Science.gov

Sample records for ancient versatile scaffold

  1. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands

    PubMed Central

    2008-01-01

    -like sequences. Conclusion The ubiquitous distribution of Bet v 1-related proteins among all superkingdoms suggests that a Bet v 1-like protein was already present in the last universal common ancestor. During evolution, this protein diversified into numerous families with low sequence similarity but with a common fold that succeeded as a versatile scaffold for binding of bulky ligands. PMID:18922149

  2. Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiber‐Initiated Controlled Radical Polymerization

    PubMed Central

    Harrison, Rachael H.; Steele, Joseph A. M.; Chapman, Robert; Gormley, Adam J.; Chow, Lesley W.; Mahat, Muzamir M.; Podhorska, Lucia; Palgrave, Robert G.; Payne, David J.; Hettiaratchy, Shehan P.; Dunlop, Iain E.

    2015-01-01

    Native tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end‐functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly‐ε‐caprolactone is end functionalized with either a polymerization‐initiating group or a cell‐binding peptide motif cyclic Arg‐Gly‐Asp‐Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold. The polymerization‐initiating group is then used to graft an antifouling polymer bottlebrush based on poly(ethylene glycol) from the fiber surface using CRP exclusively within one bilayer of the scaffold. The ability to include additional multifunctionality during CRP is showcased by integrating a biotinylated monomer unit into the polymerization step allowing postmodification of the scaffold with streptavidin‐coupled moieties. These combined processing techniques result in an effective bilayered and dual‐functionality scaffold with a cell‐adhesive surface and an opposing antifouling non‐cell‐adhesive surface in zonally specific regions across the thickness of the scaffold, demonstrated through fluorescent labelling and cell adhesion studies. This modular and versatile approach combines strategies to produce scaffolds with tailorable properties for many applications in tissue engineering and regenerative medicine. PMID:27134621

  3. Triazine as a promising scaffold for its versatile biological behavior.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2015-09-18

    Among all heterocycles, the triazine scaffold occupies a prominent position, possessing a broad range of biological activities. Triazine is found in many potent biologically active molecules with promising biological potential like anti-inflammatory, anti-mycobacterial, anti-viral, anti-cancer etc. which makes it an attractive scaffold for the design and development of new drugs. The wide spectrum of biological activity of this moiety has attracted attention in the field of medicinal chemistry. Due to these biological activities, their structure-activity relationship has generated interest among medicinal chemists and this has culminated in the discovery of several lead molecules. The outstanding development of triazine derivatives in diverse diseases within very short span of time proves its magnitude for medicinal chemistry research. Therefore, these compounds have been synthesized as target structure by many researchers, and were further evaluated for their biological activities. In this review, we have compiled and discussed the biological potential of s-triazine derivatives, which could provide a low-height flying bird's eye view of the triazine derived compounds to a medicinal chemist, for a comprehensive and target oriented information for the development of clinically viable drugs. PMID:26241876

  4. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.

    PubMed

    Kim, WonJin; Lee, Hyeongjin; Kim, YongBok; Choi, Chang Hyun; Lee, DaeWeon; Hwang, Heon; Kim, GeunHyung

    2016-01-01

    In recent years, a variety of biomimetic hydrogel scaffolds have been used in tissue engineering because hydrogels can provide reasonable soft-tissue-like environmental conditions for various cell responses. However, although hydrogels can provide an outstanding biofunctional platform, their poor mechanical stability and low processability have been obstacles for their usage as biomedical scaffolds. To overcome this limitation, we propose a simple and versatile method using 3D printing supplemented with a low-temperature working plate and coating process to reinforce the mechanical properties and various cellular activities by accommodating the poly(ε-caprolactone) (PCL). To determine the efficiency of the method, we used two typical hydrogels (alginate and collagen), which were deposited in a multi-layer configuration, and PCL as a coating agent. The scaffolds were evaluated in terms of various physical and cellular activities (metabolic activity and osteogenic activity). Throughout the experiments, significant increases in the tensile modulus (>6-fold), cell proliferation (>1.2-fold), and calcium deposition (>1.3-fold) were observed for the hydrogel/PCL scaffolds compared to those for pure hydrogel. Based on the experimental results, we can confirm that the proposed hydrogel scaffold can be a highly promising biomedical scaffold for application in tissue regeneration. PMID:27586518

  5. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields. PMID:23959206

  6. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds.

    PubMed

    Parmar, Paresh A; St-Pierre, Jean-Philippe; Chow, Lesley W; Puetzer, Jennifer L; Stoichevska, Violet; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2016-07-01

    Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220

  7. Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis.

    PubMed

    Morales, Paula; Gómez-Cañas, María; Navarro, Gemma; Hurst, Dow P; Carrillo-Salinas, Francisco J; Lagartera, Laura; Pazos, Ruth; Goya, Pilar; Reggio, Patricia H; Guaza, Carmen; Franco, Rafael; Fernández-Ruiz, Javier; Jagerovic, Nadine

    2016-07-28

    A combination of molecular modeling and structure-activity relationship studies has been used to fine-tune CB2 selectivity in the chromenopyrazole ring, a versatile CB1/CB2 cannabinoid scaffold. Thus, a series of 36 new derivatives covering a wide range of structural diversity has been synthesized, and docking studies have been performed for some of them. Biological evaluation of the new compounds includes, among others, cannabinoid binding assays, functional studies, and surface plasmon resonance measurements. The most promising compound [43 (PM226)], a selective and potent CB2 agonist isoxazole derivative, was tested in the acute phase of Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), a well-established animal model of primary progressive multiple sclerosis. Compound 43 dampened neuroinflammation by reducing microglial activation in the TMEV. PMID:27309150

  8. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.

    PubMed

    Pot, Michiel W; Faraj, Kaeuis A; Adawy, Alaa; van Enckevort, Willem J P; van Moerkerk, Herman T B; Vlieg, Elias; Daamen, Willeke F; van Kuppevelt, Toin H

    2015-04-29

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture. PMID:25822583

  9. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    NASA Astrophysics Data System (ADS)

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.

  10. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications

    PubMed Central

    Tiede, Christian; Tang, Anna A. S.; Deacon, Sarah E.; Mandal, Upasana; Nettleship, Joanne E.; Owen, Robin L.; George, Suja E.; Harrison, David J.; Owens, Raymond J.; Tomlinson, Darren C.; McPherson, Michael J.

    2014-01-01

    We have designed a novel non-antibody scaffold protein, termed Adhiron, based on a phytocystatin consensus sequence. The Adhiron scaffold shows high thermal stability (Tm ca. 101°C), and is expressed well in Escherichia coli. We have determined the X-ray crystal structure of the Adhiron scaffold to 1.75 Å resolution revealing a compact cystatin-like fold. We have constructed a phage-display library in this scaffold by insertion of two variable peptide regions. The library is of high quality and complexity comprising 1.3 × 1010 clones. To demonstrate library efficacy, we screened against the yeast Small Ubiquitin-like Modifier (SUMO). In selected clones, variable region 1 often contained sequences homologous to the known SUMO interactive motif (V/I-X-V/I-V/I). Four Adhirons were further characterised and displayed low nanomolar affinities and high specificity for yeast SUMO with essentially no cross-reactivity to human SUMO protein isoforms. We have identified binders against >100 target molecules to date including as examples, a fibroblast growth factor (FGF1), platelet endothelial cell adhesion molecule (PECAM-1; CD31), the SH2 domain Grb2 and a 12-aa peptide. Adhirons are highly stable and well expressed allowing highly specific binding reagents to be selected for use in molecular recognition applications. PMID:24668773

  11. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  12. Protected amine labels: a versatile molecular scaffold for multiplexed nominal mass and sub-Da isotopologue quantitative proteomic reagents.

    PubMed

    Ficarro, Scott B; Biagi, Jessica M; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I; Card, Joseph D; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G; Young, Nicolas L; Gray, Nathanael S; Marto, Jarrod A

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  13. Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association.

    PubMed

    Borrel, Guillaume; Adam, Panagiotis S; Gribaldo, Simonetta

    2016-01-01

    Methanogenesis coupled to the Wood-Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time, phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis and the Wood-Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the processes that led to loss of this metabolism in many archaeal lineages. The combination of environmental microbiology, experimental characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of fundamental metabolic pathways. PMID:27189979

  14. Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association

    PubMed Central

    Borrel, Guillaume; Adam, Panagiotis S.; Gribaldo, Simonetta

    2016-01-01

    Methanogenesis coupled to the Wood–Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time, phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis and the Wood–Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the processes that led to loss of this metabolism in many archaeal lineages. The combination of environmental microbiology, experimental characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of fundamental metabolic pathways. PMID:27189979

  15. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.

    PubMed

    Sun, Hongcheng; Zhang, Xiyu; Miao, Lu; Zhao, Linlu; Luo, Quan; Xu, Jiayun; Liu, Junqiu

    2016-01-26

    Organic nanoparticle induced self-assembly of proteins with periodic nanostructures is a promising and burgeoning strategy to develop functional biomimetic nanomaterials. Cricoid proteins afford monodispersed and well-defined hollow centers, and can be used to multivalently interact with geometrically symmetric nanoparticles to form one-dimensional protein nanoarrays. Herein, we report that core-cross-linked micelles can direct cricoid stable protein one (SP1) to self-assembling nanowires through multiple electrostatic interactions. One micelle can act as an organic nanoparticle to interact with two central concaves of SP1 in an opposite orientation to form a sandwich structure, further controlling the assembly direction to supramolecular protein nanowires. The reported versatile supramolecular scaffolds can be optionally manipulated to develop multifunctional integrated or synergistic biomimetic nanomaterials. Artificial light-harvesting nanowires are further developed to mimic the energy transfer process of photosynthetic bacteria for their structural similarity, by means of labeling donor and acceptor chromophores to SP1 rings and spherical micelles, respectively. The absorbing energy can be transferred within the adjacent donors around the ring and shuttling the collected energy to the nearby acceptor chromophore. The artificial light-harvesting nanowires are designed by mimicking the structural characteristic of natural LH-2 complex, which are meaningful in exploring the photosynthesis process in vitro. PMID:26634314

  16. A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters.

    PubMed

    Ma, Jin-Liang; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-02-01

    It is well-known that proximity-dependent probes containing an analyte recognization site and a signal formation domain could be assembled specifically into a sandwich-like structure (probe-analyte-probe) via introducing an analyte. In this work, using the design for zirconium ion (Zr(4+)) detection as the model, we develop a novel and reliable proximity-dependent DNA-scaffolded silver nanocluster (DNA/AgNC) probe for Zr(4+) detection via target-induced emitter proximity. The proposed strategy undergoes the two following processes: target-mediated emitter pair proximity as target recognition implement and the synthesis of DNA/AgNCs with fluorescence as a signal reporter. Upon combination of the rationally designed probe with Zr(4+), the intact templates were obtained according to the -PO3(2-)-Zr(4+)-PO3(2-)- pattern. The resultant structure with an emitter pair serves as a potent template to achieve highly fluorescent DNA/AgNCs. To verify the universality of the proposed proximity-dependent DNA/AgNC probe, we extend the application of the proximity-dependent probe to DNA and adenosine triphosphate (ATP) detection by virtue of a specific DNA complementary sequence and ATP aptamer as a recognition unit, respectively. The produced fluorescence enhancement of the DNA/AgNCs in response to the analyte concentration allows a quantitative evaluation of the target, including Zr(4+), DNA, and ATP with detection limits of ∼3.00 μM, ∼9.83 nM, and ∼0.81 mM, respectively. The proposed probe possesses good performance with simple operation, cost-effectiveness, good selectivity, and without separation procedures. PMID:26814697

  17. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold.

    PubMed

    Samland, Anne K; Rale, Madhura; Sprenger, Georg A; Fessner, Wolf-Dieter

    2011-07-01

    Aldol reactions constitute a powerful methodology for carbon-carbon bond formation in synthetic organic chemistry. Biocatalytic carboligation by aldolases offers a green, uniquely regio- and stereoselective tool with which to perform these transformations. Recent advances in the field, fueled by both discovery and protein engineering, have greatly improved the synthetic opportunities for the atom-economic asymmetric synthesis of chiral molecules with potential pharmaceutical relevance. New aldolases derived from the transaldolase scaffold (based on transaldolase B and fructose-6-phosphate aldolase from Escherichia coli) have been shown to be unusually flexible in their substrate scope; this makes them particularly valuable for addressing an expanded molecular range of complex polyfunctional targets. Extensive knowledge arising from structural and molecular biochemical studies makes it possible to address the remaining limitations of the methodology by engineering tailored biocatalysts. PMID:21574238

  18. A ready-to-use, versatile, multiplex-able three-dimensional scaffold-based immunoassay chip for high throughput hepatotoxicity evaluation.

    PubMed

    Yan, Xiaojun; Wang, Jingyu; Zhu, Lu; Lowrey, Jonathan Joseph; Zhang, Yuanyuan; Hou, Wei; Dong, Jiahong; Du, Yanan

    2015-06-21

    Hydrogel as three-dimensional (3D) substrate has been employed in miniaturized high throughput protein detection platforms to increase the number of effective antibodies and signal augmentation. However, the high water content of the hydrogel can dilute samples and create barrier to mass transfer, limiting hydrogel height to several microns in most platforms. Moreover, these platforms cannot achieve widespread use in common laboratories as they usually rely heavily on expensive robotic liquid handlers and custom-built components. Here we developed a ready-to-use, easy to store and handle, versatile and multiplex-able 3D scaffold-based immunoassay chip (3D immunoChip) possible for high throughput protein quantification using bench-top equipment in common laboratories. Sample dilution, mass transfer, signal scattering and storage problems can be avoided by using dry scaffolds that regain transparency upon rehydration. When combined with hydrophilic-hydrophobic patterned reagent loading slides, manual high throughput handling of samples can be achieved. As these micro-scaffolds are patterned without barriers in between, simultaneous and effortless washing of all the reaction zones is possible in a Petri dish. Such features aid the 3D immunoChip in saving up to 100 times reagent and about 6 times labour. The 3D immunoChip is able to detect albumin (ALB), as a model analyte, from 5 ng mL(-1) to 1000 ng mL(-1), making it comparable to the commercialized ELISA kit based on a 96-well plate (0.22-400 ng mL(-1)). This thus enables the 3D immunoChip to directly detect ALB secreted by HepaRG cells cultured in a 3D cell culture array chip for high throughput drug hepatotoxicity evaluation, which could potentially accelerate drug screening. PMID:25987291

  19. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.

    PubMed

    Kesti, Matti; Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; D'Este, Matteo; Eglin, David; Zenobi-Wong, Marcy

    2015-01-01

    Layer-by-layer bioprinting is a logical choice for the fabrication of stratified tissues like articular cartilage. Printing of viable organ replacements, however, is dependent on bioinks with appropriate rheological and cytocompatible properties. In cartilage engineering, photocrosslinkable glycosaminoglycan-based hydrogels are chondrogenic, but alone have generally poor printing properties. By blending the thermoresponsive polymer poly(N-isopropylacrylamide) grafted hyaluronan (HA-pNIPAAM) with methacrylated hyaluronan (HAMA), high-resolution scaffolds with good viability were printed. HA-pNIPAAM provided fast gelation and immediate post-printing structural fidelity, while HAMA ensured long-term mechanical stability upon photocrosslinking. The bioink was evaluated for rheological properties, swelling behavior, printability and biocompatibility of encapsulated bovine chondrocytes. Elution of HA-pNIPAAM from the scaffold was necessary to obtain good viability. HA-pNIPAAM can therefore be used to support extrusion of a range of biopolymers which undergo tandem gelation, thereby facilitating the printing of cell-laden, stratified cartilage constructs with zonally varying composition and stiffness. PMID:25260606

  20. Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Conversion of a Urokinase Inhibitor to a Plasma Kallikrein Inhibitor.

    PubMed

    Xu, Peng; Xu, Mingming; Jiang, Longguang; Yang, Qinglan; Luo, Zhipu; Dauter, Zbigniew; Huang, Mingdong; Andreasen, Peter A

    2015-11-25

    All serine proteases hydrolyze peptide bonds by the same basic mechanism and have very similar active sites, in spite of the fact that individual proteases have different physiological functions. We here report a strategy for designing high-affinity and high-specificity serine protease inhibitors using a versatile peptide scaffold, a 10-mer peptide, mupain-1 (CPAYSRYLDC). Mupain-1 was previously reported as a specific inhibitor of murine urokinase-type plasminogen activator (Ki = 0.55 μM) without measurable affinity to plasma kallikrein (Ki > 1000 μM). On the basis of a structure-based rational design, we substituted five residues of mupain-1 and converted it to a potent plasma kallikrein inhibitor (Ki = 0.014 μM). X-ray crystal structure analysis showed that the new peptide was able to adapt a new set of enzyme surface interactions by a slightly changed backbone conformation. Thus, with an appropriate re-engineering, mupain-1 can be redesigned to specific inhibitors of other serine proteases. PMID:26536069

  1. Versatile convergent synthesis of a three peptide loop containing protein mimic of whooping cough pertactin by successive Cu(I)-catalyzed azide alkyne cycloaddition on an orthogonal alkyne functionalized TAC-scaffold.

    PubMed

    Werkhoven, Paul R; van de Langemheen, Helmus; van der Wal, Steffen; Kruijtzer, John A W; Liskamp, Rob M J

    2014-04-01

    Synthetic mimics of discontinuous epitopes may have a wide range of potential applications, including synthetic vaccines and inhibition of protein-protein interactions. However, synthetic access to these relatively complex peptide molecular constructs is limited. This paper describes a versatile convergent strategy for the construction of protein mimics presenting three different cyclic peptides. Using an orthogonal alkyne protection strategy, peptide loops were introduced successively onto a triazacyclophane scaffold via Cu(I)-catalyzed azide alkyne cycloaddition. This method provides rapid access to protein mimics requiring different peptide segments for their interaction and activity. PMID:24599619

  2. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties

    PubMed Central

    Job, Florian; Settele, Florian; Lorey, Susan; Rundfeldt, Chris; Baumann, Lars; Beck-Sickinger, Annette G.; Haupts, Ulrich; Lilie, Hauke; Bosse-Doenecke, Eva

    2015-01-01

    In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters. PMID:26258013

  3. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties.

    PubMed

    Job, Florian; Settele, Florian; Lorey, Susan; Rundfeldt, Chris; Baumann, Lars; Beck-Sickinger, Annette G; Haupts, Ulrich; Lilie, Hauke; Bosse-Doenecke, Eva

    2015-01-01

    In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters. PMID:26258013

  4. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  5. Ancient Egypt.

    ERIC Educational Resources Information Center

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  6. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  7. Ancient Civilizations.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide includes Web sites and other resources on ancient civilizations with age levels and appropriate subject disciplines specified. Also includes CD-ROMs and software, videos, books, audios, magazines, professional resources, and a sample student assignment. (LRW)

  8. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  9. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  10. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246

  11. Scaffolding and Metacognition

    ERIC Educational Resources Information Center

    Holton, Derek; Clarke, David

    2006-01-01

    This paper proposes an expanded conception of scaffolding with four key elements: (1) scaffolding agency--expert, reciprocal, and self-scaffolding; (2) scaffolding domain--conceptual and heuristic scaffolding; (3) the identification of self-scaffolding with metacognition; and (4) the identification of six zones of scaffolding activity; each zone…

  12. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  13. Versatile telemonitoring system

    NASA Technical Reports Server (NTRS)

    Fergus, R. W.

    1969-01-01

    Small scale versatile multichannel telemonitoring can be installed economically with considerable expansion capabilities. This system contains a data transmitter, control transmitter, control receiver, display of readout units, a sync generator, and some remote control features.

  14. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology. PMID:27287514

  15. Ancient Egypt

    NASA Astrophysics Data System (ADS)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  16. Design and development of an ancient Chinese document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Xiu, Pingping; Ding, Xiaoqing

    2003-12-01

    The digitization of ancient Chinese documents presents new challenges to OCR (Optical Character Recognition) research field due to the large character set of ancient Chinese characters, variant font types, and versatile document layout styles, as these documents are historical reflections to the thousands of years of Chinese civilization. After analyzing the general characteristics of ancient Chinese documents, we present a solution for recognition of ancient Chinese documents with regular font-types and layout-styles. Based on the previous work on multilingual OCR in TH-OCR system, we focus on the design and development of two key technologies which include character recognition and page segmentation. Experimental results show that the developed character recognition kernel of 19,635 Chinese characters outperforms our original traditional Chinese recognition kernel; Benchmarked test on printed ancient Chinese books proves that the proposed system is effective for regular ancient Chinese documents.

  17. Ancient Bedforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    18 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows groupings of large ripple-like windblown bedforms on the floor of a large crater (larger than the image shown here) in Sinus Sabaeus, south of Schiaparelli Basin. These ripple-like features are much larger than typical wind ripples on Earth, but smaller than typical sand dunes on either planet. Like most of the other ripple-like bedforms in Sinus Sabaeus, they are probably ancient and no longer mobile. Dark streaks on the substrate between the bedforms were formed by passing dust devils. This image is located near 13.0oS, 343.7oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  18. Multiscale patterning of a biomimetic scaffold integrated with composite microspheres.

    PubMed

    Minardi, Silvia; Sandri, Monica; Martinez, Jonathan O; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Weiner, Bradley K; Tampieri, Anna; Tasciotti, Ennio

    2014-10-15

    The ideal scaffold for regenerative medicine should concurrently mimic the structure of the original tissue from the nano- up to the macroscale and recapitulate the biochemical composition of the extracellular matrix (ECM) in space and time. In this study, a multiscale approach is followed to selectively integrate different types of nanostructured composite microspheres loaded with reporter proteins, in a multi-compartment collagen scaffold. Through the preservation of the structural cues of the functionalized collagen scaffold at the nano- and microscale, its macroscopic features (pore size, porosity, and swelling) are not altered. Additionally, the spatial confinement of the microspheres allows the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enables the temporal biochemical patterning of the scaffold. The versatile manufacturing of each component of the scaffold results in the ability to customize it to better mimic the architecture and composition of the tissues and biological systems. PMID:24867543

  19. Betidamino acids: versatile and constrained scaffolds for drug discovery.

    PubMed Central

    Rivier, J E; Jiang, G; Koerber, S C; Porter, J; Simon, L; Craig, A G; Hoeger, C A

    1996-01-01

    Betidamino acids (a contraction of "beta" position and "amide") are N'-monoacylated (optionally, N'-monoacylated and N-mono- or N,N'-dialkylated) aminoglycine derivatives in which each N'acyl/alkyl group may mimic naturally occurring amino acid side chains or introduce novel functionalities. Betidamino acids are most conveniently generated on solid supports used for the synthesis of peptides by selective acylation of one of the two amino functions of orthogonally protected aminoglycine(s) to generate the side chain either prior to or after the elongation of the main chain. We have used unresolved Nalpha-tert-butyloxycarbonyl-N'alpha-fluorenylmethoxycarbonyl++ + aminoglycine, and Nalpha-(Nalpha-methyl)-tert-butyloxycarbonyl-N'alpha-fluo renylmethoxycarbonyl aminoglycine as the templates for the introduction of betidamino acids in Acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(A c)-Leu-Ilys-Pro-DAla-NH2, where 2Nal is 2-naphthylalanine, 4Cpa is 4-chlorophenylalanine, 3Pal is 3-pyridylalanine, Aph is 4-aminophenylalanine, and Ilys is Nepsilon-isopropyllysine], a potent gonadotropin-releasing hormone antagonist, in order to test biocompatibility of these derivatives. Diasteremneric peptides could be separated in most cases by reverse-phase HPLC. Biological results indicated small differences in relative potencies (<5-fold) between the D and L nonalkylated betidamino acid-containing Acyline derivatives. Importantly, most betide diastereomers were equipotent with Acyline. In an attempt to correlate structure and observed potency, Ramachandran-type plots were calculated for a series of betidamino acids and their methylated homologs. According to these calculations, betidamino acids have access to a more limited and distinct number of conformational states (including those associated with alpha-helices, beta-sheets, or turn structures), with deeper minima than those observed for natural amino acids. PMID:8700880

  20. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds

    PubMed Central

    Meinel, Anne J.; Kubow, Kristopher E.; Klotzsch, Enrico; Garcia-Fuentes, Marcos; Smith, Michael L.; Vogel, Viola; Merkle, Hans P.; Meinel, Lorenz

    2013-01-01

    As a contribution to the functionality of scaffolds in tissue engineering, here we report on advanced scaffold design through introduction and evaluation of topographical, mechanical and chemical cues. For scaffolding, we used silk fibroin (SF), a well established biomaterial. Biomimetic alignment of fibers was achieved as a function of the rotational speed of the cylindrical target during electrospinning of a SF solution blended with polyethylene oxide. Seeding fibrous SF scaffolds with human mesenchymal stem cells (hMSC) demonstrated that fiber alignment could guide hMSC morphology and orientation demonstrating the impact of scaffold topography on the engineering of oriented tissues. Beyond currently established methodologies to measure bulk properties, we assessed the mechanical properties of the fibers by conducting extension at breakage experiments on the level of single fibers. Chemical modification of the scaffolds was tested using donor/acceptor fluorophore labeled fibronectin. Fluorescence resonance energy transfer imaging allowed to assess the conformation of fibronectin when adsorbed on the SF scaffolds, and demonstrated an intermediate extension level of its subunits. Biological assays based on hMSC showed enhanced cellular adhesion and spreading as a result of fibronectin adsorbed on the scaffolds. Our studies demonstrate the versatility of SF as a biomaterial to engineer modified fibrous scaffolds and underscore the use of biofunctionally relevant analytical assays to optimize fibrous biomaterial scaffolds. PMID:19233463

  1. VAC: Versatile Advection Code

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Keppens, Rony

    2012-07-01

    The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

  2. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure.

    PubMed

    Szentivanyi, Andreas; Chakradeo, Tanmay; Zernetsch, Holger; Glasmacher, Birgit

    2011-04-30

    Electrospinning is a versatile technique in tissue engineering for the production of scaffolds. To guide tissue development, scaffolds must provide specific biochemical, structural and mechanical cues to cells and deliver them in a controlled fashion over time. Electrospun scaffold design thus includes aspects of both controlled release and structural cues. Controlled multicomponent and multiphasic drug delivery can be achieved by the careful application and combination of novel electrospinning techniques, i.e., emulsion and co-axial electrospinning. Drug distribution and polymer properties influence the resulting release kinetics. Pore size is far more relevant as a structural parameter than previously recognized. It enables cell proliferation and ingrowth, whereas fiber diameter predominantly influences cell fate. Both parameters can be exploited by combining multiple fiber types in the form of multifiber and multilayer scaffolds. Such scaffolds are required to reproduce more complex tissue structures. PMID:21145932

  3. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  4. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  5. Scaffolder - software for manual genome scaffolding

    PubMed Central

    2012-01-01

    Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs. PMID:22640820

  6. Ancient Astronomy in Armenia

    NASA Astrophysics Data System (ADS)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  7. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  8. Biological Versatility and Earth History

    PubMed Central

    Vermeij, Geerat J.

    1973-01-01

    Examples from various plant and animal groups indicate that there has been a general increase in potential versatility of form, determined by the number and range of independently varying morphogenetic parameters, among taxa appearing at successively younger stages in the fossil record. Taxa or body plans with higher potential versatility have tended to replace less potentially versatile groups in the same or similar adaptive zone through time. Greater potential diversity allows for greater homeostasis, efficiency, and integration of structures and functions, and for an increase in size of the potential adaptive zone. In contrast, chemical versatility has generally decreased within groups from the pre-Cambrian to the Phanerozoic, partly as the result of apparent changes in the chemical environment and partly as the consequence of selection for efficiency and greater metabolic ease of handling of certain materials. PMID:4198660

  9. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-01

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth. PMID:23908232

  10. 3D printed PLA-based scaffolds

    PubMed Central

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-01-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds’ fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields. PMID:23959206

  11. Silks as scaffolds for skin reconstruction.

    PubMed

    Reimers, Kerstin; Liebsch, Christina; Radtke, Christine; Kuhbier, Jörn W; Vogt, Peter M

    2015-11-01

    In this short review, we describe the use of high molecular weight proteins produced in the glands of several arthropods-commonly called silks-for the purpose to enhance human skin wound healing. To this end an extensive literature search has been performed, the publications have been categorized concerning silk preparation and application and summarized accordingly: Scaffolds to promote wound healing were prepared by processing the silks in different ways including solubilization of the protein fibers followed by casting or electrospinning. The silk scaffolds were additionally modified by coating or blending with the intention of further functionalization. In several approaches, the scaffolds were also vitalized with skin cells or stem cells. In vitro and in vivo models were implied to test for safety and efficiency. We conclude that silk scaffolds are characterized by an advantageous biocompatibility as well as an impressive versatility rendering them ideally suited for application in wounds. Nevertheless, further investigation is needed to exploit the full capacity of silk in different wound models and to achieve clinical transfer in time. PMID:25995140

  12. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  13. Ancient Egyptian herbal wines

    PubMed Central

    McGovern, Patrick E.; Mirzoian, Armen; Hall, Gretchen R.

    2009-01-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products—specifically, herbs and tree resins—were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  14. Ancient Egyptian herbal wines.

    PubMed

    McGovern, Patrick E; Mirzoian, Armen; Hall, Gretchen R

    2009-05-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products--specifically, herbs and tree resins--were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  15. [Bone tissue engineering scaffolds].

    PubMed

    Fang, Liru; Weng, Wenjian; Shen, Ge; Han, Gaorong; Santos, J D; Du, Peiyi

    2003-03-01

    Bone tissue engineering may provide an alternative to the repairs to skeletal defects resulting from disease, trauma or surgery. Scaffold has played an important role in bone tissue engineering, which functions as the architecture for bone in growth. In this paper, the authors gave a brief introduction about the requirement of bone tissue engineering scaffold, the key of the design of scaffolds and the current research on this subject. PMID:12744187

  16. Library construction for ancient genomics: single strand or double strand?

    PubMed

    Bennett, E Andrew; Massilani, Diyendo; Lizzo, Giulia; Daligault, Julien; Geigl, Eva-Maria; Grange, Thierry

    2014-06-01

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts. PMID:24924389

  17. Ancient dirt DNA

    NASA Astrophysics Data System (ADS)

    Willerslev, E.

    2007-12-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole genomic studies of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the discoveries of DNA preserved in ancient sediments, coprolites, and fossil ice (Ancient Dirt DNA). These findings promise to make possible the reconstructions of entire ecosystems through time and allow for studies of past population genetics in cases where fossils are rare. The advantages and pitfalls connected to the Ancient Dirt DNA approach will be discussed as will recently obtained data relating to Greenland environmental history, long-term bacterial survival and the first human migration into the Americas.

  18. Matrices and Scaffolds for DNA Delivery in Tissue Engineering

    PubMed Central

    De Laporte, Laura; Shea, Lonnie D.

