. This review article covers (1) pulmonary MR techniques for morphologic and functional assessment of airway diseases, and (2) pulmonary MR imaging for cystic fibrosis, asthma, and chronic obstructive pulmonary disease. Pulmonary MR imaging provides not only morphology-related but also pulmonary function-related information. It has the potential to replace nuclear medicine studies for the identification of regional pulmonary function and may perform a complementary role in airway disease assessment instead of nuclear medicine study. We believe that the findings of further basic studies as well as clinical applications of this new technique will validate the real significance of pulmonary MR imaging for the future of airway disease assessment and its usefulness for diagnostic radiology and pulmonary medicine. PMID:22009083

  9. Nuclear magnetic resonance with dc SQUID preamplifiers

    SciTech Connect

    Fan, N.Q.; Heaney, M.B.; Clarke, J.; Newitt, D.; Wald, L.L.; Hahn, E.L.; Bielecki, A.; Pines, A.

    1989-03-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Intererference Devices (SQUIDSs) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6+-0.5 dB and 1.7+0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of nuclear spin noise, the emission of photons by /sup 35/Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 x 10/sup 16/ nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing /sup 35/Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in /sup 119/Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10/sup 18/ nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in /sup 195/Pt nuclei has been observed at 55 kHz in a field of 60 gauss.

  10. Microrobotic navigable entities for Magnetic Resonance Targeting.

    PubMed

    Martel, Sylvain

    2010-01-01

    Magnetic Resonance Targeting (MRT) uses MRI for gathering tracking data to determine the position of microscale entities with the goal of guiding them towards a specific target in the body accessible through the vascular network. At full capabilities, a MRT platform designed to treat a human would consist of a clinical MRI scanner running special algorithms and upgraded to provide propulsion gradient up to approximately 400mT/m to enable entities as small as a few tens of micrometers in diameter and containing magnetic nanoparticles (MNP) to be steered at vessel bifurcations based on tracking information. Indeed, using a clinical MRI system, we showed that such single entity with a diameter as small as 15microm is detectable in gradient-echo scans. Among many potential interventions, targeted cancer therapy is a good initial application for such new microrobotic approach since secondary toxicity for the patient could be reduced while increasing therapeutic efficacy using lower dosages. Although many types of such entities are needed to provide a larger set of tools, here, only three initial types designed with different functionalities and for different types of cancer are briefly described. Initially designed for targeted chemo-embolization of liver tumors, the first type known as Therapeutic Magnetic Micro-Carriers (TMMC) consists in its present form of approximately 50 microm PLGA microparticles containing therapeutics and approximately 180 nm FeCo MNP. For the second type, MNP are not only used for propulsion and tracking, but also actuation based on a local elevation of the temperature. In its simplest form, it consists of approxiamtely 20 nm MNP embedded in a thermo-sensitive hydrogel known as PNIPA, allowing additional functionalities such as computer triggered drug release and targeted hyperthermia. The third type initially considered to target colorectal tumors, consists of 1-2 microm MR-trackable and controllable MC-1 Magnetotactic Bacteria (MTB) with propelling thrust force provided by two flagella bundles per cell exceeding 4 pN. PMID:21097003

  11. Magnetic susceptibility measurement using 2D magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marcon, P.; Bartusek, K.; Burdkova, M.; Dokoupil, Z.

    2011-10-01

    The authors describe a nuclear magnetic resonance (NMR) method for measuring the magnetic susceptibility of bar-shaped samples that have an arbitrary cross-section and do not produce an MR signal. The method is based on the measurement of the 2D map of the reaction field in the vicinity of a non-ferromagnetic sample and on the calculation of magnetic susceptibility from a known reaction field. The verification of the technique was realized via modelling the measured configuration in the ANSYS program by means of the finite element method and through an experimental measurement of MR-compatible and MR-incompatible materials carried out on a tomograph. A great advantage of the proposed susceptibility evaluation method consists in the use of only standard commercially used devices without the need of any special sequences. The method is suitable for bar-shaped samples having an arbitrary cross-section; moreover, conditions are given for the selection of the cross-section/length ratio of a sample to be measured.

  12. In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

    PubMed Central

    Mietchen, Daniel; Manz, Bertram; Volke, Frank; Storey, Kenneth

    2008-01-01

    Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systemsthe freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0C and about ?70C and at spatial resolutions down to 27 m. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo. PMID:19057644

  13. Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

    SciTech Connect

    Leconte, M.; Beyer, P.; Benkadda, S.

    2009-01-30

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

  14. Effect of disorder on magnetic resonance band gap of split-ring resonator structures.

    PubMed

    Aydin, Koray; Guven, Kaan; Katsarakis, Nikos; Soukoulis, Costas; Ozbay, Ekmel

    2004-11-29

    We investigated the influence of periodicity, misalignment, and disorder on the magnetic resonance gap of split-ring resonators (SRRs) which are essential components of left handed-metamaterials (LHMs). The resonance of a single SRR which is induced by the split is experimentally demonstrated by comparing transmission spectra of SRR and closed ring resonator. Misaligning the SRR boards do not affect the magnetic resonance gap, while destroying the periodicity results in a narrower band gap. The disorder in SRR layers cause narrower left-handed pass band and decrease the transmission level of composite metamaterials (CMMs), which may significantly affect the performance of these LHMs. PMID:19488229

  15. Micromagnetic Modeling of Localized Ferromagnetic Resonance Detected with Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Pelekhov, Denis V.; Martin, Ivar; Obukhov, Yuri; Kim, Jongjoo; Lee, Inhee; Nazaretski, Evgueni; Movshovich, Roman; Hammel, P. Chris

    2008-03-01

    Magnetic Resonance Force Microscopy (MRFM) is a novel scanned probe technique based on mechanical detection of magnetic resonance. Its extreme sensitivity originates partially from the high magnetic field gradient of MRFM probe micromagnet which couples the MRFM probe to the magnetic moments in the sample. We report micromagnetic modeling of Ferromagnetic Resonance (FMR) performed in the local field of the micromagnetic MRFM probe: its strongly inhomogeneous field enables the excitation of localized FMR modes in the sample. This unusual effect provides a mechanism for spatially resolved FMR investigations of ferromagnetic systems. We discuss spatial resolution and results for both quasi 2D and 1D systems.

  16. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for imaging process flows. Here, MRI provides spatially resolved component concentrations at different axial locations during the mixing process. This work documents real-time mixing of highly viscous fluids via distributive mixing with an application to personal care products. PMID:22314707

  17. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for imaging process flows. Here, MRI provides spatially resolved component concentrations at different axial locations during the mixing process. This work documents real-time mixing of highly viscous fluids via distributive mixing with an application to personal care products. PMID:22314707

  18. A geometry for optimizing nanoscale magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Peddibhotla, P.; Montinaro, M.; Weber, D. P.; Poggio, M.

    2011-04-01

    We implement magnetic resonance force microscopy (MRFM) in an experimental geometry, where the long axis of the cantilever is normal to both the external magnetic field and the rf microwire source. Measurements are made of the statistical polarization of H1 in polystyrene with negligible magnetic dissipation, gradients greater than 105 T/m within 100 nm of the magnetic tip, and rotating rf magnetic fields over 12 mT at 115 MHz. This geometry could facilitate the application of nanometer-scale MRFM to nuclear species with low gyromagnetic ratios and samples with broadened resonances, such as In spins in quantum dots.

  19. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided image reconstruction. A new 'demand compensation' gradient waveform adjustment method was proposed to address this particular challenge. This idea was verified in this thesis. It should also be noted that, in a general sense, this new waveform compensation method will potentially provide a novel solution to a variety of gradient related problems in MRI.

  20. Microscopic magnetic resonance elastography (?MRE) applications

    NASA Astrophysics Data System (ADS)

    Othman, Shadi F.; Xu, Huihui; Royston, Thomas J.; Magin, Richard L.

    2005-04-01

    Microscopic magnetic resonance elastography (?MRE) is a phase contrast based imaging technique that is capable of mapping the acoustic shear waves resulting from low amplitude cyclic displacement in tissue-like materials. This new technique has proven successful in imaging gel phantoms mimicking soft biological tissues with shear moduli ranging from 0.7 to 40 kPa. The 4-dimensional (4D) spatial-temporal shear wave vector can be measured, which in turn can be used to identify material properties with high spatial resolution. Experiments were conducted using 5 and 10 mm RF saddle coils in the 10 mm vertical imaging bore of an 11.74 Tesla magnet. The field-of-view ranged from 4 to 14 mm, with in plane resolution up to 34 ?m x 34 ?m and slice thickness up to 100 ?m using shear wave excitation of 550 to 580 Hz. In this study, the capability and constraints of ?MRE are investigated. The constraints include the range of measured shear moduli, excitation frequency, and minimum physical sample volume. Applications investigated include: 1) late-stage frog oocytes with typical diameter from 1 to 1.5 mm; and 2) tissue engineered constructs at different growth stages. Mesenchymal stem cells (MSCs) extracted from bone marrow can serve as progenitor cells that differentiate into specific types of tissues such as bone, adipose tissue, cartilage and muscle. ?MRE can monitor the growth of such tissues and evaluate their mechanical properties. Also, a silicon-based tissue phantom material (CF-11-2188, Nusil Technologies) is tested in order to address challenges associated with excitation frequency and the dispersive nature of the media.

  1. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  2. Ferromagnetic Resonance Studies of Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Yu, Yuwu

    1995-01-01

    Angular dependence of maximum remanence (ADMR) and/or x-ray diffraction (XRD) techniques have been used to determine particle orientation distributions for various recording media, including gamma -rm Fe_2O_3, Co- gamma-rm Fe_2O_3, CrO_2, Ba-ferrite, and MP tapes. A distribution of column directions for metal evaporated (ME) tape has been determined from transmission electron microscopy (TEM) pictures. However, the ferromagnetic resonance (FMR) results suggest a much more narrow distribution of magnetic anisotropy directions. For Ba-ferrite tapes, the distribution functions measured by ADMR are consistent with those by XRD if interparticle interactions are accounted for. The predetermined distribution function has been used to fit FMR spectra for the above tapes. Landau-Lifshitz damping constants have been measured with high accuracy for particulate recording media. An excellent correlation has been found between the damping constants and the switching constants for these media. The results suggest that the FMR technique may be useful in predicting the switching speed of particulate recording media. The FMR technique is also useful in looking for methods of increasing the damping constant of recording media. Possible methods of increasing the switching speed of Ba-ferrite media have been studied. The reduction of Ba-ferrite particles in a hydrogen atmosphere increases the damping constant significantly. It is predicted that reduced Ba-ferrite probably switches faster than ordinary Ba-ferrite. Qualitative discussions on the origin of damping for various recording media have been presented within the framework of magnon relaxation theory. The dependence of the damping constant on magnetic properties, such as particle orientation, media coercivity, and particle interactions are also discussed.

  3. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  4. Magnetic resonance imaging of oscillating electrical currents.

    PubMed

    Halpern-Manners, Nicholas W; Bajaj, Vikram S; Teisseyre, Thomas Z; Pines, Alexander

    2010-05-11

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  5. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing

    PubMed Central

    Bresch, Erik; Narayanan, Shrikanth

    2010-01-01

    This article investigates using real-time magnetic resonance imaging the vocal tract shaping of 5 soprano singers during the production of two-octave scales of sung vowels. A systematic shift of the first vocal tract resonance frequency with respect to the fundamental is shown to exist for high vowels across all subjects. No consistent systematic effect on the vocal tract resonance could be shown across all of the subjects for other vowels or for the second vocal tract resonance. PMID:21110548

  6. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing.

    PubMed

    Bresch, Erik; Narayanan, Shrikanth

    2010-11-01

    This article investigates using real-time magnetic resonance imaging the vocal tract shaping of 5 soprano singers during the production of two-octave scales of sung vowels. A systematic shift of the first vocal tract resonance frequency with respect to the fundamental is shown to exist for high vowels across all subjects. No consistent systematic effect on the vocal tract resonance could be shown across all of the subjects for other vowels or for the second vocal tract resonance. PMID:21110548

  7. Bipolar programmable current supply for superconducting nuclear magnetic resonance magnets

    NASA Astrophysics Data System (ADS)

    Koivuniemi, Jaakko; Luusalo, Reeta; Hakonen, Pertti

    1998-09-01

    In high resolution continuous-wave nuclear magnetic resonance (NMR) work well-reproducible, linear sweeps of current are needed. We have developed a microcontroller based programmable current supply, tested with superconducting magnets with inductance of 10 mH and 10 H. We achieved a resolution and noise of 4 ppm. The supply has an internal sweep with programmable ramping rate and a possibility for remote operation from a computer with either GPIB or RS232 interface. It is based on an 18-bit D/A converter. The maximum output current is 10 A, the sweep rate can be set between 1 ?A/s-140 mA/s, and the maximum output voltage is 2.5 V. In work at ultralow temperatures, especially in superconducting quantum interference device NMR, all rf interference to the experiment should be avoided. One of the sources of this kind of unwanted input is the digital switching noise of fast logic devices. We discuss this problem in the context of our design.

  8. Magnetic resonance imaging of isolated single liposome by magnetic resonance force microscopy.

    PubMed

    Tsuji, S; Masumizu, T; Yoshinari, Y

    2004-04-01

    Magnetic resonance imaging (MRI) is very useful spectroscopy to visualize a three-dimensional (3D) real structure inside the sample without physical destruction. The spatial resolution of the readily available MRI spectrometer is, however, limited by a few ten to hundreds of microns due to a technological boundary of generating larger magnetic field gradient and to the insensitivity inherent to the inductive signal detection. Magnetic resonance force microscopy (MRFM) is new alternative MRI spectroscopy which is anticipated to significantly surpass the conventional MRI in both resolution and sensitivity. We report two imaging experiments on our MRFM spectrometer operated at room temperature and in vacuum approximately 10(-3)Pa. One is for approximately 20 microm liposome membrane labeled entirely by a nitroxide imaging agent and the other for approximately 15 microm DPPH particles, both are nearly the same size as that of human cell. The reconstructed images at spatial resolution approximately 1 microm were in satisfactory agreement with the scanning electron microscope images. The potential capability of visualizing intrinsic radicals in the cell is suggested to investigate redox process from a microscopic point of view. PMID:15040976

  9. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1986-01-01

    This book provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book provides guidance in performing and interpreting MRI studies for specific clinical problems. Images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and clinical staging are shown. The book summarizes the basic principles of MRI and describes equipment components and contrast agents. Explanations of common artifacts and pitfalls in image interpretation and of pathophysiologic correlates of signal alterations in magnetic resonance imaging are given. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  10. Imaging the cochlea by magnetic resonance microscopy.