    2007-01-01

    Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies. PMID:17512630

  19. Hierarchical scaffolding with Bambus.

    PubMed

    Pop, Mihai; Kosack, Daniel S; Salzberg, Steven L

    2004-01-01

    The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaffolding algorithm or the information produced. We thus developed a general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly, Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes, and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our Web site. PMID:14707177

  20. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. PMID:16380966

  1. A Silk-Based Scaffold Platform with Tunable Architecture for Engineering Critically-Sized Tissue Constructs

    PubMed Central

    Wray, Lindsay S.; Rnjak-Kovacina, Jelena; Mandal, Biman B.; Schmidt, Daniel F.; Seok, Eun; Kaplan, David L.

    2012-01-01

    In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering `tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. PMID:23036961

  2. [Psychiatry in ancient Mexico].

    PubMed

    Calderón Narváez, G

    1992-12-01

    Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described. PMID:1341125

  3. Ancient Chinese constellations

    NASA Astrophysics Data System (ADS)

    Xu, Junjun

    2011-06-01

    China, a country with a long history and a specific culture, has also a long and specific astronomy. Ancient Chinese astronomers observed the stars, named and distributed them into constellations in a very specific way, which is quite different from the current one. Around the Zodiac, stars are divided into four big regions corresponding with the four orientations, and each is related to a totem, either the Azure Dragon, the Vermilion Bird, the White Tiger or the Murky Warrior. We present a general pattern of the ancient Chinese constellations, including the four totems, their stars and their names.

  4. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  5. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major course…

  6. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  7. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  8. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  9. Ancient deforestation revisited.

    PubMed

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work. PMID:20669043

  10. Exact approaches for scaffolding

    PubMed Central

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally, we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the feedback edge set is significantly smaller than the input size. PMID:26451725

  11. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  12. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  13. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  14. Ancient Chinese Astronomical Technologies

    NASA Astrophysics Data System (ADS)

    Walsh, Jennifer Robin

    2004-05-01

    I am interested in the astronomical advances of the Ancient Chinese in measuring the solar day. Their development of gnomon & ruler, sundial, and water clock apparatuses enabled Chinese astronomers to measure the annual solar orbit and solar day more precisely than their contemporaries. I have built one of each of these devices to use in collecting data from Olympia, Washington. I will measure the solar day in the Pacific Northwest following the methodology of the ancient Chinese. I will compare with my data, the available historical Chinese astronomical records and current records from the United States Naval Observatory Master Clock. I seek to understand how ancient Chinese investigations into solar patterns enabled them to make accurate predictions about the movement of the celestial sphere and planets, and to develop analytic tests of their theories. Mayall, R. Newton; Sundials: their construction and use. Dover Publications 2000 North, John; The Norton History of Astronomy and Cosmology W.W. Norton& Co. 1995 Zhentao Xu, David W. Pankenier, Yaotiao Jiang; East Asian archaeoastronomy : historical records of astronomical observations of China, Japan and Korea Published on behalf of the Earth Space Institute by Gordon and Breach Science Publishers, c2000

  15. Versatile document image content extraction

    NASA Astrophysics Data System (ADS)

    Baird, Henry S.; Moll, Michael A.; Nonnemaker, Jean; Casey, Matthew R.; Delorenzo, Don L.

    2006-01-01

    We offer a preliminary report on a research program to investigate versatile algorithms for document image content extraction, that is locating regions containing handwriting, machine-print text, graphics, line-art, logos, photographs, noise, etc. To solve this problem in its full generality requires coping with a vast diversity of document and image types. Automatically trainable methods are highly desirable, as well as extremely high speed in order to process large collections. Significant obstacles include the expense of preparing correctly labeled ("ground-truthed") samples, unresolved methodological questions in specifying the domain (e.g. what is a representative collection of document images?), and a lack of consensus among researchers on how to evaluate content-extraction performance. Our research strategy emphasizes versatility first: that is, we concentrate at the outset on designing methods that promise to work across the broadest possible range of cases. This strategy has several important implications: the classifiers must be trainable in reasonable time on vast data sets; and expensive ground-truthed data sets must be complemented by amplification using generative models. These and other design and architectural issues are discussed. We propose a trainable classification methodology that marries k-d trees and hash-driven table lookup and describe preliminary experiments.

  16. Versatile Reed-Solomon decoders

    NASA Astrophysics Data System (ADS)

    Rajableh-Shayan, Yousef

    1990-08-01

    Reed-Solomon (RS) codes have found many applications such as space and mobile communication due to their error correcting capability (ECC) and optimum structure. It is shown that time domain algorithms are the best candidates for designing versatile hardware decoders, but syndrome based algorithms are advantageous for software decoders. The algorithms for decoding RS codes require algebraic operations over Galois fields. Parallel in, parallel out multipliers and inverters in Galois fields are considered and least complex structures for the multiplier are introduced. A new normal basis multiplier is presented, as well as a universal multiplier for multiplying two elements of Galois field 2 to the m (m=4,5,6,7,8). The time domain algorithm based on transform decoder is restructured and two versatile decoder structures are presented. Both are simple and modular, thus suitable for very large scale integration design, and can be used for decoding any primitive RS code defined in a specific Galois field. The ECC of these decoders is configurable. The structure of a universal RS decoder is also presented. The time domain decoding algorithm based on algebraic decoder is modified to reduce the complexity of the universal decoder. The ECC and the size for the Galois field of this decoder are configurable. A method is also introduced for decoding RS codes generated by any generator polynomial.

  17. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.

    PubMed

    Li, Dawei; Chen, Weiming; Sun, Binbin; Li, Haoxuan; Wu, Tong; Ke, Qinfei; Huang, Chen; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-10-01

    Electrospinning is a versatile and convenient technology to generate nanofibers suitable for tissue engineering. However, the low production rate of traditional needle electrospinning hinders its applications. Needleless electrospinning is a potential strategy to promote the application of electrospun nanofiber in various fields. In this study, disc-electrospinning (one kind of needleless electrospinning) was conducted to produce poly(ε-caprolactone)/gelatin (PCL/GT) scaffolds of different structure, namely the nanoscale structure constructed by nanofiber and multiscale structure consisting of nanofiber and microfiber. It was found that, due to the inhomogeneity of PCL/GT solution, disc-electrospun PCL-GT scaffold presented multiscale structure with larger pores than that of the acid assisted one (PCL-GT-A). Scanning electron microscopy images indicated the PCL-GT scaffold was constructed by nanofibers and microfibers. Mouse fibroblasts and rat bone marrow stromal cells both showed higher proliferation rates on multiscale scaffold than nanoscale scaffolds. It was proposed that the nanofibers bridged between the microfibers enhanced cell adhesion and spreading, while the large pores on the three dimensional (3D) PCL-GT scaffold provide more effective space for cells to proliferate and migrate. However, the uniform nanofibers and densely packed structure in PCL-GT-A scaffold limited the cells on the surface. This study demonstrated the potential of disc-electrospun PCL-GT scaffold containing nanofiber and microfiber for 3D tissue regeneration. PMID:27429297

  18. Suicide in ancient Greece.

    PubMed

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  19. Biomimetic Scaffolds for Osteogenesis

    PubMed Central

    Yuan, Nance; Rezzadeh, Kameron S.; Lee, Justine C.

    2015-01-01

    Skeletal regenerative medicine emerged as a field of investigation to address large osseous deficiencies secondary to congenital, traumatic, and post-oncologic conditions. Although autologous bone grafts have been the gold standard for reconstruction of skeletal defects, donor site morbidity remains a significant limitation. To address these limitations, contemporary bone tissue engineering research aims to target delivery of osteogenic cells and growth factors in a defined three dimensional space using scaffolding material. Using bone as a template, biomimetic strategies in scaffold engineering unite organic and inorganic components in an optimal configuration to both support osteoinduction as well as osteoconduction. This article reviews the various structural and functional considerations behind the development of effective biomimetic scaffolds for osteogenesis and highlights strategies for enhancing osteogenesis. PMID:26413557

  20. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  1. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly.

    PubMed

    Nieto-Suárez, Marina; López-Quintela, M Arturo; Lazzari, Massimo

    2016-05-01

    Chitosan and gelatin are biodegradable and biocompatible polymers which may be used in the preparation of 3D scaffolds with applications in biomedicine. Chitosan/gelatin scaffolds crosslinked with glutaraldehyde were prepared by ice segregation induced self-assembly (ISISA); a unidirectional freezing at -196°C followed freeze-drying to produce macroporous materials with a well-patterned structure. This process may be included within the green chemistry by the preparation of the porous structures without using organic solvents, moreover is a versatile, non-difficult and cheap process. The scaffolds prepared by ISISA were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, and their stability was evaluated by degree swelling and degradation tests. The scaffolds present properties as high porosity, high degree swelling and good stability which make them suitable of applications as biomaterials. PMID:26877010

  2. Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds

    PubMed Central

    Lalwani, Gaurav; Kwaczala, Andrea Trinward; Kanakia, Shruti; Patel, Sunny C.; Judex, Stefan; Sitharaman, Balaji

    2012-01-01

    We report a simple method to fabricate macroscopic, 3-D, free standing, all-carbon scaffolds (porous structures) using multiwalled carbon nanotubes (MWCNTs) as the starting materials. The scaffolds prepared by radical initiated thermal crosslinking, and annealing of MWCNTs possess macroscale interconnected pores, robust structural integrity, stability, and conductivity. The porosity of the three-dimensional structure can be controlled by varying the amount of radical initiator, thereby allowing the design of porous scaffolds tailored towards specific potential applications. This method also allows the fabrication of 3-D scaffolds using other carbon nanomaterials such as single-walled carbon nanotubes, fullerenes, and graphene indicating that it could be used as a versatile method for 3-D assembly of carbon nanostructures with pi bond networks. PMID:23436939

  3. Gnomons in Ancient China

    NASA Astrophysics Data System (ADS)

    Li, Geng

    Gnomon shadow measurement was one of the most fundamental astronomical observations in ancient China. It was crucial for calendar making, which constituted an important aspect of imperial governance. A painted stick discovered from a prehistoric (2300 BC) astronomical site of Taosi (see Chap. 201, "Taosi Observatory", 10.1007/978-1-4614-6141-8_215") is the oldest gnomon known of China. From second century BC onward, gnomon shadow measurements have been essential part of calendrical practice. Various historical measurements are discussed in this chapter.

  4. [Sexuality in Ancient Egypt].

    PubMed

    Androutsos, G; Marketos, S

    1994-10-01

    The present article explores the sexuality in ancient Egypt. In particular in this article are presented the ways of concubinage (marriage, concubinage, adultery), the incest, loves of the pharaohs and of the common people, the freedom of choice in garments, the status of the hetairas and of the whores, the sexual perversions (male and female homosexuality, necrophilia, sodomism, bestiality, rape, masturbation, exhibitionism), the operations of the genitals (circumcision, excision, castration) and finally the level of knowledge in gynaecology, fertility, contraception and obstetrics that even today demands our admiration. PMID:7858632

  5. Urology in ancient India

    PubMed Central

    Das, Sakti

    2007-01-01

    The practice of medical and surgical measures in the management of urological ailments prevailed in ancient India from the Vedic era around 3000 BC. Subsequently in the Samhita period, the two stalwarts - Charaka in medicine and Susruta in surgery elevated the art of medicine in India to unprecedented heights. Their elaboration of the etiopathological hypothesis and the medical and surgical treatments of various urological disorders of unparalleled ingenuity still remain valid to some extent in our contemporary understanding. The new generation of accomplished Indian urologists should humbly venerate the legacy of the illustrious pioneers in urology of our motherland. PMID:19675749

  6. Ancient human DNA.

    PubMed

    Kirsanow, Karola; Burger, Joachim

    2012-01-20

    The contribution of palaeogenetic data to the study of various aspects of hominin biology and evolution has been significant, and has the potential to increase substantially with the widespread implementation of next generation sequencing techniques. Here we discuss the present state-of-the-art of ancient human DNA analysis and the characteristics of hominin aDNA that make sequence validation particularly complex. A brief overview of the development of anthropological palaeogenetic analysis is given to illustrate the technical challenges motivating recent technological advancements. PMID:22169595

  7. Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs

    PubMed Central

    Rnjak-Kovacina, Jelena; Wray, Lindsay S.; Golinski, Julianne M.; Kaplan, David L.

    2014-01-01

    In the field of regenerative medicine there is a need for scaffolds that support large, critically-sized tissue formation. Major limitations in reaching this goal are the delivery of oxygen and nutrients throughout the bulk of the engineered tissue as well as host tissue integration and vascularization upon implantation. To address these limitations we previously reported the development of a porous scaffold platform made from biodegradable silk protein that contains an array of vascular-like structures that extend through the bulk of the scaffold. Here we report that the hollow channels play a pivotal role in enhancing cell infiltration, delivering oxygen and nutrients to the scaffold bulk, and promoting in vivo host tissue integration and vascularization. The unique features of this protein biomaterial system, including the vascular structures and tunable material properties, render this scaffold a robust and versatile tool for implementation in a variety of tissue engineering, regenerative medicine and disease modeling applications. PMID:25395920

  8. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  9. Ancient celtic horns

    NASA Astrophysics Data System (ADS)

    Campbell, Murray

    2002-11-01

    There is considerable evidence from iconographic and documentary sources that musical lip-reed instruments were important in the early celtic communities of Scotland and Ireland. In recent years several studies have been undertaken with the aim of gaining a better understanding of the musical nature of these ancient horns, and of their place in the life and culture of the time. A valuable source of tangible evidence is to be found in the archaeological remains deposited across Scotland and the whole of Ireland. A project is now under way, under the auspices of the Kilmartin House Trust and the general direction of John Purser, which has brought together an international team of musicians, craftsmen, archaeologists, musicologists and physicists with the aim of analyzing ancient musical artifacts, reconstructing some of the original instruments, and analyzing the sounds they produce. This paper describes acoustical studies carried out on a number of recent reconstructions of wooden and bronze instruments, and discusses the role of acoustics in this type of investigation. [Work supported by Sciart and EPSRC.

  10. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.

    PubMed

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-14

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  11. Electrospun fine-textured scaffolds for heart tissue constructs.

    PubMed

    Zong, Xinhua; Bien, Harold; Chung, Chiung-Yin; Yin, Lihong; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin; Entcheva, Emilia

    2005-09-01

    The structural and functional effects of fine-textured matrices with sub-micron features on the growth of cardiac myocytes were examined. Electrospinning was used to fabricate biodegradable non-woven poly(lactide)- and poly(glycolide)-based (PLGA) scaffolds for cardiac tissue engineering applications. Post-processing was applied to achieve macro-scale fiber orientation (anisotropy). In vitro studies confirmed a dose-response effect of the poly(glycolide) concentration on the degradation rate and the pH value changes. Different formulations were examined to assess scaffold effects on cell attachment, structure and function. Primary cardiomyocytes (CMs) were cultured on the electrospun scaffolds to form tissue-like constructs. Scanning electron microscopy (SEM) revealed that the fine fiber architecture of the non-woven matrix allowed the cardiomyocytes to make extensive use of provided external cues for isotropic or anisotropic growth, and to some extent to crawl inside and pull on fibers. Structural analysis by confocal microscopy indicated that cardiomyocytes had a preference for relatively hydrophobic surfaces. CMs on electrospun poly(L-lactide) (PLLA) scaffolds developed mature contractile machinery (sarcomeres). Functionality (excitability) of the engineered constructs was confirmed by optical imaging of electrical activity using voltage-sensitive dyes. We conclude that engineered cardiac tissue structure and function can be modulated by the chemistry and geometry of the provided nano- and micro-textured surfaces. Electrospinning is a versatile manufacturing technique for design of biomaterials with potentially reorganizable architecture for cell and tissue growth. PMID:15814131

  12. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  13. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-05-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  14. Local delivery of tobramycin from injectable biodegradable polyurethane scaffolds.

    PubMed

    Hafeman, Andrea E; Zienkiewicz, Katarzyna J; Carney, Erin; Litzner, Brandon; Stratton, Charles; Wenke, Joseph C; Guelcher, Scott A

    2010-01-01

    Infections often compromise the healing of open fractures. While local antibiotic delivery from PMMA beads is an established clinical treatment of infected fractures, surgical removal of the beads is required before implanting a bone graft. A more ideal therapy would comprise a scaffold and antibiotic delivery system administered in one procedure. Biodegradable polyurethane (PUR) scaffolds have been shown in previous studies to promote new bone formation in vivo, but their potential to control infection through release of antibiotics has not been investigated. In this study, injectable PUR scaffolds incorporating tobramycin were prepared by reactive liquid molding. Scaffolds had compressive moduli of 15-115 kPa and porosities ranging from 85-93%. Tobramycin release was characterized by a 45-95% burst (tuned by the addition of PEG), followed by up to 2 weeks of sustained release, with total release 4-5-times greater than equivalent volumes of PMMA beads. Released tobramycin remained biologically active against Staphylococcus aureus, as verified by Kirby-Bauer assays. Similar results were observed for the antibiotics colistin and tigecycline. The versatility of the materials, as well as their potential for injection and controlled release, may present promising opportunities for new therapies for healing of infected wounds. PMID:20040156

  15. Communication Media in Ancient Cultures.

    ERIC Educational Resources Information Center

    Jabusch, David M.

    Interest in early means of communication and in the uses and kinds of media that existed in ancient cultures is starting to grow among communication scholars. Conversation analysis of these cultures is obviously impossible, so that the emphasis must rest with material cultural artifacts. Many ancient cultures used non-verbal codes for dyadic…

  16. Tamil merchant in ancient Mesopotamia.

    PubMed

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  17. Tamil Merchant in Ancient Mesopotamia

    PubMed Central

    Palanichamy, Malliya gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  18. The Versatile Modiolus Perforator Flap

    PubMed Central

    Gunnarsson, Gudjon Leifur; Thomsen, Jorn Bo

    2016-01-01

    Background: Perforator flaps are well established, and their usefulness as freestyle island flaps is recognized. The whereabouts of vascular perforators and classification of perforator flaps in the face are a debated subject, despite several anatomical studies showing similar consistency. In our experience using freestyle facial perforator flaps, we have located areas where perforators are consistently found. This study is focused on a particular perforator lateral to the angle of the mouth; the modiolus and the versatile modiolus perforator flap. Methods: A cohort case series of 14 modiolus perforator flap reconstructions in 14 patients and a color Doppler ultrasonography localization of the modiolus perforator in 10 volunteers. Results: All 14 flaps were successfully used to reconstruct the defects involved, and the location of the perforator was at the level of the modiolus as predicted. The color Doppler ultrasonography study detected a sizeable perforator at the level of the modiolus lateral to the angle of the mouth within a radius of 1 cm. This confirms the anatomical findings of previous authors and indicates that the modiolus perforator is a consistent anatomical finding, and flaps based on it can be recommended for several indications from the reconstruction of defects in the perioral area, cheek and nose. Conclusions: The modiolus is a well-described anatomical area containing a sizeable perforator that is consistently present and readily visualized using color Doppler ultrasonography. We have used the modiolus perforator flap successfully for several indications, and it is our first choice for perioral reconstruction. PMID:27257591

  19. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  20. Characterization of Ancient Tripitaka

    NASA Astrophysics Data System (ADS)

    Gong, Y. X.; Geng, L.; Gong, D. C.

    2015-08-01

    Tripitaka is the world's most comprehensive version of Buddhist sutra. There are limited numbers of Tripitaka currently preserved, most of them present various patterns of degradation. As little is known about the materials and crafts used in Tripitaka, it appeared necessary to identify them, and to further define adapted conservation treatment. In this work, a study concerning the paper source and dyestuff of the Tripitaka from approximate 16th century was carried out using fiber analysis and thin-layer chromatography (TLC). The results proved that the papers were mainly made from hemp or bark of mulberry tree, and indigo was used for colorizing the paper. At the end, we provide with suggestions for protecting and restoring the ancient Tripitaka.

  1. Ancient Chinese Sundials

    NASA Astrophysics Data System (ADS)

    Deng, Kehui

    Timekeeping was essential in the agricultural society of ancient China. The use of sundials for timekeeping was associated with the use of the gnomon, which had its origin in remote antiquity. This chapter studies three sundials (guiyi 晷仪) from the Qin and Han dynasties, the shorter shadow plane sundial (duanying ping yi 短影平仪) invented by Yuan Chong in the Sui Dynasty, and the sundial chart (guiyingtu 晷影图) invented by Zeng Minxing in the Southern Song dynasty. This chapter also introduces Guo Shoujing's hemispherical sundial (yang yi 仰仪). A circular stone sundial discovered at the Small Wild Goose Pagoda in Xi'an is also mentioned. It is dated from the Sui and Tang dynasties. A brief survey of sundials from the Qing dynasty shows various types of sundials.

  2. Bioorthogonal Click Chemistry: An Indispensable Tool to Create Multifaceted Cell Culture Scaffolds

    PubMed Central

    2012-01-01

    Over the past decade, bioorthogonal click chemistry has led the field of biomaterial science into a new era of diversity and complexity by its extremely selective, versatile, and biocompatible nature. In this viewpoint, we seek to emphasize recent endeavors of exploiting this versatile chemistry toward the development of poly(ethylene glycol) hydrogels as cell culture scaffolds. In these cell-laden materials, the orthogonality of these reactions has played an effective role in allowing the creation of diverse biochemical patterns in complex biological environments that provide new found opportunities for researchers to delineate and control cellular phenotypes more precisely than ever. PMID:23336091

  3. Scaffolding Student Participation in Mathematical Practices

    ERIC Educational Resources Information Center

    Moschkovich, Judit N.

    2015-01-01

    The concept of scaffolding can be used to describe various types of adult guidance, in multiple settings, across different time scales. This article clarifies what we mean by scaffolding, considering several questions specifically for scaffolding in mathematics: What theoretical assumptions are framing scaffolding? What is being scaffolded? At…

  4. Bioresorbable Scaffolds for Atheroregression: Understanding of Transient Scaffolding.

    PubMed

    Kharlamov, Alexander N

    2016-01-01

    This review focuses on the clinical and biological features of the bioresorbable scaffolds in interventional cardiology highlighting scientific achievements and challenges of the transient scaffolding with Absorb BVS. Special attention is granted to the vascular biology pathways which, involved in the resorption of scaffold, artery remodeling and mechanisms of Glagovian atheroregression setting the stage for subsequent clinical applications. Twenty five years ago Glagov described the phenomenon of limited external elastic membrane enlargement in response to an increase in plaque burden. We believe this threshold becomes the target for development of strategies that reverse atherosclerosis, and particularly transient scaffolding has a potential to be a tool to ultimately conquer atherosclerosis. PMID:26818488

  5. Astronomy in the Ancient Caucasus

    NASA Astrophysics Data System (ADS)

    Simonia, Irakli; Jijelava, Badri

    This chapter discusses the role of recurrent heavenly phenomena in the formation of ancient cultural traditions. Artifacts bearing witness to astronomical and calendrical practices in the ancient Caucasus are described and we analyze the significance of the "boats of the sun" petroglyphs at Gobustan in Azerbaijan, the solar station at Abuli in Georgia, and the "sky dial" at Carahunge in Armenia. Similarities and differences between the ancient cultures of the region are discussed. Finally, we present the results of the latest field research and new facts and hypotheses.

  6. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.

    PubMed

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Shim, Jung Hee; Choi, Tae Hyun; Cho, Dong-Woo

    2015-01-01

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL-gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering. PMID:26525821

  7. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  8. Ancient Astronomy in Ukraine

    NASA Astrophysics Data System (ADS)

    Artemenko, Tatyana G.; Vavilova, Iryna B.

    2007-08-01

    Astronomical culture and research have long-standing traditions in Ukraine. The first signs of astronomical knowledge were found in archaeological excavations and records. The most ancient find (dated as 15,000 B.C.) is a mammoth tusk with a fretwork image of a table of lunar phases found in the Poltava region. The so-called Trypillya culture (dated 4,000 - 3,000 B.C) had numerous examples of ornaments at the howls, distaffs, wheels and other everyday articles with symbolic images of zodiac constellations, and vessel-calendars indicating the vernal/autumnal equinoxes and the motion of the Sun. Some of such unique exhibits stored at the National Museum of History of Ukraine will be described in details in this paper. For example, the vessel calendar dating by IV century of our era (from village Romashki, Kyiv region). This image was interpreted by B. Rybakov as an agricultural calendar from May to August (time of harvesting). Most of exhibits of Museum were founded by archaeologist Vikenty Khvoyko and presented by him to Museum in 1905. Description and pictures of vessels and cups from Chernyahiv, Trypillya IV century B.C. with the Solar signs and tusk of the mammoth from Kyrilovska parking with notches interpreted as a calendar as well as tree-storied pictures of vessel from Trypillya interpreted as a “vertical cross section of the world” in dynamics will be also given. Another unique historical record relates to the times of the powerful state of the Kievan Rus' (X- XIII centuries), when astronomical observations were conducted mainly in cloisters. For example, the authors of the Lavrentievska chronicle describe the solar eclipses of the years 1064, 1091, and 1115 A.D. and the lunar eclipses of 1161 A.D. At that times some natural cataclysms have been connected with eclipses that, for example, was described in “The Word about Igor's shelf” by Nestor Letopisec. Thus, facts discussed in paper pointed out once more that astronomy is one of the most ancient

  9. [Ancient Egyptian Odontology].

    PubMed

    Berghult, B

    1999-01-01

    In ancient Egypt during the reign of Pharaoh Djoser, circa 2650 BC, the Step Pyramid was constructed by Imhotep. He was later worshiped as the God of Medicine. One of his contemporaries was the powerful writer Hesy who is reproduced on a panel showing a rebus of a swallow, a tusk and an arrow. He is therefore looked upon as being the first depicted odontologist. The art of writing begun in Egypt in about 3100 BC and the medical texts we know from different papyri were copied with hieratic signs around 1900-1100 BC. One of the most famous is the Papyrus Ebers. It was purchased by professor Ebers on a research travel to Luxor in 1873. Two years later a beautiful facsimile in color was published and the best translation came in 1958 in German. The text includes 870 remedies and some of them are related to teeth and oral troubles like pain in the mouth, gingivitis, periodontitis and cavities in the teeth. The most common oral pain was probably pulpitis caused by extreme attrition due to the high consumption of bread contaminated with soil and/or quern minerals. Another text is the Papyrus Edwin Smith with four surgical cases of dental interest. The "toothworms" that were presumed to bring about decayed teeth have not been identified in the medical texts. It was not until 1889 W.D. Miller presented a scientific explanation that cavities were caused by bacteria. In spite of extensive research only a few evidence of prosthetic and invasive treatments have been found and these dental artifacts have probably been made post mortem. Some of the 150 identified doctors were associated with treatments of disorders of the mouth. The stele of Seneb from Sa'is during the 26th dynasty of Psamtik, 664-525 BC, shows a young man who probably was a dental healer well known to Pharaoh and his court. Clement of Alexandria mentions circa 200 AD that the written knowledge of the old Egyptians was gathered in 42 collections of papyri. Number 37-42 contained the medical writings. The

  10. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  11. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  12. Hunting for Ancient Rocky Shores.

    ERIC Educational Resources Information Center

    Johnson, Markes E.

    1988-01-01

    Promotes the study of ancient rocky shores by showing how they can be recognized and what directions future research may follow. A bibliography of previous research articles, arranged by geologic period, is provided in the appendix to this paper. (CW)

  13. Instruction, Cognitive Scaffolding, and Motivational Scaffolding in Writing Center Tutoring

    ERIC Educational Resources Information Center

    Mackiewicz, Jo; Thompson, Isabelle

    2014-01-01

    In this study, we quantitatively analyze the discourse of experienced writing center tutors in 10 highly satisfactory conferences. Specifically, we analyze tutors' instruction, cognitive scaffolding, and motivational scaffolding, all tutoring strategies identified in prior research from other disciplines as educationally effective. We find…

  14. Versatile protein tagging in cells with split fluorescent protein.

    PubMed

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A; Ishikawa, Hiroaki; Leonetti, Manuel D; Marshall, Wallace F; Weissman, Jonathan S; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications. PMID:26988139

  15. Versatile protein tagging in cells with split fluorescent protein

    PubMed Central

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Weissman, Jonathan S.; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications. PMID:26988139

  16. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.

    PubMed

    Jin, Gyuhyung; Lee, Slgirim; Kim, Seung-Hyun; Kim, Minhee; Jang, Jae-Hyung

    2014-12-01

    Electrospun fibrous mats have emerged as powerful tissue engineering scaffolds capable of providing highly effective and versatile physical guidance, mimicking the extracellular environment. However, electrospinning typically produces a sheet-like structure, which is a major limitation associated with current electrospinning technologies. To address this challenge, highly porous, volumetric hydrogel-hybrid fibrous scaffolds were fabricated by one Taylor cone-based side-by-side dual electrospinning of poly (ε-caprolactone) (PCL) and poly (vinyl pyrrolidone) (PVP), which possess distinct properties (i.e., hydrophobic and hydrogel properties, respectively). Immersion of the resulting scaffolds in water induced spatial tortuosity of the hydrogel PVP fibers while maintaining their aligned fibrous structures in parallel with the PCL fibers. The resulting conformational changes in the entire bicomponent fibers upon immersion in water led to volumetric expansion of the fibrous scaffolds. The spatial fiber tortuosity significantly increased the pore volumes of electrospun fibrous mats and dramatically promoted cellular infiltration into the scaffold interior both in vitro and in vivo. Harmonizing the flexible PCL fibers with the soft PVP-hydrogel layers produced highly ductile fibrous structures that could mechanically resist cellular contractile forces upon in vivo implantation. This facile dual electrospinning followed by the spatial fiber tortuosity for fabricating three-dimensional hydrogel-hybrid fibrous scaffolds will extend the use of electrospun fibers toward various tissue engineering applications. PMID:24972552

  17. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering.

    PubMed

    Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2016-01-01

    Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan-gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications. PMID:26977286

  18. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    PubMed Central

    Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2016-01-01

    Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications. PMID:26977286

  19. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.

    PubMed

    Limbert, Georges; Omar, Rodaina; Krynauw, Hugo; Bezuidenhout, Deon; Franz, Thomas

    2016-01-01

    Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation. PMID:26301317

  20. A novel wet extrusion technique to fabricate self-assembled microfiber scaffolds for controlled drug delivery.

    PubMed

    Lavin, Danya M; Harrison, Michael W; Tee, Louis Y; Wei, Karen A; Mathiowitz, Edith

    2012-10-01

    We have developed a novel wet extrusion process to fabricate nonwoven self-assembled microfiber scaffolds with uniform diameters less than 5 μm and without any postmanipulation. In this method, a poly(L-lactic acid) solution flows dropwise into a stirring nonsolvent bath, deforming into liquid polymer streams that self-assemble into a nonwoven microfiber scaffold. The ability to tune fiber diameter was achieved by decreasing polymer spin dope concentration and increasing the silicon oil to petroleum ether ratio of the nonsolvent spin bath. To demonstrate the drug delivery capabilities of scaffolds, heparin was encapsulated using a conventional water-in-oil (W/O) emulsion technique and a cryogenic emulsion technique developed in our laboratory. Spin dope preparation was found to significantly effect the release kinetics of self-assembled scaffolds by altering the interconnectivity of pores within the precipitating filaments. After 35 days, scaffolds prepared from W/O emulsions released up to 45% encapsulated heparin, whereas nearly 80% release of heparin was observed from cryogenic emulsion formulations. The versatility of our system, combined with the prolonged release of small molecules and the ability to control the homogeneity of self-assembling scaffolds, could be beneficial for many tissue regeneration and engineering applications. PMID:22623283

  1. Ancient lakes on Mars?

    NASA Technical Reports Server (NTRS)

    Goldspiel, J. M.; Squyres, S. W.

    1989-01-01

    The valley systems in Mars' ancient cratered terrain provide strong evidence for a warmer and wetter climate very early in planetary history. The valley systems in some instances debouch into closed depressions that could have acted as local ponding basins for the flow. A survey of the Martian equatorial region shows that numerous local depressions at the confluence of valley systems exist. These depressions (approximately 100 km) typically are characterized by many valleys flowing into them and few or none flowing out. If ponding did take place, these basin would have contained lakes for some period during Mars' early warmer epoch. Although the collection basins are numerous, location of ones that have not suffered significant subsequent geologic modification is difficult. Some morphologic features suggest that volcanic lavas may have filled them subsequent to any early fluvial activity. Two detailed maps of valley systems and local ponding basins in USGC 1:2,000,000 subquadrangles were completed and a third is in progress. The completed regions are in Mare Tyrrhenum (MC-22 SW) and Margarifter Sinus (MC-19 SE), and the region in progress is in Iapygia (MC-21 NW). On the maps, the valley systems and interpreted margins of ponding basins are indicated. The depressions are of interest for two reasons. First, the depressions were surely the sites in which the materials eroded from the valleys were deposited. Such sediments could preserve important information about the physical conditions at the time of deposition. Second, the sediments could preserve evidence of water-atmosphere interactions during the early period of the Martian climate. Atmospheric carbon dioxide would dissolve in water, and solid carbonate minerals would tend to precipitate out to form carbonate sedimentary deposits. Formation of carbonates in this manner might account for some of the CO2 lost from the early more dense atmosphere.

  2. Design, Degradation Mechanism and Long-Term Cytotoxicity of Poly(L-lactide) and Poly(Lactide-co-ϵ-Caprolactone) Terpolymer Film and Air-Spun Nanofiber Scaffold.

    PubMed

    Sabbatier, Gad; Larrañaga, Aitor; Guay-Bégin, Andrée-Anne; Fernandez, Jorge; Diéval, Florence; Durand, Bernard; Sarasua, Jose-Ramon; Laroche, Gaétan

    2015-10-01

    Degradable nanofiber scaffold is known to provide a suitable, versatile and temporary structure for tissue regeneration. However, synthetic nanofiber scaffold must be properly designed to display appropriate tissue response during the degradation process. In this context, this publication focuses on the design of a finely-tuned poly(lactide-co-ϵ-caprolactone) terpolymer (PLCL) that may be appropriate for vascular biomaterials applications and its comparison with well-known semi-crystalline poly(l-lactide) (PLLA). The degradation mechanism of polymer film and nanofiber scaffold and endothelial cells behavior cultured with degradation products is elucidated. The results highlights benefits of using PLCL terpolymer as vascular biomaterial compared to PLLA. PMID:26058993

  3. In vitro Assembly of Cubic RNA-Based Scaffolds Designed in silico

    PubMed Central

    Afonin, Kirill A; Bindewald, Eckart; Yaghoubian, Alan J.; Voss, Neil; Jacovetty, Erica; Shapiro, Bruce A.; Jaeger, Luc

    2010-01-01

    The organization of biological materials into versatile three-dimensional assemblies could be used to build multifunctional therapeutic scaffolds for use in nanomedicine. Here we report a strategy to design three-dimensional nanoscale scaffolds that can be self-assembled from RNA with precise control over their shape, size and composition. These cubic nanoscaffolds are only ~13 nm in diameter and are composed of short oligonucleotides making them amenable to chemical synthesis, point modifications and further functionalization. Nanocube assembly is verified by gel assays, dynamic light scattering and cryogenic electron microscopy. Formation of functional RNA nanocubes is also demonstrated by incorporation of a light-up fluorescent RNA aptamer that is optimally active only upon full RNA assembly. Moreover, we show the RNA nano-scaffolds can self-assemble in isothermal conditions (37°C) during in vitro transcription, which opens a route towards the construction of sensors, programmable packaging and cargo delivery systems for biomedical applications. PMID:20802494

  4. Using Scaffolds in Problem-Based Hypermedia

    ERIC Educational Resources Information Center

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  5. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  6. The versatility of the Lapidus arthrodesis.

    PubMed

    Blitz, Neal M

    2009-07-01

    Lapidus Arthrodesis is probably the most versatile procedure of the foot and ankle surgeon. The procedure was conceived initially for the surgical treatment of met primus adductus associated with hallux valgus, but has also been used for the treatment of a variety of other conditions including hallux limitus, revision bunion surgery, medial column stabilization, and others. Although the use of the Lapidus in bunion surgery is well supported in the literature, surgeons have been expanding its indications to manage a variety of disorders affecting the foot. As more surgeons continue to gain experience with the procedure, additional studies will emerge, further supporting its versatility in the realm of foot surgery. PMID:19505642

  7. Neonatal medicine in ancient art.

    PubMed

    Yurdakök, Murat

    2010-01-01

    There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau). PMID:20560265

  8. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  9. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection. PMID:26715754

  10. Allenyl-β-lactams: versatile scaffolds for the synthesis of heterocycles.

    PubMed

    Alcaide, Benito; Almendros, Pedro

    2011-12-01

    The hybrid allenic β-lactam moiety represents an excellent building block for carbo- and heterocyclization reactions, affording a large number of cyclic structures containing different sized skeletons in a single step. This strategy has been studied under thermal and radical-induced conditions. More recently, the use of transition-metal catalysis has been introduced as an alternative that relies on the activation of the allenic component. On the other hand, the intramolecular version has attracted much attention as a strategy for the synthesis of bi- and tricyclic compounds in a regio- and stereoselective manner. This overview focuses on the most recently developed cyclizations on 2-azetidinone-tethered allenes along with remarkable early works accounting for the mechanism, as well as for the regio- and diastereoselectivities of the cyclizations. PMID:22052790

  11. Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis.

    PubMed

    Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2016-05-25

    We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component. PMID:27119553

  12. Night Blindness and Ancient Remedy

    PubMed Central

    Al Binali, H.A. Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  13. Night blindness and ancient remedy.

    PubMed

    Al Binali, H A Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  14. An ancient protein-DNA interaction underlying metazoan sex determination

    PubMed Central

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-01-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds to a pseudopalindromic target DNA. Here we show that DMRT proteins employ a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to employ multiple DNA binding modes (tetramer, trimer, dimer). ChIP-Exo indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and in male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction that underlies much of metazoan sexual development. PMID:26005864

  15. Acupuncture: From Ancient Practice to Modern Science

    MedlinePlus

    ... Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / Winter 2009 Table of Contents For ... of Progress / Acupuncture From Ancient Practice to Modern Science / Low Back Pain and CAM / Time to Talk / ...

  16. A Versatile Technique for Solving Quintic Equations

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2006-01-01

    In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

  17. Guinea Pigs: Versatile Animals for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  18. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  19. [Articular cartilage regeneration using scaffold].

    PubMed

    Ishimoto, Yoshiyuki; Hattori, Koji; Ohgushi, Hajime

    2008-12-01

    The self-healing capacity of articular cartilage for repair is limited. For articular cartilage injury, several surgical techniques are used in clinical practice, namely drilling, abrasion arthroplasty, microfracture, or autologous osteochondral grafting, while various methods of autologous chondrocyte transplantation to cartilage defect sites have been reported since 1990s. In a case of chondrocyte transplantation to cartilage defect site, the use of proper scaffold is important. Currently, collagen gel or PLGA is used widely as a scaffold. PMID:19043192

  20. Drinking habits in ancient India

    PubMed Central

    Somasundaram, Ottilingam; Raghavan, D. Vijaya; Murthy, A. G. Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113

  1. Retroflex Endings in Ancient Chinese

    ERIC Educational Resources Information Center

    Hashimoto, Mantaro J.

    1973-01-01

    Reconstruction of Ancient Chinese retroflex endings (syllable-final consonants) based on internal phonological evidence in Modern Chinese. Paper read at the December 1972 meeting of the Kukeo Hakhoe (The National Language Association of Korea); research supported by the Social Science Research Council, Committee for Korean Studies. (RS)

  2. Ancient India: The Asiatic Ethiopians.

    ERIC Educational Resources Information Center

    Scott, Carolyn McPherson

    This curriculum unit was developed by a participant in the 1993 Fulbright-Hays Program "India: Continuity and Change." The unit attempts to place India in the "picture frame" of the ancient world as a part of a whole, not as a separate entity. Reading materials enable students to draw broader general conclusions based on the facts presented. The…

  3. Drinking habits in ancient India.

    PubMed

    Somasundaram, Ottilingam; Raghavan, D Vijaya; Murthy, A G Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113

  4. Ancient medicine--a review.

    PubMed

    Zuskin, Eugenija; Lipozencić, Jasna; Pucarin-Cvetković, Jasna; Mustajbegović, Jadranka; Schachter, Neil; Mucić-Pucić, Branka; Neralić-Meniga, Inja

    2008-01-01

    Different aspects of medicine and/or healing in several societies are presented. In the ancient times as well as today medicine has been closely related to magic, science and religion. Various ancient societies and cultures had developed different views of medicine. It was believed that a human being has two bodies: a visible body that belongs to the earth and an invisible body of heaven. In the earliest prehistoric days, a different kind of medicine was practiced in countries such as Egypt, Greece, Rome, Mesopotamia, India, Tibet, China, and others. In those countries, "medicine people" practiced medicine from the magic to modern physical practices. Medicine was magical and mythological, and diseases were attributed mostly to the supernatural forces. The foundation of modern medicine can be traced back to ancient Greeks. Tibetan culture, for instance, even today, combines spiritual and practical medicine. Chinese medicine developed as a concept of yin and yang, acupuncture and acupressure, and it has even been used in the modern medicine. During medieval Europe, major universities and medical schools were established. In the ancient time, before hospitals had developed, patients were treated mostly in temples. PMID:18812066

  5. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  6. The ancient art of memory.

    PubMed

    Hobson, Allan

    2013-12-01

    Revision of Freud's theory requires a new way of seeking dream meaning. With the idea of elaborative encoding, Sue Llewellyn has provided a method of dream interpretation that takes into account both modern sleep science and the ancient art of memory. Her synthesis is elegant and compelling. But is her hypothesis testable? PMID:24304762

  7. Characterization of TSET, an ancient and widespread membrane trafficking complex

    PubMed Central

    Bloomfield, Gareth; Antrobus, Robin; Kay, Robert R; Dacks, Joel B; Robinson, Margaret S

    2014-01-01

    The heterotetrameric AP and F-COPI complexes help to define the cellular map of modern eukaryotes. To search for related machinery, we developed a structure-based bioinformatics tool, and identified the core subunits of TSET, a 'missing link' between the APs and COPI. Studies in Dictyostelium indicate that TSET is a heterohexamer, with two associated scaffolding proteins. TSET is non-essential in Dictyostelium, but may act in plasma membrane turnover, and is essentially identical to the recently described TPLATE complex, TPC. However, whereas TPC was reported to be plant-specific, we can identify a full or partial complex in every eukaryotic supergroup. An evolutionary path can be deduced from the earliest origins of the heterotetramer/scaffold coat to its multiple manifestations in modern organisms, including the mammalian muniscins, descendants of the TSET medium subunits. Thus, we have uncovered the machinery for an ancient and widespread pathway, which provides new insights into early eukaryotic evolution. DOI: http://dx.doi.org/10.7554/eLife.02866.001 PMID:24867644

  8. Ancient and Modern Coins Unit Plans.

    ERIC Educational Resources Information Center

    United States Mint (Dept. of Treasury), Washington, DC.

    Ancient times comes to life when a student can hold in his/her hand or read about an artifact, such as a coin of the Greek or Roman era. Students are familiar with coins, and this commonality helps them understand the similarities and differences between their lives and times in ancient Greece or Rome. Many symbols on the ancient coins can be…

  9. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    PubMed

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. PMID:27093435

  10. Ice-templated structures for biomedical tissue repair: From physics to final scaffolds

    NASA Astrophysics Data System (ADS)

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-06-01

    Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in a porous structure, which is a negative of the ice. As the final structure of the ice relies on the freezing of the solution, the variables which influence ice nucleation and growth alter the structure of ice-templated scaffolds. Nucleation, the initial step of freezing, can be altered by the type and concentration of solutes within the solution, as well as the set cooling rate before freezing. After nucleation, crystal growth and annealing processes, such as Ostwald ripening, determine the features of the final scaffold. Both crystal growth and annealing are sensitive to many factors including the set freezing temperature and solutes. The porous structures created using ice-templating allow scaffolds to be used for many diverse applications, from microfluidics to biomedical tissue engineering. Within the field of tissue engineering, scaffold structure can influence cellular behavior, and is thus critical for determining the biological stimulus supplied by the scaffold. The research focusing on controlling the ice-templated structure serves as a model for how other ice-templating systems might be tailored, to expand the applications of ice-templated structures to their full potential.

  11. Laser microstructured biodegradable scaffolds.

    PubMed

    Koroleva, Anastasia; Kufelt, Olga; Schlie-Wolter, Sabrina; Hinze, Ulf; Chichkov, Boris

    2013-10-01

    The two-photon polymerization technique (2PP) uses non-linear absorption of femtosecond laser pulses to selectively polymerize photosensitive materials. 2PP has the ability to fabricate structures with a resolution from tens of micrometers down to hundreds of nanometers. Three-dimensional microstructuring by the 2PP technique provides many interesting possibilities for biomedical applications. This microstructuring technique is suitable with many biocompatible polymeric materials, such as polyethylene glycol, polylactic acid, polycaprolactone, gelatin, zirconium-based hybrids, and others. The process of fabrication does not require clean room conditions and does not use hazard chemicals or high temperatures. The most beneficial property of 2PP is that it is capable of producing especially complex three-dimensional (3-D) structures, including devices with overhangs, without using any supportive structure. The flexibility in controlling geometries and feature sizes and the possibility to fabricate structures without the addition of new material layers makes this technique particularly appealing for fabrication of 3-D scaffolds for tissue engineering. PMID:23729598

  12. Neuronal Networks on Nanocellulose Scaffolds.

    PubMed

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks. PMID:26398224

  13. Versatile microfluidic droplets array for bioanalysis.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods. PMID:25525675

  14. A versatile scalable PET processing system

    SciTech Connect

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  15. A parallel, portable and versatile treecode

    SciTech Connect

    Warren, M.S.; Salmon, J.K. |

    1994-10-01

    Portability and versatility are important characteristics of a computer program which is meant to be generally useful. We describe how we have developed a parallel N-body treecode to meet these goals. A variety of applications to which the code can be applied are mentioned. Performance of the program is also measured on several machines. A 512 processor Intel Paragon can solve for the forces on 10 million gravitationally interacting particles to 0.5% rms accuracy in 28.6 seconds.

  16. Ancient DNA and human history

    PubMed Central

    Slatkin, Montgomery; Racimo, Fernando

    2016-01-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  17. Molecular analysis of ancient caries

    PubMed Central

    Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A.; Jiménez-Marín, Andrea R.; Malgosa, Assumpció

    2014-01-01

    An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains. PMID:25056622

  18. Ancient DNA and human history.

    PubMed

    Slatkin, Montgomery; Racimo, Fernando

    2016-06-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  19. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  20. Osteogenic Scaffolds for Bone Reconstruction

    PubMed Central

    Li, Ling-jiang; Liu, Ning; Liu, Qing; Jia, Lian-shun; Yuan, Wen

    2012-01-01

    Abstract A highly osteogenic hybrid bioabsorbable scaffold was developed for bone reconstruction/augmentation. Through the use of a solid free-form fabrication technology, a bioabsorbable polycaprolactone (PCL) cage scaffold with a desired size and shape was produced and then filled with osteogenic bone graft particles, that is, morselized autologous bone chips. A rabbit total lamina defect model was chosen to demonstrate its efficacy in regenerating bone with a complicated anatomic shape. Both iliac bone and morselized iliac bone grafts were used in this study for comparison purposes. Serum osteocalcin and collagen type I cross-linked C-terminal telopeptide (CTx) determination showed that active bone remodeling occurred after bone grafts were implanted. X-ray images showed that the bony defects were completely filled with bone mass in all the groups with bone grafts. However, biomechanical tests showed that only the iliac bone and hybrid scaffold groups could restore the mechanical properties to the normal level after 10 weeks of implantation. A histology study showed that both iliac and hybrid scaffold groups had extensive new bone formation, and no adhesion and fibrosis were found. These results indicated that this osteogenic hybrid scaffold can be a good alternative to autologous iliac bone, because it does not need a second iliac bone-harvesting surgery, and thus the morbidity and the possible infections that are often associated with the bone harvesting surgery can be avoided. PMID:23515416

  1. Ancient Celestial Spheres from Greece

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    2006-08-01

    We present several ancient celestial spheres from the 8th century B.C. found throughout Greece, mainly in Thessaly, at the temple of Itonia Athena, but also in Olympia and other places. These celestial spheres have an axis, equator and several meridians and they have several markings with the symbol of stars (today's symbol for the Sun) $\\odot$. Such instruments could have been used to measure the time, the latitude of a location, or the coordinates of stars.

  2. Psychiatric Thoughts in Ancient India*

    PubMed Central

    Abhyankar, Ravi

    2015-01-01

    A review of the literature regarding psychiatric thoughts in ancient India is attempted. Besides interesting reading, many of the concepts are still relevant and can be used in day-to-day practice especially towards healthy and happy living. Certain concepts are surprisingly contemporary and valid today. They can be used in psychotherapy and counselling and for promoting mental health. However, the description and classification of mental illness is not in tune with modern psychiatry. PMID:25838724

  3. Ancient medicine: the patient's perspective.

    PubMed

    Geller, Mark J

    2004-01-01

    A number of previously unpublished therapeutic recipes from cuneiform tablets in Berlin (Pergamon Museum) and London (British Museum) list symptoms describing urinary tract disfunction. In addition to presenting extracts from this material, the present article discusses the roles of physician as apothecary or exorcist in ancient texts from Babylonia. This involves technical medical knowledge vs. "bed-side manner", taking into account the psychological effects of drug therapy and diagnosis. PMID:15372427

  4. Nanoscience of an ancient pigment.

    PubMed

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-01

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times. PMID:23215240

  5. The ancient lunar core dynamo.

    PubMed

    Runcorn, S K

    1978-02-17

    Lunar paleomagnetism provides evidence for the existence of an ancient lunar magnetic field generated in an iron core. Paleointensity experiments give a surface field of 1.3 gauss, 4.0 x 10(9) years ago, subsequently decreasing exponentially. Thermodynamic arguments give a minimum value of the heat source in the core at that time: known sources, radioactive and other, are quantitatively implausible, and it is suggested that superheavy elements were present in the early moon. PMID:17836293

  6. Orthopedic surgery in ancient Egypt

    PubMed Central

    Blomstedt, Patric

    2014-01-01

    Background — Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. Methods — I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentrating especially on orthopedic surgery. Results — As is well known, both literary sources and the archaeological/osteological material bear witness to treatment of various fractures. The Egyptian painting, often claimed to depict the reduction of a dislocated shoulder according to Kocher’s method, is, however, open to interpretation. Therapeutic amputations are never depicted or mentioned in the literary sources, while the specimens suggested to demonstrate such amputations are not convincing. Interpretation — The ancient Egyptians certainly treated fractures of various kinds, and with varying degrees of success. Concerning the reductions of dislocated joints and therapeutic amputations, there is no clear evidence for the existence of such procedures. It would, however, be surprising if dislocations were not treated, even though they have not left traces in the surviving sources. Concerning amputations, the general level of Egyptian surgery makes it unlikely that limb amputations were done, even if they may possibly have been performed under extraordinary circumstances. PMID:25140982

  7. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices.

    PubMed

    Li, Jing; Jia, Xiaofang; Li, Dongyue; Ren, Jiangtao; Han, Yanchao; Xia, Yong; Wang, Erkang

    2013-07-01

    This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (or, not, inhibit, XNOR, implication) were constructed using different ions as inputs with AgNCs as signal transducer. PMID:23728712

  8. Engineering microporosity in bacterial cellulose scaffolds.

    PubMed

    Bäckdahl, Henrik; Esguerra, Maricris; Delbro, Dick; Risberg, Bo; Gatenholm, Paul

    2008-08-01

    The scaffold is an essential component in tissue engineering. A novel method to prepare three-dimensional (3D) nanofibril network scaffolds with controlled microporosity has been developed. By placing paraffin wax and starch particles of various sizes in a growing culture of Acetobacter xylinum, bacterial cellulose scaffolds of different morphologies and interconnectivity were prepared. Paraffin particles were incorporated throughout the scaffold, while starch particles were found only in the outermost area of the resulting scaffold. The porogens were successfully removed after culture with bacteria and no residues were detected with electron spectroscopy for chemical analysis (ESCA) or Fourier transform infra-red spectroscopy (FT-IR). Resulting scaffolds were seeded with smooth muscle cells (SMCs) and investigated using histology and organ bath techniques. SMC were selected as the cell type since the main purpose of the resulting scaffolds is for tissue engineered blood vessels. SMCs attached to and proliferated on and partly into the scaffolds. PMID:18615821

  9. MAP kinase cascades: scaffolding signal specificity.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2002-01-22

    Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways. PMID:11818078

  10. Preparation of 3D fibrin scaffolds for stem cell culture applications.

    PubMed

    Kolehmainen, Kathleen; Willerth, Stephanie M

    2012-01-01

    fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach. PMID:22415575

  11. Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications

    PubMed Central

    Kolehmainen, Kathleen; Willerth, Stephanie M.

    2012-01-01

    step for the fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach 8-12. PMID:22415575

  12. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. PMID:26740169

  13. Three-Dimensional Polydopamine Functionalized Coiled Microfibrous Scaffolds Enhance Human Mesenchymal Stem Cells Colonization and Mild Myofibroblastic Differentiation.

    PubMed

    Taskin, Mehmet Berat; Xu, Ruodan; Gregersen, Hans; Nygaard, Jens Vinge; Besenbacher, Flemming; Chen, Menglin

    2016-06-29

    Electrospinning has been widely applied for tissue engineering due to its versatility of fabricating extracellular matrix (ECM) mimicking fibrillar scaffolds. Yet there are still challenges such as that these two-dimensional (2D) tightly packed, hydrophobic fibers often hinder cell infiltration and cell-scaffold integration. In this study, polycaprolactone (PCL) was electrospun into a grounded coagulation bath collector, resulting in 3D coiled microfibers with in situ surface functionalization with hydrophilic, catecholic polydopamine (pDA). The 3D scaffolds showed biocompatibility and were well-integrated with human bone marrow derived human mesenchymal stem cells (hMSCs), with significantly higher cell penetration depth compared to that of the 2D PCL microfibers from traditional electrospinning. Further differentiation of human mesenchymal stem cells (hMSCs) into fibroblast phenotype in vitro indicates that, compared to the stiff, tightly packed, 2D scaffolds which aggravated myofibroblasts related activities, such as upregulated gene and protein expression of α-smooth muscle actin (α-SMA), 3D scaffolds induced milder myofibroblastic differentiation. The flexible 3D fibers further allowed contraction with the well-integrated, mechanically active myofibroblasts, monitored under live-cell imaging, whereas the stiff 2D scaffolds restricted that. PMID:27265317

  14. Structural and Functional Diversities of the Hexadecahydro-1H-cyclopenta[a]phenanthrene Framework, a Ubiquitous Scaffold in Steroidal Hormones.

    PubMed

    Choudhury, Chinmayee; Deva Priyakumar, U; Narahari Sastry, G

    2016-04-01

    Hexadecahydro-1H-cyclopenta[a]phenanthrene framework (HHCPF) has been considered as one of the privileged scaffolds due to its versatile presence in many biologically essential molecules. In our quest to unravel the privileged nature of this framework, we undertook a systematic analysis of target binding and Absorption, Distribution, Metabolism, Elimination, Toxicity (ADMET)/physicochemical properties of 110 drugs containing HHCPF reported in DrugBank. Effect of number and positions of double bonds in the framework and substitutions at each carbon position on the target selectivity as well as drug like properties of these drugs were studied. Fifteen different scaffolds based on the numbers and positions of double bonds in the HHCPF were identified among these drugs. The optimum number of double bonds present in the HHCPF scaffolds was observed to be one to three, and one particular positional isomer is predominant among many scaffolds with same numbers of double bonds. Docking studies reveal the role of substituents at different positions to make specific interactions with their respective targets. Based on the docking interactions, we proposed structure based e-Pharmacophore models for seven important targets of HHCPF drugs. Good correlations were observed between the substitutions carbon positions 3 and 17 of the scaffolds and ADMET properties of the HHCPF drugs. This work enables preliminary prediction of the target selectivity and ADMET properties of a new HHCPF molecule based on the scaffold, substituents and the pharmacophoric features. PMID:27491924

  15. Analysis of Ancient DNA in Microbial Ecology.

    PubMed

    Gorgé, Olivier; Bennett, E Andrew; Massilani, Diyendo; Daligault, Julien; Pruvost, Melanie; Geigl, Eva-Maria; Grange, Thierry

    2016-01-01

    The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. PMID:26791510

  16. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices

    NASA Astrophysics Data System (ADS)

    Li, Jing; Jia, Xiaofang; Li, Dongyue; Ren, Jiangtao; Han, Yanchao; Xia, Yong; Wang, Erkang

    2013-06-01

    This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (OR, NOT, INHIBIT, XNOR, IMPLICATION) were constructed using different ions as inputs with AgNCs as signal transducer.This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (OR, NOT, INHIBIT, XNOR, IMPLICATION) were constructed using different ions as inputs with AgNCs as signal transducer. Electronic supplementary information (ESI) available: DNA sequences used, Tm curves and spectra data of the obtained AgNCs. See DOI: 10.1039/c3nr00998j

  17. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high…

  18. Rethinking Scaffolding in the Information Age

    ERIC Educational Resources Information Center

    Yelland, Nicola; Masters, Jennifer

    2007-01-01

    This paper addresses the use of scaffolding in learning contexts that incorporate technologically based novel problems. We suggest that in computer contexts extended conceptualisations of scaffolding are needed in order to gain greater insights into teaching and learning processes. Our work has revealed that traditional forms of scaffolding, based…

  19. Bispidine as a Privileged Scaffold.

    PubMed

    Tomassoli, Isabelle; Gündisch, Daniela

    2016-01-01

    Thediazabicyclic molecule bispidine named by the chemist Carl Mannich in 1930, is a naturally occurring scaffold with interesting features. Bispidine can form different conformers, has high basicity, can attack dichloromethane, has metal ion coordination properties and interacts with nicotinic acetylcholine receptors. In this review we will discuss important properties, synthetic pathways and biological activities of bispidine and some derivatives. Bispidine can function as a scaffold for compounds with very diverse biological activities, e.g. interacting with ion channels, G-protein coupled receptors, and enzymes, and is even used for the development of new in vivo radiotracers. PMID:26369817

  20. Synthesis of the TACO scaffold as a new selectively deprotectable conformationally restricted triazacyclophane based scaffold.

    PubMed

    Brouwer, Arwin J; van de Langemheen, Helmus; Ciaffoni, Adriano; Schilder, Kitty E; Liskamp, Rob M J

    2014-06-01

    The synthesis of a new triazacyclophane scaffold (TACO scaffold) containing three selectively deprotectable amines is described. The TACO scaffold is conformationally more constrained than our frequently used TAC scaffold, due to introduction of a substituent on the para position of the benzoic acid hinge, which prevents ring flipping and makes it more attractive than the TAC scaffold for preparation of artificial receptor molecules or for mimicking discontinuous epitopes toward protein mimics when more preorganization is required. PMID:24856258

  1. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. PMID:26249621

  2. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  3. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug. PMID:24610743

  4. Strategic Scaffolding for Scientific Inquiry

    ERIC Educational Resources Information Center

    Shelton, Angela; Natarajan, Uma; Willard, Catherine; Kane, Tera; Ketelhut, Diane Jass; Schifter, Catherine

    2013-01-01

    Though many national and international science organizations stress the importance of integrating scientific inquiry into classroom instruction, this is often difficult for teachers. Moreover, assessing and scaffolding inquiry skills for students can be even more of a challenge. This paper investigated the student performances in an inquiry-based,…

  5. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  6. Ancient Chinese Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.

  7. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    SciTech Connect

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  8. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    PubMed Central

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  9. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

    PubMed Central

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-01-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling. PMID:26858826

  10. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers.

    PubMed

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-05-25

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(ε-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications. PMID:22635324

  11. A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing.

    PubMed

    Rogers, Catherine M; Morris, Gavin E; Gould, Toby W A; Bail, Robert; Toumpaniari, Sotiria; Harrington, Helen; Dixon, James E; Shakesheff, Kevin M; Segal, Joel; Rose, Felicity R A J

    2014-09-01

    Electrospinning is a common technique used to fabricate fibrous scaffolds for tissue engineering applications. There is now growing interest in assessing the ability of collector plate design to influence the patterning of the fibres during the electrospinning process. In this study, we investigate a novel method to generate hybrid electrospun scaffolds consisting of both random fibres and a defined three-dimensional (3D) micro-topography at the surface, using patterned resin formers produced by rapid prototyping (RP). Poly(D,L-lactide-co-glycolide) was electrospun onto the engineered RP surfaces and the ability of these formers to influence microfibre patterning in the resulting scaffolds visualized by scanning electron microscopy. Electrospun scaffolds with patterns mirroring the microstructures of the formers were successfully fabricated. The effect of the resulting fibre patterns and 3D geometries on mammalian cell adhesion and proliferation was investigated by seeding enhanced green fluorescent protein labelled 3T3 fibroblasts onto the scaffolds. Following 24 h and four days of culture, the seeded scaffolds were visually assessed by confocal macro- and microscopy. The patterning of the fibres guided initial cell adhesion to the scaffold with subsequent proliferation over the geometry resulting in the cells being held in a 3D micro-topography. Such patterning could be designed to replicate a specific in vivo structure; we use the dermal papillae as an exemplar here. In conclusion, a novel, versatile and scalable method to produce hybrid electrospun scaffolds has been developed. The 3D directional cues of the patterned fibres have been shown to influence cell behaviour and could be used to culture cells within a similar 3D micro-topography as experienced in vivo. PMID:24722371

  12. Interactive and Versatile Navigation of Structural Databases.

    PubMed

    Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin

    2016-05-12

    We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures. PMID:26745458

  13. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage.

    PubMed

    Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid

    2013-12-17

    The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair. PMID:24578679

  14. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  15. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance.

    PubMed

    Hapach, Lauren A; VanderBurgh, Jacob A; Miller, Joseph P; Reinhart-King, Cynthia A

    2015-01-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix. PMID:26689380

  16. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  17. VISYTER: versatile and integrated system for telerehabilitation.