    PubMed

    Henson, M M; Henson, O W; Gewalt, S L; Wilson, J L; Johnson, G A

    1994-05-01

    The isolated, fixed cochlea of the mustached bat was studied with three dimensional magnetic resonance (MR) microscopy. The cochlea of this animal is about 4 mm in diameter and its entire volume was imaged. With the field of view and matrix size used, the volume elements (voxels) making up the volume data set were isotropic 25 x 25 x 25 micron cubes. Three dimensional (3D) MR microscopy based on isotropic voxels has many advantages over commonly used light microscopy: 1) it is non destructive; 2) it is much less time consuming; 3) no dehydration is required and shrinkage is minimized; 4) the data set can be used to create sections in any desired plane; 5) the proper alignment of sections is inherent in the 3D acquisition so that no reference points are required; 6) the entire data set can be viewed from any point of view in a volume rendered image; 7) the data is digital and features can be enhanced by computer image processing; and 8) the isotropic dimensions of the voxels make the data well-suited for structural reconstructions and measurements. Good images of the osseous spiral lamina, spiral ligament, scala tympani, scala vestibuli, and nerve bundles were obtained. The vestibular (Reissner's) membrane was easily identified in the mustached bat and it appears to bulge into the scala vestibuli. The visibility of this structure suggests that MR microscopy would be well-suited for studies of endolymphatic hydrops. PMID:8071156

  11. Magnetic resonance histology for morphologic phenotyping.

    PubMed

    Johnson, G Allan; Cofer, Gary P; Fubara, Boma; Gewalt, Sally L; Hedlund, Laurence W; Maronpot, Robert R

    2002-10-01

    Magnetic resonance histology (MRH) images of the whole mouse have been acquired at 100-micron isotropic resolution at 2.0 T with image arrays of 256 x 256 x 1024. Higher resolution (50 x 50 x 50 microns) of limited volumes has been acquired at 7.1T with image arrays of 512 x 512 x 512. Even higher resolution images (20 x 20 x 20 microns) of isolated organs have been acquired at 9.4 T. The volume resolution represents an increase of 625000 x over conventional clinical MRI. The technological basis is summarized that will allow basic scientists to begin using MRH as a routine method for morphologcic phenotyping of the mouse. MRH promises four unique attributes over conventional histology: 1). MRH is non-destructive; 2). MRH exploits the unique contrast mechanisms that have made MRI so successful clinically; 3). MRH is 3-dimensional; and 4). the data are inherently digital. We demonstrate the utility in morphologic phenotyping a whole C57BL/6J mouse. PMID:12353257

  12. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  13. Scatter-based magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Xu, Chao; Hamhaber, Uwe; Siebert, Eberhard; Bohner, Georg; Klingebiel, Randolf; Braun, Jrgen; Sack, Ingolf

    2009-04-01

    Elasticity is a sensitive measure of the microstructural constitution of soft biological tissues and increasingly used in diagnostic imaging. Magnetic resonance elastography (MRE) uniquely allows in vivo measurement of the shear elasticity of brain tissue. However, the spatial resolution of MRE is inherently limited as the transformation of shear wave patterns into elasticity maps requires the solution of inverse problems. Therefore, an MRE method is introduced that avoids inversion and instead exploits shear wave scattering at elastic interfaces between anatomical regions of different shear compliance. This compliance-weighted imaging (CWI) method can be used to evaluate the mechanical consistency of cerebral lesions or to measure relative stiffness differences between anatomical subregions of the brain. It is demonstrated that CWI-MRE is sensitive enough to reveal significant elasticity variations within inner brain parenchyma: the caudate nucleus (head) was stiffer than the lentiform nucleus and the thalamus by factors of 1.3 0.1 and 1.7 0.2, respectively (P < 0.001). CWI-MRE provides a unique method for characterizing brain tissue by identifying local stiffness variations.

  14. Nuclear magnetic resonance methods for metabolic fluxomics.

    PubMed

    Nargund, Shilpa; Joffe, Max E; Tran, Dennis; Tugarinov, Vitali; Sriram, Ganesh

    2013-01-01

    Fluxomics, through its core methodology of metabolic flux analysis (MFA), enables quantification of carbon traffic through cellular biochemical pathways. Isotope labeling experiments aid MFA by providing information on intracellular fluxes, especially through parallel and cyclic pathways. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are two complementary methods to measure abundances of isotopomers generated in these experiments. 2-D [(13)C, (1)H] heteronuclear correlation NMR spectra can detect (13)C isotopes coupled to protons and thus noninvasively separate molecules and atoms with a specific isotopic content from a mixture of molecular species. Furthermore, the fine structures of the peaks in these spectra can reveal scalar couplings between chemically bonded carbon atoms in the sample, from which isotopomer abundances can be quantified. This chapter introduces methods for NMR sample preparation and spectral acquisition of 2-D [(13)C, (1)H] correlation maps, followed by a detailed presentation of methods to process the spectra and quantify isotopomer abundances. We explain the use of the software NMRViewJ for spectral visualization and processing, as well as MATLAB scripts developed by us for peak extraction, deconvolution of overlapping peaklets, and isotopomer abundance quantification. Finally, we discuss the applications of NMR-derived isotopomer data toward quantitatively understanding metabolic pathways. PMID:23417811

  15. Magnetic Resonance Imaging of Intercranial Plasmocytic Granuloma

    PubMed Central

    Wilner, Harvey I.; Vinas, Federico C.; Duffy, Colleen; Kupsky, William J.; Guthikonda, Murali

    1999-01-01

    The objective of this study is to determine characteristic magnetic resonance imaging (MRI) features of intracranial plasmocytic granulomas. Pathological confirmation of three patients with intracranial pathologically confirmed plasmocytic granuloma are presented. Clinical records as well pre- and postgadolinium-enhanced images from each patient are reviewed. The location of the abnormalities is compared with previous reported cases of plasmocytic granulomas, to determine if there is a characteristic finding in this disense. The predominance of this abnormality in the pediatric and young adult patient was striking. On T1-weighted MRI, plasmocytic granulomas appear as hypointense lesions, with isointense appearance on T2 images, and significant, variable patterns of enhancement after the infusion of gadolinium. Typically, the lesion is infiltrating, and causes little mass effect. A dural based lesion, as well as a sellar region abnormality and an infiltrating cortical lesion with little mass effect in the pediatric or young adult age group may lead the observer to suspect the diagnosis of plasmocytic granuloma. ImagesFigure 1Figure 2Figure 3 PMID:17171115

  16. Fractionated Manganese-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Bock, Nicholas A.; Paiva, Fernando F.; Silva, Afonso C.

    2016-01-01

    We investigated the use of manganese-enhanced magnetic resonance imaging (MEMRI) with fractionated doses as a way to retain the unique properties of manganese as a neuronal contrast agent while lessening its toxic effects in animals. First, we followed the signal enhancement on T1-weighted images of the brains of rats receiving 30 mg/kg fractions of MnCl24H2O every 48 hours and found that the signal increased in regions with consecutive fractionated doses up to about six injections, then saturated. Second, we used T1 mapping to test whether the amount of MRI-visible manganese that accumulated depended on the driving concentration of manganese in the fractions. For a fixed cumulative dose of 180 mg/kg MnCl24H2O, increasing fraction doses of 6 30 mg/kg, 3 60 mg/kg, 2 90 mg/kg and 1 180 mg/kg produced progressively shorter T1 values. The adverse health effects, however, also rose with the fraction dose. Thus, fractionated MEMRI can be used to balance the properties of manganese as a contrast agent in animals against its toxic effects. PMID:17944008

  17. Magnetic resonance imaging of the skin.

    PubMed

    Stefanowska, J; Zakowiecki, D; Cal, K

    2010-08-01

    A thorough examination of the skin is essential to screen various diseases accurately, evaluate the effectiveness of topically applied drugs and assess the results of dermatological surgeries such as skin grafts. The assessment of skin properties is also crucial in the cosmetics industry, where it is important to evaluate the effects skin care products have on these properties. The simplest and most widely used method of skin evaluation, the 'naked eye' assessment, enables researchers to assess only the skin surface and involves a large amount of inter-observer variability. Thanks to a great progress that has been made in physics, electronics and computer engineering in recent years, sophisticated imaging methods are increasingly available in day-to-day studies. The aim of this review was to present one of these techniques, namely the magnetic resonance imaging (MRI), and to discuss its possible use in skin examination and analysis. We present basic principles of MRI, as well as several interesting applications in the field of dermatology, and discuss the advantages and limitations of this method. PMID:20180890

  18. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  19. Magnetic resonance cholangiography: Current and future perspectives.

    PubMed

    Arriv, Lionel; Hodoul, Marianne; Arbache, Antoune; Slavikova-Boucher, Lucie; Menu, Yves; El Mouhadi, Sana

    2015-12-01

    Magnetic resonance cholangiography (MRC) has become the standard of reference for imaging of the biliary ducts. The use of three-dimensional (3D) sequences has resulted in improved spatial resolution with virtually isotropic voxel and improved signal/noise ratio. In addition to MRC images, 3D fat suppressed T1-weighted MR images should be systematically obtained to search for intrahepatic calculi. MRC plays a major role in the diagnosis of cholangiocarcinoma and assessment of its resectability. With modern MR systems the performance of MR is basically the same that of CT for evaluation of arterial and portal vein extent. MRC is a key imaging modality for the diagnosis of primary sclerosing cholangitis. Different imaging patterns may be observed including multifocal intra- and extrahepatic strictures alternating with slightly dilated ducts. Focal signal abnormality of the liver parenchyma and focal parenchymal atrophy represent the consequences of biliary duct obstruction on liver parenchyma. Diagnosis of biliary lithiasis is performed by combination of MRC and T1-weighted MR imaging. MRC can be performed for the diagnosis of secondary cholangitis including ascending cholangitis, ischemic cholangitis and IgG4-related sclerosing cholangitis. Hepatobiliary contrast agents could be used for demonstrating the site of biliary duct leakage after surgery and for functional imaging. MR imaging can also be used to determine the prognosis of PSC. The inherent limitations of MRC of bile ducts are still the suboptimal spatial resolution for evaluation of distal intrahepatic biliary ducts. PMID:26275724

  20. Magnetic resonance imaging of mechanical deformations.

    PubMed

    Koder, Gregor; Serša, Igor

    2016-02-01

    A method for magnetic resonance imaging of mechanical deformations is presented. The method utilizes an MRI compatible device for inducing elastic deformations of a sample and a modified spin-echo imaging sequence with two position-encoding gradients added to the sequence symmetrically to the RF refocusing pulse. At the end of the first position-encoding gradient pulse, a sample deformation was induced by the deformational device, which applied a force to a plastic rod embedded in a gelatin cylindrical sample. The sample had to withstand repeated elastic deformations. Sample displacements up to 400μm were encoded in the image signal phase by the use of position-encoding gradients. Images of different displacement components were acquired first by the use of position-encoding gradients in different directions and then processed by the 2D phase unwrap algorithm. Finally, images of normal and shear strain distribution were calculated from the displacement images. The obtained displacement and strain images enabled clear visualization of deformations and their extent in the sample with the displacement detection threshold in the range 0.3-0.6μm, depending on the image echo time. The results of displacements were verified also by a DANTE tagging method and by an optical method. The presented method enables studying of various types of deformations in different soft materials as well as dynamic response of deformations to different stress functions (static, oscillatory, pulsed…). PMID:26523647

  1. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  2. Magnetic resonance imaging in isolated sagittal synostosis.

    PubMed

    Engel, Michael; Hoffmann, Juergen; Mhling, Joachim; Castrilln-Oberndorfer, Gregor; Seeberger, Robin; Freudlsperger, Christian

    2012-07-01

    Isolated fusion of the sagittal suture is the most prevalent form of craniosynostosis. Although the typical clinical appearance usually points the way to the right diagnosis, computed tomographic (CT) scans are still recommended as necessary tools for both the diagnosis of scaphocephaly and the preoperative planning. Because CT scans are accompanied by the biological effects of ionizing radiation, some authors have already postulated the use of magnetic resonance imaging (MRI) especially because MRI seems to be valuable for detecting intracranial anomalies compared with CT scans. Hence, we investigated the preoperative MRIs of 42 children with isolated sagittal synostosis to evaluate the frequency of brain anomalies and their therapeutic consequences.In our study, 10 patients (23.8%) showed pathologic MRI findings such as ventricular dilatation and hypoplastic corpus callosum, whereas 32 patients (76.2%) had an unremarkable MRI except a pathognomonic secondary deformation of the brain caused by the abnormally shaped skull, which was present in all patients. Seven patients showed clinically significant symptoms including papilledema or psychomotoric developmental delay; however, the clinical appearance was not predictive for pathologic MRI findings and vice versa.As the detection of brain anomalies had no influence on the surgical procedure or led to any additive therapy in our patients, we conclude that evaluation of possible pathologic brain findings does not legitimate the general use of MRI in clinically normal children with isolated sagittal synostosis. PMID:22801186

  3. Statistical normalization techniques for magnetic resonance imaging.

    PubMed

    Shinohara, Russell T; Sweeney, Elizabeth M; Goldsmith, Jeff; Shiee, Navid; Mateen, Farrah J; Calabresi, Peter A; Jarso, Samson; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M

    2014-01-01

    While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers. PMID:25379412

  4. Magnetic resonance imaging of the kidneys

    SciTech Connect

    Leung, A.W.L.; Bydder, G.M.; Steinter, R.E.; Bryant, D.J.; Young, I.R.

    1984-12-01

    A study of the magnetic resonance imaging (MRI) appearance of the kidneys in six normal volunteers and 52 patients is reported. Corticomedullary differentiation was seen with the inversion-recovery (IR 1400/400) sequence in the normal volunteers and in patients with functioning transplanted kidneys and acute tubular necrosis. Partial or total loss of corticomedullary differentiation was seen in glomerulonephritis, acute and chronic renal failure, renal artery stenosis, and transplant rejection. The T1 of the kidneys was increased in glomerulonephritis with neuphrotic syndrome, but the T1 was within the normal range for renal medulla in glomerulonephritis without nephrotic syndrome, renal artery stenosis, and chronic renal failure. A large staghorn calculus was demonstrated with MRI, but small calculi were not seen. Fluid within the hydonephrosis, simple renal cysts, and polycystic kidneys displayed very low signal intensity and long T1 values. Tumors displayed varied appearances. Hypernephromas were shown to be hypo- or hyperintense with the renal medulla on the IR 1400/400 sequence. After intravenous injection of gadolinium-DTPA, there was marked decrease in the tumor T1.

  5. Progesterone-Targeted Magnetic Resonance Imaging Probes

    PubMed Central

    2015-01-01

    Determination of progesterone receptor (PR) status in hormone-dependent diseases is essential in ascertaining disease prognosis and monitoring treatment response. The development of a noninvasive means of monitoring these processes would have significant impact on early detection, cost, repeated measurements, and personalized treatment options. Magnetic resonance imaging (MRI) is widely recognized as a technique that can produce longitudinal studies, and PR-targeted MR probes may address a clinical problem by providing contrast enhancement that reports on PR status without biopsy. Commercially available MR contrast agents are typically delivered via intravenous injection, whereas steroids are administered subcutaneously. Whether the route of delivery is important for tissue accumulation of steroid-modified MRI contrast agents to PR-rich tissues is not known. To address this question, modification of the chemistry linking progesterone with the gadolinium chelate led to MR probes with increased water solubility and lower cellular toxicity and enabled administration through the blood. This attribute came at a cost through lower affinity for PR and decreased ability to cross the cell membrane, and ultimately it did not improve delivery of the PR-targeted MR probe to PR-rich tissues or tumors in vivo. Overall, these studies are important, as they demonstrate that targeted contrast agents require optimization of delivery and receptor binding of the steroid and the gadolinium chelate for optimal translation in vivo. PMID:25019183

  6. Cardiovascular magnetic resonance in pericardial diseases

    PubMed Central

    Bogaert, Jan; Francone, Marco

    2009-01-01

    The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases. PMID:19413898

  7. Stereotactic localization using magnetic resonance imaging.

    PubMed

    Walton, L; Hampshire, A; Forster, D M; Kemeny, A A

    1995-01-01

    A phantom study has been carried out to assess the accuracy of stereotactic localisation, using magnetic resonance imaging. The stereotactic coordinates of an array of Perspex rods within the phantom were determined and compared with measured values, in a series of transverse, coronal and sagittal images. In the transverse plane, the maximum errors experienced were X = 2.3 mm and Y = 10.7 mm. If the third fiducial plate, at the front of the frame, were not used in the scaling of the images, there was considerable improvement in the Y direction (maximum error Y = 2.1 mm). However, some deterioration in the accuracy in the X direction resulted, particularly at the extremes of Z (maximum error X = 3.5 mm). In the coronal plane, the maximum errors were X = 1.8 mm and Z = 8.0 mm. With the third plate off, the errors decreased to X = 1.9 mm and Z = 3.3 mm. In the sagittal plane, the maximum errors recorded were Y = 1.1 mm and Z = 7.5 mm. It is not possible to calibrate in this plane without the third plate. PMID:8584823

  8. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  9. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10??s. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  10. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-03-23

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  11. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. ? pulse times of 50 ns and 70 ?s for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  12. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. ? pulse times of 50 ns and 70 ?s for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). PMID:25828243

  13. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  14. Effect of peripheral nerve action currents on magnetic resonance imaging.

    PubMed

    Wijesinghe, Ranjith; Roth, Bradley J

    2009-01-01

    Many researchers have attempted to detect neural currents directly using magnetic resonance imaging (MRI). The action currents of a peripheral nerve create their own magnetic field that can cause the phase of the spins to change. Our goal in this paper is to use the measured magnetic field of a nerve to estimate the resulting phase shift in the magnetic resonance signal. We examine three cases: the squid giant axon, the frog sciatic nerve, and the human median nerve. In each case, the phase shift is much less than one degree, and will be very difficult to measure with current technology. PMID:19963781

  15. Linear electro-optic effect for nuclear magnetic resonance coil

    NASA Astrophysics Data System (ADS)

    Ayde, R.; Gaborit, Gwenal.; Dahdah, Jean; Duvillaret, Lionel; Sablong, Raphal.; Perrier, Anne-Laure; Beuf, Olivier

    2014-05-01

    An electrooptic transduction is here used to perform a low invasive characterization of the magnetic field in the context of magnetic resonance imaging. A resonant coil is coupled to a passive electrooptic crystal and the electromotive force of the magnetic field sensor is converted into a polarization state modulation of a laser probe beam. The optical conversion is demonstrated and lead to a fiber remote measurement of the magnetic field. The setup sensitivity and dynamics are finally dramatically enhanced using a LiNbO3 integrated waveguide. The minimum detectable field is as low as 60 fT.Hz-1/2 and the dynamics exceeds 100 dB.

  16. Detection of localized ferromagnetic resonance in a continuous thin film via magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Pelekhov, D. V.; Martin, I.; Zalalutdinov, M.; Ponarin, D.; Smirnov, A.; Hammel, P. C.; Movshovich, R.

    2009-04-01

    We present magnetic resonance force microscopy (MRFM) measurements of ferromagnetic resonance in a 50 nm thick permalloy film tilted with respect to the direction of the external magnetic field. At small probe-sample distances the MRFM spectrum breaks up into multiple modes, which we identify as local ferromagnetic resonances confined by the magnetic field of the MRFM tip. Micromagnetic simulations support this identification of the modes and show they are stabilized in the region where the dipolar tip field has a component antiparallel to the applied field.

  17. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L. (Orinda, CA); Raymond, Kenneth N. (Berkeley, CA); Huberty, John P. (Corte Madera, CA); White, David L. (Oakland, CA)

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  18. Orthopaedic magnetic resonance imaging challenge: apophyseal avulsions at the pelvis.

    PubMed

    Kjellin, Ingrid; Stadnick, Michael E; Awh, Mark H

    2010-05-01

    Apophyseal avulsion injuries of the hip and pelvis are frequent athletic injuries in children and adolescents, most commonly associated with explosive movement or sprinting. This article details typically encountered apophyseal injuries and their appearance on magnetic resonance imaging. PMID:23015945

  19. Nuclear magnetic resonance data of C6H14NCl

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Brnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  20. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  1. Evaluation of mandibular tumor invasion with magnetic resonance imaging.

    PubMed

    Ator, G A; Abemayor, E; Lufkin, R B; Hanafee, W N; Ward, P H

    1990-04-01

    Evaluating the extent of tumor invasion of the mandible is clinically important in the management of mandibular tumors. Conventional imaging studies including panoramic radiography, bone scans, and computed tomography, as well as clinical evaluation can be unreliable in defining the extent of neoplastic marrow invasion. This study presents the initial UCLA, Los Angeles, Calif, experience with magnetic resonance imaging in evaluating mandibular invasion by benign and malignant neoplasms. Magnetic resonance imaging, using T1 and T2 images, was compared with conventional imaging methods in 11 patients with malignant lesions and nine patients with benign lesions. In all cases, magnetic resonance imaging most accurately determined the full extent of tumor invasion in the mandibular marrow spaces. Magnetic resonance imaging appears to be superior to offer clear benefits over conventional imaging methods, including computed tomography, for the evaluation of tumor invasion of the mandible. PMID:2317328

  2. Analysis of fluid inclusions using nuclear magnetic resonance

    SciTech Connect

    Sherriff, B.L.; Grundy, H.D.; Hartman, J.S.

    1987-08-01

    Nuclear magnetic resonance (NMR) spectra from /sup 23/Na and /sup 35/Cl in fluid inclusions in samples of quartz and beryl show the potential of NMR as a powerful analytical technique for this study of fluid inclusions.

  3. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (?40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified LandauLifshitzGilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  4. Magnetic Resonance Imaging of Benign and Malignant Uterine Neoplasms.

    PubMed

    Leursen, Gustavo; Gardner, Carly Susan; Sagebiel, Tara; Patnana, Madhavi; de CastroFaria, Silvana; Devine, Catherine E; Bhosale, Priya R

    2015-08-01

    Benign and malignant uterine masses can be seen in the women. Some of these are asymptomatic and incidentally discovered, whereas others can be symptomatic. With the soft tissue contrast resolution magnetic resonance imaging can render a definitive diagnosis, which can further help streamline patient management. In this article we show magnetic resonance imaging examples of benign and malignant masses of the uterus and their treatment strategies. PMID:26296485

  5. Magnetic resonance imaging of tibial classic adamantinoma at 2 tesla.

    PubMed

    Torriani, Martin; Dertkigil, Sergio Sanjuan; Etchebehere, Maurcio; Amstalden, Eliane Maria Ingrid

    2002-01-01

    Adamantinoma is a rare malignant neoplasm arising most often in the tibia and is locally aggressive. Conservative surgical treatment frequently is followed by recurrence and magnetic resonance (MR) imaging plays an important role in preoperative planning. Magnetic resonance features of this tumor have not been described in detail. We report three cases of classic tibial adamantinoma examined at 2 Tesla. High-resolution images with findings that may influence management are discussed. PMID:12439328

  6. Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy

    SciTech Connect

    Atlas, S.W.; Grossman, R.I.; Packer, R.J.; Goldberg, H.I.; Hackney, D.B.; Zimmerman, R.A.; Bilaniuk, L.T.

    1987-01-01

    Disseminated necrotizing leukoencephalopathy is a rare syndrome of progressive neurologic deterioration seen most often in patients who have received central nervous system irradiation combined with intrathecal or systemic chemotherapy in the treatment or prophylaxis of various malignancies. Magnetic resonance imaging was more sensitive than computed tomography in detecting white matter abnormalities in the case of disseminated necrotizing leukoencephalopathy reported here. Magnetic resonance imaging may be useful in diagnosing incipient white matter changes in disseminated necrotizing leukoencephalopathy, thus permitting early, appropriate therapeutic modifications.

  7. Pocket atlas of MRI body anatomy

    SciTech Connect

    Berquist, T.H.; Ehman, R.L.; May, G.R.

    1987-01-01

    This book is a guide to the anatomy of extracranial organs as seen in magnetic resonance images. This collection of 96 magnetic resonance images, accompanied by explanatory line drawings, covers all the major organs of the body- shoulder and humerus; elbow and forearm; hand and wrist; chest; abdomen; pelvis; thigh; knee; calf; and ankle. The images are displayed in the axial, coronal, and sagittal planes, enabling radiologists to quickly review coronal and sagittal anatomy as it applies to routine MRI practice. Special emphasis is placed on the extremities, where spatial resolution, coronal and sagittal planes, and soft tissue contrast provide important anatomic detail. Each MRI image is carefully labeled - using numbers with legends at the top of the page - to highlight key anatomic features. Where applicable, special parameters and positioning are noted below the images. Accompanying each image is a line drawing demonstrating the level and plane of the image.

  8. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 m in all dimensions is now routinely attained in living animals, and 10 m3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  9. Phosphorus magnetic resonance spectroscopy studies in schizophrenia.

    PubMed

    Yuksel, Cagri; Tegin, Cuneyt; O'Connor, Lauren; Du, Fei; Ahat, Ezgi; Cohen, Bruce M; Ongur, Dost

    2015-09-01

    Phosphorus magnetic resonance spectroscopy ((31)P MRS) allows in vivo quantification of phosphorus metabolites that are considered to be related to membrane turnover and energy metabolism. In schizophrenia (SZ), (31)P MRS studies found several abnormalities in different brain regions suggesting that alterations in these pathways may be contributing to the pathophysiology. In this paper, we systematically reviewed the (31)P MRS studies in SZ published to date by taking patient characteristics, medication status and brain regions into account. Publications written in English were searched on http://www.ncbi.nlm.nih.gov/pubmed/, by using the keywords 'phosphomonoester', 'phosphodiester', 'ATP', 'phosphocreatine', 'phosphocholine', 'phosphoethanolamine','glycerophosphocholine', 'glycerophosphoethanolamine', 'pH', 'schizophrenia', and 'MRS'. Studies that measured (31)P metabolites in SZ patients were included. This search identified 52 studies. Reduced PME and elevated PDE reported in earlier studies were not replicated in several subsequent studies. One relatively consistent pattern was a decrease in PDE in chronic patients in the subcortical structures. There were no consistent patterns for the comparison of energy related phosphorus metabolites between patients and controls. Also, no consistent pattern emerged in studies seeking relationship between (31)P metabolites and antipsychotic use and other clinical variables. Despite emerging patterns, methodological heterogeneities and shortcomings in this literature likely obscure consistent patterns among studies. We conclude with recommendations to improve study designs and (31)P MRS methods in future studies. We also stress the significance of probing into the dynamic changes in energy metabolism, as this approach reveals abnormalities that are not visible to steady-state measurements. PMID:26228415

  10. Iterative data refinement of magnetic resonance images

    SciTech Connect

    Ro Dukwoo.