    PubMed

    Parmanto, Bambang; Saptono, Andi; Pramana, Gede; Pulantara, Wayan; Schein, Richard M; Schmeler, Mark R; McCue, Michael P; Brienza, David M

    2010-11-01

    The versatile and integrated system for telerehabilitation (VISYTER) is a software platform for developing various telerehabilitation applications. VISYTER has been designed to take into account the environments and requirements of rehabilitation services. The requirements considered in the platform design include minimal equipment beyond what is available in many rehabilitation settings, minimal maintenance, and ease of setup and operation. In addition, the platform has been designed to be able to adjust to different bandwidths, ranging from the very fast new generation of Internet to residential broadband connections. VISYTER is a secure integrated system that combines high-quality videoconferencing with access to electronic health records and other key tools in telerehabilitation such as stimuli presentation, remote multiple camera control, remote control of the display screen, and an eye contact teleprompter. The software platform is suitable for supporting low-volume services to homes, yet scalable to support high-volume enterprise-wide telehealth services. The VISYTER system has been used to develop a number of telerehabilitation applications, including a remote wheelchair prescription, adult autistic assessments, and international physical therapy teleconsultations. An evaluation of VISYTER for delivering a remote wheelchair prescription was conducted on 48 participants. Results of the evaluation indicate a high level of satisfaction from patients with the use of VISYTER. The versatility and cost-effectiveness of the platform has the potential for a wide range of telerehabilitation applications and potentially may lower the technical and economic barriers of telemedicine adoption. PMID:21034239

  18. The chemical and biological versatility of riboflavin.

    PubMed

    Massey, V

    2000-01-01

    Since their discovery and chemical characterization in the 1930s, flavins have been recognized as being capable of both one- and two-electron transfer processes, and as playing a pivotal role in coupling the two-electron oxidation of most organic substrates to the one-electron transfers of the respiratory chain. In addition, they are now known as versatile compounds that can function as electrophiles and nucleophiles, with covalent intermediates of flavin and substrate frequently being involved in catalysis. Flavins are thought to contribute to oxidative stress through their ability to produce superoxide, but at the same time flavins are frequently involved in the reduction of hydroperoxides, products of oxygen-derived radical reactions. Flavoproteins play an important role in soil detoxification processes via the hydroxylation of many aromatic compounds, and a simple flavoprotein in liver microsomes catalyses many reactions similar to those carried out by cytochrome P450 enzymes. Flavins are involved in the production of light in bioluminescent bacteria, and are intimately connected with light-initiated reactions such as plant phototropism and nucleic acid repair processes. Recent reports also link them to programmed cell death. The chemical versatility of flavoproteins is clearly controlled by specific interactions with the proteins with which they are bound. One of the main thrusts of current research is to try to define the nature of these interactions, and to understand in chemical terms the various steps involved in catalysis by flavoprotein enzymes. PMID:10961912

  19. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  20. A Versatile Ion Injector at KACST

    SciTech Connect

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90 deg. deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  1. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  2. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  3. Float and compress: honeycomb-like array of a highly stable protein scaffold.

    PubMed

    Heyman, Arnon; Medalsy, Izhar; Dgany, Or; Porath, Danny; Markovich, Gil; Shoseyov, Oded

    2009-05-01

    Organizing nano-objects, proteins in particular, on surfaces is one of the primary goals of bio/chemical nanotechnology. A highly stable protein scaffold (6His-SP1) was organized into a hexagonal 2D array by a new, versatile method. The protein was expelled from solution into the air/water interface and compressed in a Langmuir trough into a closely packed monolayer without the use of phospholipids or other surfactants at the interface. The 2D arrays formed at the air/water interface were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). PMID:19397358

  4. [Ancient history of Indian pharmacy].

    PubMed

    Okuda, Jun; Natsume, Yohko

    2010-01-01

    The study of the ancient history of Indian medicine has recently been revived due to the publication of polyglot translations. However, little is known of ancient Indian pharmacy. Archaeological evidence suggests the Indus people lived a settled life approximately in 2500 B.C. Their cities were enjoying the cleanest and most hygienic daily life with elaborate civic sanitation systems. The whole conception shows a remarkable concern for health. Then, the early Aryans invaded India about 1500 B.C. and the Vedic age started. The Rgveda texts contain the hymns for Soma and those for herbs. The term Ayurveda (i.e., science of life) is found in some old versions of both Ramāyana and Mahābhārata and in the Atharvaveda. Suśruta had the credit of making a breakthrough in the field of surgery. The Ayurveda, a work on internal medicine, gives the following transmission of sages: Brahmā-->Daksa-->Prajāpati-->Aśivinau-->Indra-->Caraka. On the other hand, the Suśruta-samhitā, which deals mainly with surgical medicine, explains it as follows; Indra-->Dhanvantari-->Suśruta Both Caraka and Suśruta were medical doctors as well as pharmacists, so they studied more than 1000 herbs thoroughly. The Ayurveda had been used by his devotees for medical purposes. It eventually spread over Asia with the advanced evolution of Buddhism. PMID:21032887

  5. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility

    NASA Astrophysics Data System (ADS)

    Spano, F.; Quarta, A.; Martelli, C.; Ottobrini, L.; Rossi, R. M.; Gigli, G.; Blasi, L.

    2016-04-01

    Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post-implantation.Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post

  6. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.

    PubMed

    Gao, Li; Li, Cuidi; Chen, Fangping; Liu, Changsheng

    2015-06-01

    A novel elastomeric material, poly(1,8-octanediol-co-citrate) (POC), has demonstrated tremendous versatility because of its advantageous toughness, tunable degradation properties, and efficient drug release capability. In this study, POC was used to improve the mechanical performance of β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). (3D) β-TCP/POC composite scaffolds were fabricated by a 3D printing technique based on the freeform fabrication system with micro-droplet jetting (FFS-MDJ). The physiochemical properties, compressive modulus, drug release behavior, and cell response of β-TCP/POC composite scaffolds were systematically investigated. The results showed that β-TCP/POC scaffolds had uniform macropores of 300-400 μm, porosity of approximately 45%, biodegradability in phosphate-buffered saline, and high compressive modulus of 50-75 MPa. With the incorporation of POC into β-TCP, the toughness of the composite scaffolds was improved significantly. Moreover, β-TCP/POC scaffolds exhibited sustained drug (ibuprofen (IBU)) release capability. Additionally, β-TCP/POC scaffolds facilitated C2C12 cell attachment and proliferation. It was indicated that the 3D-printed porous β-TCP/POC scaffolds with high compressive modulus and good drug delivery performance might be a promising candidate for bone defect repair. PMID:26107985

  7. Magnetite biomineralization and ancient life on Mars.

    PubMed

    Frankel, R B; Buseck, P R

    2000-04-01

    Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate. PMID:10742183

  8. Women--Sex Objects in Ancient Egypt.

    ERIC Educational Resources Information Center

    Mutimer, Brian T. P.

    Although it has been said that the women in Ancient Egypt enjoyed a reasonable state of social and professional equality with men, this paper presents an alternate theory--that women were second-class citizens whose physical prowess was secondary to their role as sex objects. It appears that men and women in Ancient Egypt often participated in the…

  9. Attitudes Toward Deviant Sex in Ancient Mesopotamia

    ERIC Educational Resources Information Center

    Bullough, Vern L.

    1971-01-01

    The article concludes that the whole question of sexual life in ancient Mesopotamia is difficult to reconstruct and fraught with many uncertainties. Nevertheless, it seems certain that the ancient Mesopotamians had fewer prohibitions against sex than our own civilization, and regarded as acceptable many practices which later societies condemned.…

  10. Locust bean gum: a versatile biopolymer.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J

    2013-05-15

    Biopolymers or natural polymers are an attractive class of biodegradable polymers since they are derived from natural sources, easily available, relatively cheap and can be modified by suitable reagent. Locust bean gum is one of them that have a wide potentiality in drug formulations due to its extensive application as food additive and its recognized lack of toxicity. It can be tailored to suit its demands of applicants in both the pharmaceutical and biomedical areas. Locust bean gum has a wide application either in the field of novel drug delivery system as rate controlling excipients or in tissue engineering as scaffold formation. Through keen references of reported literature on locust bean gum, in this review, we have described critical aspects of locust bean gum, its manufacturing process, physicochemical properties and applications in various drug delivery systems. PMID:23544637

  11. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  12. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  13. A new, versatile Stirling energy conversion unit

    SciTech Connect

    Meijer, R.J.; Ziph, B.

    1982-08-01

    A new concept in Stirling engine technology is embodied in the ''Base Engine'' now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The Base Engine, rated at 40 kw at 2800 rpm, is a four cylinder, double acting, variable displacement Stirling engine. It incorporates remote-heating technology with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. It specifically emphasizes high efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost. This paper describes the Base Engine, its design philosophy and approach, its projected performance, and some of its more attractive applications.

  14. Versatile Structures of α-Synuclein

    PubMed Central

    Wang, Chuchu; Zhao, Chunyu; Li, Dan; Tian, Zhiqi; Lai, Ying; Diao, Jiajie; Liu, Cong

    2016-01-01

    α-Synuclein (α-syn) is an intrinsically disordered protein abundantly distributed in presynaptic terminals. Aggregation of α-syn into Lewy bodies (LB) is a molecular hallmark of Parkinson’s disease (PD). α-Syn features an extreme conformational diversity, which adapts to different conditions and fulfills versatile functions. However, the molecular mechanism of α-syn transformation and the relation between different structural species and their functional and pathogenic roles in neuronal activities and PD remain unknown. In this mini-review, we summarize the recent discoveries of α-syn structures in the membrane-bound state, in cytosol, and in the amyloid state under physiological and pathological conditions. From the current knowledge on different structural species of α-syn, we intend to find a clue about its function and toxicity in normal neurons and under disease conditions, which could shed light on the PD pathogenesis. PMID:27378848

  15. Versatile Structures of α-Synuclein.

    PubMed

    Wang, Chuchu; Zhao, Chunyu; Li, Dan; Tian, Zhiqi; Lai, Ying; Diao, Jiajie; Liu, Cong

    2016-01-01

    α-Synuclein (α-syn) is an intrinsically disordered protein abundantly distributed in presynaptic terminals. Aggregation of α-syn into Lewy bodies (LB) is a molecular hallmark of Parkinson's disease (PD). α-Syn features an extreme conformational diversity, which adapts to different conditions and fulfills versatile functions. However, the molecular mechanism of α-syn transformation and the relation between different structural species and their functional and pathogenic roles in neuronal activities and PD remain unknown. In this mini-review, we summarize the recent discoveries of α-syn structures in the membrane-bound state, in cytosol, and in the amyloid state under physiological and pathological conditions. From the current knowledge on different structural species of α-syn, we intend to find a clue about its function and toxicity in normal neurons and under disease conditions, which could shed light on the PD pathogenesis. PMID:27378848

  16. How versatile are inositol phosphate kinases?

    PubMed Central

    Shears, Stephen B

    2004-01-01

    This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins. PMID:14567754

  17. Practical applications of a versatile geothermal simulator

    SciTech Connect

    Nixon, J.F.

    1983-12-01

    Since 1976, the author has programmed, developed and applied a versatile twodimensional geothermal simulator for many interesting applications in cold regions engineering. This paper concentrates on applications to problems which have not been hitherto easily solved by other available geothermal models. Some of the important capabilities of the HAL simulator are: radial or cartesian coordinate options, convective ground water flow component, simple data entry, ability to specify internal pipes, or areas of specified temperature, monthly surface temperature and snow cover inputs as boundary conditions. The first application involves a steel pile, embedded in warm permafrost. A circular cryogenic storage tank is studied next, and the effectiveness of an insulation layer is illustrated. The convection option in the program is invoked when studying the effects of ground water flow around a series of vertical freeze pipes. Finally, the thermal degradation beneath an Arctic lake is studied, and the subsequent refreezing and growth of a pingo has been simulated.

  18. Practical applications of a versatile geothermal simulator

    SciTech Connect

    Nixon, J.F.; Halliwell, D.H.

    1982-01-01

    Since 1976, the senior author has programmed, developed and applied a versatile two-dimensional geothermal simulator for many interesting applications in cold regions engineering. This paper concentrates on applications to problems which have not been hitherto easily solved by other available geothermal models. Some of the important capabilities of the Hardy Associates (1978) Ltd. (HAL) simulator are radial or cartesian coordinate options, convective ground water flow component, simple data entry, ability to specify internal ''pipes'', or areas of specified temperature, monthly surface temperature and snow cover inputs. The first application involves a steel pile, embedded in warm permafrost. A circular cryogenic storage tank is studied next, and the effectiveness of an insulation layer is illustrated. The convection option in the program is invoked when studying the effects of ground water flow around a series of vertical freeze pipes. Finally, the thermal degradation beneath an Arctic lake is studied, and the subsequent re-freezing and growth of a pingo has been simulated.

  19. Versatile microrobotics using simple modular subunits.

    PubMed

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  20. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  1. Probiotics - the versatile functional food ingredients.

    PubMed

    Syngai, Gareth Gordon; Gopi, Ragupathi; Bharali, Rupjyoti; Dey, Sudip; Lakshmanan, G M Alagu; Ahmed, Giasuddin

    2016-02-01

    Probiotics are live microbes which when administered in adequate amounts as functional food ingredients confer a health benefit on the host. Their versatility is in terms of their usage which ranges from the humans to the ruminants, pigs and poultry, and also in aquaculture practices. In this review, the microorganisms frequently used as probiotics in human and animal welfare has been described, and also highlighted are the necessary criteria required to be fulfilled for their use in humans on the one hand and on the other as microbial feed additives in animal husbandry. Further elaborated in this article are the sources from where probiotics can be derived, the possible mechanisms by which they act, and their future potential role as antioxidants is also discussed. PMID:27162372

  2. Versatile repair vessel tested in deep water

    SciTech Connect

    Not Available

    1985-07-01

    Testing of a new subsea pipeline repair system in up to 1640 ft of water has been completed. The versatile system, integrated into a catamaran-type vessel, was to be operational by the end of 1985. The main characteristic of the Submersible Underwater Pipeline Repair and Work Apparatus (Supra) is its stable floating capability on the sea surface. Supra can be towed by a supply tug or diving support vessel at five knots in 13-ft waves. The system can be operated without the assistance of heavy-lift cranes or large barges. The developers claim Supra is highly independent of bad weather and sea conditions and can work 90% of the year. Since Supra is pressure-proof similar to a submarine, it can be submerged at sea by means of an integrated propulsion and ballast system and then maneuvered to the desired working location and positioned on the seabed by means of an underwater tracking and navigation system.

  3. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  4. Sacred psychiatry in ancient Greece

    PubMed Central

    2014-01-01

    From the ancient times, there are three basic approaches for the interpretation of the different psychic phenomena: the organic, the psychological, and the sacred approach. The sacred approach forms the primordial foundation for any psychopathological development, innate to the prelogical human mind. Until the second millennium B.C., the Great Mother ruled the Universe and shamans cured the different mental disorders. But, around 1500 B.C., the predominance of the Hellenic civilization over the Pelasgic brought great changes in the theological and psychopathological fields. The Hellenes eliminated the cult of the Great Mother and worshiped Dias, a male deity, the father of gods and humans. With the Father's help and divinatory powers, the warrior-hero made diagnoses and found the right therapies for mental illness; in this way, sacerdotal psychiatry was born. PMID:24725988

  5. Ancient aqueous sedimentation on Mars

    NASA Technical Reports Server (NTRS)

    Goldspiel, Jules M.; Squyres, Steven W.

    1991-01-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters.

  6. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  7. Ancient legacy of cranial surgery.

    PubMed

    Ghannaee Arani, Mohammad; Fakharian, Esmaeil; Sarbandi, Fahimeh

    2012-01-01

    Cranial injury, as it is known today, is not a new concern of modern medicine. On stepping on the earth, the man was in reality encountered with various types of injuries, particularly those of a cranial nature. Leading a life, whether wild or civilized, has always been associated with injuries for human race from the very beginning of birth. Therefore, managing cases of this type has gradually forced him to establish and fix strategies and approaches to handle the dilemma. This study is thus focused on tracing the first documented traumatized cranial cases ever reported, ranging from those trials attributed to our ancient predecessors to the identical examples in the present time. PMID:24396747

  8. Ancient aqueous sedimentation on Mars

    SciTech Connect

    Goldspiel, J.M.; Squyres, S.W. )

    1991-02-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters. 48 refs.

  9. Laser solidification of injectable scaffolds

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Bagratashvili, V. N.; Borschenko, I. A.; Khlebtsov, B. N.; Khlebtsov, N. G.; Minaeva, S. A.; Popov, V. K.; Popova, A. V.

    2012-09-01

    A novel laser sintering approach of polymer powder and surgical suture material within the cavities has been developed to fabricate biodegradable intra-cavity scaffolds. In the frameworks of such sintering approach, laser radiation is absorbed by the surface of the sintered materials only and cannot damage the surrounding tissue. Our experiments demonstrate the feasibility of fabricated solid intra-cavity polymer structures with a minimally invasive endoscopic technique. This novel approach looks very promising for engineering of spinal discs tissues.

  10. HIV thrives in ancient traditions.

    PubMed

    Shreedhar, J

    1995-01-01

    Participation in ancient traditions is facilitating the current spread of HIV through India. For most of the year, Koovagam is a typical Indian village. Each April on the night of the full moon, however, the Chittirai-Pournami festival is held in Koovagam, a celebration in homage to Aravan during which up to 2000 pilgrims from across the country engage in thousands of acts of unprotected sexual intercourse. Aravan is a man depicted in a Hindu tale who asked to experience sexual bliss before being sacrificed to the gods. To fulfill this last wish, the god Krishna is said to have assumed the form of a beautiful woman and had sexual intercourse with Aravan. Many of the festival participants are hijras, eunuchs and transsexuals who sell sex for a living. Hijras may be accompanied by men who serve as their sex partners and bodyguards. Surveys suggest that one-third of the 10,000 hijras in New Delhi may be infected with HIV. Other participants are known as dangas, men who are either married or single and appear to lead strictly heterosexual lives throughout the year except during the Chittirai-Pournami festival when they dress as women and sell sex to other men attending the festival. The panthis comprise another group of participants and tend to be either single or married men who attend the festival to have sex with the hijras and dangas for fees up to ten rupees, approximately US$0.50, per sexual encounter. Prostitution within the devadasi sect and the sale of young, virgin girls in the state of Andhra Pradesh to the highest male bidders are other examples of how ancient traditions are facilitating the current spread of HIV in India. PMID:12319989

  11. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering.

    PubMed

    Nadeem, Danish; Smith, Carol-Anne; Dalby, Matthew J; Meek, R M Dominic; Lin, Sien; Li, Gang; Su, Bo

    2015-01-01

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. PMID:25562325

  12. Hydrogels and scaffolds for immunomodulation

    PubMed Central

    2014-01-01

    For over two decades, immunologists and biomaterials scientists have co-existed in parallel world with the rationale of understanding the molecular profile of immune responses to vaccination, implantation, and treating incurable diseases. Much of the field of biomaterials-based immunotherapy has relied on evaluating model antigens such as chicken egg ovalbumin in mouse models but their relevance to humans has been point of much discussion. Nevertheless, such model antigens have provided important insights about the mechanisms of immune regulation and served as a proof-of-concept for plethora of biomaterials-based vaccines. After years of extensive development of numerous biomaterials for immunomodulation, it is only recently that an experimental scaffold vaccine implanted beneath the skin has begun to use the human model to study the immune responses to cancer vaccination by co-delivering patient-derived tumor lysates and immunomodulatory proteins. If successful, this scaffold vaccine will change the way we approached untreatable cancers, but more importantly, will allow a faster and more rational translation of therapeutic regimes to other cancers, chronic infections, and autoimmune diseases. Most materials reviews have focused on immunomodulatory adjuvants and micro-nano-particles. Here we provide an insight into emerging hydrogel and scaffold based immunomodulatory approaches that continue to demonstrate efficacy against immune associated diseases. PMID:25155610

  13. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  14. Hydrogels and scaffolds for immunomodulation.

    PubMed

    Singh, Ankur; Peppas, Nicholas A

    2014-10-01

    For over two decades, immunologists and biomaterials scientists have co-existed in parallel world with the rationale of understanding the molecular profile of immune responses to vaccination, implantation, and treating incurable diseases. Much of the field of biomaterial-based immunotherapy has relied on evaluating model antigens such as chicken egg ovalbumin in mouse models but their relevance to humans has been point of much discussion. Nevertheless, such model antigens have provided important insights into the mechanisms of immune regulation and served as a proof-of-concept for plethora of biomaterial-based vaccines. After years of extensive development of numerous biomaterials for immunomodulation, it is only recently that an experimental scaffold vaccine implanted beneath the skin has begun to use the human model to study the immune responses to cancer vaccination by co-delivering patient-derived tumor lysates and immunomodulatory proteins. If successful, this scaffold vaccine will change the way we approached untreatable cancers, but more importantly, will allow a faster and more rational translation of therapeutic regimes to other cancers, chronic infections, and autoimmune diseases. Most materials reviews have focused on immunomodulatory adjuvants and micro-nano-particles. Here we provide an insight into emerging hydrogel and scaffold based immunomodulatory approaches that continue to demonstrate efficacy against immune associated diseases. PMID:25155610

  15. Cell-scaffold interaction within engineered tissue.

    PubMed

    Chen, Haiping; Liu, Yuanyuan; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin-chitosan (Gel-Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell-matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. PMID:24631290

  16. Functionalized scaffolds to enhance tissue regeneration

    PubMed Central

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X.

    2015-01-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nanocomposites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed. PMID:25844177

  17. Cell–scaffold interaction within engineered tissue

    SciTech Connect

    Chen, Haiping; Liu, Yuanyuan Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  18. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  19. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-01-01

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time. PMID:24603850

  20. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds. PMID:26608377

  1. Type IV Pilin Proteins: Versatile Molecular Modules

    PubMed Central

    Giltner, Carmen L.; Nguyen, Ylan

    2012-01-01

    Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

  2. Roller presses -- Versatile equipment for mineral processing

    SciTech Connect

    Pietsch, W.

    1995-12-31

    Roller presses were first invented in the middle of the 19th century for the economical size enlargement of coal fines as fuels. In addition to contemporary coal briquetting, in fields such as smokeless fuel and form-coke, it was found that redesigned and modernized roller presses, which are now capable of exerting high forces, are versatile machines for many tasks in mineral processing. Today they are used for: the classic pressure agglomeration and the new high pressure comminution. In pressure agglomeration, the characteristics of fine minerals are improved by forming briquettes or granulated products from compacts. During size enlargement with roller presses briquettes are directly obtained while granular materials are produced by crushing and sizing of compacted sheets. A relatively new application of roller presses in mineral processing is the utilization of the crushing effect when brittle materials pass the nip area between the rollers. It was found that this crushing mechanism is very efficient thus saving energy, particularly in grinding circuits handling large capacities. The paper introduces the fundamentals of the process and describes the design as well as applications of modern roller presses in mineral processing.

  3. The Versatile Type VI Secretion System

    PubMed Central

    Alteri, Christopher J.; Mobley, Harry L.T.

    2016-01-01

    Summary Bacterial Type VI Secretion Systems (T6SS) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the ten years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. The field is beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this Chapter, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria. PMID:27227310

  4. Building versatile bipartite probes for quantum metrology

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  5. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  6. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  7. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum. PMID:24266700

  8. Versatile mobile lidar system for environmental monitoring.

    PubMed

    Weibring, Petter; Edner, Hans; Svanberg, Sune

    2003-06-20

    A mobile lidar (light detection and ranging) system for environmental monitoring is described. The optical and electronic systems are housed in a truck with a retractable rooftop transmission and receiving mirror, connected to a 40-cm-diameter vertically looking telescope. Two injection-seeded Nd:YAG lasers are employed in connection with an optical parametric oscillator-optical parametric amplification transmitter, allowing deep-UV to mid-IR wavelengths to be generated. Fast switching that employs piezoelectric drivers allows multiwavelength differential absorption lidar for simultaneous measurements of several spectrally overlapping atmospheric species. The system can also be used in an imaging multispectral laser-induced fluorescence mode on solid targets. Advanced LabVIEW computer control and multivariate data processing render the system versatile for a multitude of measuring tasks. We illustrate the monitoring of industrial atmospheric mercury and hydrocarbon emissions, volcanic sulfur dioxide plume mapping, fluorescence lidar probing of seawater, and multispectral fluorescence imaging of the facades of a historical monument. PMID:12833965

  9. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  10. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  11. Vascular medicine and surgery in ancient Egypt.

    PubMed

    Barr, Justin

    2014-07-01

    Lauded alike by ancient civilizations and modern society, pharaonic Egyptian medicine remains an object of fascination today. This article discusses its surprisingly sophisticated understanding of a cardiovascular system. The term "cardiovascular system," however, carries assumptions and meanings to a modern audience, especially readers of this journal, which simply do not apply when considering ancient conceptions of the heart and vessels. For lack of better language, this article will use "cardiovascular" and similar terms while recognizing the anachronistic inaccuracy. After briefly summarizing ancient Egyptian medicine generally, it will review the anatomy, pathology, and treatment of the vasculature. The practice of mummification in ancient Egypt provides a unique opportunity for paleopathology, and the conclusion will explore evidence of arterial disease from a modern scientific perspective. PMID:24970660

  12. Ancient Dry Spells Offer Clues About Drought

    NASA Video Gallery

    New research indicates that the ancient Mesoamerican civilizations of the Mayans and Aztecs amplified droughts in the Yucatán and southern Mexico by clearing rainforests to make room for pastures ...

  13. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  14. Introducing Textual Criticisn to Ancient History Students

    ERIC Educational Resources Information Center

    Whitehorne, J. E. G.

    1975-01-01

    Describes an experiment made to illustrate to Ancient History students the value of textual criticism and the problems involved in transmitting a text through the centuries by means of imperfectly copied and preserved manuscripts. (CHK)

  15. Ancient history of flatfish research

    NASA Astrophysics Data System (ADS)

    Berghahn, Rüdiger; Bennema, Floris Pieter

    2013-01-01

    Owing to both their special appearance and behavior flatfish have attracted the special attention of people since ages. The first records of humans having been in touch with flatfish date back to the Stone Age about 15,000 years B.C. Detailed descriptions were already given in the classical antiquity and were taken up 1400 years later in the Renaissance by the first ichthyologists, encyclopédists, and also by practical men. This was more than 200 years before a number of common flatfish species were given their scientific names by Linnaeus in 1758. Besides morphology, remarkable and sometimes amusing naturalistic observations and figures are bequeathed. Ancient history of flatfish research is still a wide and open array. Examples are presented how the yield of information and interpretation from these times increases with interdisciplinary cooperation including archeologists, zoologists, ichthyologists, historians, art historians, fisheries and fishery biologist. The timeline of this contribution ends with the start of modern fishery research at the end of the 19th century in the course of the rapidly increasing exploitation of fish stocks.

  16. Ancient technology in contemporary surgery.

    PubMed

    Buck, B A

    1982-03-01

    Archaeologists have shown that ancient man developed the ability to produce cutting blades of an extreme degree of sharpness from volcanic glass. The finest of these prismatic blades were produced in Mesoamerica about 2,500 years ago. The technique of production of these blades was rediscovered 12 years ago by Dr. Don Crabtree, who suggested possible uses for the blades in modern surgery. Blades produced by Dr. Crabtree have been used in experimental microsurgery with excellent results. Animal experiments have shown the tensile strength of obsidian produced wounds to be equal to or greater than that of wounds produced by steel scalpels after 14 days of healing. We have been able to demonstrate neither flaking of glass blades into the wounds nor any foreign body reaction in healed wounds. Skin incisions in human patients have likewise healed well without complications. The prismatic glass blade is infinitely sharper than a honed steel edge, and these blades can be produced in a wide variety of shapes and sizes. It is therefore suggested that this type of blade may find an appropriate use in special areas of modern surgery. PMID:7046256

  17. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  18. Rethinking the Ancient Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  19. Ancient Admixture in Human History

    PubMed Central

    Patterson, Nick; Moorjani, Priya; Luo, Yontao; Mallick, Swapan; Rohland, Nadin; Zhan, Yiping; Genschoreck, Teri; Webster, Teresa; Reich, David

    2012-01-01

    Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean “Iceman.” PMID:22960212

  20. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  1. [Metallurgic drugs in ancient Japan].

    PubMed

    Sugiyama, S

    2001-01-01

    Advancements in metallurgic and pharmaceutical chemistry in ancient Japan were made by people like Mangan-Shonin, who combined elements from Shinto, Buddhism, and Taoism to take advantage of technologies brought by Chinese and Korean immigrants. The Shonin himself, though it may be considered a wild speculation, could well be such an immigrant. Along with the immigrants, the Shonin established government-subsidized temples (Jingu-ji, Jogaku-ji) throughout the country under sponsorship by the Imperial Court for the purpose of raising funds through private donations. Research and educational activities conducted in these temples ultimately resulted in a well-established body of chemical engineers who could excavate chemical substances as well as alter their natures. According to a list of regional products (Sasaki,19) 1972) up to the 14th century, these chemical substances and their derivative products included iron from the Hitachi region, cast metal from Shimotsuke, swords from Sagami, face powder (lead carbonate) from Ise, mercury, and gold. PMID:11776993

  2. Ancient origin of mast cells.

    PubMed

    Wong, G William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K; Satoh, Nori; Stevens, Richard L

    2014-08-22

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  3. Design of 2D chitosan scaffolds via electrochemical structuring

    PubMed Central

    Altomare, Lina; Guglielmo, Elena; Varoni, Elena Maria; Bertoldi, Serena; Cochis, Andrea; Rimondini, Lia; De Nardo, Luigi

    2014-01-01

    Chitosan (CS) is a versatile biopolymer whose morphological and chemico-physical properties can be designed for a variety of biomedical applications. Taking advantage of its electrolytic nature, cathodic polarization allows CS deposition on electrically conductive substrates, resulting in thin porous structures with tunable morphology. Here we propose an easy method to obtain CS membranes with highly oriented micro-channels for tissue engineering applications, relying on simple control of process parameters and cathodic substrate geometry.   Cathodic deposition was performed on two different aluminum grids in galvanostatic conditions at 6.25 mA cm−2 from CS solution [1g L−1] in acetic acid (pH 3.5). Self-standing thin scaffolds were cross linked either with genipin or epichlorohydrin, weighted, and observed by optical and electron microscopy. Swelling properties at pH 5 and pH 7.4 have been also investigated and tensile tests performed on swollen samples at room temperature. Finally, direct and indirect assays have been performed to evaluate the cytotoxicity at 24 and 72 h. Thin scaffolds with two different oriented porosities (1000µm and 500µm) have been successfully fabricated by electrochemical techniques. Both cross-linking agents did not affected the mechanical properties and cytocompatibility of the resulting structures. Depending on the pH, these structures show interesting swelling properties that can be exploited for drug delivery systems. Moreover, thanks to the possibility of controlling the porosity and the micro-channel orientation, they should be used for the regeneration of tissues requiring a preferential cells orientation, e.g., cardiac patches or ligament regeneration. PMID:25093705

  4. Alternative medicine in ancient and medieval history.

    PubMed

    Prioreschi, P

    2000-10-01

    The author, in an attempt to clarify whether the rise of alternative medicine is a phenomenon characteristic of our time or whether it existed in the past as well, has identified at least three alternative medicines, which developed in ancient Rome, ancient India and in the medieval Islamic world. The circumstances leading to the development of alternative medicine in the past and in our time are discussed and compared. PMID:11000060

  5. Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins

    PubMed Central

    Poonperm, Rawin; Takata, Hideaki; Hamano, Tohru; Matsuda, Atsushi; Uchiyama, Susumu; Hiraoka, Yasushi; Fukui, Kiichi

    2015-01-01

    Chromosome higher order structure has been an enigma for over a century. The most important structural finding has been the presence of a chromosome scaffold composed of non-histone proteins; so-called scaffold proteins. However, the organization and function of the scaffold are still controversial. Here, we use three dimensional-structured illumination microscopy (3D-SIM) and focused ion beam/scanning electron microscopy (FIB/SEM) to reveal the axial distributions of scaffold proteins in metaphase chromosomes comprising two strands. We also find that scaffold protein can adaptably recover its original localization after chromosome reversion in the presence of cations. This reversion to the original morphology underscores the role of the scaffold for intrinsic structural integrity of chromosomes. We therefore propose a new structural model of the chromosome scaffold that includes twisted double strands, consistent with the physical properties of chromosomal bending flexibility and rigidity. Our model provides new insights into chromosome higher order structure. PMID:26132639

  6. Metacognitive Scaffolding in an Innovative Learning Arrangement

    ERIC Educational Resources Information Center

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  7. Teaching Writing: A Multilayered Participatory Scaffolding Practice

    ERIC Educational Resources Information Center

    Dix, Stephanie

    2016-01-01

    This article adds to the research on teachers' writing pedagogy. It reviews and challenges the research literature on scaffolding as an instructional practice and presents a more inclusive framework for analysis. As student participation and voice were absent from much of the literature, a participatory scaffolding framework was developed to…

  8. Scaffolding Mathematical Modelling with a Solution Plan

    ERIC Educational Resources Information Center

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  9. Recombinant protein scaffolds for tissue engineering.