    1990-01-01

    All magnetic resonance (MR) images are blurred as a result of an inherent decaying of nuclear MR signals during data acquisition (DA) due to spatially-varying and object-dependent transverse relaxation (T2). The extent of the blur depends on the distribution of transverse relaxation time of the object and the DA time used in the pulse sequence protocol. Compared to the strength of proton MR signal from a biological organism, sodium signal is inherently weak. A method of improving signal-to-noise ratio in sodium MR imaging is to perform asymmetric sampling of gradient-echo signal so that images with short echo time (2-3 ms) and narrow bandwidth may be acquired. However, a rapid biexponential decay of sodium signal during long DA period, especially due to the presence of fast transverse relaxation (0.7-3 ms) in natural endogenous sodium in tissues, results in fast T2-dependent blurring of reconstructed images. In this dissertation the author considers the problem of correcting for such object-dependent blurs arising from such decay and Fourier transform reconstruction of proton and sodium MR images. Two similar algorithms that correct for such anisotropic blurs in proton and sodium images were developed, implemented, and tested. The first algorithm corrects for mono-exponential T2 distribution and the second algorithm, a natural extension of the first, takes into account the biexponential T2 distribution.. From these algorithms a correction is applied to the raw MR signal. Images reconstructed from such corrected signals yield an improved estimate of T2-weighted spin density distribution. The second algorithm not only corrects for anisotropic blurs in sodium images, but reconstructs decomposed images representing T2-weighted spin density distributions associated with fast and slow T2 of sodium in tissues. Both algorithms tested on mathematical and experimental phantoms show that T2-dependent blurs are reduced.

  11. Magnetic Resonance Imaging–guided Vascular Interventions

    PubMed Central

    Ozturk, Cengizhan; Guttman, Michael; McVeigh, Elliot R.; Lederman, Robert J.

    2007-01-01

    Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function. PMID:16924170

  12. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  13. [Value of magnetic resonance imaging in myeloma].

    PubMed

    Bellache, L; Laredo, J D

    1994-02-19

    Magnetic resonance imagery (MRI) of the spinal cord has become a standard method and its diagnostic and prognostic power in multiple myeloma has been widely demonstrated. Before treatment, MRI reveals two basic types of abnormalities yielding focal and diffuse signals. Focal lesions are seen as localized hyposignals on spin echo T1 sequences (SET1) and are enhanced by injection of gadolinium and changed to hypersignals in T2 weighted sequences. These images identify nodular tumoural masses. Diffuse lesions are seen most often as homogeneous SET1 images with an intensity similar to the vertebral body. This type of image is not specific of tumoural infiltration and can be benign in nature. The second type of diffuse signal is often called a "salt and pepper" image due to the juxtaposition of multiple hyposignals (suspected tumoural tissue) and hypersignals (fat tissue). We have observed this type of image in 27% of our series of multiple myelomas. The capacity of MRI to detect myelomas located in bone tissue is much greater than conventional radiography of the spine and is particularly sensitive to expansive tumoural lesions threatening the cord. MRI should always be performed as part of the initial work-up even in the absence of clinical signs. There is a good correlation between MRI of focal tumours and the biological response to treatment, although other biological markers may be more precise and easier to obtain. MRI can also be used to differentiate between benign monoclonal gammapathy and multiple myeloma, particularly in cases where there is a disagreement between the clinical and laboratory data. We have also studied MRI in solitary plasmacytomas of the spine. PMID:8208689

  14. Magnetic resonance imaging volumetric and phosphorus 31 magnetic resonance spectroscopy measurements in schizophrenia.

    PubMed Central

    Hinsberger, A D; Williamson, P C; Carr, T J; Stanley, J A; Drost, D J; Densmore, M; MacFabe, G C; Montemurro, D G

    1997-01-01

    The purpose of this study was to examine the relationship between phosphorus magnetic resonance spectroscopy (31P MRS) parameters and left prefrontal volumes in both patients with schizophrenia and healthy subjects. 31P MRS parameters and magnetic resonance imaging (MRI) volumetric data were collected in the left prefrontal region in 10 patients with schizophrenia and 10 healthy subjects of comparable age, handedness, sex, educational level, and parental educational level. No correlations were found between any MRS parameter and grey matter volumes in the combined subjects. Phosphomonoester (PME) and grey matter volumes, however, were both correlated negatively with age. PMEs were found to be decreased, and calculated intracellular magnesium ([Mg2+]intra) was found to be increased in the patients with schizophrenia compared with healthy subjects after adjusting for left prefrontal grey and white matter, total brain volume, and age. These findings suggest that cortical grey and white manner volumes are not directly related to PME and [Mg2+]intra abnormalities in schizophrenia patients. Images Figure 1 Figure 2 PMID:9074305

  15. Probe--sample coupling in the magnetic resonance force microscope.

    PubMed

    Suter, A; Pelekhov, D V; Roukes, M L; Hammel, P C

    2002-02-01

    The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K. PMID:11846579

  16. Nanoscale Magnetic Resonance Imaging Based on Ultrasensitive Force Detection

    NASA Astrophysics Data System (ADS)

    Mamin, H. J.

    2009-03-01

    Magnetic Resonance Force Microscopy (MRFM) seeks to dramatically improve the sensitivity and resolution of magnetic resonance imaging (MRI), perhaps ultimately down to the molecular scale. It uses force detection to circumvent the sensitivity limits inherent in conventional inductively-detected MRI. By using an ultrasensitive, single crystal silicon cantilever cooled to 300 mK, we can detect forces smaller than 1 aN, allowing us to sense the magnetism from small ensembles of nuclear spins. We have used tobacco mosaic virus as a test object, detecting the hydrogen signal. Using three-dimensional scans and mathematical deconvolution algorithms, we have made 3D reconstructions of the viruses with resolution down to roughly 4 nm. This represents a 10^8x improvement in minimum detectable volume compared to the best conventional MRI. Advancing the technique further will require reducing the force noise, increasing the achieved magnetic field gradients, and making use of the inherent chemical sensitivity of magnetic resonance.

  17. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion

    NASA Astrophysics Data System (ADS)

    Elkins, Christopher J.; Alley, Marcus T.

    2007-12-01

    Magnetic resonance velocimetry (MRV) is a non-invasive technique capable of measuring the three-component mean velocity field in complex three-dimensional geometries with either steady or periodic boundary conditions. The technique is based on the phenomenon of nuclear magnetic resonance (NMR) and works in conventional magnetic resonance imaging (MRI) magnets used for clinical imaging. Velocities can be measured along single lines, in planes, or in full 3D volumes with sub-millimeter resolution. No optical access or flow markers are required so measurements can be obtained in clear or opaque MR compatible flow models and fluids. Because of its versatility and the widespread availability of MRI scanners, MRV is seeing increasing application in both biological and engineering flows. MRV measurements typically image the hydrogen protons in liquid flows due to the relatively high intrinsic signal-to-noise ratio (SNR). Nonetheless, lower SNR applications such as fluorine gas flows are beginning to appear in the literature. MRV can be used in laminar and turbulent flows, single and multiphase flows, and even non-isothermal flows. In addition to measuring mean velocity, MRI techniques can measure turbulent velocities, diffusion coefficients and tensors, and temperature. This review surveys recent developments in MRI measurement techniques primarily in turbulent liquid and gas flows. A general description of MRV provides background for a discussion of its accuracy and limitations. Techniques for decreasing scan time such as parallel imaging and partial k-space sampling are discussed. MRV applications are reviewed in the areas of physiology, biology, and engineering. Included are measurements of arterial blood flow and gas flow in human lungs. Featured engineering applications include the scanning of turbulent flows in complex geometries for CFD validation, the rapid iterative design of complex internal flow passages, velocity and phase composition measurements in multiphase flows, and the scanning of flows through porous media. Temperature measurements using MR thermometry are discussed. Finally, post-processing methods are covered to demonstrate the utility of MRV data for calculating relative pressure fields and wall shear stresses.

  18. Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain

    PubMed Central

    Wu, Dan; Zhang, Jiangyang

    2016-01-01

    The laboratory mouse has been widely used as a model system to investigate the genetic control mechanisms of mammalian brain development. Magnetic resonance imaging (MRI) is an important tool to characterize changes in brain anatomy in mutant mouse strains and injury progression in mouse models of fetal and neonatal brain injury. Progress in the last decade has enabled us to acquire MRI data with increasing anatomical details from the embryonic and neonatal mouse brain. High-resolution ex vivo MRI, especially with advanced diffusion MRI methods, can visualize complex microstructural organizations in the developing mouse brain. In vivo MRI of the embryonic mouse brain, which is critical for tracking anatomical changes longitudinally, has become available. Applications of these techniques may lead to further insights into the complex and dynamic processes of brain development. PMID:26973471

  19. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review

    PubMed Central

    Tohka, Jussi

    2014-01-01

    Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches. PMID:25431640

  20. The neural reality of syntactic transformations: evidence from functional magnetic resonance imaging.

    PubMed

    Ben-Shachar, Michal; Hendler, Talma; Kahn, Itamar; Ben-Bashat, Dafna; Grodzinsky, Yosef

    2003-09-01

    The functional anatomy of syntactic transformations, a major computational operation invoked in sentence processing, was identified through a functional magnetic resonance imaging investigation. A grammaticality judgment task was used, presented through a novel hidden-blocks design. Subjects listened to transformational and nontransformational sentences in which a host of other complexity generators (number of words, prepositions, embeddings, etc.) were kept constant. A series of analyses revealed that the neural processing of transformations is localizable, evoking a highly lateralized and localized activation in the left inferior frontal gyrus (Broca's region) and bilateral activation in the posterior superior temporal sulcus. The pattern of activation associated with transformational analysis was distinct from the one observed in neighboring regions, and anatomically separable from the effects of verb complexity, which yielded significant activation in the left posterior superior temporal sulcus. Taken together with neuropsychological evidence, these results uncover the neural reality of syntactic transformations. PMID:12930473

  1. [High resolution 3T magnetic resonance neurography of the peroneal nerve].

    PubMed

    Pineda, D; Barroso, F; Chves, H; Cejas, C

    2014-01-01

    Peroneal neuropathy is the most common mononeuropathy of the lower limbs. The causes of peroneal neuropathy include trauma, tumors of the nerve and nerve sheath, entrapment, and others like perineurioma, fibromatosis, lymphoma, and intraneural and externeural ganglia. The diagnosis is based on clinical manifestations and electrophysiological studies. Nowadays, however, magnetic resonance (MR) neurography is a complementary diagnostic technique that can help determine the location and cause of peroneal neuropathy. In this article, we describe the MR anatomy of the peroneal nerve, its relations, and the muscles it innervates. We also discuss the clinical and electrophysiological manifestations of peroneal neuropathy, describe the technical parameters used at our institution, and illustrate the MR appearance of various diseases that involve the peroneal nerve. PMID:24508057

  2. The Role of Cardiovascular Magnetic Resonance in Pediatric Congenital Heart Disease

    PubMed Central

    2011-01-01

    Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a unique perspective for the management of many patients with CHD. Imaging small children with CHD is challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR in the pediatric population. PMID:21936913

  3. Larynx Anatomy

    MedlinePLUS

    ... My Pictures Browse Search Quick Search Image Details Larynx Anatomy View/Download: Small: 648x576 View Download Add to My Pictures Title: Larynx Anatomy Description: Anatomy of the larynx; drawing shows ...

  4. Vulva Anatomy

    MedlinePLUS

    ... Pictures Browse Search Quick Search Image Details Vulva Anatomy View/Download: Small: 720x634 View Download Add to My Pictures Title: Vulva Anatomy Description: Anatomy of the vulva; drawing shows the ...

  5. Pharynx Anatomy

    MedlinePLUS

    ... Pictures Browse Search Quick Search Image Details Pharynx Anatomy View/Download: Small: 720x576 View Download Add to My Pictures Title: Pharynx Anatomy Description: Anatomy of the pharynx; drawing shows the ...

  6. Current And Future Indications For Magnetic Resonance In Medicine

    NASA Astrophysics Data System (ADS)

    Bradley, William G.

    1985-02-01

    Since Nuclear Magnetic Resonance was first used to image the human body in the late 1970's (1), image quality has steadily improved. At this time, image quality from magnetic resonance (MR) imaging, as it is now called, rivals that produced by x-ray computed tomography (CT). The cross-sectional tomographic images of the body produced by magnetic resonance display hydrogen density in the body, modified by the magnetic relaxation times, Tl and T2 (2). In addition to imaging the body, MR can also provide spectroscopic information from a specified region of interest within the body. Spectroscopy gives the concentration of different chemical species of the same chemical nucleus (e.g., P-31, C-13, Na-23), again modified by the magnetic relaxation times. Although such spectra have been obtained from the human body, the role of spectroscopy in clinical medicine has yet to be defined. The following discusses the indications for magnetic resonance imaging in current medical practice relative to existing imaging modalities such as CT. Potential future indications for magnetic resonance (including both imaging and spectroscopic applications) will be discussed.

  7. Dental anatomy portrayed with microscopic volume investigations.

    PubMed

    Baumann, M A; Schwebel, T; Kriete, A

    1993-01-01

    The clinical treatment of the root canal of teeth--called endodontics--assumes a precise idea of the spatial arrangement of the anatomy of teeth and their inner structure. By using computer-assisted data acquisition from filmed sequences of histologic serial sections and a special kind of magnetic resonance microscope--the Stray Field Imaging (STRAFI)--volume investigations were carried out using special functions of a newly developed 3D software. Possible applications and future perspectives are discussed. PMID:8402529

  8. High-Resolution Magnetic Resonance Angiography of the Mouse Brain: Application to Murine Focal Cerebral Ischemia Models

    NASA Astrophysics Data System (ADS)

    Beckmann, Nicolau; Stirnimann, Roger; Bochelen, Damien

    1999-10-01

    Three-dimensional time-of-flight high-resolution magnetic resonance angiography was applied to visualize the cerebral vasculature of the mouse brain. In normal mice, angiograms of good quality, showing the essential details of the arterial cerebrovascular anatomy, could be obtained in only 2.5 min without the use of contrast agents. Signals from slowly flowing blood, e.g., in veins, could also be detected after administration of a blood pool contrast agent. The technique was applied to mouse models of permanent and transient brain ischemia, involving the occlusion of the middle cerebral artery. High-resolution magnetic resonance angiography proved to be a very useful tool for verifying the success of the occlusion in these models.