    PubMed

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. PMID:22262725

  10. Information Scaffolding: Application to Technical Animation

    ERIC Educational Resources Information Center

    Newman, Catherine Claire

    2010-01-01

    Information Scaffolding is a user-centered approach to information design; a method devised to aid "everyday" authors in information composition. Information Scaffolding places a premium on audience-centered documents by emphasizing the information needs and motivations of a multimedia document's intended audience. The aim of this…

  11. Lithographically defined 3-dimensional graphene scaffolds

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Xiao, Xiaoyin; Polsky, Ronen

    2015-09-01

    Interferometrically defined 3D photoresist scaffolds are formed through a series of three successive two-beam interference exposures, a post exposure bake and development. Heating the resist scaffold in a reducing atmosphere to > 1000 °C, results in the conversion of the resist structure into a carbon scaffold through pyrolysis, resulting in a 3D sp3- bonded glassy carbon scaffold which maintains the same in-plane morphology as the resist despite significant shrinkage. The carbon scaffolds are readily modified using a variety of deposition methods such as electrochemical, sputtering and CVD/ALD. Remarkably, sputtering metal into scaffolds with ~ 5 unit cells tall results in conformal coating of the scaffold with the metal. When the metal is a transition metal such as nickel, the scaffold can be re-annealed, during which time the carbon diffuses through the nickel, emerging on the exterior of the nickel as sp2-bonded carbon, termed 3D graphene. This paper details the fabrication, characterization and some potential applications for these structures.

  12. Understanding Literacy Teacher Educators' Use of Scaffolding

    ERIC Educational Resources Information Center

    Many, Joyce E.; Aoulou, Eudes

    2014-01-01

    This inquiry examined four literacy teacher educators' perspectives and practices as related to scaffolding by using document analysis (i.e. syllabus), observations, and interviews. Findings indicated these teacher educators used scaffolding to develop preservice teachers' dispositions, strategies, and conceptual understandings. Faculty used…

  13. Using Ancient Samples in Projection Analysis

    PubMed Central

    Yang, Melinda A.; Slatkin, Montgomery

    2015-01-01

    Projection analysis is a tool that extracts information from the joint allele frequency spectrum to better understand the relationship between two populations. In projection analysis, a test genome is compared to a set of genomes from a reference population. The projection’s shape depends on the historical relationship of the test genome’s population to the reference population. Here, we explore in greater depth the effects on the projection when ancient samples are included in the analysis. First, we conduct a series of simulations in which the ancient sample is directly ancestral to a present-day population (one-population model), or the ancient sample is ancestral to a sister population that diverged before the time of sampling (two-population model). We find that there are characteristic differences between the projections for the one-population and two-population models, which indicate that the projection can be used to determine whether a test genome is directly ancestral to a present-day population or not. Second, we compute projections for several published ancient genomes. We compare two Neanderthals and three ancient human genomes to European, Han Chinese and Yoruba reference panels. We use a previously constructed demographic model and insert these five ancient genomes to assess how well the observed projections are recovered. PMID:26546309

  14. Using Ancient Samples in Projection Analysis.

    PubMed

    Yang, Melinda A; Slatkin, Montgomery

    2016-01-01

    Projection analysis is a tool that extracts information from the joint allele frequency spectrum to better understand the relationship between two populations. In projection analysis, a test genome is compared to a set of genomes from a reference population. The projection's shape depends on the historical relationship of the test genome's population to the reference population. Here, we explore in greater depth the effects on the projection when ancient samples are included in the analysis. First, we conduct a series of simulations in which the ancient sample is directly ancestral to a present-day population (one-population model), or the ancient sample is ancestral to a sister population that diverged before the time of sampling (two-population model). We find that there are characteristic differences between the projections for the one-population and two-population models, which indicate that the projection can be used to determine whether a test genome is directly ancestral to a present-day population or not. Second, we compute projections for several published ancient genomes. We compare two Neanderthals and three ancient human genomes to European, Han Chinese and Yoruba reference panels. We use a previously constructed demographic model and insert these five ancient genomes to assess how well the observed projections are recovered. PMID:26546309

  15. Transnasal excerebration surgery in ancient Egypt.

    PubMed

    Fanous, Andrew A; Couldwell, William T

    2012-04-01

    Ancient Egyptians were pioneers in many fields, including medicine and surgery. Our modern knowledge of anatomy, pathology, and surgical techniques stems from discoveries and observations made by Egyptian physicians and embalmers. In the realm of neurosurgery, ancient Egyptians were the first to elucidate cerebral and cranial anatomy, the first to describe evidence for the role of the spinal cord in the transmission of information from the brain to the extremities, and the first to invent surgical techniques such as trepanning and stitching. In addition, the transnasal approach to skull base and intracranial structures was first devised by Egyptian embalmers to excerebrate the cranial vault during mummification. In this historical vignette, the authors examine paleoradiological and other evidence from ancient Egyptian skulls and mummies of all periods, from the Old Kingdom to Greco-Roman Egypt, to shed light on the development of transnasal surgery in this ancient civilization. The authors confirm earlier observations concerning the laterality of this technique, suggesting that ancient Egyptian excerebration techniques penetrated the skull base mostly on the left side. They also suggest that the original technique used to access the skull base in ancient Egypt was a transethmoidal one, which later evolved to follow a transsphenoidal route similar to the one used today to gain access to pituitary lesions. PMID:22224784

  16. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    PubMed Central

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  17. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  18. Titanate nanotube coatings on biodegradable photopolymer scaffolds.

    PubMed

    Beke, S; Kőrösi, L; Scarpellini, A; Anjum, F; Brandi, F

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. PMID:23498284

  19. Generation of Fluorogen-Activating Designed Ankyrin Repeat Proteins (FADAs) as Versatile Sensor Tools.

    PubMed

    Schütz, Marco; Batyuk, Alexander; Klenk, Christoph; Kummer, Lutz; de Picciotto, Seymour; Gülbakan, Basri; Wu, Yufan; Newby, Gregory A; Zosel, Franziska; Schöppe, Jendrik; Sedlák, Erik; Mittl, Peer R E; Zenobi, Renato; Wittrup, K Dane; Plückthun, Andreas

    2016-03-27

    Fluorescent probes constitute a valuable toolbox to address a variety of biological questions and they have become irreplaceable for imaging methods. Commonly, such probes consist of fluorescent proteins or small organic fluorophores coupled to biological molecules of interest. Recently, a novel class of fluorescence-based probes, fluorogen-activating proteins (FAPs), has been reported. These binding proteins are based on antibody single-chain variable fragments and activate fluorogenic dyes, which only become fluorescent upon activation and do not fluoresce when free in solution. Here we present a novel class of fluorogen activators, termed FADAs, based on the very robust designed ankyrin repeat protein scaffold, which also readily folds in the reducing environment of the cytoplasm. The FADA generated in this study was obtained by combined selections with ribosome display and yeast surface display. It enhances the fluorescence of malachite green (MG) dyes by a factor of more than 11,000 and thus activates MG to a similar extent as FAPs based on single-chain variable fragments. As shown by structure determination and in vitro measurements, this FADA was evolved to form a homodimer for the activation of MG dyes. Exploiting the favorable properties of the designed ankyrin repeat protein scaffold, we created a FADA biosensor suitable for imaging of proteins on the cell surface, as well as in the cytosol. Moreover, based on the requirement of dimerization for strong fluorogen activation, a prototype FADA biosensor for in situ detection of a target protein and protein-protein interactions was developed. Therefore, FADAs are versatile fluorescent probes that are easily produced and suitable for diverse applications and thus extend the FAP technology. PMID:26812208

  20. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. PMID:26952489

  1. A Versatile Family of Galactic Wind Models

    NASA Astrophysics Data System (ADS)

    Bustard, Chad; Zweibel, Ellen G.; D'Onghia, Elena

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier & Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1-1000 M⊙ yr-1 assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  2. Metadata Authoring with Versatility and Extensibility

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Olsen, Lola

    2004-01-01

    NASA's Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 13,800 data set descriptions in Directory Interchange Format (DIF) and 700 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information and direct links to the data, thus allowing researchers to discover data pertaining to a geographic location of interest, then quickly acquire those data. The GCMD strives to be the preferred data locator for world-wide directory-level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are attracting widespread usage; however, a need for tools that are portable, customizable and versatile still exists. With tool usage directly influencing metadata population, it has become apparent that new tools are needed to fill these voids. As a result, the GCMD has released a new authoring tool allowing for both web-based and stand-alone authoring of descriptions. Furthermore, this tool incorporates the ability to plug-and-play the metadata format of choice, offering users options of DIF, SERF, FGDC, ISO or any other defined standard. Allowing data holders to work with their preferred format, as well as an option of a stand-alone application or web-based environment, docBUlLDER will assist the scientific community in efficiently creating quality data and services metadata.

  3. The neural crest: a versatile organ system.

    PubMed

    Zhang, Dongcheng; Ighaniyan, Samiramis; Stathopoulos, Lefteris; Rollo, Benjamin; Landman, Kerry; Hutson, John; Newgreen, Donald

    2014-09-01

    The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy. PMID:25227568

  4. Versatile Membrane Deformation Potential of Activated Pacsin

    PubMed Central

    Byrnes, Laura J.; Sondermann, Holger

    2012-01-01

    Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties. PMID:23236520

  5. Proton transfer in organic scaffolds

    NASA Astrophysics Data System (ADS)

    Basak, Dipankar

    This dissertation focuses on the fundamental understanding of the proton transfer process and translating the knowledge into design/development of new organic materials for efficient non-aqueous proton transport. For example, what controls the shuttling of a proton between two basic sites? a) Distance between two groups? or b) the basicity? c) What is the impact of protonation on molecular conformation when the basic sites are attached to rigid scaffolds? For this purpose, we developed several tunable proton sponges and studied proton transfer in these scaffolds theoretically as well as experimentally. Next we moved our attention to understand long-range proton conduction or proton transport. We introduced liquid crystalline (LC) proton conductor based on triphenylene molecule and established that activation energy barrier for proton transport is lower in the LC phase compared to the crystalline phase. Furthermore, we investigated the impact of several critical factors: the choice of the proton transferring groups, mobility of the charge carriers, intrinsic vs. extrinsic charge carrier concentrations and the molecular architectures on long-range proton transport. The outcome of this research will lead to a deeper understanding of non-aqueous proton transfer process and aid the design of next generation proton exchange membrane (PEM) for fuel cell.

  6. Burns treatment in ancient times.

    PubMed

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques. PMID:23888738

  7. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  8. History through Art and Architecture: Ancient Greek Architecture [and] Ancient Greek Sculpture. Teacher's Manual.

    ERIC Educational Resources Information Center

    Campbell, Ann

    This document consists of two teaching manuals designed to accompany a commercially-available "multicultural, interdisciplinary video program," consisting of four still videotape programs (72 minutes, 226 frames), one teaching poster, and these two manuals. "Teacher's Manual: Ancient Greek Architecture" covers: "Ancient Greek Architecture 1,"…

  9. A versatile hardware platform for brain computer interfaces.

    PubMed

    Garcia, Pablo A; Haberman, Marcelo; Spinelli, Enrique M

    2010-01-01

    This article presents the development of a versatile hardware platform for brain computer interfaces (BCI). The aim of this work is to produce a small, autonomous and configurable BCI platform adaptable to the user's needs. PMID:21096891

  10. Re-inventing ancient human DNA.

    PubMed

    Knapp, Michael; Lalueza-Fox, Carles; Hofreiter, Michael

    2015-01-01

    For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research. PMID:25937886

  11. New interpretation of the ancient constellations

    NASA Astrophysics Data System (ADS)

    Dementev, M. S.

    New method of study of the ancient constellations and mythes is discussed. It is based on the comparison of two maps - the sky and the Earth. The Stellar map is built in an equatorial system of coordinates, the geografic map - in the Mercator's projection and of the same scale. The former map is put on the laster one. The constellation of Pleiades (seven daughter of Atlant) is placed on the meridian of Atlant (Western coast of Africa). If the Stellar map is constructed for a epoch J-3000 (3000 years up to B.C.) then we could found the following. The constellations Andromeda (the daughter of the Ethiopian tsar), Cetus, Perseus and Cassiopeia (mother of Andromeda) are projected on the centre, south and west of Ancient Ethiopia and Mediterranean Sea, respectively. That is all the constellations fall to the places, where events described in mythes occured. A constellation Cepheus (Arabian name is "Burning") covers the Caucasus. Possibly, before a epoch J-1000 this group of stars was connected with Prometheus. It is known Prometheus was chained to the Caucasian rock because of stealing of a fire. Ancient Chineses divided the sky in other way. They called "The Heavenly Town" the area of sky consisting of stars in Herculis, Aquilae and Ophiuchi. Parts of the mentioned constellation were called as a provinces in Ancient China. If the Heavenly Town locate near the Ancient China then the Greek constellations (Andromeda, Perseus and Cetus) will appear over Africa. Three important conclusions follow from this: (i) the geography of the Earth is reflected on the sky; (ii) the ancient astronomers were investigating a connection between the sky and Earth; (iii) the ancient peoples exchanged by the information about a construction of the world.

  12. Scaffolding Strategies in Electronic Performance Support Systems: Types and Challenges

    ERIC Educational Resources Information Center

    Cagiltay, Kursat

    2006-01-01

    In the study described in this paper, the major components of an electronic performance support system are described and the use of scaffolding techniques within such electronic environments is explored. Four different types of scaffolding are discussed: "conceptual" (supportive) scaffolding, "metacognitive" (reflective) scaffolding, "procedural"…

  13. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.

    PubMed

    Zhao, Ning; Schmitt, Margaret A; Fisk, John D

    2016-04-01

    Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment. PMID:26835881

  14. Scaffold Translation: Barriers Between Concept and Clinic

    PubMed Central

    Murphy, William L.

    2011-01-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613

  15. Surface Characterization of Extracellular Matrix Scaffolds

    PubMed Central

    Brown, Bryan N.; Barnes, Christopher A.; Kasick, Rena T.; Michel, Roger; Gilbert, Thomas W.; Beer-Stolz, Donna; Castner, David G.; Ratner, Buddy D.; Badylak, Stephen F.

    2009-01-01

    Extracellular matrix (ECM) scaffolds prepared from different tissue sources or using different methods have been demonstrated to have distinctive effects upon cell adhesion patterns and the ability to support and maintain differentiated phenotypes. It is unknown whether the molecular composition or the ultrastructure of the ECM plays a greater role in determining the phenotype of the cells with which it comes into contact. However, when implanted, the topology and ligand landscape of the material will determine the host molecules that bind and the type and behavior of cells that mediate the host response. Therefore, a comprehensive understanding of surface characteristics is essential in the design of scaffolds for specific clinical applications. The surface characteristics of ECM scaffolds derived from porcine urinary bladder, small intestine, and liver as well as the effects of two commonly used methods of chemical cross-linking upon UBM were investigated. Electron microscopy and time of flight secondary ion mass spectroscopy were used to examine the surface characteristics of the scaffolds. The results show that ECM scaffolds have unique morphologic and structural properties which are dependant on the organ or tissue from which the scaffold is harvested. Furthermore, the results show that the surface characteristics of an ECM scaffold are changed through chemical cross-linking. PMID:19828192

  16. Scaffolds in vascular regeneration: current status

    PubMed Central

    Thottappillil, Neelima; Nair, Prabha D

    2015-01-01

    An ideal vascular substitute, especially in <6 mm diameter applications, is a major clinical essentiality in blood vessel replacement surgery. Blood vessels are structurally complex and functionally dynamic tissue, with minimal regeneration potential. These have composite extracellular matrix (ECM) and arrangement. The interplay between ECM components and tissue specific cells gives blood vessels their specialized functional attributes. The core of vascular tissue engineering and regeneration relies on the challenges in creating vascular conduits that match native vessels and adequately regenerate in vivo. Out of numerous vascular regeneration concerns, the relevance of ECM emphasizes much attention toward appropriate choice of scaffold material and further scaffold development strategies. The review is intended to be focused on the various approaches of scaffold materials currently in use in vascular regeneration and current state of the art. Scaffold of choice in vascular tissue engineering ranges from natural to synthetic, decellularized, and even scaffold free approach. The applicability of tubular scaffold for in vivo vascular regeneration is under active investigation. A patent conduit with an ample endothelial luminal layer that can regenerate in vivo remains an unanswered query in the field of small diameter vascular tissue engineering. Besides, scaffolds developed for vascular regeneration, should aim at providing functional substitutes for use in a regenerative approach from the laboratory bench to patient bedside. PMID:25632236

  17. A comprehensive evaluation of assembly scaffolding tools

    PubMed Central

    2014-01-01

    Background Genome assembly is typically a two-stage process: contig assembly followed by the use of paired sequencing reads to join contigs into scaffolds. Scaffolds are usually the focus of reported assembly statistics; longer scaffolds greatly facilitate the use of genome sequences in downstream analyses, and it is appealing to present larger numbers as metrics of assembly performance. However, scaffolds are highly prone to errors, especially when generated using short reads, which can directly result in inflated assembly statistics. Results Here we provide the first independent evaluation of scaffolding tools for second-generation sequencing data. We find large variations in the quality of results depending on the tool and dataset used. Even extremely simple test cases of perfect input, constructed to elucidate the behaviour of each algorithm, produced some surprising results. We further dissect the performance of the scaffolders using real and simulated sequencing data derived from the genomes of Staphylococcus aureus, Rhodobacter sphaeroides, Plasmodium falciparum and Homo sapiens. The results from simulated data are of high quality, with several of the tools producing perfect output. However, at least 10% of joins remains unidentified when using real data. Conclusions The scaffolders vary in their usability, speed and number of correct and missed joins made between contigs. Results from real data highlight opportunities for further improvements of the tools. Overall, SGA, SOPRA and SSPACE generally outperform the other tools on our datasets. However, the quality of the results is highly dependent on the read mapper and genome complexity. PMID:24581555

  18. Porous scaffold architecture guides tissue formation.

    PubMed

    Cipitria, Amaia; Lange, Claudia; Schell, Hanna; Wagermaier, Wolfgang; Reichert, Johannes C; Hutmacher, Dietmar W; Fratzl, Peter; Duda, Georg N

    2012-06-01

    Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is

  19. Diagnosis and management of retroperitoneal ancient schwannomas

    PubMed Central

    Choudry, Haroon A; Nikfarjam, Mehrdad; Liang, John J; Kimchi, Eric T; Conter, Robert; Gusani, Niraj J; Staveley-O'Carroll, Kevin F

    2009-01-01

    Background Ancient schwannomas are degenerate peripheral nerve sheath tumors that very rarely occur in the retroperitoneum. They generally reach large proportions before producing symptoms due to mass effect. We describe three cases of retroperitoneal ancient schwannomas and discuss the diagnosis and management of these tumors. Case presentations Three female patients with retroperitoneal ancient schwannomas were reviewed. One patient presented with several weeks of upper abdominal pain and lower chest discomfort, whereas back pain and leg pain with associated weakness were predominant symptoms in the remaining two. Abdominal imaging findings demonstrated heterogeneous masses in the retroperitoneum with demarcated margins, concerning for malignancy. The patients successfully had radical excision of their tumors. Histological examination showed encapsulated tumors that displayed alternating areas of dense cellularity and areas of myxoid matrix consistent with a diagnosis of ancient schwannoma. Conclusion A diagnosis of ancient schwannoma should be entertained for any heterogeneous, well encapsulated mass in the retroperitoneum. In these cases less radical surgical resection should be considered as malignant transformation of these tumors is extremely rare and recurrence is uncommon following excision. PMID:19187535

  20. The Ancient Martian Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2014-01-01

    Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than

  1. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. PMID:26249577

  2. Ionic solutes impact collagen scaffold bioactivity.

    PubMed

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  3. Cell penetration to nanofibrous scaffolds

    PubMed Central

    Rampichová, Michala; Buzgo, Matej; Chvojka, Jiří; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Cell infiltration is a critical parameter for the successful development of 3D matrices for tissue engineering. Application of electrospun nanofibers in tissue engineering has recently attracted much attention. Notwithstanding several of their advantages, small pore size and small thickness of the electrospun layer limit their application for development of 3D scaffolds. Several methods for the pore size and/or electrospun layer thickness increase have been recently developed. Nevertheless, tissue engineering still needs emerging of either novel nanofiber-enriched composites or new techniques for 3D nanofiber fabrication. Forcespinning® seems to be a promising alternative. The potential of the Forcespinning® method is illustrated in preliminary experiment with mesenchymal stem cells. PMID:24429388

  4. Electrospinning of Bioinspired Polymer Scaffolds.

    PubMed

    Araujo, Jose V; Carvalho, Pedro P; Best, Serena M

    2015-01-01

    Electrospinning is a technique used in the production of polymer nanofibre meshes. The use of biodegradable and biocompatible polymers to produce nanofibres that closely mimic the extracellular matrix (ECM) of different tissues has opened a wide range of possibilities for the application of electrospinning in Tissue Engineering. It is believed that nano-features (such as voids and surface cues) present in nanofibre mesh scaffolds, combined with the chemical composition of the fibres, can stimulate cell attachment, growth and differentiation. Despite the widespread use of electrospun nanofibres in tissue engineering, the present chapter will focus on the advances made in the utilisation of these materials in bone, cartilage and tooth related applications. Several aspects will be taken into consideration, namely the choice of polymers, the surface modification of the nanofibres in order to achieve mineralisation, and also the biological application of such materials. PMID:26545743

  5. The ancient Chinese notes on hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Zwahlen, François; Wang, Yanxin

    2011-08-01

    The ancient Chinese notes on hydrogeology are summarized and interpreted, along with records of some related matters, like groundwater exploration and utilization, karst springs, water circulation, water conservation and saline-land transformation, mine drainage, and environmental hydrogeology. The report focuses only on the earliest recorded notes, mostly up until the Han Dynasty (206 BC - AD 25). Besides the references cited, the discussion in this report is based mainly on archaeological material, the preserved written classic literature, and some assumptions and/or conclusions that have been handed down in legends to later ages. Although most material relates to ancient China, the lessons learned may have practical significance worldwide. Compared to other contemporary parts of the world, ancient China, without doubt, took the lead in the field of groundwater hydrology. The great achievements and experience of the Chinese ancestors should provide motivation and inspiration for hydrogeologists to carry out their scientific research and exploration passionately and actively.

  6. Palaeoparasitology - Human Parasites in Ancient Material.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases. PMID:26597072

  7. Did the ancient egyptians discover Algol?

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  8. Twins in Ancient Greece: a synopsis.

    PubMed

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality. PMID:26135766

  9. Current therapies and the ancient East.

    PubMed

    MacHovec, F J

    1984-01-01

    Current therapies, their theories and techniques ebb and flow in popularity, but there is a residue of basic principles and practices which remain. Much of this useful residue has been present in ancient Eastern religions and philosophies. This article compares the content of several current theories of individual, group, and family therapies to seed ideas in ancient Taoist, Zen, Confucian, yoga, and Buddhist source materials. Gestalt, existential, psychoanalytic, transactional analysis, cognitive-behavioral and family therapy concepts are traced to these ancient precursors. Illustrative examples are presented such as satori (flash of insight), koans (insight riddles), parables, yanas (exercises), rituals, and written teachings. The article concludes with the Four Noble Truths and the 8-fold path of Buddhism, given 2500 years ago but very timely to contemporary problems of life adjustment and a useful guide to counseling and therapy. PMID:6711713

  10. The practice of dentistry in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-05-01

    This paper addresses the questions of whether a dental profession existed in ancient Egypt and if it did then considers whether these practitioners were operative dental surgeons as we know them today or whether they were pharmacists. Evidence from hieroglyphic inscriptions, from the dentitions of the surviving mummified and skeletal remains, and from ancient documents and artefacts are examined. The conclusion would suggest that operative dental treatment if it did exist at all was extremely limited. The dental treatment that appears to have been provided was mainly restricted to pharmaceutical preparations that were either applied to the gingival and mucosal tissues or used as mouthwashes, and these at best may only have provided some short term relief. It seems apparent that many ancient Egyptians suffered from widespread and painful dental disease, which the available treatments can have done relatively little to alleviate. PMID:19424250

  11. Ancient and Modern Hydrology: The Common Ground

    NASA Astrophysics Data System (ADS)

    Dagan, G.

    2005-12-01

    The archeological site of Tzipori (near Nazareth) in Israel contains a beautiful ancient mosaic that depicts the Nile in an allegoric manner. One of the striking details is a Nilometer, a graded pillar that was used in order to measure the Nile level. These data were used by ancient hydrologists in order to predict the Nile regime during the coming season. In turn, these assessments provided the Pharaoh administration with the basis for taxation of the peasant population. These historical findings render Hydrology as one of the oldest technical professions. Furthermore, a few features of ancient hydrology characterize the modern one also: it is a quantitative discipline, it has an applied nature, it makes prediction under uncertainty and it is intertwined with economical and social considerations. The presentation is focused on these analogies and mainly with the need to cope with uncertainty, with emphasis on the novel and distinctive features of stochastic modeling of subsurface flow and transport.

  12. The ancient lunar crust, Apollo 17 region

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1992-01-01

    The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.

  13. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    PubMed Central

    van der Velde, Jasper H. M.; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H.; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with ‘self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer–dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard. PMID:26751640

  14. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization.

    PubMed

    van der Velde, Jasper H M; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard. PMID:26751640

  15. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    NASA Astrophysics Data System (ADS)

    van der Velde, Jasper H. M.; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H.; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with `self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.

  16. Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications.

    PubMed

    Guex, A G; Hegemann, D; Giraud, M N; Tevaearai, H T; Popa, A M; Rossi, R M; Fortunato, G

    2014-11-01

    Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations. PMID:25454657

  17. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.

    PubMed

    Lai, Yuekun; Lin, Longxiang; Pan, Fei; Huang, Jianying; Song, Ran; Huang, Yongxia; Lin, Changjian; Fuchs, Harald; Chi, Lifeng

    2013-09-01

    Binary wettability patterned surfaces with extremely high wetting contrasts can be found in nature on living creatures. They offer a versatile platform for microfluidic management. In this work, a facile approach to fabricating erasable and rewritable surface patterns with extreme wettability contrasts (superhydrophilic/superhydrophobic) on a TiO2 nanotube array (TNA) surface through self-assembly and photocatalytic lithography is reported. The multifunctional micropatterned superhydrophobic TNA surface can act as a 2D scaffold for site-selective cell immobilization and reversible protein absorption. Most importantly, such a high-contrast wettability template can be used to construct various well-defined 3D functional patterns, such as calcium phosphate, silver nanoparticles, drugs, and biomolecules in a highly selective manner. The 3D functional patterns would be a versatile platform in a wide range of applications, especially for biomedical devices (e.g., high-throughput molecular sensing, targeted antibacterials, and drug delivery). In a proof-of-concept study, the surface-enhanced Raman scattering and antibacterial performance of the fabricated 3D AgNP@TNA pattern, and the targeted drug delivery for site-specific and high-sensitivity cancer cell assays was investigated. PMID:23420792

  18. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon

    PubMed Central

    Robb, Calum T.; Dyrynda, Elisabeth A.; Gray, Robert D.; Rossi, Adriano G.; Smith, Valerie J.

    2014-01-01

    Controlled release of chromatin from the nuclei of inflammatory cells is a process that entraps and kills microorganisms in the extracellular environment. Now termed ETosis, it is important for innate immunity in vertebrates. Paradoxically, however, in mammals, it can also contribute to certain pathologies. Here we show that ETosis occurs in several invertebrate species, including, remarkably, an acoelomate. Our findings reveal that the phenomenon is primordial and predates the evolution of the coelom. In invertebrates, the released chromatin participates in defence not only by ensnaring microorganisms and externalizing antibacterial histones together with other haemocyte-derived defence factors, but crucially, also provides the scaffold on which intact haemocytes assemble during encapsulation; a response that sequesters and kills potential pathogens infecting the body cavity. This insight into the early origin of ETosis identifies it as a very ancient process that helps explain some of its detrimental effects in mammals. PMID:25115909

  19. Reinforcing Silk Scaffolds with Silk Particles

    PubMed Central

    Rajkhowa, Rangam; Gil, Eun Seok; Kluge, Jonathan; Numata, Keiji; Wang, Lijing; Kaplan, David L.