  9. Cardiac magnetic resonance imaging in children.

    PubMed

    Helbing, Willem A; Ouhlous, Mohamed

    2015-01-01

    MRI is an important additional tool in the diagnostic work-up of children with congenital heart disease. This review aims to summarise the role MRI has in this patient population. Echocardiography remains the main diagnostic tool in congenital heart disease. In specific situations, MRI is used for anatomical imaging of congenital heart disease. This includes detailed assessment of intracardiac anatomy with 2-D and 3-D sequences. MRI is particularly useful for assessment of retrosternal structures in the heart and for imaging large vessel anatomy. Functional assessment includes assessment of ventricular function using 2-D cine techniques. Of particular interest in congenital heart disease is assessment of right and single ventricular function. Two-dimensional and newer 3-D techniques to quantify flow in these patients are or will soon become an integral part of quantification of shunt size, valve function and complex flow patterns in large vessels. More advanced uses of MRI include imaging of cardiovascular function during stress and tissue characterisation of the myocardium. Techniques used for this purpose need further validation before they can become part of the daily routine of MRI assessment of congenital heart disease. PMID:25552387

  10. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    SciTech Connect

    Zhang, Z.; Hammel, P.C.; Wigen, P.E.

    1996-04-01

    We report the observation of a ferromagnetic resonance signal arising from a microscopic ({approximately}20{mu}m{times}40{mu}m) particle of thin (3{mu}m) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. {copyright} {ital 1996 American Institute of Physics.}

  11. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  12. Magnetic resonance force microscopy studies in a thin permalloy film

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Thompson, J. D.; Pelekhov, D. V.; Mewes, T.; Wigen, P. E.; Kim, J.; Zalalutdinov, M.; Baldwin, J. W.; Houston, B.; Hammel, P. C.; Movshovich, R.

    A 50 nm thick Permalloy film has been studied using magnetic resonance force microscopy (MRFM). The ferromagnetic resonance signal has been mechanically detected utilizing a cantilever with a Nd2Fe14B tip. The measurements were performed in the temperature range between 10 and 70 K and a DC field applied perpendicular to the surface of the film. The microwave field was in the plane. The measurements indicate a decrease of the ferromagnetic resonance field with increasing temperature which may be attributed to temperature-dependent changes of the saturation magnetization. The measurements demonstrate the capability of MRFM to study temperature-dependent phenomena.

  13. Magnetic Resonance Imaging (MRI) (For Parents)

    MedlinePLUS

    ... a safe and painless test that uses a magnetic field and radio waves to produce detailed pictures of ... that might cause a problem near a strong magnetic field. To obtain the highest quality MRI results, your ...

  14. Green's function theory of ferromagnetic resonance in magnetic superlattices with damping

    NASA Astrophysics Data System (ADS)

    Qiu, R. K.; Guo, F. F.; Zhang, Z. D.

    2016-02-01

    We explore a quantum Green's-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  15. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  16. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-01

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  17. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.

    PubMed

    Li, Xianli; Ding, Hui

    2012-12-15

    All-fiber magnetic-field sensor based on a device consisting of a microfiber knot resonator and magnetic fluid is proposed for the first time in this Letter. Sensor principles and package technology are introduced in detail. Experimental results show that the resonance wavelength of the proposed sensor regularly varies with changes to the applied magnetic field. When the magnetic field is increased to 600Oe, the wavelength shift reaches nearly 100pm. Moreover, the sensor responding to the 50Hz alternating magnetic field is also experimentally investigated, and a minimal detectable magnetic-field strength of 10Oe is successfully achieved. PMID:23258047

  18. Functional Magnetic Resonance Imaging of the Retina

    PubMed Central

    Duong, Timothy Q.; Ngan, Shing-Chung; Ugurbil, Kamil; Kim, Seong-Gi

    2010-01-01

    Purpose This study explored the feasibility of mapping the retinas responses to visual stimuli noninvasively, by using functional magnetic resonance imaging (fMRI). Methods fMRI was performed on a 9.4-Tesla scanner to map activity-evoked signal changes of the retinachoroid complex associated with visual stimulation in anesthetized cats (n = 6). Three to 12 1-mm slices were acquired in a single shot using inversion-recovery, echo-planar imaging with a nominal in-plane resolution of 468 468 ?m2. Visual stimuli were presented to the full visual field and to the upper and lower visual fields. The stimuli were drifting or stationary gratings, which were compared with the dark condition. Activation maps were computed using cross-correlation analysis and overlaid on anatomic images. Multislice activation maps were reconstructed and flattened onto a two-dimensional surface. Results fMRI activation maps showed robust increased activity in the retinachoroid complex after visual stimulation. The average stimulus-evoked fMRI signal increase associated with drifting-grating stimulus was 1.7% 0.5% (P < 10?4, n = 6) compared with dark. Multislice functional images of the retina flattened onto a two-dimensional surface showed relatively uniform activation. No statistically significant activation was observed in and around the optic nerve head. Hemifield stimulation studies demonstrated that stimuli presented to the upper half of the visual field activated the lower part of the retina, and stimuli presented to the lower half of the visual field activated the upper part of the retina, as expected. Signal changes evoked by the stationary gratings compared with the dark basal condition were positive but were approximately half that evoked by the drifting gratings (1.0% 0.1% versus 2.1% 0.3%, P < 10?4). Conclusions To the best of our knowledge, this is the first fMRI study of the retina, demonstrating its feasibility in imaging retinal function dynamically in a noninvasive manner and at relatively high spatial resolution. PMID:11923263

  19. Generalized method for partial volume estimation and tissue segmentation in cerebral magnetic resonance images

    PubMed Central

    Khademi, April; Venetsanopoulos, Anastasios; Moody, Alan R.

    2014-01-01

    Abstract. An artifact found in magnetic resonance images (MRI) called partial volume averaging (PVA) has received much attention since accurate segmentation of cerebral anatomy and pathology is impeded by this artifact. Traditional neurological segmentation techniques rely on Gaussian mixture models to handle noise and PVA, or high-dimensional feature sets that exploit redundancy in multispectral datasets. Unfortunately, model-based techniques may not be optimal for images with non-Gaussian noise distributions and/or pathology, and multispectral techniques model probabilities instead of the partial volume (PV) fraction. For robust segmentation, a PV fraction estimation approach is developed for cerebral MRI that does not depend on predetermined intensity distribution models or multispectral scans. Instead, the PV fraction is estimated directly from each image using an adaptively defined global edge map constructed by exploiting a relationship between edge content and PVA. The final PVA map is used to segment anatomy and pathology with subvoxel accuracy. Validation on simulated and real, pathology-free T1 MRI (Gaussian noise), as well as pathological fluid attenuation inversion recovery MRI (non-Gaussian noise), demonstrate that the PV fraction is accurately estimated and the resultant segmentation is robust. Comparison to model-based methods further highlight the benefits of the current approach. PMID:26158022

  20. Magnetic resonance imaging in valvular heart disease: clinical application and current role for patient management.

    PubMed

    Sommer, Gregor; Bremerich, Jens; Lund, Gunnar

    2012-06-01

    Noninvasive imaging provides important information on cardiac anatomy and function and is a key element in clinical management of valvular heart disease (VHD). Beside echocardiography, which is still considered the first-line modality for assessment of valvular anatomy and longitudinal evaluation of VHD, cardiovascular magnetic resonance (CMR) has evolved during the last two decades as an essential tool for evaluation of cardiac diseases. Today, CMR not only represents the reference standard for measuring cardiac volumes, function, and mass, but also enables accurate assessment of morphology and function of cardiac valves. It can play an important role in clinical decision-making for patients with VHD. This review addresses current applications and limitations of CMR imaging techniques that are used in VHD including cine-balanced steady-state free precession (b-SSFP), phase contrast MR (pcMR), gradient-recalled echo (GRE), and turbo-spin echo (TSE) sequences. Moreover, it describes their application for evaluation of valvular pathologies and gives an overview on the current role of valvular CMR in patient management. PMID:22588991

  1. Wireless resonant magnetic microactuator for untethered mobile microrobots

    NASA Astrophysics Data System (ADS)

    Vollmers, Karl; Frutiger, Dominic R.; Kratochvil, Bradley E.; Nelson, Bradley J.

    2008-04-01

    Power and propulsion are primary challenges in building untethered submillimeter robots. We present a class of actuators utilizing wireless resonant magnetic actuation which accomplishes both tasks with a high degree of control. The actuator harvests magnetic energy from the environment and transforms it to impact-driven mechanical force. It can be powered and controlled with oscillating fields in the kilohertz range and strengths as low as 2mT. The wireless resonant magnetic microactuator was incorporated in microrobots, which measure 30030070?m3, that are capable of moving forward, backward, and turning in place while reaching speeds in excess of 12.5mm/s.

  2. Development of an X-band magnetic resonance force microscope

    NASA Astrophysics Data System (ADS)

    Toda, M.; Ohno, N.; Fujita, T.; Kanemaki, T.; Mitsudo, S.; Idehara, T.; Fujii, Y.; Chiba, M.; Lee, Y. J.; Markert, J. T.

    2007-03-01

    We have developed an X-band magnetic resonance force microscope (MRFM), and demonstrated the first measurements on a few nanogram 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample. We have successfully observed the MRFM signal with some structure at 9.88 GHz at room temperature. The force detection sensitivity of our MRFM system is 10 -15 N, which corresponds to the magnetic force of 10 6 resonant electron spins under the magnetic field gradient of 100 T/m. The ESR signal sensitivity of our MRFM system is 10 3-10 4 times higher than the commercial X-band ESR instrument.

  3. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  4. A dataset comprising 141 magnetic resonance imaging scans of 98 extant sea urchin species

    PubMed Central

    2014-01-01

    Background Apart from its application in human diagnostics, magnetic resonance imaging (MRI) can also be used to study the internal anatomy of zoological specimens. As a non-invasive imaging technique, MRI has several advantages, such as rapid data acquisition, output of true three-dimensional imagery, and provision of digital data right from the onset of a study. Of particular importance for comparative zoological studies is the capacity of MRI to conduct high-throughput analyses of multiple specimens. In this study, MRI was applied to systematically document the internal anatomy of 98 representative species of sea urchins (Echinodermata: Echinoidea). Findings The dataset includes raw and derived image data from 141 MRI scans. Most of the whole sea urchin specimens analyzed were obtained from museum collections. The attained scan resolutions permit differentiation of various internal organs, including the digestive tract, reproductive system, coelomic compartments, and lantern musculature. All data deposited in the GigaDB repository can be accessed using open source software. Potential uses of the dataset include interactive exploration of sea urchin anatomy, morphometric and volumetric analyses of internal organs observed in their natural context, as well as correlation of hard and soft tissue structures. Conclusions The dataset covers a broad taxonomical and morphological spectrum of the Echinoidea, focusing on regular sea urchin taxa. The deposited files significantly expand the amount of morphological data on echinoids that are electronically available. The approach chosen here can be extended to various other vertebrate and invertebrate taxa. We argue that publicly available digital anatomical and morphological data gathered during experiments involving non-invasive imaging techniques constitute one of the prerequisites for future large-scale genotypephenotype correlations. PMID:25356198

  5. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  8. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  10. Catheter steering using a Magnetic Resonance Imaging system.

    PubMed

    Lalande, Viviane; Gosselin, Frederick P; Martel, Sylvain

    2010-01-01

    A catheter is successfully bent and steered by applying magnetic gradients inside a Magnetic Resonance Imaging system (MRI). One to three soft ferromagnetic spheres are attached at the distal tip of the catheter with different spacing between the spheres. Depending on the interactions between the spheres, progressive or discontinuous/jumping displacement was observed for increasing magnetic load. This phenomenon is accurately predicted by a simple theoretical dipole interaction model. PMID:21096567

  11. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Mller, C; Kong, X; Cai, J-M; Melentijevi?, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  12. Fast Talairach Transformation for magnetic resonance neuroimages.