    2014-01-01

    Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds. PMID:20166230

  20. Biodegradable synthetic scaffolds for tendon regeneration

    PubMed Central

    Reverchon, Ernesto; Baldino, Lucia; Cardea, Stefano; De Marco, Iolanda

    2012-01-01

    Summary Tissue regeneration is aimed at producing biological or synthetic scaffolds to be implanted in the body for regenerate functional tissues. Several techniques and materials have been used to obtain biodegradable synthetic scaffolds, on which adhesion, growth, migration and differentiation of human cells has been attempted. Scaffolds for tendon regeneration have been less frequently proposed, because they have a complex hierarchical structure and it is very difficult to mimic their peculiar mechanical properties. In this review, we critically analyzed the proposed materials and fabrication techniques for tendon tissue engineering and we indicated new preparation processes, based on the use of supercritical fluids, to produce scaffolds with characteristics very similar to the native tendon structure. PMID:23738295

  1. Biomimetic biphasic scaffolds for osteochondral defect repair

    PubMed Central

    Li, Xuezhou; Ding, Jianxun; Wang, Jincheng; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed. Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues. For osteochondral reconstruction, one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone. Therefore, the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm. A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers, or the ones loading with growth factors, cells, or both of them make great progresses in osteochondral defect repair. In this review, the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed, as well as the prospect is predicted. PMID:26816644

  2. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  3. Optimization of tyrosine-derived polycarbonate terpolymers for bone regeneration scaffolds

    NASA Astrophysics Data System (ADS)

    Resurreccion-Magno, Maria Hanshella C.

    Tyrosine-derived polycarbonates (TyrPC) are a versatile class of polymers highly suitable for bone tissue engineering. Among the tyrosine-derived polycarbonates, poly(DTE carbonate) has an FDA masterfile that documents its biocompatibility and non-toxicity and has shown potential utility in orthopedics due to its osteoconductive properties and strength. DTE stands for desaminotyrosyl-tyrosine ethyl ester and is the most commonly used tyrosine-derived monomer. However, in vitro degradation studies showed that poly(DTE carbonate) did not completely resorb even after four years of incubation in phosphate buffered saline. Thus for bone regeneration, which only requires a temporary implant until the bone heals, poly(DTE carbonate) would not be the best choice. The goal of the present research was to optimize a scaffold composition for bone regeneration that is based on desaminotyrosyl-tyrosine alkyl ester (DTR), desaminotyrosyl-tyrosine (DT) and poly(ethylene glycol) (PEG). Five areas of research were presented: (1) synthesis and characterization of a focused library of TyrPC terpolymers; (2) evaluation of the effects of how small changes on the composition affected the mechanism and kinetics of polymer degradation and erosion; (3) fabrication of bioactive three-dimensional porous scaffold constructs for bone regeneration; (4) assessment of osteogenic properties in vitro using pre-osteoblasts; and (5) evaluation of bone regeneration potential, with or without recombinant human bone morphogenetic protein-2 (rhBMP-2), in vivo using a critical sized defect (CSD) rabbit calvaria (cranium) model. Small changes in the composition, such as changing the R group of DTR from ethyl to methyl, varying the mole percentages of DT and PEG, and using a different PEG block length, affected the overall properties of these polymers. Porous scaffolds were prepared by a combination of solvent casting, porogen leaching and phase separation techniques. Calcium phosphate was coated on the

  4. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. PMID:27524049

  5. Strategies for osteochondral repair: Focus on scaffolds

    PubMed Central

    Seo, Seog-Jin; Mahapatra, Chinmaya; Singh, Rajendra K; Knowles, Jonathan C

    2014-01-01

    Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering. PMID:25343021

  6. Bioinspired Strong and Highly Porous Glass Scaffolds

    PubMed Central

    Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature’s design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support. PMID:21544222

  7. Premixed macroporous calcium phosphate cement scaffold

    PubMed Central

    Carey, Lisa E.; Simon, Carl G.

    2009-01-01

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite and is promising for orthopaedic applications. However, it requires on-site powder-liquid mixing during surgery, which prolongs surgical time and raises concerns of inhomogeneous mixing. The objective of this study was to develop a premixed CPC scaffold with macropores suitable for tissue ingrowth. To avoid the on-site powder-liquid mixing, the CPC paste was mixed in advance and did not set in storage; it set only after placement in a physiological solution. Using 30% and 40% mass fractions of mannitol porogen, the premixed CPC scaffold with fibers had flexural strength (mean ± sd; n = 5) of (3.9 ± 1.4) MPa and (1.8 ± 0.8) MPa, respectively. The scaffold porosity reached (68.6 ± 0.7)% and (74.7 ± 1.2)%, respectively. Osteoblast cells colonized in the surface macropores of the scaffold and attached to the hydroxyapatite crystals. Cell viability values for the premixed CPC scaffold was not significantly different from that of a conventional non-premixed CPC known to be biocompatible (P > 0.1). In conclusion, using fast-dissolving porogen and slow-dissolving fibers, a premixed macroporous CPC scaffold was developed with strength approaching the reported strengths of sintered porous hydroxyapatite implants and cancellous bone, and non-cytotoxicity similar to a biocompatible non-premixed CPC. PMID:17277972

  8. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  9. Versatility of the Curcumin Scaffold: Discovery of Potent and Balanced Dual BACE-1 and GSK-3β Inhibitors.

    PubMed

    Di Martino, Rita Maria Concetta; De Simone, Angela; Andrisano, Vincenza; Bisignano, Paola; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Fato, Romana; Bergamini, Christian; Perez, Daniel I; Martinez, Ana; Bottegoni, Giovanni; Cavalli, Andrea; Belluti, Federica

    2016-01-28

    The multitarget approach has gained increasing acceptance as a useful tool to address complex and multifactorial maladies such as Alzheimer's disease (AD). The concurrent inhibition of the validated AD targets β-secretase (BACE-1) and glycogen synthase kinase-3β (GSK-3β) by attacking both β-amyloid and tau protein cascades has been identified as a promising AD therapeutic strategy. In our study, curcumin was identified as a lead compound for the simultaneous inhibition of both targets; therefore, synthetic efforts were dedicated to obtaining a small library of novel curcumin-based analogues, and a number of potent and balanced dual-target inhibitors were obtained. In particular, 2, 6, and 7 emerged as promising drug candidates endowed with neuroprotective potential and brain permeability. Notably, for some new compounds the symmetrical diketo and the β-keto-enol tautomeric forms were purposely isolated and tested in vitro, allowing us to gain insight into the key requirements for BACE-1 and GSK-3β inhibition. PMID:26696252

  10. Sbi00515, a Protein of Unknown Function from Streptomyces bingchenggensis, Highlights the Functional Versatility of the Acetoacetate Decarboxylase Scaffold.

    PubMed

    Mueller, Lisa S; Hoppe, Robert W; Ochsenwald, Jenna M; Berndt, Robert T; Severin, Geoffrey B; Schwabacher, Alan W; Silvaggi, Nicholas R

    2015-06-30

    The acetoacetate decarboxylase-like superfamily (ADCSF) is a group of ~4000 enzymes that, until recently, was thought to be homogeneous in terms of the reaction catalyzed. Bioinformatic analysis shows that the ADCSF consists of up to seven families that differ primarily in their active site architectures. The soil-dwelling bacterium Streptomyces bingchenggensis BCW-1 produces an ADCSF enzyme of unknown function that shares a low level of sequence identity (~20%) with known acetoacetate decarboxylases (ADCs). This enzyme, Sbi00515, belongs to the MppR-like family of the ADCSF because of its similarity to the mannopeptimycin biosynthetic protein MppR from Streptomyces hygroscopicus. Herein, we present steady state kinetic data that show Sbi00515 does not catalyze the decarboxylation of any α- or β-keto acid tested. Rather, we show that Sbi00515 catalyzes the condensation of pyruvate with a number of aldehydes, followed by dehydration of the presumed aldol intermediate. Thus, Sbi00515 is a pyruvate aldolase-dehydratase and not an acetoacetate decarboxylase. We have also determined the X-ray crystal structures of Sbi00515 in complexes with formate and pyruvate. The structures show that the overall fold of Sbi00515 is nearly identical to those of both ADC and MppR. The pyruvate complex is trapped as the Schiff base, providing evidence that the Schiff base chemistry that drives the acetoacetate decarboxylases has been co-opted to perform a new function, and that this core chemistry may be conserved across the superfamily. The structures also suggest possible catalytic roles for several active site residues. PMID:26039798

  11. Records of solar eclipse observations in ancient China

    NASA Astrophysics Data System (ADS)

    Han, Yanben; Qiao, Qiyuan

    2009-11-01

    Like ancient people at other places of the world, the ancient Chinese lived in awe of the Sun. As they felt solar eclipses extremely significant events, they closely observed the occurrence of solar eclipse. Ancient astronomers further realized very early that solar eclipses were one of the important astronomical phenomena to revise and improve the ancient calendar. Interestingly, ancient emperors regarded solar eclipses as warnings from heaven that might affect the stability of their throne. Consequently, observing and recording solar eclipses became official, which dated far back to ancient China when numerous relevant descriptions were recorded in historical books. These records contribute substantially to China as an ancient civilization, as well as to the research of the long-term variation of the rotation rate of the Earth during >2000 years before the 17th century. This paper briefly reviews the perception, observations and recording of solar eclipses by ancient Chinese astronomers.

  12. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  13. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment.

    PubMed

    Holmes, Christina; Daoud, Jamal; Bagnaninchi, Pierre O; Tabrizian, Maryam

    2014-04-01

    Layer-by-layer (LbL) deposition is a versatile technique which is beginning to be be explored for inductive tissue engineering applications. Here, it is demonstrated that a polyelectrolyte multilayer film system composed of glycol-chitosan (Glyc-CHI) and hyaluronic acid (HA) can be used to coat 3D micro-fabricated polymeric tissue engineering scaffolds. In order to overcome many of the limitations associated with conventional techniques for assessing cell growth and viability within 3D scaffolds, two novel, real-time, label-free techniques are introduced: impedance monitoring and optical coherence phase microscopy. Using these methods, it is shown that LbL-coated scaffolds support in vitro cell growth and viability for a period of at least two weeks at levels higher than uncoated controls. These polyelectrolyte multilayer coatings are then further adapted for non-viral gene delivery applications via incorporation of DNA carrier lipoplexes. Scaffold-based delivery of the enhanced green fluorescent protein (EGFP) marker gene from these coatings is successfully demonstrated in vitro, achieving a two-fold increase in transfection efficiency compared with control scaffolds. These results show the great potential of Glyc-CHI/HA polyelectrolyte multilayer films for a variety of gene delivery and inductive tissue engineering applications. PMID:24030932

  14. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    PubMed Central

    Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi

    2015-01-01

    Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600

  15. Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Kelley, David H.; Milone, Eugene F.

    Exploring Ancient Skies uses modern science to examine ancient astronomy throughout the World, that is, to use the methods of archaeology and insights of modern astronomy explore how astronomy was practiced before the invention of the telescope. It thus reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World, particularly Mesoamerica, putting the ancient astronomical materials into their archaeological and cultural contexts.

  16. Signs, dispositions, and semiotic scaffolding.

    PubMed

    Fernández, Eliseo

    2015-12-01

    scaffolding. These interactions transpire between energetic causal chains and a wide range of converging semiotic transactions unfolding within each individual organism and between organisms and their environment. The perspective advanced here helps elucidate the manner in which physical and semiotic causation cooperate in an orchestrated fashion, giving rise to an ever-expanding profusion of scaffolding structures and processes. Using simple examples I outline some mechanisms that bring about this orchestration as well as the resultant channeling activities that eventually merge and find their culmination in the enactment of goal-oriented behavior. PMID:26276462

  17. Myths and Gods of Ancient Mexico.

    ERIC Educational Resources Information Center

    Rascon, Vincent P.

    Intended to help Americans of Mexican descent understand their rich cultural heritage, this portfolio contains 12 full-color drawings of the myths and gods of the Olmecs and Toltecs of Ancient Mexico. These original drawings are by Vincent P. Rascon. Information captions in English and Spanish are given for each drawing which is printed on heavy…

  18. Planetary science: Traces of ancient lunar water

    NASA Astrophysics Data System (ADS)

    Hauri, Erik H.

    2013-03-01

    The presence of water in lunar volcanic rocks has been attributed to delivery after the Moon formed. Water detected in rocks from the ancient lunar highlands suggests that the Moon already contained water early in its history, and poses more challenges for the giant impact theory of Moon formation.

  19. Microscopical Examination of Ancient Silver Coins

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Pavlidou, El.; Stergioudis, G.; Polychroniadis, E. K.; Dilo, T.; Prifti, I.; Bilani, O.; Civici, N.; Stamati, F.; Gjongecaj, Sh.

    2007-04-23

    The microstructure of three silver coins of the IIId century B.C. from the Illyrian king Monounios, the ancient Greek city of Dyrrachion and of Korkyra was studied with XRF and microscopy. From this investigation it turned out that these coins have different chemical composition and microstructure that imply different minting method.

  20. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  1. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  2. Defining Astrology in Ancient and Classical History

    NASA Astrophysics Data System (ADS)

    Campion, Nicholas

    2015-05-01

    Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.

  3. Technologies Old and New: Teaching Ancient Navigation.

    ERIC Educational Resources Information Center

    Spalding, Simon

    1995-01-01

    One educator presents maritime history to students using technologies available to ancient seafarers. Techniques include dead reckoning, the sandglass, the magnetic compass, celestial navigation, and various navigation techniques of precontact Polynesia that depended upon oral transmission of knowledge. The paper notes differences between…

  4. Ancient DNA analysis of dental calculus.

    PubMed

    Weyrich, Laura S; Dobney, Keith; Cooper, Alan

    2015-02-01

    Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine. PMID:25476244

  5. Modern Views of Ancient Solar Observatories

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Cornucopia, G. B.

    2004-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. The event emphasizes the study of the Sun and its effects on the Earth and the rest of the Solar System. Sun-Earth Day 2004 will emphasize the June 8th Transit of Venus as a theme. For 2005 the highlight will be the study of the Sun by ancient cultures and how that relates to contemporary solar knowledge. There are many examples of ancient solar observatories around the world, but some of the best are found in National Parks. SECEF has been working with Chaco Culture National Historical Park in New Mexico to do a webcast showing knowledge about the Sun by the Chacoan people that is evident in the park. The Sun Dagger and other pictographs as well as Chaco building alignments indicate the influence of the Sun in the lives of this people. The cooperative planning for this event by NASA and the National Park Service (NPS) will be discussed. Other events emphasizing ancient observatories in other locations are also planned for the future. The partnership between SECEF and NPS is not limited to ancient observatories, however. The influence of the Sun on our daily lives is an appropriate topic for many parks and the possibilities for solar exhibits, daytime astronomy sessions, scientist lectures, etc. will be discussed as well.

  6. Ancient Pyramids Help Students Learn Math Concepts

    ERIC Educational Resources Information Center

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  7. Isolation of gelatin from ancient bones.

    PubMed

    SINEX, F M; FARIS, B

    1959-04-10

    The isolation and characterization of gelatin from 12,000-year-old deer antlers is described. Use of gelatin from ancient bones for carbon-14 dating may improve the accuracy of the dating procedure because gelatin is not likely to be contaminated by extraneous carbon. PMID:13646631

  8. LD Students and the Ancient Mariner.

    ERIC Educational Resources Information Center

    Cohen, Barbara L.

    1988-01-01

    Synectics, the making of analogies, was used with learning disabled high school seniors to provide them with a creative process that aids in developing a deeper understanding of literature. After studying Coleridge's "Rime of the Ancient Mariner," the students completed a six-step process and produced a short writing assignment. (VW)

  9. Unlocking the Mysteries of Ancient Egypt.

    ERIC Educational Resources Information Center

    Riechers, Maggie

    1995-01-01

    Describes the work of Egyptologist William Murnane who is recording the ritual scenes and inscriptions of a great columned hall from the days of the pharaohs. The 134 columns, covered with divine imagery and hieroglyphic inscriptions represent an unpublished religious text. Briefly discusses ancient Egyptian culture. Includes several photographs…

  10. Communication Arts in the Ancient World.

    ERIC Educational Resources Information Center

    Havelock, Eric A., Ed.; Hershbell, Jackson P., Ed.

    Intended for both classicists and nonclassicists, this volume explores the beginnings of literacy in ancient Greece and Rome and examines the effects of written communication on these cultures. The nine articles, written by classical scholars and educators in the field of communication, discuss the following: the superiority of the alphabet over…

  11. Women of Ancient Greece: Participating in Sport?

    ERIC Educational Resources Information Center

    Mills, Brett D.

    Based on evidence obtained from Greek literature and artifacts, this paper examines the extent to which women in ancient Greece participated in physical activity, sports, and games. Homer's "Odyssey" describes women playing ball and driving chariots; vases dating back to 700-675 B.C. portray women driving light chariots in a procession; a girl…

  12. The Study of Women in Ancient Society.

    ERIC Educational Resources Information Center

    Moscovich, M. James

    1982-01-01

    Presents ideas for teaching about the roles of women in ancient Greek and Roman societies for undergraduate history and sociology classes. The discussion covers the roots of misogyny in Western culture, parallels between mythologies and sociocultural patterns, and the legal status of women in antiquity. (AM)

  13. The Challenges of Qualitatively Coding Ancient Texts

    ERIC Educational Resources Information Center

    Slingerland, Edward; Chudek, Maciej

    2012-01-01

    We respond to several important and valid concerns about our study ("The Prevalence of Folk Dualism in Early China," "Cognitive Science" 35: 997-1007) by Klein and Klein, defending our interpretation of our data. We also argue that, despite the undeniable challenges involved in qualitatively coding texts from ancient cultures, the standard tools…

  14. Dental health and disease in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-04-25

    In ancient Egypt the exceptionally dry climate together with the unique burial customs has resulted in the survival of large numbers of well-preserved skeletal and mummified remains. Examinations of these remains together with an analysis of the surviving documentary, archaeological and ethnographic evidence has enabled a detailed picture of the dental health of these ancient people to be revealed, perhaps more so than for any other civilisation in antiquity. In this, the first of two articles, the dental pathological conditions that afflicted the ancient Egyptians is considered. The commonest finding is that of tooth wear, which was often so excessive that it resulted in pulpal exposure. Multiple abscesses were frequently seen, but caries was not a significant problem. Overall the findings indicate that the various pathological conditions and non-pathological abnormalities of teeth evident in dentitions in the twenty-first century were also manifest in ancient Egypt, although the incidences of these conditions varies considerably between the civilisations. PMID:19396207

  15. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world. PMID:25667090

  16. Ancient whole grain gluten-free flatbreads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  17. The Roots of Science in Ancient China.

    ERIC Educational Resources Information Center

    Fisher, Arthur

    1982-01-01

    A 45-year-old research project (culminating in the multivolume "Science and Civilization in China") is examining major scientific innovations in ancient China and attempting to explain why, although the Chinese gained a technological edge in the past, they did not make the forward leap into modern science. (JN)

  18. Watermarking ancient documents based on wavelet packets

    NASA Astrophysics Data System (ADS)

    Maatouk, Med Neji; Jedidi, Ola; Essoukri Ben Amara, Najoua

    2009-01-01

    The ancient documents present an important part of our individual and collective memory. In addition to their preservation, the digitization of these documents may offer users a great number of services like remote look-up and browsing rare documents. However, the documents, digitally formed, are likely to be modified or pirated. Therefore, we need to develop techniques of protecting images stemming from ancient documents. Watermarking figures to be one of the promising solutions. Nevertheless, the performance of watermarking procedure depends on being neither too robust nor too invisible. Thus, choosing the insertion field or mode as well as the carrier points of the signature is decisive. We propose in this work a method of watermarking images stemming from ancient documents based on wavelet packet decomposition. The insertion is carried out into the maximum amplitude ratio being in the best base of decomposition, which is determined beforehand according to a criterion on entropy. This work is part of a project of digitizing ancient documents in cooperation with the National Library of Tunis (BNT).

  19. Tapping Ancient Roots: Plaited Paper Baskets

    ERIC Educational Resources Information Center

    Patrick, Jane

    2011-01-01

    With ancient roots, basket making has been practiced since the earliest civilizations, and according to textile experts, probably pre-dates pottery. This is partly conjecture since few baskets remain. It is through evidence found in clay impressions that the earliest baskets reveal themselves. Basically, basketry construction is like flat weaving.…

  20. Precursors of Vocational Psychology in Ancient Civilizations.

    ERIC Educational Resources Information Center

    Dumont, Frank; Carson, Andrew D.

    1995-01-01

    Examines philosophical theories produced by two ancient civilizations (Eastern Mediterranean and Chinese) for applications to an applied psychology of work. Includes analysis of Egyptians, Semites, and Greeks, with a special emphasis on Plato. Suggests that many basic elements of vocational psychology were present during the first millennium B.C.…

  1. Archaeology Informs Our Understanding of Ancient Texts.

    ERIC Educational Resources Information Center

    Mull, Kenneth V.

    1990-01-01

    Recognizes the importance and utility of archaeology for understanding ancient texts and revealing how they illuminate biblical meaning and history. Presents guidelines showing classroom teachers how to incorporate archaeological knowledge into their lessons. Describes current Middle Eastern excavation sites, using Jerusalem as a case study.…

  2. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited

  3. Outreach Testing of Ancient Astronomy

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    fundamental quantity being given by half the difference between solar distances to vertical at winter and summer solstices, with value about 23.5°. Day and year periods greatly differing by about 2 ½ orders of magnitude, 1 day against 365 days, helps students to correctly visualize and interpret the experimental measurements. Since the gnomon serves to observe at night the moon shadow too, students can also determine the inclination of the lunar orbital plane, as about 5 degrees away from the ecliptic, thus explaining why eclipses are infrequent. Independently, earth taking longer between spring and fall equinoxes than from fall to spring (the solar anomaly), as again verified by the students, was explained in ancient Greek science, which posited orbits universally as circles or their combination, by introducing the eccentric circle, with earth placed some distance away from the orbital centre when considering the relative motion of the sun, which would be closer to the earth in winter. In a sense, this can be seen as hint and approximation of the elliptic orbit proposed by Kepler many centuries later. EPSC Abstracts Vol. 10, EPSC2015-40, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress Secondly, by observing lunar phases and eclipses from the ground, students could also determine, following Aristarchus of Samos in the 3rd century BC, 4 length ratios involving moon and sun distances to earth, and radii of all three, moon, sun, and earth. The angular width of the moon could be first determined with simplest optical devices as about half a degree; this yields the ratio between moon diameter 2RM and distance DM to earth. Next, eclipses of sun prove its angular width, and thus ratio 2RS/DS, similar to the lunar one, though the relatively high lunar orbital eccentricity, 0.055, does result in not quite a full eclipse if at lunar apogee. Further, at a half-moon phase, when the angle sun-moon-earth is a right one, the angle

  4. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited

  5. Outreach Testing of Ancient Astronomy

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    fundamental quantity being given by half the difference between solar distances to vertical at winter and summer solstices, with value about 23.5°. Day and year periods greatly differing by about 2 ½ orders of magnitude, 1 day against 365 days, helps students to correctly visualize and interpret the experimental measurements. Since the gnomon serves to observe at night the moon shadow too, students can also determine the inclination of the lunar orbital plane, as about 5 degrees away from the ecliptic, thus explaining why eclipses are infrequent. Independently, earth taking longer between spring and fall equinoxes than from fall to spring (the solar anomaly), as again verified by the students, was explained in ancient Greek science, which posited orbits universally as circles or their combination, by introducing the eccentric circle, with earth placed some distance away from the orbital centre when considering the relative motion of the sun, which would be closer to the earth in winter. In a sense, this can be seen as hint and approximation of the elliptic orbit proposed by Kepler many centuries later. EPSC Abstracts Vol. 10, EPSC2015-40, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress Secondly, by observing lunar phases and eclipses from the ground, students could also determine, following Aristarchus of Samos in the 3rd century BC, 4 length ratios involving moon and sun distances to earth, and radii of all three, moon, sun, and earth. The angular width of the moon could be first determined with simplest optical devices as about half a degree; this yields the ratio between moon diameter 2RM and distance DM to earth. Next, eclipses of sun prove its angular width, and thus ratio 2RS/DS, similar to the lunar one, though the relatively high lunar orbital eccentricity, 0.055, does result in not quite a full eclipse if at lunar apogee. Further, at a half-moon phase, when the angle sun-moon-earth is a right one, the angle

  6. The Ancient Kemetic Roots of Library and Information Science.

    ERIC Educational Resources Information Center

    Zulu, Itibari M.

    This paper argues that the ancient people of Kemet (Egypt), "the black land," built and operated the first major libraries and institutions of higher education in the world. Topics of discussion include the Ancient Egyptians as an African people; a chronology of Ancient Kemet; literature in Kemet; a history of Egyptian Librarianship; the…

  7. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  8. Ranking in interconnected multilayer networks reveals versatile nodes

    NASA Astrophysics Data System (ADS)

    de Domenico, Manlio; Solé-Ribalta, Albert; Omodei, Elisa; Gómez, Sergio; Arenas, Alex

    2015-04-01

    The determination of the most central agents in complex networks is important because they are responsible for a faster propagation of information, epidemics, failures and congestion, among others. A challenging problem is to identify them in networked systems characterized by different types of interactions, forming interconnected multilayer networks. Here we describe a mathematical framework that allows us to calculate centrality in such networks and rank nodes accordingly, finding the ones that play the most central roles in the cohesion of the whole structure, bridging together different types of relations. These nodes are the most versatile in the multilayer network. We investigate empirical interconnected multilayer networks and show that the approaches based on aggregating--or neglecting--the multilayer structure lead to a wrong identification of the most versatile nodes, overestimating the importance of more marginal agents and demonstrating the power of versatility in predicting their role in diffusive and congestion processes.

  9. Combining Scaffolding for Content and Scaffolding for Dialogue to Support Conceptual Breakthroughs in Understanding Probability

    ERIC Educational Resources Information Center

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    In this paper, we explore the relationship between scaffolding, dialogue, and conceptual breakthroughs, using data from a design-based research study that focuses on the development of understanding of probability in 10-12 year old students. The aim of the study is to gain insight into how the combination of scaffolding for content using…

  10. Scaffold Seeking: A Reverse Design of Scaffolding in Computer-Supported Word Problem Solving

    ERIC Educational Resources Information Center

    Cheng, Hercy N. H.; Yang, Euphony F. Y.; Liao, Calvin C. Y.; Chang, Ben; Huang, Yana C. Y.; Chan, Tak-Wai

    2015-01-01

    Although well-designed scaffolding may assist students to accomplish learning tasks, its insufficient capability to dynamically assess students' abilities and to adaptively support them may result in the problem of overscaffolding. Our previous project has also shown that students using scaffolds to solve mathematical word problems for a long time…

  11. Scaffolding the "Scaffolding" Metaphor: From Inspiration to a Practical Tool for Kindergarten Teachers

    ERIC Educational Resources Information Center

    Eshach, Haim; Dor-Ziderman, Yair; Arbel, Yael

    2011-01-01

    The present research aims shifting "scaffolding" from an inspiring metaphor to a practical tool to be used by kindergarten teachers when conducting scientific activities. It identifies scaffolding strategies that three experienced kindergarten teachers, ones acknowledged as excelling in science teaching, implicitly used when conducting science…

  12. Genetic Diversity among Ancient Nordic Populations

    PubMed Central

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597

  13. Clawing through Evolution: Toxin Diversification and Convergence in the Ancient Lineage Chilopoda (Centipedes)

    PubMed Central

    Undheim, Eivind A.B.; Jones, Alun; Clauser, Karl R.; Holland, John W.; Pineda, Sandy S.; King, Glenn F.; Fry, Bryan G.

    2014-01-01

    Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod “venome” and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts. PMID:24847043

  14. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169

  15. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes).

    PubMed

    Undheim, Eivind A B; Jones, Alun; Clauser, Karl R; Holland, John W; Pineda, Sandy S; King, Glenn F; Fry, Bryan G

    2014-08-01

    Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts. PMID:24847043

  16. Stratified scaffold design for engineering composite tissues.

    PubMed

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers. PMID:25846397

  17. Elastomeric PGS scaffolds in arterial tissue engineering.

    PubMed

    Lee, Kee-Won; Wang, Yadong

    2011-01-01

    Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS) for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro

  18. Scaffold topologies. 2. Analysis of chemical databases.

    PubMed

    Wester, Michael J; Pollock, Sara N; Coutsias, Evangelos A; Allu, Tharun Kumar; Muresan, Sorel; Oprea, Tudor I

    2008-07-01

    We have systematically enumerated graph representations of scaffold topologies for up to eight-ring molecules and four-valence atoms, thus providing coverage of the lower portion of the chemical space of small molecules (Pollock et al. J. Chem. Inf. Model., this issue). Here, we examine scaffold topology distributions for several databases: ChemNavigator and PubChem for commercially available chemicals, the Dictionary of Natural Products, a set of 2742 launched drugs, WOMBAT, a database of medicinal chemistry compounds, and two subsets of PubChem, "actives" and DSSTox comprising toxic substances. We also examined a virtual database of exhaustively enumerated small organic molecules, GDB (Fink et al. Angew. Chem., Int. Ed. 2005, 44, 1504-1508), and we contrast the scaffold topology distribution from these collections to the complete coverage of up to eight-ring molecules. For reasons related, perhaps, to synthetic accessibility and complexity, scaffolds exhibiting six rings or more are poorly represented. Among all collections examined, PubChem has the greatest scaffold topological diversity, whereas GDB is the most limited. More than 50% of all entries (13 000 000+ actual and 13 000 000+ virtual compounds) exhibit only eight distinct topologies, one of which is the nonscaffold topology that represents all treelike structures. However, most of the topologies are represented by a single or very small number of examples. Within topologies, we found that three-way scaffold connections (3-nodes) are much more frequent compared to four-way (4-node) connections. Fused rings have a slightly higher frequency in biologically oriented databases. Scaffold topologies can be the first step toward an efficient coarse-grained classification scheme of the molecules found in chemical databases. PMID:18605681

  19. Flexibility of C3h -Symmetrical Linkers in Tris-oligonucleotide-Based Tetrahedral Scaffolds.

    PubMed

    Panagiotidis, Christos; Kath-Schorr, Stephanie; von Kiedrowski, Günter

    2016-02-01

    Flexibility of tris-oligonucleotides is determined by the length of their connecting hydrocarbon chains. Tris-oligonucleotides are branched DNA building blocks with three oligonucleotide arms attached to a C3h -symmetrical linker core at these chains. Four tris-oligonucleotides hybridise into a tetrahedral nanocage by sequence-determined self-assembly. The influence of methylene, ethylene and propylene chains was studied by synthesising sets of tris-oligonucleotides and analysing the relative stability of the hybridisation products against digestion by mung bean nuclease by using gel electrophoresis. Linkers with ethylene chains showed sufficient flexibility, whereas methylene-chain linkers were too rigid. Tris-oligonucleotides based on the latter still formed tetrahedral scaffolds in intermixing experiments with linkers of higher flexibility. Thus, a new generation of versatile isocyanurate-based linkers was established. PMID:26593127

  20. What can ancient mummies teach us about atherosclerosis?

    PubMed

    Wann, Samuel; Thomas, Gregory S

    2014-10-01

    Ancient mummies have captivated a wide variety of audiences for centuries. In order to better understand the evolution and causative features of atherosclerosis, the Horus group is applying modern scientific methods to study ancient mummies. We have used CT scanning to detect calcification in arteries as an indication of the presence of atherosclerosis, and are correlating these results with cultural and lifestyle features of various populations of ancient people as represented by their ancient mummified remains. We are also pursuing related studies of ancient DNA to define genotypes associated with atherosclerotic phenotypes. PMID:25106086

  1. Electrospun Fibrous Scaffolds of Poly(glycerol-dodecanedioate) for Engineering Neural Tissues From Mouse Embryonic Stem Cells

    PubMed Central

    Dai, Xizi; Huang, Yen-Chih

    2014-01-01

    For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task.  Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)1 by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells. PMID:24961272

  2. Constructive tissue remodeling of biologic scaffolds: A phenomenon associated with scaffold characteristics and distinctive macrophage phenotypes

    NASA Astrophysics Data System (ADS)

    Brown, Bryan Nicklaus

    Scaffolds composed of extracellular matrix (ECM) have been shown to promote formation of site-specific, functional host tissue following implantation in a number of preclinical and clinical settings. However, the exact mechanisms by which ECM scaffolds are able to promote this type of "constructive tissue remodeling" are unknown. Further, the ability of ECM scaffolds to promote constructive tissue remodeling appears to be dependent on the methods used in their production and the applications in which they are utilized. Therefore, a comprehensive understanding of ECM scaffold characteristics and their effects upon the host response and subsequent tissue remodeling outcome is essential to the design of intelligent scaffolds for specific clinical applications. The present work investigated the effects of tissue source and chemical cross-linking upon the resulting ECM scaffolds, showing that ECM scaffold materials have distinct ultrastructural and compositional characteristics which are dependant on the anatomic location from which the scaffolds are derived and the methods used in their production. These characteristics were associated with distinct patterns of cell behavior in vitro. Distinct tissue remodeling outcomes were observed following implantation of a subset of these scaffold materials in a rat abdominal wall musculature reconstruction model. Acellular, non-cross-linked ECM was associated with constructive tissue remodeling while scaffolds that contained cellular components or were chemically cross-linked resulted in dense connective tissue deposition or encapsulation, respectively. Despite differences in the tissue remodeling outcome, a histologically similar population of macrophages was observed following implantation in each of these cases. Therefore, the phenotype of the macrophage population participating in the host response was investigated. It was shown that scaffolds which resulted in constructive tissue remodeling were associated with an increase

  3. Tubular inverse opal scaffolds for biomimetic vessels.

    PubMed

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-14

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels. PMID:27241065

  4. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S.; Lieber, Charles M.