    PubMed

    Nowinski, Wieslaw L; Qian, Guoyu; Bhanu Prakash, K N; Hu, Qingmao; Aziz, Aamer

    2006-01-01

    We introduce and validate the Fast Talairach Transformation (FTT). FTT is a rapid version of the Talairach transformation (TT) with the modified Talairach landmarks. Landmark identification is fully automatic and done in 3 steps: calculation of midsagittal plane, computing of anterior commissure (AC) and posterior commissure (PC) landmarks, and calculation of cortical landmarks. To perform these steps, we use fast and anatomy-based algorithms employing simple operations. FTT was validated for 215 diversified T1-weighted and spoiled gradient recalled (SPGR) MRI data sets. It calculates the landmarks and warps the Talairach-Tournoux atlas fully automatically in about 5 sec on a standard computer. The average distance errors in landmark localization are (in mm): 1.16 (AC), 1.49 (PC), 0.08 (left), 0.13 (right), 0.48 (anterior), 0.16 (posterior), 0.35 (superior), and 0.52 (inferior). Extensions to FTT by introducing additional landmarks and applying nonlinear warping against the ventricular system are addressed. Application of FTT to other brain atlases of anatomy, function, tracts, cerebrovasculature, and blood supply territories is discussed. FTT may be useful in a clinical setting and research environment: (1) when the TT is used traditionally, (2) when a global brain structure positioning with quick searching and labeling is required, (3) in urgent cases for quick image interpretation (eg, acute stroke), (4) when the difference between nonlinear and piecewise linear warping is negligible, (5) when automatic processing of a large number of cases is required, (6) as an initial atlas-scan alignment before performing nonlinear warping, and (7) as an initial atlas-guided segmentation of brain structures before further local processing. PMID:16845295

  13. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    NASA Astrophysics Data System (ADS)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  14. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. PMID:26113221

  15. Magnetic resonance driven electrical impedance tomography: a simulation study.

    PubMed

    Negishi, Michiro; Tong, Tangji; Constable, R Todd

    2011-03-01

    Magnetic resonance electrical impedance tomography (MREIT) is a method for reconstructing a three-dimensional image of the conductivity distribution in a target volume using magnetic resonance (MR). In MREIT, currents are applied to the volume through surface electrodes and their effects on the MR induced magnetic fields are analyzed to produce the conductance image. However, current injection through surface electrodes poses technical problems such as the limitation on the safely applicable currents. In this paper, we present a new method called magnetic resonance driven electrical impedance tomography (MRDEIT), where the magnetic resonance in each voxel is used as the applied magnetic field source, and the resultant electromagnetic field is measured through surface electrodes or radio-frequency (RF) detectors placed near the surface. Because the applied magnetic field is at the RF frequency and eddy currents are the integral components in the method, a vector wave equation for the electric field is used as the basis of the analysis instead of a quasi-static approximation. Using computer simulations, it is shown that complex permittivity images can be reconstructed using MRDEIT, but that improvements in signal detection are necessary for detecting moderate complex permittivity changes. PMID:21147595

  16. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    PubMed Central

    Fiorelli, Marco; Aceti, Franca; Marini, Isabella; Giacchetti, Nicoletta; Macci, Enrica; Tinelli, Emanuele; Calistri, Valentina; Meuti, Valentina; Caramia, Francesca; Biondi, Massimo

    2015-01-01

    Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression. PMID:26347585

  17. Composite Nanowire-Based Probes for Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Barbic, Mladen; Scherer, Axel

    2005-03-01

    We will present a nanowire-based methodology for the fabrication of ultra-high sensitivity and resolution probes for atomic resolution magnetic resonance force microscopy (MRFM). The fabrication technique combines electrochemical deposition of multi-functional metals into nanoporous polycarbonate membranes and chemically selective electroless deposition of optical nanoreflector onto the nanowire. The completed composite nanowire structure contains all the required elements for ultra-high sensitivity and resolution MRFM sensor with: (a) magnetic nanowire segment providing atomic resolution magnetic field imaging gradients as well as large force gradients for high sensitivity, (b) noble metal enhanced nanowire segment providing efficient scattering cross-section from a sub-wavelength source for optical readout of nanowire vibration, and (c) non-magnetic/non-plasmonic nanowire segment providing the cantilever structure for sensitive mechanical detection of magnetic resonance.

  18. On-wafer magnetic resonance of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.; Russek, Stephen E.; Booth, James C.; Kabos, Pavel; Usselman, Robert J.

    2015-11-01

    Magnetic resonance measurements of ferumoxytol and TEMPO were made using an on-wafer transmission line technique with a vector network analyzer, allowing for broadband measurements of small sample volumes (4 nL) and small numbers of spins (1 nmol). On-wafer resonance measurements were compared with standard single-frequency cavity-based electron paramagnetic resonance (EPR) measurements using a new power conservation approach and the results show similar line shape. On-wafer magnetic resonance measurements using integrated microfluidics and microwave technology can significantly reduce the cost and sample volumes required for EPR spectral analysis and allow for integration of EPR with existing lab-on-a-chip processing and characterization techniques for point-of-care medical diagnostic applications.

  19. Cardiovascular magnetic resonance guided electrophysiology studies

    PubMed Central

    Kolandaivelu, Aravindan; Lardo, Albert C; Halperin, Henry R

    2009-01-01

    Catheter ablation is a first line treatment for many cardiac arrhythmias and is generally performed under x-ray fluoroscopy guidance. However, current techniques for ablating complex arrhythmias such as atrial fibrillation and ventricular tachycardia are associated with suboptimal success rates and prolonged radiation exposure. Pre-procedure 3D CMR has improved understanding of the anatomic basis of complex arrhythmias and is being used for planning and guidance of ablation procedures. A particular strength of CMR compared to other imaging modalities is the ability to visualize ablation lesions. Post-procedure CMR is now being applied to assess ablation lesion location and permanence with the goal of indentifying factors leading to procedure success and failure. In the future, intra-procedure real-time CMR, together with the ability to image complex 3-D arrhythmogenic anatomy and target additional ablation to regions of incomplete lesion formation, may allow for more successful treatment of even complex arrhythmias without exposure to ionizing radiation. Development of clinical grade CMR compatible electrophysiology devices is required to transition intra-procedure CMR from pre-clinical studies to more routine use in patients. PMID:19580654

  20. Spin torque ferromagnetic resonance with magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. M.; Barsukov, I.; Chen, Y.-J.; Yang, L.; Katine, J. A.; Krivorotov, I. N.

    2013-10-01

    We demonstrate a technique of broadband spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation for measurements of spin wave properties in magnetic nanostructures. This technique gives great improvement in sensitivity over the conventional ST-FMR measurements, and application of this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR measurements with micromagnetic simulations of the spin wave spectrum allows us to explain the character of low-frequency magnetic excitations in nanoscale MTJs.

  1. Resonant Landau-Zener transitions in a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Wjcik, P.; Adamowski, J.; Wo?oszyn, M.; Spisak, B. J.

    2015-06-01

    Spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown thatapart from the well-known conductance dip located at the magnetic field equal to the helical-field amplitude Bhthe additional conductance dips (with zero conductance) appear at a magnetic field different from Bh. This effect occurring in the non-adiabatic regime is explained as resulting from the resonant Landau-Zener transitions between the spin-split subbands.

  2. Current-induced spin torque resonance of a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Chiba, Takahiro; Niedermayr, Arthur; Lotze, Johannes; Huebl, Hans; Geprgs, Stephan; Takahashi, Saburo; Bauer, Gerrit E. W.; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-10-01

    We report the observation of current-induced spin torque resonance in yttrium iron garnet/platinum bilayers. An alternating charge current at GHz frequencies in the platinum gives rise to dc spin pumping and spin Hall magnetoresistance rectification voltages, induced by the Oersted fields of the ac current and the spin Hall effect-mediated spin transfer torque. In ultrathin yttrium iron garnet films, we observe spin transfer torque actuated magnetization dynamics which are significantly larger than those generated by the ac Oersted field. Spin transfer torques thus efficiently couple charge currents and magnetization dynamics also in magnetic insulators, enabling charge current-based interfacing of magnetic insulators with microwave devices.

  3. Magnetic resonance imaging of transplanted stem cell fate in stroke

    PubMed Central

    Aghayan, Hamid Reza; Soleimani, Masoud; Goodarzi, Parisa; Norouzi-Javidan, Abbas; Emami-Razavi, Seyed Hasan; Larijani, Bagher; Arjmand, Babak

    2014-01-01

    Nowadays, scientific findings in the field of regeneration of nervous system have revealed the possibility of stem cell based therapies for damaged brain tissue related disorders like stroke. Furthermore, to achieve desirable outcomes from cellular therapies, one needs to monitor the migration, engraftment, viability, and also functional fate of transplanted stem cells. Magnetic resonance imaging is an extremely versatile technique for this purpose, which has been broadly used to study stroke and assessment of therapeutic role of stem cells. In this review we searched in PubMed search engine by using following keywords; Stem Cells, Cell Tracking, Stroke, Stem Cell Transplantation, Nanoparticles, and Magnetic Resonance Imaging as entry terms and based on the mentioned key words, the search period was set from 1976 to 2012. The main purpose of this article is describing various advantages of molecular and magnetic resonance imaging of stem cells, with focus on translation of stem cell research to clinical research. PMID:25097631

  4. Synthesis, magnetic resonance and microwave absorption properties of cobalt nanospheres

    NASA Astrophysics Data System (ADS)

    Wen, S. L.; Liu, Y.; Zhao, X. C.; Cheng, J. W.; Li, H.

    2014-12-01

    By using a simple and low-cost liquid reduction method, we have synthesized cobalt nanospheres on a large scale. The materials were characterized, and the result showed that as-prepared products were cobalt nanospheres, assembled by nanosheets in parallel, with a size of around 100 nm. The electromagnetic behaviors of the cobalt nanospheres, including permittivity ({{\\varepsilon }r}=\\varepsilon '-j\\varepsilon '') and permeability ({{? }r}=? '-j? ''), were also investigated as a function of frequency in the microwave frequency range of 2-18 GHz. The permittivity presented multiple dielectric resonance peaks whilst the permeability displayed dual obvious magnetic resonance peaks, manifestly different from other cobalt particles in comparison. The calculated reflection loss (RL) indicated there were two strong microwave absorption peaks over the microwave frequency range of 2-18 GHz, which was in accord with the magnetic resonance peaks. The result revealed that the magnetic loss contributed even more than dielectric loss to the microwave absorption for the cobalt nanospheres.

  5. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging

    PubMed Central

    Liu, Christina H

    2015-01-01

    MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors. PMID:25774094

  6. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  7. Biological effects of exposure to magnetic resonance imaging: an overview

    PubMed Central

    Formica, Domenico; Silvestri, Sergio

    2004-01-01

    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797

  8. Magnetic resonance imaging in entomology: a critical review

    PubMed Central

    Hart, A.G.; Bowtell, R.W.; Köckenberger, W.; Wenseleers, T.; Ratnieks, F.L.W.

    2003-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging techniques are discussed. In addition, we illustrate the images that can be obtained using MRM. We conclude that although MRM has significant potential, further improvements to the technique are still desirable if it is to become a mainstream imaging technology in entomology. Abbreviation: CSI chemical shift imaging. The dependence of the resonance frequency of a nucleus on the chemical binding of the atom or molecule in which it is contained. (N)MRI (nuclear) magnetic resonance imaging MRM magnetic resonance microscopy Voxel A contraction for volume element, which is the basic unit of MR reconstruction; represented as a pixel in the display of the MR image. PMID:15841222

  9. Ferromagnetic Resonance Investigation of an Individual Permalloy Dot Using Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, I. H.; Pelekhov, D.; Obukhov, Yu.; Banerjee, P.; Martin, I.; Wigen, P.; Hammel, P. C.

    2008-03-01

    We report Ferromagnetic Resonance (FMR) investigations of individual 5.3 micron diameter permalloy dots using low temperature (4 K) Magnetic Resonance Force Microscopy (MRFM). The dot magnetization is saturated in the external magnetic field perpendicular to the plane of the sample. The evolution of the MRFM signal as probe-sample separation and the lateral probe position are varied reveals the shape of the magnetostatic modes excited in the dot in the presence of the strongly inhomogeneous magnetic field of the MRFM probe magnet. The experimental data agree excellently with micromagnetic modeling which suggests that localized FMR modes are excited in the sample. This effect opens the way for spatially resolved studies of ferromagnetic systems.

  10. High sensitivity electron spin resonance by magnetic resonance force microscopy at low temperature

    NASA Astrophysics Data System (ADS)

    Fong, Kin Chung

    This dissertation describes the development and usage of the experimental technique---Magnetic Resonance Force Microscopy (MRFM)---to study electron spin resonance at low temperature in sensitivity as high as two electron spins. MRFM detects magnetic resonance by sensing the small force acting on the cantilever by the paramagnetic electron spins in the sample through magnetic coupling. I have applied this technique to measure the fluctuating magnetic moments of few electron spin ensembles known as the statistical polarization or the spin noise. In this dissertation, I describe the basic principles and setup of the MRFM experiments. I have used the MRFM experiment to verify that applying negative feedback to the cantilever can reduce the cantilever response time without sacrificing the signal-to-noise ratio in the force detection. Using the new spin manipulation scheme and the microwave resonator I designed for low temperature MRFM experiments, MRFM force spectra are measured and understood by modeling the spins undergoing magnetic resonance in an inhomogeneous magnetic field. I have used the high sensitivity MRFM experiment to observe the real-time fluctuation of the electron spin magnetic moments. From the statistics of this fluctuation, the number of resonating spins and the correlation time of the statistical polarization are measured. I have shown that the spin correlation time is due to the one and two phonon relaxation processes in the silicon dioxide sample by measuring the spin correlation time in various sample temperature. As the fluctuating time scale of the statistical polarization is not dominated by the MRFM instrumentation processes, the measured spin correlation time can be used to enhance image contrast by the relaxation-weighted imaging.

  11. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  12. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  13. Development of magnetic resonance technology for noninvasive boron quantification

    SciTech Connect

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  14. Artifacts and pitfalls in shoulder magnetic resonance imaging*

    PubMed Central

    Marcon, Gustavo Felix; Macedo, Tulio Augusto Alves

    2015-01-01

    Magnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes. PMID:26379323

  15. Magnetic Resonance Spectroscopy of siRNA-Based Cancer Therapy.

    PubMed

    Penet, Marie-France; Chen, Zhihang; Mori, Noriko; Krishnamachary, Balaji; Bhujwalla, Zaver M

    2016-01-01

    Small interfering RNA (siRNA) is routinely used as a biological tool to silence specific genes, and is under active investigation in cancer treatment strategies. Noninvasive magnetic resonance spectroscopy (MRS) provides the ability to assess the functional effects of siRNA-mediated gene silencing in cultured cancer cells, and following nanoparticle-based delivery in tumors in vivo. Here we describe the use of siRNA to downregulate choline kinase, a critical enzyme in choline phospholipid metabolism of cancer cells and tumors, and the use of (1)H MRS of cells and (1)H magnetic resonance spectroscopic imaging (MRSI) of tumors to assess the efficacy of the downregulation. PMID:26530913

  16. Three-dimensional Imaging using Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Lee, I. H.; Fong, K. C.; Obukhov, Yu.; Pelekhov, D. V.; Hammel, P. C.

    2006-03-01

    We describe techniques for obtaining 3D spin density images using Magnetic Resonance Force Microscopy. The apparatus, specifically designed to test imaging techniques, operates in vacuum at room temperature. We record the spatial dependence of the force generated by the Electron Spin Resonance signal from a DPPH particle mounted on the cantilever as it is scanned over a spherical NdFeB particle used as a high gradient probe magnet. Details of apparatus design, experimental data, challenges and approaches to 3D MRFM image deconvolution will be presented.