    2012-11-01

    The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.

  5. Dynamic Reciprocity in Cell-Scaffold Interactions

    PubMed Central

    Mauney, Joshua R.; Adam, Rosalyn M.

    2014-01-01

    Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies. PMID:25453262

  6. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    PubMed Central

    Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S.; Lieber, Charles M.

    2013-01-01

    The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological micro-environments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Additionally, we show the integrated sensory capability of the nanoES by real-time monitoring of (i) the local electrical activity within 3D nanoES/cardiomyocyte constructs, (ii) the response of 3D nanoES based neural and cardiac tissue models to drugs, and (iii) distinct pH changes inside and outside tubular vascular smooth muscle constructs. PMID:22922448

  7. Biomimetic collagen scaffolds with anisotropic pore architecture.

    PubMed

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment. PMID:22005330

  8. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  9. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Recha-Sancho, Lourdes; Semino, Carlos E.

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  10. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Recha-Sancho, Lourdes; Semino, Carlos E

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  11. Scaffolding in tissue engineering: general approaches and tissue-specific considerations

    PubMed Central

    Leong, K. W.

    2008-01-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example. PMID:19005702

  12. Flexible macrocycles as versatile supports for catalytically active metal clusters.

    PubMed

    Ryan, Jason D; Gagnon, Kevin J; Teat, Simon J; McIntosh, Ruaraidh D

    2016-07-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide. PMID:26892948

  13. Room-temperature ionic liquids: a novel versatile lubricant.

    PubMed

    Ye, C; Liu, W; Chen, Y; Yu, L

    2001-11-01

    Alkylimidazolium tetrafluoroborates are promising versatile lubricants for the contact of steel/steel, steel/aluminium, steel/copper, steel/SiO2, Si3N4/SiO2, steel/Si(100), steel/sialon ceramics and Si3N4/sialon ceramics; they show excellent friction reduction, antiwear performance and high load-carrying capacity. PMID:12240132

  14. Criminal Careers and Cognitive Scripts: An Investigation into Criminal Versatility

    ERIC Educational Resources Information Center

    Gavin, Helen; Hockey, David

    2010-01-01

    "Criminal careers" denotes ways in which offenders develop specialisms and versatility, but studies linking delinquency to social skills deficits have not attempted to explore cognitive, internalised processes by which such "careers" might be chosen. This study investigated criminal minds via script theory: "internal" scripts are used to guide…

  15. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  16. [Preparation of porous ceramic macro-tubes scaffold].

    PubMed

    Zheng, Wei

    2011-05-01

    In this study, a porous hydroxyapatite/tricalcium phosphate (HA/TCP) macro-tubes scaffold was fabricated, so that the PU (Polyurethane) can be coated onto the scaffold in order to increase the compressive strength. PMID:21954576

  17. Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds.

    PubMed

    Mkhabela, Vuyiswa; Ray, Suprakas Sinha

    2015-08-01

    A new type of hybrid three-dimensional scaffolds was prepared using poly(ɛ-caprolactone) (PCL) and chitosan-modified montmorillonite by solvent casting and particulate leaching method. The scaffolds were characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic mechanical analysis to study the structural and mechanical properties. The resulting scaffolds displayed high porosity with highly interconnected pores. EDS analysis confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated physiological conditions over a period of four weeks revealed that the PCL-based scaffolds degraded by hydrolysis at a slow rate. The overall bioresorbability was also slow, with the composite-based scaffolds recording a faster rate than the neat polymer-based scaffold. PMID:25952165

  18. Effects of scaffold architecture on cranial bone healing.

    PubMed

    Berner, A; Woodruff, M A; Lam, C X F; Arafat, M T; Saifzadeh, S; Steck, R; Ren, J; Nerlich, M; Ekaputra, A K; Gibson, I; Hutmacher, D W

    2014-04-01

    In the present study, polycaprolactone-tricalcium phosphate (PCL/TCP) scaffolds with two different fibre laydown patterns, which were coated with hydroxyapatite and gelatine, were used as an approach for optimizing bone regeneration in a critical-sized calvarial defect. After 12 weeks, bone regeneration was quantified using microcomputed tomography (micro-CT) analysis, biomechanical testing, and histological evaluation. Notably, the experimental groups with coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different laydown pattern of the fibres resulted in different bone formation and biomechanical properties: the 0°/60°/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0°/90° scaffolds in all the experimental groups. Therefore, future bone regeneration strategies utilizing scaffolds should consider scaffold architecture as an important factor during the scaffold optimization stages in order to move closer to a clinical application. PMID:24183512

  19. [Concepts of the heart in Ancient Egypt].

    PubMed

    Ziskind, Bernard; Halioua, Bruno

    2004-03-01

    The heart was regarded in Ancient Egypt as the organic motor of the body and also the seat of intelligence, an important religious and spiritual symbol. It was considered as one of the eight parts of human body. Counter to other organs it had to be kept carefully intact in the mummy to ensure its eternal life. In Ancient Egypt, the concept of heart included three constituents: heart-haty, heart-ib, and the spiritual seat of intelligence, emotion and memory. The hieroglyphs representing the heart early in the first dynasty were drawn with eight vessels attached to it. Egyptian doctors have elaborated an original conception of cardiovascular physiology which endured 30 centuries. PMID:15067585

  20. [Multiple births in ancient medical texts].

    PubMed

    Dasen, V

    1998-01-01

    Ancient medical writers and biologists elaborated different theories to explain the phenomenon of multiple births. The earliest extant texts are in the Hippocratic collection and in the physiological treatises of Aristotle. They express opposed ideas: for the Hippocratics multiple births are the result of an ideal conception, for Aristotle they are regarded as anomalies associated with notions of monstrosity and excess. These views shed light on ancient collective imagery. Three themes in particular are found in non-medical literature and iconography: twin birth as a model of ideal fecundity, the ambiguous status of twins of different sexes, and the relation of multiple births to monstrosity and animality, as evidenced by the motif of twins born from one egg. PMID:10024766

  1. Newcomb's Data on Ancient Eclipses Revisited

    NASA Astrophysics Data System (ADS)

    Protitch-Benishek, V.; Protitch, M. B.

    Relying on the Greek text related to Babylonian-Hellenic observations of lunar eclipses in Ptolemy's "Almagest" (Halma M., 1813) and by analysing some Arabian notes about solar and lunar eclipses - for which S.Newcomb found considerable deviations from the adopted theory - a re-analysis of his results and conclusions is herewith undertaken. The results of ancient data revision are based on Newcomb's alternative presumption that these discrepancies are caused by one or more unknown long-term inequalities in the motion of the Moon. A quantitative analysis of ancient eclipse observations unambiguously indicates that they definitely are not to be rejected, provided, of course, that they are interpreted in proper way.

  2. Li, B and N in ancient materials

    NASA Astrophysics Data System (ADS)

    Fink, D.

    1983-12-01

    The content of B and Li is examined in several ancient and, for comparison, in modern objects for techological and household use (glasses, coins, nails, needles, bells, shells, bones, pitch, minerals). For most samples the B content is proportional to the Li content, the proportionality factor ranging from 1 to 6. The data scatteringroups of examined species are given. It is known that the N content of bones decreases with age due to decomposition of organic materials. This is confirmed, and simultaneously an enrichment of B was observed for ancient bones, probably due to salt transport from the surrounding soil into the bones. Coins frequently show a nitrogen enriched layer on their surfaces due to corrosion. B surface contaminations are sometimes observed for glasses and mother-of-pearl.

  3. Lead in ancient Rome's city waters.

    PubMed

    Delile, Hugo; Blichert-Toft, Janne; Goiran, Jean-Philippe; Keay, Simon; Albarède, Francis

    2014-05-01

    It is now universally accepted that utilization of lead for domestic purposes and water distribution presents a major health hazard. The ancient Roman world was unaware of these risks. How far the gigantic network of lead pipes used in ancient Rome compromised public health in the city is unknown. Lead isotopes in sediments from the harbor of Imperial Rome register the presence of a strong anthropogenic component during the beginning of the Common Era and the Early Middle Ages. They demonstrate that the lead pipes of the water distribution system increased Pb contents in drinking water of the capital city by up to two orders of magnitude over the natural background. The Pb isotope record shows that the discontinuities in the pollution of the Tiber by lead are intimately entwined with the major issues affecting Late Antique Rome and its water distribution system. PMID:24753588

  4. Lipids of aquatic sediments, recent and ancient

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Hajibrahim, S. K.; Maxwell, J. R.; Quirke, J. M. E.; Shaw, G. J.; Volkman, J. K.; Wardroper, A. M. K.

    1979-01-01

    Computerized gas chromatography-mass spectrometry (GC-MS) is now an essential tool in the analysis of the complex mixtures of lipids (geolipids) encountered in aquatic sediments, both 'recent' (less than 1 million years old) and ancient. The application of MS, and particularly GC-MS, has been instrumental in the rapid development of organic geochemistry and environmental organic chemistry in recent years. The techniques used have resulted in the identification of numerous compounds of a variety of types in sediments. Most attention has been concentrated on molecules of limited size, mainly below 500 molecular mass, and of limited functionality, for examples, hydrocarbons, fatty acids and alcohols. Examples from recent studies (at Bristol) of contemporary, 'recent' and ancient sediments are presented and discussed.

  5. Ancient metallurgy and nuclear waste containment

    SciTech Connect

    Goodway, M.

    1993-12-31

    Archaeological artifacts of glass, ceramic, and metal provide examples of long term durability and as such have been surveyed by the nuclear agencies of several countries as a possible guide to choices of materials for the containment of nuclear waste. In the case of metals evaluation is difficult because of the loss of many artifacts to recycling and corrosion processes, as well as by uncertainty as to the environmental history under which the remainder survived. More recently the study of ancient metallurgy has expanded to included other materials associated with metals processing. It is suggested that an impermeable ceramic composite used in ancient metals processing installations should be reproduced and tested for its resistance to radiation damage. This material was synthesized more than two millennia ago and has a proven record of durability. These installations have had no maintenance but are intact, some still holding water.

  6. Immune Response to Biologic Scaffold Materials

    PubMed Central

    Badylak, Stephen F.; Gilbert, Thomas W.

    2008-01-01

    Biologic scaffold materials composed of mammalian extracellular matrix are commonly used in regenerative medicine and in surgical procedures for the reconstruction of numerous tissue and organs. These biologic materials are typically allogeneic or xenogeneic in origin and are derived from tissues such as small intestine, urinary bladder, dermis, and pericardium. The innate and acquired host immune response to these biologic materials and the effect of the immune response upon downstream remodeling events has been largely unexplored. Variables that affect the host response include manufacturing processes, the rate of scaffold degradation, and the presence of cross species antigens. This manuscript provides an overview of studies that have evaluated the immune response to biologic scaffold materials and variables that affect this response. PMID:18083531

  7. Advanced Material Strategies for Tissue Engineering Scaffolds

    PubMed Central

    Engelmayr, George C.; Borenstein, Jeffrey T.; Moutos, Franklin T.; Guilak, Farshid

    2010-01-01

    Tissue engineering seeks to restore the function of diseased or damaged tissues through the use of cells and biomaterial scaffolds. It is now apparent that the next generation of functional tissue replacements will require advanced material strategies to achieve many of the important requirements for long-term success. Here we provide representative examples of engineered skeletal and myocardial tissue constructs in which scaffolds were explicitly designed to match native tissue mechanical properties as well as to promote cell alignment. We discuss recent progress in microfluidic devices that can potentially serve as tissue engineering scaffolds, since mass transport via microvascular-like structures will be essential in the development of tissue engineered constructs on the length scale of native tissues. Given the rapid evolution of the field of tissue engineering, it is important to consider the use of advanced materials in light of the emerging role of genetics, growth factors, bioreactors, and other technologies. PMID:20882506

  8. Laminar silk scaffolds for aligned tissue fabrication

    PubMed Central

    Mandal, Biman B.; Gil, Eun Seok; Panilaitis, Bruce; Kaplan, David L.

    2013-01-01

    3D biomaterial scaffolds with aligned architecture are of vital importance in tissue regeneration to mimic native tissue hierarchy and hence function. We demonstrate a generic method to produce aligned biomaterial scaffolds using the physics of directional ice freezing. Homogeneously aligned 3D silk scaffold with high porosity and alignment was demonstrated. The method can be adapted to a wide range of polymers and is devoid of any chemical reactions, thus avoiding potential complications associated with by-products and purification procedures. Subsequently, the 3D aligned system was tested for mechanical properties and cellular responses with chondrocytes and bone marrow derived human mesenchymal stem cells, assessing survival, proliferation and differentiation. In vivo tests suggested biocompatibility of the matrices for future tissue engineering applications, specifically in areas where high cellular alignment is needed. PMID:23161731

  9. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  10. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  11. Scaffolds for central nervous system tissue engineering

    NASA Astrophysics Data System (ADS)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  12. Geomorphic evidence for ancient seas on Mars

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen

    1987-01-01

    Geomorphic evidence is presented for ancient seas on Mars. Several features, similar to terrestrial lacustrine and coastal features, were identified along the northern plains periphery from Viking images. The nature of these features argues for formation in a predominantly liquid, shallow body of standing water. Such a shallow sea would require either relatively rapid development of shoreline morphologies or a warmer than present climate at the time of outflow channel formation.

  13. Computed tomography of ancient Egyptian mummies.

    PubMed

    Harwood-Nash, D C

    1979-12-01

    This first report of the application of computed tomography (CT) to the study of ancient mummies, the desiccated brain of a boy and the body of a young woman within her cartonnage, shows that CT is uniquely suitable for the study of such antiquities, a study that does not necessitate destruction of the mummy or its cartonnage. Exquisite images result that are of great paleoanatomical, paleopathological, and archeological significance. PMID:389964

  14. Ancient Chinese Observations and Modern Cometary Models

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1995-01-01

    Ancient astronomical observations, primarily by Chinese, represent the only data source for discerning the long-term behavior of comets. These sky watchers produced astrological forecasts for their emperors. The comets Halley, Swift-Tuttle, and Tempel-Tuttle have been observed for 2000 years. Records of the Leonid meteor showers, starting from A.D.902, are used to guide predictions for the 1998-1999 reoccurrence.

  15. Application of Wikis with Scaffolding Structure in Laboratory Reporting

    ERIC Educational Resources Information Center

    Ge, Changfeng

    2012-01-01

    This work demonstrates how a Wiki can be mapped into different learning stages during group-based lab reporting via an adequate scaffolding structure. The scaffolding structure of the Wiki-based group report is comprised of six constructs in sequence: Appendix, Methods, Results, Analysis, Introduction and Conclusion. The scaffolding structure was…

  16. Integrating Computer- and Teacher-Based Scaffolds in Science Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Pedersen, Susan

    2011-01-01

    Because scaffolding is a crucial form of support for students engaging in complex learning environments, it is important that researchers determine which of the numerous kinds of scaffolding will allow them to educate students most effectively. The existing literature tends to focus on computer-based scaffolding by itself rather than integrating…

  17. A PLG/HAp composite scaffold for lentivirus delivery

    PubMed Central

    Boehler, RM; Shin, S; Fast, AG; Gower, RM; Shea, LD

    2013-01-01

    Gene delivery from tissue engineering scaffolds provides the opportunity to control the microenvironment by inducing expression of regenerative factors. Hydroxyapatite (HAp) nanoparticles can bind lentivirus, and we investigated the incorporation of HAp into poly(lactide-co-glycolide) (PLG) scaffolds in order to retain lentivirus added to the scaffold. PLG/HAp scaffolds loaded with lentivirus enhanced transgene expression over 10-fold in vitro relative to scaffolds without HAp. Following in vivo implantation, PLG/HAp scaffolds promoted transgene expression for more than 100 days, with the level and duration enhanced relative to control scaffolds with lentivirus/HAp complexes added to PLG scaffolds. The extent of HAp incorporated into the scaffold influenced transgene expression, in part through its impact on porous architecture. Expression in vivo was localized to PLG/HAp scaffolds, with macrophages the primary cell type transduced at day 3, yet transduction of neutrophils and dendritic cells was also observed. At day 21 in PLG/HAp scaffolds, non-immune cells were transduced to a greater extent than immune cells, a trend that was opposite results from PLG scaffolds. Thus, in addition to retaining the virus, PLG/HAp influenced cell infiltration and preferentially transduced non-immune cells. PMID:23602363

  18. Scaffolding as a Tool for Environmental Education in Early Childhood

    ERIC Educational Resources Information Center

    Zurek, Alex; Torquati, Julia; Acar, Ibrahim

    2014-01-01

    This paper describes the process of "scaffolding" as a teaching strategy in early childhood education, and demonstrates how scaffolding can promote children's learning about the natural environment. Examples of scaffolding are provided from seventy-four running record observations made over a two-year period in a nature-based preschool…

  19. Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression

    PubMed Central

    Kim, Kyobum; Yeatts, Andrew; Dean, David

    2010-01-01

    Scaffold design parameters including porosity, pore size, interconnectivity, and mechanical properties have a significant influence on osteogenic signal expression and differentiation. This review evaluates the influence of each of these parameters and then discusses the ability of stereolithography (SLA) to be used to tailor scaffold design to optimize these parameters. Scaffold porosity and pore size affect osteogenic cell signaling and ultimately in vivo bone tissue growth. Alternatively, scaffold interconnectivity has a great influence on in vivo bone growth but little work has been done to determine if interconnectivity causes changes in signaling levels. Osteogenic cell signaling could be also influenced by scaffold mechanical properties such as scaffold rigidity and dynamic relationships between the cells and their extracellular matrix. With knowledge of the effects of these parameters on cellular functions, an optimal tissue engineering scaffold can be designed, but a proper technology must exist to produce this design to specification in a repeatable manner. SLA has been shown to be capable of fabricating scaffolds with controlled architecture and micrometer-level resolution. Surgical implantation of these scaffolds is a promising clinical treatment for successful bone regeneration. By applying knowledge of how scaffold parameters influence osteogenic cell signaling to scaffold manufacturing using SLA, tissue engineers may move closer to creating the optimal tissue engineering scaffold. PMID:20504065

  20. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  1. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering.

    PubMed

    Fuoco, Claudia; Petrilli, Lucia Lisa; Cannata, Stefano; Gargioli, Cesare

    2016-01-01

    Extracellular matrix (ECM) is composed of many types of fibrous structural proteins and glycosaminoglycans. This important cell component not only provides a support for cells but is also actively involved in cell-cell interaction, proliferation, migration, and differentiation, representing, therefore, no longer only a mere static structural scaffold for cells but rather a dynamic and versatile compartment. This aspect leads to the need for investigating new bio-inspired scaffolds or biomaterials, able to mimic ECM in tissue engineering. This new field of research finds particular employment in skeletal muscle tissue regeneration, due to the inability of this complex tissue to recover volumetric muscle loss (VML), after severe injury. Usually, this is the result of traumatic incidents, tumor ablations, or pathological states that lead to the destruction of a large amount of tissue, including connective tissue and basement membrane. Therefore, skeletal muscle tissue engineering represents a valid alternative to overcome this problem.Here, we described a series of natural and synthetic biomaterials employed as ECM mimics for their ability to recreate the correct muscle stem cell niche, by promoting myogenic stem cell differentiation and so, positively affecting muscle repair. PMID:27460672

  2. Self-Assembled 3D Ordered Macroporous Structures for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Juan, Wen-Tau; Chung, Kuo-Yuan; Mishra, Narayan; Lin, Keng-Hui

    2008-03-01

    A simple, inexpensive and fast microfluidic method to fabricate three-dimensional ordered macroporous gel is demonstrated using alginate as the scaffold material. The microfluidic device consists of two concentric micropipettes where one is nested inside the other. Nitrogen gas and aqueous alginate solution with Pluronic F127 are pumped through the inner and the outer channel respectively. Under appropriate conditions, bubbles of a uniform size are generated within the device at few thousand Hz. We show the control over bubble size by the gas pressure and quantitatively predict the size dependence from the geometry of fluidic device. Monodisperse bubbles are collected and self-assemble into crystal structures as wet foam. The alginate solution between bubbles is crosslinked by divalent calcium ions and turns into 3D ordered macroporous gel where the pores are highly interconnected. The pore size can be directly controlled by the bubble size which ranges from few tens microns to few millimeters. This technique promises a versatile and robust way to make 3D ordered tissue engineering scaffolds.

  3. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.

    PubMed

    Costa, Pedro F; Puga, Ana M; Díaz-Gomez, Luis; Concheiro, Angel; Busch, Dirk H; Alvarez-Lorenzo, Carmen

    2015-12-30

    The adoption of additive manufacturing in tissue engineering and regenerative medicine (TERM) strategies greatly relies on the development of novel 3D printable materials with advanced properties. In this work we have developed a material for bone TERM applications with tunable bioerosion rate and dexamethasone release profile which can be further employed in fused deposition modelling (the most common and accessible 3D printing technology in the market). The developed material consisted of a blend of poly-ϵ-caprolactone (PCL) and poloxamine (Tetronic®) and was processed into a ready-to-use filament form by means of a simplified melt-based methodology, therefore eliminating the utilization of solvents. 3D scaffolds composed of various blend formulations were additively manufactured and analyzed revealing blend ratio-specific degradation rates and dexamethasone release profiles. Furthermore, in vitro culture studies revealed a similar blend ratio-specific trend concerning the osteoinductive activity of the fabricated scaffolds when these were seeded and cultured with human mesenchymal stem cells. The developed material enables to specifically address different regenerative requirements found in various tissue defects. The versatility of such strategy is further increased by the ability of additive manufacturing to accurately fabricate implants matching any given defect geometry. PMID:26520408

  4. Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering

    PubMed Central

    Kluger, Petra J.; Wyrwa, Ralf; Weisser, Jürgen; Maierle, Julia; Votteler, Miriam; Rode, Claudia; Schnabelrauch, Matthias; Walles, Heike

    2010-01-01

    Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generate novel electrospun polymeric scaffolds composed of poly-d/l-lactide and poly-l-lactide in the ratio 50:50. Scanning electron microscopic analyses revealed that the generated poly(d/l-lactide-co-l-lactide) electrospun hybrid microfibers possessed a unique porous high surface area mimicking native extracellular matrix (ECM). To assess cytocompatibility, we isolated dermal fibroblasts from human skin biopsies. After 5 days of in vitro culture, the fibroblasts adhered, migrated and proliferated on the newly created 3D scaffolds. Our data demonstrate the applicability of electrospun poly(d/l-lactide-co-l-lactide) scaffolds to serve as substrates for regenerative medicine applications with special focus on skin tissue engineering. PMID:20640490

  5. Moving beyond "Yes" or "No": Shifting from Over-Scaffolding to Contingent Scaffolding in Literacy Instruction with Emergent Bilingual Students

    ERIC Educational Resources Information Center

    Daniel, Shannon M.; Martin-Beltrán, Melinda; Peercy, Megan Madigan; Silverman, Rebecca

    2016-01-01

    Building on theories of scaffolding and previous research on scaffolding between adults and children, this article provides empirical examples of over-scaffolding as it occurs in peer-to-peer literacy activities among elementary-level emergent bilingual students. In their analysis of data from the first year of a design-based research project…

  6. The pherophorins: common, versatile building blocks in the evolution of extracellular matrix architecture in Volvocales.

    PubMed

    Hallmann, Armin

    2006-01-01

    Green algae of the order Volvocales provide an unrivalled opportunity for exploring the transition from unicellularity to multicellularity. They range from unicells, like Chlamydomonas, through homocytic colonial forms with increasing cooperation of individual cells, like Gonium or Pandorina, to heterocytic multicellular forms with different cell types and a complete division of labour, like Volvox. A fundamental requirement for the evolution of multicellularity is the development of a complex, multifunctional extracellular matrix (ECM). The ECM has many functions, which can change under developmental control or as a result of environmental factors. Here molecular data from 15 novel proteins are presented. These proteins have been identified in Chlamydomonas reinhardtii, Gonium pectorale, Pandorina morum and Volvox carteri, and all belong to a single protein family, the pherophorins. Pherophorin-V1 is shown to be a glycoprotein localized to the 'cellular zone' of the V. carteri ECM. Pherophorin-V1 and -V2 mRNAs are strongly induced not only by the sex inducer, which triggers sexual development at extremely low concentrations, but also by mechanical wounding. Like the extensins of higher plants, which are also developmentally controlled or sometimes inducible by wounding, the pherophorins contain a (hydroxy-)proline-rich (HR) rod-like domain and are abundant within the extracellular compartment. In contrast to most extensins, pherophorins have additional globular A and B domains on both ends of the HR domains. Therefore pherophorins most closely resemble a particular class of higher plant extensin, the solanaceous lectins (e.g. potato lectin), suggesting multivalent carbohydrate-binding functions are present within the A and B domains and are responsible for cross-linking. Our results suggest that pherophorins are used as the building blocks for the extracellular scaffold throughout the Volvocales, with the characteristic mesh sizes in different ECM structures being

  7. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.

    PubMed

    Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang

    2016-03-15

    The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area. PMID:26044706

  8. Ancient Lacustrine Mudstones and Associated Fluvio-Deltaic Strata at Gale Crater: Martian Sedimentary Contexts in the Search for Ancient Biosignatures

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Grotzinger, J. P.; Sumner, D. Y.; Rubin, D. M.; Banham, S. G.; Stack, K. M.; Watkins, J. A.; Stein, N.; Edgett, K. S.; Hurowitz, J.; Lewis, K. X.; Yingst, R. A.; Minitti, M. E.; Schieber, J.; Vasavada, A. R.

    2016-05-01

    We characterize the sedimentology of ancient lacustrine mudstones in Gale crater, Mars, and consider the implications of their physical and chemical characteristics in the search for ancient biosignatures.

  9. Baboon palm nut harvesters in ancient Egypt: new (ancient) evidence, new questions.

    PubMed

    Deputte, B L; Anderson, J R

    2009-01-01

    It is well documented that hamadryas baboons were used by the ancient Egyptians to pick fruits, but it is not well known that these baboons were also used to collect palm nuts. We describe this practice as it is depicted on a painting on a rarely exhibited ancient Egyptian artefact. Striking similarities with the modern use of pig-tailed macaques as coconut harvesters are described, raising new questions about the demise of the practice in Africa and its continuation in South-East Asia. PMID:19628946

  10. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    NASA Astrophysics Data System (ADS)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  11. Bioresorbable Vascular Scaffolds for Coronary Revascularization.

    PubMed

    Kereiakes, Dean J; Onuma, Yoshinobu; Serruys, Patrick W; Stone, Gregg W

    2016-07-12

    Contemporary metallic drug-eluting stents are associated with very good 1-year outcomes but an ongoing risk of stent-related adverse events (thrombosis, myocardial infarction, restenosis) after 1 year. The pathogenesis of these very late events is likely related to the permanent presence of the metal stent frame or polymer. Bioresorbable scaffolds have been developed to provide drug delivery and mechanical support functions similar to metallic drug-eluting stents, followed by complete resorption with recovery of more normal vascular structure and function, potentially improving very late clinical outcomes. A first-generation bioresorbable scaffold has been demonstrated to be noninferior to a contemporary metallic drug-eluting stents for overall 1-year patient-oriented and device-oriented outcomes. Increased rates of scaffold thrombosis and target vessel-related myocardial infarction were noted that may be mitigated by improved patient and lesion selection, procedural technique, and device iteration. Large-scale, randomized, clinical trials are ongoing to determine the long-term relative efficacy and safety of bioresorbable scaffolds compared with current metallic drug-eluting stents. PMID:27400899

  12. Mechanical Improvements to Reinforced Porous Silk Scaffolds

    PubMed Central

    Gil, Eun Seok; Kluge, Jonathan A.; Rockwood, Danielle N.; Rajkhowa, Rangam; Wang, Lijing; Wang, Xungai; Kaplan, David L

    2012-01-01

    Load bearing porous biodegradable scaffolds are required to engineer functional tissues such as bone. Mechanical improvements to porogen leached scaffolds prepared from silk proteins were systematically studied through the addition of silk particles in combination with silk solution concentration, exploiting interfacial compatibility between the two components. Solvent solutions of silk up to 32 w/v% were successfully prepared in hexafluoroisopropanaol (HFIP) for the study. The mechanical properties of the reinforced silk scaffolds correlated to the material density and matched by a power law relationship, independent of the ratio of silk particles to matrix. These results were similar to the relationships previously shown for cancellous bone. The mechanism behind the increased mechanical properties was a densification effect, and not the effect of including stiffer silk particles into the softer silk continuous matrix. A continuous interface between the silk matrix and the silk particles, as well as homogeneous distribution of the silk particles within the matrix were observed. Furthermore, we note that the roughness of the pore walls was controllable by varying the ratio of particles matrix, providing a route to control topography. The rate of proteolytic hydrolysis of the scaffolds decreased with increase in mass of silk used in the matrix and with increasing silk particle content. PMID:21793193

  13. Scaffolding Practices that Enhance Mathematics Learning

    ERIC Educational Resources Information Center

    Anghileri, Julia

    2006-01-01

    It is over 25 years since Wood, Bruner and Ross (1976, "Journal of Child Psychology and Psychiatry," 17, 89-100) introduced the idea of "scaffolding" to represent the way children's learning can be supported. Despite problems, this metaphor has enduring attraction in the way it emphasises the intent to support a sound foundation with increasing…

  14. Designing Appropriate Scaffolding for Student Science Projects

    ERIC Educational Resources Information Center

    Johnson, Marie; Smith, Mark

    2008-01-01

    The authors have developed a successful approach to teaching and inspiring undergraduate science and nonscience majors to complete creditable, semester-long, hands-on science research projects. This approach utilizes a carefully developed scaffolding consisting of in-class exercises and discussions, preparatory homework and lab events, and three…

  15. Scaffolding English Language Learners' Reading Performance

    ERIC Educational Resources Information Center

    McKenzie, Lolita D.