  17. Implementation of NMR pulse sequences for Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Moores, Bradley; Eichler, Alexander; Degen, Christian

    2014-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning microscopy technique that allows measuring nuclear spin densities with a resolution of a few nanometers. Ongoing efforts are aiming at improving this resolution, which might ultimately facilitate non-destructive 3D scans of complex molecules or solid state systems with atomic resolution. Here, we review our current efforts to utilize in an MRFM experiment pulsing techniques borrowed from the nuclear magnetic resonance community. The use of advanced pulsing schemes may improve signal-to-noise ratio, imaging resolution, and allow the investigation of novel phenomena.

  18. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  19. Magnetic resonance imaging findings in AxenfeldRieger syndrome

    PubMed Central

    Whitehead, Matthew T; Choudhri, Asim F; Salim, Sarwat

    2013-01-01

    AxenfeldRieger syndrome (ARS) is a genetic disorder representing a disease spectrum resulting from neural crest cell maldevelopment. Glaucoma is a common complication from the incomplete formation of the iridocorneal angle structures. Neural crest cells also form structures of the forebrain and pituitary gland, dental papillae, aortic arch walls, genitalia, and long bones; therefore, patients with ARS manifest a wide range of systemic findings. To our knowledge, detailed magnetic resonance imaging findings have not been previously reported. We report a case of a 19-month-old Indian male diagnosed with ARS with emphasis on magnetic resonance imaging findings of the globes, brain, teeth, and skull base. PMID:23723681

  20. Double outlet left ventricle: diagnosis with magnetic resonance imaging.

    PubMed Central

    Rebergen, S A; Guit, G L; de Roos, A

    1991-01-01

    A complex congenital cardiac malformation in a female patient was evaluated several times by angiocardiography and echocardiography in childhood but a definite diagnosis was not established. Segmental analysis of the heart and the great vessels by magnetic resonance imaging when the patient was 34, however, showed a double outlet left ventricle in which the aorta was situated anterior to and to the left of the pulmonary trunk and an associated subaortic ventricular septal defect with pulmonary valve stenosis. This is the first time that this extremely rare cardiac malformation has been diagnosed by magnetic resonance imaging. Images PMID:1747301

  1. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  2. Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Lin, Fei; Ching, T. W.

    2015-05-01

    This paper proposes a new idea for magnetic sensors charging on Mars, which aims to effectively transmit energy from Mars Rover to distributed magnetic sensors. The key is to utilize wireless power transfer (WPT) to enable multiple receptors extracting energy from the source via magnetic resonant coupling. Namely, the energy transmitter is located on the Mars Rover, whereas the energy receptor is installed in the magnetic sensor. In order to effectively transfer the power, a resonator is installed between the transmitter and the receptors. Based on the proposed idea, the system topology, operation principle, and simulation results are developed. By performing finite element magnetic field analysis, the output power and efficiency of the proposed WPT system are evaluated. It confirms that the Mars Rover carrying with the energy transmitter is capable of loitering around the resonator, while the magnetic sensors on the receptors can be simultaneously charged according to energy-on-demand.

  3. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10?mT. A theoretical model corresponding to the Duffing oscillator was developed from the LandauLifshitzGilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  4. Magnetic resonance reversals in optically pumped alkali-metal vapor

    SciTech Connect

    Gong, F.; Jau, Y.-Y.; Happer, W.

    2007-05-15

    We report an unusual phenomenon, peculiar sign reversals of the ground-state magnetic resonances and of the zero-dip resonance (Zeeman resonance at zero field) of optically pumped, alkali-metal vapors. These anomalies occur when a weak circularly polarized D1 laser light is tuned to pump atoms predominantly from the lower ground-state hyperfine multiplet. One can understand the signal reversals in a simple, semiquantitative way with reference to the spin-temperature distribution. Quantitative computer simulations are in excellent agreement with observations.

  5. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption. Finally, this work demonstrates that hp krypton-83 MRI of intact, excised lungs is feasible. No attempts have been made to observe pathology specific contrast, but this work represents the first steps in developing hp krypton into a useful biomedical tool. Although the signal must be improved for biomedical applications, additional enhancements of up to 180 times greater than the currently obtained signal are possible through improved SEOP, and another order of magnitude increase can be obtained through isotopic enrichment.

  6. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  7. Nuclear magnetic resonance imaging with 90-nm resolution

    NASA Astrophysics Data System (ADS)

    Poggio, M.; Degen, C. L.; Mamin, H. J.; Rugar, D.

    2007-03-01

    Using magnetic resonance force microscopy (MRFM), we demonstrate two-dimensional nuclear magnetic resonance imaging (MRI) with 90-nm lateral resolution for ^19F nuclei in calcium fluoride. In terms of detectable volume, this represents a 60,000 fold improvement over the highest resolution conventional MRI. The high sensitivity of our measurement is achieved using a custom-made silicon cantilever with a 60-?N/m spring constant and a nanometer-scale FeCo magnetic tip that produces magnetic field gradients up to 14 G/nm. The spin manipulation protocol, called cyclic CERMIT, uses low duty cycle cantilever-driven adiabatic reversals to manipulate statistical spin polarization and generate a detectable cantilever frequency modulation. Work is underway to further improve measurement sensitivity, including the development of an efficient RF source aimed at reducing cantilever temperatures during imaging into the low millikelvin range. This and other improvements may allow MRFM to push deeper into the nanometer range.

  8. Composite nanowire-based probes for magnetic resonance force microscopy.

    PubMed

    Barbic, Mladen; Scherer, Axel

    2005-01-01

    We present a nanowire-based methodology for the fabrication of ultrahigh sensitivity and resolution probes for atomic resolution magnetic resonance force microscopy (MRFM). The fabrication technique combines electrochemical deposition of multifunctional metals into nanoporous polycarbonate membranes and chemically selective electroless deposition of optical nanoreflector onto the nanowire. The completed composite nanowire structure contains all the required elements for an ultrahigh sensitivity and resolution MRFM sensor with (a) a magnetic nanowire segment providing atomic resolution magnetic field imaging gradients as well as large force gradients for high sensitivity, (b) a noble metal enhanced nanowire segment providing efficient scattering cross-section from a sub-wavelength source for optical readout of nanowire vibration, and (c) a nonmagnetic/nonplasmonic nanowire segment providing the cantilever structure for mechanical detection of magnetic resonance. PMID:15792437

  9. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  10. Nuclear magnetic resonance: General concepts and applications

    SciTech Connect

    Paudler, W.W.

    1987-01-01

    This book describes the use of NMR for structural and mechanistic studies in organic and inorganic chemistry and biochemistry. Theory is presented in semi-empirical fashion, and only a minimal mathematical approach applied. It describes the original NMR experiment done using the low resolution technique and advances to the modern Fourier transform technique. In addition to chemical shifts, coupling constants, and double resonance, this book covers magic angle and treats inorganic and biological systems. Presentations include appropriate examples and problems.

  11. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  12. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    SciTech Connect

    Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V.

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

  13. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    PubMed

    Kakazei, G N; Mewes, T; Wigen, P E; Hammel, P C; Slavin, A N; Pogorelov, Yu G; Costa, M D; Golub, V O; Guslienko, K Yu; Novosad, V

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions. PMID:18681017

  14. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-03-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.

  15. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging.

    PubMed

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., ?-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  16. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., ?-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  17. Investigation of the anisotropy in frozen nickel ferrite ionic magnetic fluid using magnetic resonance

    PubMed

    Saenger; Skeff Neto K; Morais; Sousa; Tourinho

    1998-09-01

    Magnetic resonance is used to obtain the temperature dependence of the magnetic anisotropy of noninteracting NiFe2O4 nanoparticles from 100 to 250 K. The 10.3 nm particles are dispersed as a stable ionic magnetic fluid which is frozen under the action of an external field to perform angular variation measurements. The thermal fluctuation of the easy axis and magnetic moment about the direction of the external field is included in order to obtain the anisotropy from the angular dependence of the resonance field. Copyright 1998 Academic Press. PMID:9740748

  18. Hybrid microparticles for drug delivery and magnetic resonance imaging.

    PubMed

    Serrano-Ruiz, David; Laurenti, Marco; Ruiz-Cabello, Jess; Lpez-Cabarcos, Enrique; Rubio-Retama, Jorge

    2013-05-01

    In this work, we report the synthesis, characterization, and possible application as drug-delivery system magnetically triggered, of hybrid microparticles formed by magnetic nanoparticles embedded within poly(?-caprolactone). The magnetism of the microparticles permits their localization within the body using magnetic resonance imaging, and the biodegradable polymer layer allows entrapping drugs that can be released when temperature increases. The synthesis of the hybrid material was performed using "grafting from" technique of conveniently modified magnetic nanoparticles. Subsequently, the resulting hybrid nanoparticles were assembled into spherical particles of 138 49 nm via precipitation technique. The produced hybrid material was evaluated as stimuli-responsive drug delivery system in which the release of the drug was triggered by magnetic induction. Furthermore, the microparticles were injected in rats and their localization within the animal was monitored using the local field inhomogeneities generated by the particles. PMID:22915497

  19. Ferromagnetic resonance force spectroscopy of a magnetic vortex

    NASA Astrophysics Data System (ADS)

    de Loubens, G.; Klein, O.; Riegler, A.; Lochner, F.; Schmidt, G.; Molenkamp, L. W.; Hurdequint, H.; Boust, F.; Vukadinovic, N.; Slavin, A. N.

    2009-03-01

    Due to its nanometer size (of the order the exchange length), probing the high frequency dynamics of a magnetic vortex core is an experimental challenge. Precessional dynamics of the magnetization of individual nano-disks of NiMnSb perpendicularly magnetized is measured in a wide range of bias magnetic fields using a magnetic resonance force microscope (MRFM). A full dynamic phase diagram, demonstrating excitation of a Kittel-type dipolar mode in the saturated disks and the gyrotropic mode of vortex core rotation in the vortex-state unsaturated disks, is established. Switching of the vortex core polarity in a negative (anti-parallel to core) bias magnetic field is registered dynamically. Analytic theory and micromagnetic simulations provide a quantitative description of the experimental results.

  20. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  1. Force-detected magnetic resonance without field gradients.

    PubMed

    Leskowitz, G M; Madsen, L A; Weitekamp, D P

    1998-03-01

    A novel method of nuclear magnetic resonance (NMR) is described which promises to be preferable to known general methods at sample length scales below approximately 100 microm. Its advantages stem from the seemingly paradoxical combination of a homogeneous static magnetic field and detection of a mechanical force between a spin-bearing sample and a magnet assembly. In contrast to other methods of force-detected nuclear magnetic resonance (FDNMR), the method is characterized by better observation of magnetization, enhanced resolution, and no gradient (BOOMERANG), and it is generally applicable with respect to sample composition, pulse sequence, and magnetic field strength. Further advantages of portability and low cost stem from the small instrument volume and mass and promise to extend the use of NMR to new applications and environments. A sensitivity analysis, relevant to spectroscopy or imaging, quantifies the advantage of BOOMERANG relative to magnetic induction using microcoils and to FDNMR methods that rely on large gradients of the magnetic field at the sample. PMID:9650792

  2. Force-gradient detection of nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Garner, Sean Roark

    This thesis presents experiments in which magnetic resonance is detected as a force or a force gradient on a microcantilever, a technique known as magnetic resonance force microscopy (MRFM). A new type of MRFM is described with which unprecedented sensitivity for nuclear MRFM was achieved. These experiments represent an advance in the ongoing effort to reach single-nucleus sensitivity. First an apparatus was built in which a millimeter-scale magnetic particle was used to exert a force on paramagnetic samples which were mounted on an atomicforce-microscope cantilever. This device was used to detect electron spin resonance in diphenyl-picrylhydrazyl at 77 kelvin, and nuclear magnetic resonance in ammonium nitrate at room temperature. These experiments formed the foundation for later high-sensitivity work by providing essential information about many aspects of the apparatus. A more advanced set-up was then created for the demonstration of a new MRFM method in which the gradient of the force from spins in the sample alters the effective spring constant of the cantilever, causing a shift in its mechanical resonance frequency. Using a custom, magnet-tipped, low-spring-constant cantilever cooled to 4 kelvin, magnetization from 71Ga in GaAs was detected at a sensitivity of 7.5 x 10-21 J/T in a one-hertz measurement bandwidth, the highest nuclear-MRFM sensitivity ever reported at that time. The method has highly favorable spin-relaxation characteristics when compared with the other existing high-sensitivity MRFM technique.

  3. Force-detected nuclear magnetic resonance independent of field gradients

    NASA Astrophysics Data System (ADS)

    Leskowitz, Garett Michael

    This thesis describes a new method of magnetic resonance detection based on mechanical displacements caused by magnetic forces, which is general with respect to sample and pulse sequence. A spin-bearing sample placed inside a flexible magnet assembly distorts that assembly in proportion to the sample's magnetization. Radio-frequency fields that modulate the sample's spin magnetization at this detector's mechanical resonance frequency encode magnetic resonance spectra into the detector's trajectory. A key insight is that such mechanical detection can be performed within optimized detectors with no need for field gradients inside the sample volume, circumventing the deleterious consequences of such gradients for sensitivity and resolution. The new method is called Better Observation of Magnetization, Enhanced Resolution, and No Gradient (BOOMERANG), and its sensitivity is predicted to exceed that of inductive detection at microscopic size scales. A prototype BOOMERANG spectrometer optimized for 3 mm diameter liquid and solid samples is described. The device uses direct digital synthesis of radio-frequency waveforms in its operation and fiber-optic interferometry to detect picometer-scale motions of a detector magnet. This magnet is bound to a tuned mechanical oscillator inside a magnet assembly designed for homogeneity of the magnetic field in the sample. Several types of time-domain FT-NMR spectra on test samples are presented. The data confirm theory and design principles. The favorable scaling of BOOMERANG's sensitivity and the numerous potential uses for NMR at reduced size scales motivate construction of spectrometers optimized for microscopic samples. Geometric concerns in scaling down BOOMERANG are addressed quantitatively. At size scales where the number of spins is such that mean magnetization is smaller than fluctuations, such fluctuations, if not accounted for, can dominate the noise regardless of the physical detection method used. A measurement paradigm using correlations of these fluctuations to encode spectra is proposed to suppress this quantum noise, and the sensitivity of this method, which we call Correlated Observations Narrow Quantum Uncertainty, Enhancing Spectroscopic Transients (CONQUEST), is analyzed. BOOMERANG and CONQUEST promise to extend the applicability of nuclear magnetic resonance (NMR) for chemical analysis to samples and problems that are currently inaccessible by NMR due to poor sensitivity.

  4. Transfer efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil

    NASA Astrophysics Data System (ADS)

    Huang, S. D.; Li, Z. Q.; Li, Y.

    2014-05-01

    Generally, for the magnetic resonance coupling wireless power transfer (WPT) system, the transfer efficiency and the transmission distance are contradictory. In order to simultaneously achieve the high transfer efficiency and the far transmission distance, some researchers have successfully proposed to use intermediate coils system to improve efficiency of WPT. In this paper, the expression for the efficiency of intermediate WPT system is obtained by applying coupled-mode theory. System efficiency is improved by optimizing key parameters of system. The intermediate WPT system via magnetic resonance coupling is designed. Simulation and experimental results validate the proposed optimization method.

  5. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    NASA Astrophysics Data System (ADS)

    Marrufo, O.; Vasquez, F.; Solis, S. E.; Rodriguez, A. O.

    2011-04-01

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  6. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  7. Heart muscle disease and cardiovascular magnetic resonance imaging.

    PubMed

    Sado, Daniel M; Fontana, Marianna; Moon, James C

    2014-07-01

    This article introduces the reader to the different types of heart muscle disease which are commonly encountered in clinical practice. It then discusses cardiovascular magnetic resonance and explains how it can help in the work up of these diverse conditions. PMID:25040517

  8. Magnetic resonance imaging of the bowel: today and tomorrow.

    PubMed

    Kinner, S; Hahnemann, M L; Forsting, M; Lauenstein, T C

    2015-03-01

    Magnetic resonance imaging of the small bowel has been feasible for more than 15 years. This review is meant to give an overview of typical techniques, sequences and indications. Furthermore, newly evaluated promising techniques are presented, which have an impact on the advance of MR imaging of the small and large bowel. PMID:25703124

  9. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  10. Noncontrast magnetic resonance angiography: concepts and clinical applications.

    PubMed

    Lim, Ruth P; Koktzoglou, Ioannis

    2015-05-01

    Many noncontrast magnetic resonance angiography techniques have recently been developed in response to concerns about gadolinium in patients with renal impairment. This article describes the theory behind established and recently described techniques and how and where they can be performed in clinical practice. PMID:25953284

  11. Fabrication of vascular replicas from magnetic resonance images.

    PubMed

    Friedman, M H; Kuban, B D; Schmalbrock, P; Smith, K; Altan, T

    1995-08-01

    Image processing and Computer Numerical Controlled (CNC) machining techniques have been used to prepare a large-than-life investment cast of an aortic bifurcation from magnetic resonance images of a replica of the vessel. The technique will facilitate experimental studies of vascular fluid dynamics and permit the in vitro reproduction of flows in living subjects. PMID:8618391

  12. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate

  13. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  14. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  15. Glutaric aciduria type 1: proton magnetic resonance spectroscopy findings.

    PubMed

    Kurul, Semra; Cakmaki, Handan; Dirik, Eray

    2004-09-01

    Glutaric aciduria type 1 is an inborn error of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-coenzyme A dehydrogenase. The disease often appears in infancy with an encephalopathic episode that results in acute basal ganglia and white matter degeneration. The neuroimaging findings in glutaric aciduria type 1 have been well defined. However, the changes in magnetic resonance spectroscopy, a noninvasive tool for identifying the biochemical state of the brain, are scarce in glutaric aciduria type 1. This report presents the magnetic resonance spectroscopy findings in a 19-month-old male with glutaric aciduria type 1. Magnetic resonance spectroscopy of right frontal white matter and right lentiform nuclei revealed decreased N-acetylaspartate/creatine ratio, slightly increased choline/creatine ratio, and increased myoinositol/creatine ratio, compared with the age-matched control patients. We thought that these changes were in accordance with neuroaxonal damage, demyelination, and astrocytosis in these areas. In conclusion, proton magnetic resonance spectroscopy provides a tool for assessing metabolic disturbances and the extent of brain damage noninvasively in glutaric aciduria type 1. PMID:15351027

  16. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian

  17. Voriconazole-related periostitis presenting on magnetic resonance imaging

    PubMed Central

    Davis, Derik L.

    2015-01-01

    Summary Painful periostitis is a complication of long-term antifungal therapy with voriconazole. A high clinical suspicion coupled with imaging and laboratory assessment is useful to establish the diagnosis. Prompt discontinuance of voriconazole typically results in the resolution of symptoms and signs. This report describes the presentation of voriconazole-related periostitis on magnetic resonance imaging. PMID:26136804

  18. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis.

    PubMed

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-03-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  19. Magnetic resonance segmentation with the bubble wave algorithm

    NASA Astrophysics Data System (ADS)

    Cline, Harvey E.; Ludke, Siegwalt

    2003-05-01

    A new bubble wave algorithm provides automatic segmentation of three-dimensional magnetic resonance images of both the peripheral vasculature and the brain. Simple connectivity algorithms are not reliable in these medical applications because there are unwanted connections through background noise. The bubble wave algorithm restricts connectivity using curvature by testing spherical regions on a propagating active contour to eliminate noise bridges. After the user places seeds in both the selected regions and in the regions that are not desired, the method provides the critical threshold for segmentation using binary search. Today, peripheral vascular disease is diagnosed using magnetic resonance imaging with a timed contrast bolus. A new blood pool contrast agent MS-325 (Epix Medical) binds to albumen in the blood and provides high-resolution three-dimensional images of both arteries and veins. The bubble wave algorithm provides a means to automatically suppress the veins that obscure the arteries in magnetic resonance angiography. Monitoring brain atrophy is needed for trials of drugs that retard the progression of dementia. The brain volume is measured by placing seeds in both the brain and scalp to find the critical threshold that prevents connections between the brain volume and the scalp. Examples from both three-dimensional magnetic resonance brain and contrast enhanced vascular images were segmented with minimal user intervention.

  20. Manganese encephalopathy: utility of early magnetic resonance imaging.

    PubMed

    Nelson, K; Golnick, J; Korn, T; Angle, C

    1993-06-01

    The use of magnetic resonance imaging (MRI) provides visual evidence of cerebral deposits of paramagnetic metals. The usefulness of MRI is described in connection with the manganese poisoning of a 44 year old arc welder who had been engaged in the repair and recycling of railroad track made of manganese steel alloy. PMID:8329316

  1. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  2. Magnetic resonance in FeNi/Bi/FeNi films

    NASA Astrophysics Data System (ADS)

    Patrin, K. G.; Yarikov, S. A.; Yakovchuk, V. Yu.; Patrin, G. S.; Salomatov, Yu. P.; Plekhanov, V. G.

    2015-11-01

    The magnetic resonance in FeNi/Bi/FeNi trilayer films with nonmagnetic semimetal spacer has been experimentally studied. It is found that the microwave absorption spectrum of samples has a complicated shape dependent on the nonmagnetic spacer thickness. In the interval of Bi layer thicknesses within 3-15 nm, the interlayer coupling has an antiferromagnetic character.

  3. Magnetic Resonance Perfusion Imaging in the Study of Language

    ERIC Educational Resources Information Center

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow

  4. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).

  5. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  6. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear

  7. Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm

    SciTech Connect

    Zhang Jingfu; Long, G.C; Liu Wenzhang; Deng Zhiwei; Lu Zhiheng

    2004-12-01

    The quantum clock synchronization (QCS) algorithm proposed by Chuang [Phys. Rev. Lett. 85, 2006 (2000)] has been implemented in a three qubit nuclear magnetic resonance quantum system. The time difference between two separated clocks can be determined by measuring the output states. The experimental realization of the QCS algorithm also demonstrates an application of the quantum phase estimation.

  8. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis

    PubMed Central

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-01-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  9. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  10. Towards Chemical Structure Resolution with Nanoscale Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kong, Xi; Stark, Alexander; Du, Jiangfeng; McGuinness, Liam P.; Jelezko, Fedor

    2015-08-01

    Nuclear magnetic resonance spectroscopy has approached the limit of single-molecule sensitivity; however, the spectral resolution is currently insufficient to obtain detailed information on chemical structure and molecular interactions. Here we demonstrate more than 2 orders of magnitude improvement in spectral resolution by performing correlation spectroscopy with shallow nitrogen-vacancy magnetic sensors in diamond. In principle, the resolution is sufficient to observe chemical shifts in approximately 1 T magnetic fields and is currently limited by molecular diffusion at the surface. We measure oil diffusion rates of D =0.15 - 0.2 nm2/? s within (5 nm )3 volumes at the diamond surface.

  11. Zero-field nuclear magnetic resonance

    SciTech Connect

    Weitekamp, D.P.; Bielecki, A.; Zax, D.; Zilm, K.; Pines, A.

    1983-05-30

    In polycrystalline samples, NMR ''powder spectra'' are broad and much structural information is lost as a result of the orientational disorder. In this Letter Fourier transform NMR in zero magnetic field is described. With no preferred direction in space, all crystallites contribute equivalently and resolved dipolar splittings can be interpreted directly in terms of internuclear distances. This opens the possibility of molecular structure determination without the need for single crystals or oriented samples.

  12. Paraganglioma Anatomy

    MedlinePLUS

    ... Pictures Browse Search Quick Search Image Details Paraganglioma Anatomy View/Download: Small: 648x576 View Download Add to My Pictures Title: Paraganglioma Anatomy Description: Paraganglioma of the head and neck; drawing ...

  13. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous pathologies of the inner ear.

  14. Ultrasensitive magnetometry and magnetic resonance imaging using cantilever detection

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2009-03-01

    Micromachined cantilevers make remarkable magnetometers for nanoscale measurements of magnetic materials and for magnetic resonance imaging (MRI). We present various applications of cantilever magnetometry at low temperature using cantilevers capable of attonewton force sensitivity. Small, unexpected magnetic effects can be seen, such as anomalous damping in magnetic field. A key application is magnetic resonance force microscopy (MRFM) of both electron and nuclear spins. In recent experiments with MRFM-based NMR imaging, 3D spatial resolution better than 10 nm was achieved for protons in individual virus particles. The achieved volumetric resolution represents an improvement of 100 million compared to the best conventional MRI. The microscope is sensitive enough to detect NMR signals from adsorbed layers of hydrocarbon contamination, hydrogen in multiwall carbon nanotubes and the phosphorus in DNA. Operating with a force noise on the order of 6 aN per root hertz with a magnetic tip that produces a field gradient in excess of 30 gauss per nanometer, the magnetic moment sensitivity is 0.2 Bohr magnetons. The corresponding field sensitivity is 3 nT per root hertz. To our knowledge, this combination of high field sensitivity and nanometer spatial resolution is unsurpassed by any other form of nanometer-scale magnetometry.

  15. Towards the invisible cryogenic system for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Steinmeyer, F.; Retz, P. W.; White, K.; Lang, A.; Stautner, W.; Smith, P. N.; Gilgrass, G.

    2002-05-01

    With about 10,000 Magnetic Resonance Imaging (MRI) systems installed worldwide, helium cooled magnets have become familiar equipment in hospitals and imaging centers. Patients and operators are only aware of the hissing sound of the Gifford-MacMahon refrigerator. Service technicians, however, still work with cryogenic fluids and cold gases, e.g. for replenishing the helium reservoir, inserting retractable current leads for magnet ramps, or replacing burst disks after a magnet quench. We will describe the steps taken at Oxford Magnet Technology towards the ultimate goal of a superconducting magnet being as simple as a household fridge. Early steps included the development of resealing quench valves, as well as permanently installed transfer siphons that only open when fully cooled to 4K. On recently launched 1.5 Tesla solenoid magnets, 500 A current leads are permanently fixed into the service turret, with hardly any boil-off penalty (40-50 cc/hr total). Ramping of the magnet has been fully automated, including electronic supervision of the gas-cooled current leads. One step ahead, the 1 Tesla High Field Open magnet is refrigerated by a single 4K Gifford MacMahon coldhead, relieving the user from the necessity to refill with helium. Our conduction cooled 0.2 Tesla HTS magnet testbed does not require liquid cryogens at any time in its life, including initial cool-down.

  16. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except in patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.

  17. Magnetically tunable Mie resonance-based dielectric metamaterials

    PubMed Central

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-01-01

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route. PMID:25384397

  18. Magnetic resonance spectroscopy may hold promise in studying metabolites, tissues

    SciTech Connect

    Not Available

    1989-02-24

    Almost 15 years ago, in a basement at Chicago's University of Illinois Medical Center, Michael Barany, MD, PhD, measured phosphorus metabolites in an intact frog muscle using magnetic resonance spectroscopy (MRS). Prior to that, chemists used spectroscopy solely to analyze the contents of test tubes. Only a British group preceded Barany in proving that it would work in tissue as well. Today, he does spectroscopy clinically, one day a week, at the Greenberg Radiology Institute in Highland Park, IL, north of Chicago. Barany says that he can distinguish malignant from benign tumors in the living brain. The tool he uses is a standard magnetic resonance imaging (MRI) machine. While MRI capabilities have forged ahead, human MRS has been awaiting improvements in magnet and computer technology. Barany is one of a number of researchers who, since the early 1980s, have been developing MRS technology and techniques so that it can be done in the human body.

  19. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  20. NMR spectroscopy for thin films by magnetic resonance force microscopy.

    PubMed

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 ?m that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the (19)F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000