    2011-01-01

    English language learners (ELLs) spend a majority of their instructional time in mainstream classrooms with mainstream teachers. Reading is an area with which many ELLs are challenged when placed within mainstream classrooms. Scaffolding has been identified as one of the best teaching practices for helping students read. ELL students in a local…

  16. Scaffolding Social Studies for Global Awareness

    ERIC Educational Resources Information Center

    Merryfield, Merry M.

    2008-01-01

    In this article, the author shares some ways that social studies teachers in the United States have worked to scaffold knowledge, skills, and dispositions that over time create global awareness and worldmindedness--habits of the mind that foster knowledge, interest and engagement in global issues, local/global connections, and diverse cultures.…

  17. Scaffolding in Connectivist Mobile Learning Environment

    ERIC Educational Resources Information Center

    Ozan, Ozlem

    2013-01-01

    Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: (1) to learn in a networked environment; (2) to manage their…

  18. A Math Fact Fluency Intervention with Scaffolding

    ERIC Educational Resources Information Center

    Fasko, Sharla Nichols; Leach, Ryan

    2006-01-01

    The purpose of the study was to assess the effectiveness of a flash card intervention for fluency in basic math facts. The rate of recall of addition facts was assessed for an, 8-year-old third grader who had ADHD. The tutoring program involved a structured flashcard drill with systematic reinforcement. A scaffold was built in to the intervention…

  19. Teacher Scaffolding of Oral Language Production

    ERIC Educational Resources Information Center

    George, May G.

    2011-01-01

    This research involved two observational studies. It explored the scaffolding processes as part of classroom pedagogy. The research shed light on the way a teacher's instructional methodology took shape in the classroom. The target event for this study was the time in which a novice learner was engaged publicly in uttering a sentence in Arabic in…

  20. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point... force of at least 150 pounds applied in any downward or outward direction at any point along the midrail... not have a tendency to tip the scaffold. (8) Wheels or casters shall be capable of supporting,...

  1. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point... force of at least 150 pounds applied in any downward or outward direction at any point along the midrail... not have a tendency to tip the scaffold. (8) Wheels or casters shall be capable of supporting,...

  2. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point... force of at least 150 pounds applied in any downward or outward direction at any point along the midrail... not have a tendency to tip the scaffold. (8) Wheels or casters shall be capable of supporting,...

  3. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  4. Joining the Conversation: Scaffolding and Tutoring Mathematics

    ERIC Educational Resources Information Center

    Valkenburg, Jim

    2010-01-01

    Tutoring is one of those skills which require the ability to communicate an in-depth understanding of the subject. This article is about scaffolding while tutoring, and the tutoring talents described can be applied across the curriculum. Lev Vygotsky's ideas about communication and education play a key role in the development of scaffolding…

  5. Composite tissue engineering on polycaprolactone nanofiber scaffolds.

    PubMed

    Reed, Courtney R; Han, Li; Andrady, Anthony; Caballero, Montserrat; Jack, Megan C; Collins, James B; Saba, Salim C; Loboa, Elizabeth G; Cairns, Bruce A; van Aalst, John A

    2009-05-01

    Tissue engineering has largely focused on single tissue-type reconstruction (such as bone); however, the basic unit of healing in any clinically relevant scenario is a compound tissue type (such as bone, periosteum, and skin). Nanofibers are submicron fibrils that mimic the extracellular matrix, promoting cellular adhesion, proliferation, and migration. Stem cell manipulation on nanofiber scaffolds holds significant promise for future tissue engineering. This work represents our initial efforts to create the building blocks for composite tissue reflecting the basic unit of healing. Polycaprolactone (PCL) nanofibers were electrospun using standard techniques. Human foreskin fibroblasts, murine keratinocytes, and periosteal cells (4-mm punch biopsy) harvested from children undergoing palate repair were grown in appropriate media on PCL nanofibers. Human fat-derived mesenchymal stem cells were osteoinduced on PCL nanofibers. Cell growth was assessed with fluorescent viability staining; cocultured cells were differentiated using antibodies to fibroblast- and keratinocyte-specific surface markers. Osteoinduction was assessed with Alizarin red S. PCL nanofiber scaffolds supported robust growth of fibroblasts, keratinocytes, and periosteal cells. Cocultured periosteal cells (with fibroblasts) and keratinocytes showed improved longevity of the keratinocytes, though growth of these cell types was randomly distributed throughout the scaffold. Robust osteoinduction was noted on PCL nanofibers. Composite tissue engineering using PCL nanofiber scaffolds is possible, though the major obstacles to the trilaminar construct are maintaining an appropriate interface between the tissue types and neovascularization of the composite structure. PMID:19387150

  6. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    PubMed Central

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  7. Scaffolding in Group-Oriented Japanese Preschools

    ERIC Educational Resources Information Center

    Izumi-Taylor, Satomi

    2013-01-01

    Akira, a 4-year-old boy, wanders into a classroom of 3-year-olds, observing the younger children. He goes over to Masaharu who is having a problem making a piece fit on a puzzle and offers him help. Masaharu succeeds and his mentor applauds his efforts. This interaction shows an older child supporting a younger child through scaffolding. Using…

  8. Scaffolded-Language Intervention: Speech Production Outcomes

    ERIC Educational Resources Information Center

    Bellon-Harn, Monica L.; Credeur-Pampolina, Maggie E.; LeBoeuf, Lexie

    2013-01-01

    This study investigated the effects of a scaffolded-language intervention using cloze procedures, semantically contingent expansions, contrastive word pairs, and direct models on speech abilities in two preschoolers with speech and language impairment speaking African American English. Effects of the lexical and phonological characteristics (i.e.,…

  9. Engineered Biopolymeric Scaffolds for Chronic Wound Healing

    PubMed Central

    Dickinson, Laura E.; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered. PMID:27547189

  10. Scaffolding Instruction for Reading the Web

    ERIC Educational Resources Information Center

    Murray, Denise E.; McPherson, Pam

    2006-01-01

    Research has found that text reading and Web reading, while sharing some similarities, require a different balance of strategies. Adult language learners, especially those with limited previous experience with the Web, may therefore need explicit, scaffolded instruction in order to read the Web. This article reports on teacher action research and…

  11. Scaffolding Student Learning in Clinical Practice.

    ERIC Educational Resources Information Center

    Spouse, Jenny

    1998-01-01

    A longitudinal study of nursing students showed that without sponsorship by clinical staff students found it difficult to participate and learn. The strategy of scaffolding, building on Vygotsky's Zone of Proximal Development, enables recognition of learning needs and the relationship between theory and practice. (SK)

  12. Scaffolding Students' Thinking in Mathematical Investigations

    ERIC Educational Resources Information Center

    McCosker, Natalie; Diezmann, Carmel M.

    2009-01-01

    Mathematical investigations are loosely-defined, engaging problem-solving tasks that allow students to ask their own questions, explore their own interests and set their own goals. The value of investigations for students lies in their complexity. Scaffolding plays an important role in supporting students' high-level engagement by encouraging…

  13. Towards biomimetic scaffolds: anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers.

    PubMed

    Hacker, Michael; Tessmar, Jörg; Neubauer, Markus; Blaimer, Andrea; Blunk, Torsten; Göpferich, Achim; Schulz, Michaela B

    2003-11-01

    The development of biomimetic materials and their processing into three-dimensional cell carrying scaffolds is one promising tissue engineering strategy to improve cell adhesion, growth and differentiation on polymeric constructs developing mature and viable tissue. This study was concerned with the fabrication of scaffolds made from amine-reactive diblock copolymers, N-succinimidyl tartrate monoamine poly(ethylene glycol)-block-poly(D,L-lactic acid), which are able to suppress unspecific protein adsorption and to covalently bind proteins or peptides. An appropriate technique for their processing had to be both anhydrous, to avoid hydrolysis of the active ester, and suitable for the generation of interconnected porous structures. Attempts to fabricate scaffolds utilizing hard paraffin microparticles as hexane-extractable porogens failed. Consequently, a technique was developed involving lipid microparticles, which served as biocompatible porogens on which the scaffold forming polymer was precipitated in the porogen extraction media (n-hexane). Porogen melting during the extraction and polymer precipitation step led to an interconnected network of pores. Suitable lipid mixtures and their melting points, extraction conditions (temperature and time) and a low-toxic polymer solvent system were determined for their use in processing diblock copolymers of different molecular weights (22 and 42 kDa) into highly porous off-the-shelf cell carriers ready for easy surface modification towards biomimetic scaffolds. Insulin was employed to demonstrate the principal of instant protein coupling to a prefabricated scaffold. PMID:12922156

  14. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization.

    PubMed

    Edel, Kai H; Kudla, Jörg

    2015-03-01

    Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms. PMID:25477139

  15. Versatile matrix for constructing enzyme-based biosensors.

    PubMed

    Wang, Zhaohao; Luo, Xi; Wan, Qijin; Wu, Kangbing; Yang, Nianjun

    2014-10-01

    A versatile matrix was fabricated and utilized as a universal interface for the construction of enzyme-based biosensors. This matrix was formed on the gold electrode via combining self-assembled monolayer of 2,3-dimercaptosuccinic acid with gold nanoparticles. Gold nanoparticles were electrochemically deposited. Electrochemistry of three redox enzymes (catalase, glucose oxidase, and horseradish peroxidase) was investigated on such a matrix. The electrocatalytic monitoring of hydrogen peroxide and glucose was conducted on this matrix after being coated with those enzymes. On them the monitoring of hydrogen peroxide and glucose shows rapid response times, wide linear working ranges, low detection limits, and high enzymatic affinities. This matrix is thus a versatile and suitable platform to develop highly sensitive enzyme-based biosensors. PMID:25208242

  16. Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine.

    PubMed

    Soenen, Stefaan J H; Hodenius, Michael; De Cuyper, Marcel

    2009-02-01

    The high biocompatibility and versatile nature of liposomes have made these particles keystone components in many hot-topic biomedical research areas. Liposomes can be combined with a large variety of nanomaterials, such as superparamagnetic iron oxide nanocores. Because the unique features of both the magnetizable colloid and the versatile lipid bilayer can be joined, the resulting so-called magnetoliposomes can be exploited in a great array of biotechnological and biomedical applications. In this article, we highlight the use of magnetoliposomes in immobilizing enzymes, both water-soluble and hydrophobic ones, as well as their potential in several biomedical applications, including MRI, hyperthermia cancer treatment and drug delivery. The goal of this article is not to list all known uses of magnetoliposomes but rather to present some conspicuous applications in comparison to other currently used nanoparticles. PMID:19193184

  17. Versatile module for experiments with focussing neutron guides

    SciTech Connect

    Adams, T.; Pfleiderer, C.; Böni, P.; Brandl, G.; Chacon, A.; Wagner, J. N.; Rahn, M.; Mühlbauer, S.; Georgii, R.

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effects of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.

  18. Research and development of a versatile portable speech prosthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.

  19. Versatile prototyping platform for Data Processing Boards for CBM experiment

    NASA Astrophysics Data System (ADS)

    Zabolotny, W. M.; Kasprowicz, G.; Byszuk, A. P.; Emschermann, D.; Gumiński, M.; Juszczyk, B.; Lehnert, J.; Müller, W. F. J.; Poźniak, K.; Romaniuk, R.

    2016-02-01

    The CBM experiment is one of the experiments prepared at the FAIR Facility in Darmstadt. The Data Processing Boards (DPB) are an important component of the CBM readout chain. Before the final, production versions of DPB may be designed, it is important to create a prototyping platform, to test and select appropriate hardware and firmware solutions. The Kintex based AMC FMC Carrier (AFCK) board is a versatile and open solution fulfilling those requirements, offering configurable high-speed (up to 10 Gbps) connectivity. The paper describes the AFCK hardware, the firmware architecture, and the IP cores developed for different DPB prototyping tasks. Due to its versatility and openness the AFCK may be reused in other experiments.

  20. Porous three-dimensional carbon nanotube scaffolds for tissue engineering.

    PubMed

    Lalwani, Gaurav; Gopalan, Anu; D'Agati, Michael; Sankaran, Jeyantt Srinivas; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji

    2015-10-01

    Assembly of carbon nanomaterials into three-dimensional (3D) architectures is necessary to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. Herein, we report the fabrication and comprehensive cytocompatibility assessment of 3D chemically crosslinked macrosized (5-8 mm height and 4-6 mm diameter) porous carbon nanotube (CNT) scaffolds. Scaffolds prepared via radical initiated thermal crosslinking of single- or multiwalled CNTs (SWCNTs and MWCNTs) possess high porosity (>80%), and nano-, micro-, and macroscale interconnected pores. MC3T3 preosteoblast cells on MWCNT and SWCNT scaffolds showed good cell viability comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds after 5 days. Confocal live cell and immunofluorescence imaging showed that MC3T3 cells were metabolically active and could attach, proliferate, and infiltrate MWCNT and SWCNT scaffolds. SEM imaging corroborated cell attachment and spreading and suggested that cell morphology is governed by scaffold surface roughness. MC3T3 cells were elongated on scaffolds with high surface roughness (MWCNTs) and rounded on scaffolds with low surface roughness (SWCNTs). The surface roughness of scaffolds may be exploited to control cellular morphology and, in turn, govern cell fate. These results indicate that crosslinked MWCNTs and SWCNTs scaffolds are cytocompatible, and open avenues toward development of multifunctional all-carbon scaffolds for tissue engineering applications. PMID:25788440

  1. The influence of scaffold material on chondrocytes in inflammatory conditions

    PubMed Central

    Kwon, Heenam; Sun, Lin; Cairns, Dana M.; Rainbow, Roshni S.; Preda, Rucsanda Carmen; Kaplan, David L.; Zeng, Li

    2013-01-01

    Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here, we compared the response of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. Silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and response to inflammatory stimuli in chondrocytes. Based on this study, we concluded that selecting the proper scaffolding material will aid in the engineering of more stable cartilage tissues for cartilage repair; and that silk and collagen are the more optimal scaffolds in supporting the stability of 3D cartilage under inflammatory conditions. PMID:23333441

  2. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation

    PubMed Central

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Tian, Lingling; Shamirzaei-Jeshvaghani, Elham; Dehghani, Leila; Ramakrishna, Seeram

    2015-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate. PMID:26029344

  3. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds

    PubMed Central

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering. PMID:27144173

  4. Preparation of bioactive porous HA/PCL composite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  5. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing.

    PubMed

    Asuncion, Maria Christine Tankeh; Goh, James Cho-Hong; Toh, Siew-Lok

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. PMID:27287164

  6. The host response to allogeneic and xenogeneic biological scaffold materials.

    PubMed

    Keane, Timothy J; Badylak, Stephen F

    2015-05-01

    The clinical use of biological scaffold materials has become commonplace. Such scaffolds are composed of extracellular matrix (ECM), or components of ECM, derived from allogeneic or xenogeneic tissues. Such scaffold materials vary widely in their source tissue, processing methods and sterilization methods. The success or failure of an ECM scaffold for a given application is dependent on the host response following implantation; a response that is largely mediated by the innate immune system and which is influenced by a numerous factors, including the processing methods used in the preparation of biological scaffolds. The present paper reviews various aspects of the host response to biological scaffolds and factors that affect this response. In addition, some of the logistical, regulatory and reconstructive implications associated with the use of biological scaffolds are discussed. PMID:24668694

  7. Development of a versatile SMOKE system with electrochemical applications

    NASA Astrophysics Data System (ADS)

    Hampton, Jennifer R.; Martínez-Albertos, José-Luis; Abruña, Héctor D.

    2002-08-01

    We describe the design, construction, and implementation of a simple and inexpensive, yet versatile surface magneto-optic Kerr effect (SMOKE) setup designed to operate in conjunction with the electrodeposition of magnetic layers both in situ and ex situ. The system is based on a homemade electromagnet and commercially available components. The sensitivity of the system is demonstrated by measuring ex situ SMOKE hysteresis loops of Co thin films (down to three monolayers thick) electrodeposited onto a Au(111) electrode substrate.

  8. Versatility of the hatchet flap in facial reconstruction.

    PubMed

    Gargano, F; Alfano, C

    2005-01-01

    The hatchet flap, well known for repair of the nasal pyramid, laterofacial defects and pressure sores, is used to reconstruct different aesthetic units of the face. The authors describe the surgical technique and its clinical applications to the different face subunits in 38 patients, highlighting the easy learning curve, the versatility of the flap and the good aesthetic results when the principles of the facial units are respected. No previous detailed report has been described in the literature. PMID:16173514

  9. Chemical and medicinal versatility of dithiocarbamates: an overview.

    PubMed

    Bala, Veenu; Gupta, Gopal; Sharma, Vishnu L

    2014-01-01

    Dithiocarbamates are considered as the simplest occurring organosulfur compounds exhibiting diverse chemical and medicinal versatility. Dithiocarbamates have been used as pesticide in the 20(th) century but thereafter they have attracted the interest of medicinal chemists due to their metal binding capacity. Recently a variety of chemical and medicinal properties of dithiocarbamates have been explored other than metal binding capacity. This review collectively describes the most significant chemical and medicinal properties of dithiocarbamate derivatives reported over the last decade. PMID:25373849

  10. Re-discovering ancient wheat varieties as functional foods.

    PubMed

    Cooper, Raymond

    2015-07-01

    With the gluten-free food market worth almost $1.6 bn in 2011, there is every reason for renewed interest in ancient grains. This resurgent interest is expressed in re-discovering ancient varieties as functional foods. In particular, people affected by celiac disease have to avoid all gluten in their diet and several ancient grains may offer an important alternative. PMID:26151025

  11. Re-discovering ancient wheat varieties as functional foods

    PubMed Central

    Cooper, Raymond

    2015-01-01

    With the gluten-free food market worth almost $1.6 bn in 2011, there is every reason for renewed interest in ancient grains. This resurgent interest is expressed in re-discovering ancient varieties as functional foods. In particular, people affected by celiac disease have to avoid all gluten in their diet and several ancient grains may offer an important alternative. PMID:26151025

  12. Bioresorbable scaffolds for percutaneous coronary interventions

    PubMed Central

    Gogas, Bill D.

    2014-01-01

    Innovations in drug-eluting stents (DES) have substantially reduced rates of in-segment restenosis and early stent thrombosis, improving clinical outcomes following percutaneous coronary interventions (PCI). However a fixed metallic implant in a vessel wall with restored patency and residual disease remains a precipitating factor for sustained local inflammation, in-stent neo-atherosclerosis and impaired vasomotor function increasing the risk for late complications attributed to late or very late stent thrombosis and late target lesion revascularization (TLR) (late catch-up). The quest for optimal coronary stenting continues by further innovations in stent design and by using biocompatible materials other than cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding, local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics have been recently developed. These devices have been utilized in selected clinical applications so far providing preliminary evidence of safety showing comparable performance with current generation drug-eluting stents (DES). Herein we provide a comprehensive overview of the current status of these technologies, we elaborate on the potential benefits of transient coronary scaffolds over permanent stents in the context of vascular reparation therapy, and we further focus on the evolving challenges these devices have to overcome to compete with current generation DES. Condensed Abstract:: The quest for optimizing percutaneous coronary interventions continues by iterative innovations in device materials beyond cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding; local drug-elution and future

  13. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis.

    PubMed

    Nakayama, Karina H; Hong, Guosong; Lee, Jerry C; Patel, Jay; Edwards, Bryan; Zaitseva, Tatiana S; Paukshto, Michael V; Dai, Hongjie; Cooke, John P; Woo, Y Joseph; Huang, Ngan F

    2015-07-28

    The objective of this study was to enhance the angiogenic capacity of endothelial cells (ECs) using nanoscale signaling cues from aligned nanofibrillar scaffolds in the setting of tissue ischemia. Thread-like nanofibrillar scaffolds with porous structure were fabricated from aligned-braided membranes generated under shear from liquid crystal collagen solution. Human ECs showed greater outgrowth from aligned scaffolds than from nonpatterned scaffolds. Integrin α1 was in part responsible for the enhanced cellular outgrowth on aligned nanofibrillar scaffolds, as the effect was abrogated by integrin α1 inhibition. To test the efficacy of EC-seeded aligned nanofibrillar scaffolds in improving neovascularization in vivo, the ischemic limbs of mice were treated with EC-seeded aligned nanofibrillar scaffold; EC-seeded nonpatterned scaffold; ECs in saline; aligned nanofibrillar scaffold alone; or no treatment. After 14 days, laser Doppler blood spectroscopy demonstrated significant improvement in blood perfusion recovery when treated with EC-seeded aligned nanofibrillar scaffolds, in comparison to ECs in saline or no treatment. In ischemic hindlimbs treated with scaffolds seeded with human ECs derived from induced pluripotent stem cells (iPSC-ECs), single-walled carbon nanotube (SWNT) fluorophores were systemically delivered to quantify microvascular density after 28 days. Near infrared-II (NIR-II, 1000-1700 nm) imaging of SWNT fluorophores demonstrated that iPSC-EC-seeded aligned scaffolds group showed significantly higher microvascular density than the saline or cells groups. These data suggest that treatment with EC-seeded aligned nanofibrillar scaffolds improved blood perfusion and arteriogenesis, when compared to treatment with cells alone or scaffold alone, and have important implications in the design of therapeutic cell delivery strategies. PMID:26061869

  14. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis

    PubMed Central

    Nakayama, Karina H.; Hong, Guosong; Lee, Jerry C.; Patel, Jay; Edwards, Bryan; Zaitseva, Tatiana S.; Paukshto, Michael V.; Dai, Hongjie; Cooke, John P.; Woo, Y. Joseph; Huang, Ngan F.

    2016-01-01

    The objective of this study was to enhance the angiogenic capacity of endothelial cells (ECs) using nano-scale signaling cues from aligned nanofibrillar scaffolds in the setting of tissue ischemia. Thread-like nanofibrillar scaffolds with porous structure were fabricated from aligned-braided membranes generated under shear from liquid crystal collagen solution. Human ECs showed greater outgrowth from aligned scaffolds than from non-patterned scaffolds. Integrin α1 was in part responsible for the enhanced cellular outgrowth on aligned nanofibrillar scaffolds, as the effect was abrogated by integrin α1 inhibition. To test the efficacy of EC-seeded aligned nanofibrillar scaffolds in improving neovascularization in vivo, the ischemic limbs of mice were treated with: EC-seeded aligned nanofibrillar scaffold; EC-seeded non-patterned scaffold; ECs in saline; aligned nanofibrillar scaffold alone; or no treatment. After 14 days, laser Doppler blood spectroscopy demonstrated significant improvement in blood perfusion recovery when treated with EC-seeded aligned nanofibrillar scaffolds, in comparison to ECs in saline or no treatment. In ischemic hindlimbs treated with scaffolds seeded with human ECs derived from induced pluripotent stem cells (iPSC-ECs), single-walled carbon nanotube (SWNT) fluorophores were systemically delivered to quantify microvascular density after 28 days. Near infrared-II (NIR-II, 1000–1700 nm) imaging of SWNT fluorophores demonstrated that iPSC-EC-seeded aligned scaffolds group showed significantly higher microvascular density than the saline or cells groups. These data suggest that treatment with EC-seeded aligned nanofibrillar scaffolds improved blood perfusion and arteriogenesis, when compared to treatment with cells alone or scaffold alone, and have important implications in the design of therapeutic cell delivery strategies PMID:26061869

  15. Mapping the Ancient Maya Landscape from Space

    NASA Technical Reports Server (NTRS)

    Sever, Tom

    2003-01-01

    This project uses new satellite and airborne imagery in combination with remote sensing, GIS, and GPS technology to understand the dynamics of how the Maya successfully interacted with their karst topographic landscape for several centuries in the northern Peten region of Guatemala. The ancient Maya attained one of the greatest population densities in human history in the tropical forest of the Peten, Guatemala, and it was in this region that the Maya civilization began, flourished, and abruptly disappeared for unknown reasons around AD 800. How the Maya were able to successfully manage water and feed this dense population is not known at this time. However, a recent NASA-funded project was the first to investigate large seasonal swamps (bajos) that make up 40 percent of the landscape. Through the use of remote sensing, ancient Maya features such as cities, roadways, canals and water reservoirs have been detected and verified through ground reconnaissance. The results of this research cast new light on the adaptation of the ancient Maya to their environment. Micro-environmental variation within the wetlands was elucidated and the different vegetational associations identified in the satellite imagery. More than 70 new archeological sites within and at the edges of the bajo were mapped and tested. Modification of the landscape by the Maya in the form of dams and reservoirs in the Holmul River and its tributaries and possible drainage canals in bajos was demonstrated. The recent acquisition of one-meter IKONOS imagery and high resolution STAR-3i radar imagery (2.5m backscatter/ 10m DEM), opens new possibilities for understanding how a civilization was able to survive for centuries upon a karst topographic landscape and their human-induced effects upon the local climate. This understanding is critical for the current population that is presently experiencing rapid population growth and destroying the landscape through non-traditional farming and grazing techniques

  16. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  17. The Ancient Maya Landscape from Space

    NASA Technical Reports Server (NTRS)

    Sever, T.; Arnold, James E. (Technical Monitor)

    1999-01-01

    The Peten, once inhabited by a population of several million before the collapse of the ancient Maya in the 10th and 11th centuries, is being repopulated toward its former demographic peak. Environmental dynamics, however, impose severe constraints to further development. Current practices in subsistence, commercial agriculture, and cattle raising are causing rapid deforestation resulting in the destruction of environmental and archeological resources. The use of remote sensing and Geographic Information Systems (GIS) technology is a cost-effective methodology for addressing issues in Maya archeology as well as monitoring the environmental impacts being experienced by the current population.

  18. Identification of ancient comets and chronology.

    NASA Astrophysics Data System (ADS)

    Lu, Xianwen; Jiang, Xiaoyuan; Niu, Weixing

    1999-08-01

    Taking the comet records in the book "Huai Nan Zi Bing Lue Xun" as an example, the authors discuss the possibility of determination of remote historic ages in the light of ancient comet records with the theory of statistics and dynamics. The conclusion is that the probability is less than 0.6%. For this reason, one cannot affirm remote historic ages if the comet record is simple. Even as a circumstantial evidence, its weight is very small. So one may ignore comet records, when one determines remote historic ages with other methods.

  19. The Evil Eye--an ancient superstition.

    PubMed

    Berger, Allan S

    2012-12-01

    This paper describes and discusses the ancient superstition of the Evil Eye. The author describes his own personal childhood introduction to the subject of the Evil Eye which years later instigated his scholarly inquiry. The history of this very geographically widespread folk belief is elaborated upon, along with common manifestations as they appear in a number of different countries and cultures. Some of the methods used to thwart the negative effects of the Evil Eye are enumerated. Relevant psychodynamics and common expressions of the Evil Eye superstition are elucidated upon. PMID:21523505

  20. Food, dietetics and nutrition in ancient India.

    PubMed

    Manyam, B V

    1995-01-01

    In pre-agricultural era, entire mankind consumed meat as early man was a hunter. Possibly he ate from plants sources which grew in the wilderness. With the advent of agriculture as an outcome of civilization, man acquired the ability to cultivate what he wanted, as by now he was influenced to some extent by the selection of the food that he wanted to eat. All this ultimately led to him taking to vegeterianism, which probably did not occur until approximately 1500 B.C. It is tried in this study to examine the concept of nutrition, balanced diet, appetite, food etiquette, food sanitation and food poisoning etc. in ancient India. PMID:11618846

  1. Buried Alive: Microbes from Ancient Halite.

    PubMed

    Jaakkola, Salla T; Ravantti, Janne J; Oksanen, Hanna M; Bamford, Dennis H

    2016-02-01

    Halite is one of the most extreme environments to support life. From the drought of the Atacama Desert to salt deposits up to Permian in age and 2000 meters in burial depth, live microbes have been found. Because halite is geologically stable and impermeable to ground water, the microbes allegedly have a syndepositional origin, making them the oldest organisms known to live on Earth. Recently, our understanding of the microbial diversity inside halite has broadened, and the first genome sequences of ancient halite-buried microbes are now available. The secrets behind prolonged survival in salt are also starting to be revealed. PMID:26796472

  2. The Astronomical Orientation of Ancient Greek Temples

    PubMed Central

    Salt, Alun M.

    2009-01-01

    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity. PMID:19936239

  3. On Borders: From Ancient to Postmodern Times

    NASA Astrophysics Data System (ADS)

    Bellezza, G.

    2013-11-01

    The article deals with the evolution of the concept of borders between human groups and with its slow evolution from the initial no men's land zones to the ideal single-dimension linear borders. In ancient times the first borders were natural, such as mountain ranges or large rivers until, with the development of Geodesy, astronomical borders based on meridians and parallels became a favourite natural base. Actually, Modern States adopted these to fix limits in unknown conquered territories. The postmodern thought led give more importance to cultural borders until, in the most recent times, is becoming rather impossible to fix borders in the virtual cyberspace.

  4. Modern and ancient alluvial fan deposits

    SciTech Connect

    Nilsen, T.H.

    1985-01-01

    Understanding the structure and depositional processes of alluvial fans (river outwash deposits) has a special interest for those involved with the exploration of petroleum and many minerals. This collection of facsimile reprints of significant and classical research papers sheds new light on the subject. This reference covers the stratigraphy, sedimentology, and depositional processes of modern and ancient alluvial fans. Geographical areas considered include Arctic Canada, the American Southwest, Australia, Wyoming, Norway, and Spain. It includes a state-of-the-art introduction by the editor along with commentaries on all the papers included, a master author citation index and a subject index, and a chronological listing of early studies of alluvial fans.

  5. [The patients' view in Ancient Egypt].

    PubMed

    Herrmann, Sabine

    2008-01-01

    Although many medical texts are preserved from Ancient Egypt, these texts are giving only little information about the relationship between the Egyptian doctor and the patient. The aim of this article is to draw the reader's attention to personal documents such as letters between members of the royal court or private persons as well as to literary texts from the New Kingdom until the Roman Period. The article does also focus on Mesopotamian legal texts (Codex Hammurapi) and letters from the kingdom of Mari. PMID:19830954

  6. China: A Simulation of Ancient Chung Kuo, the World's Most Ancient Civilization.

    ERIC Educational Resources Information Center

    Sargent, Marcia; Baral, Wanda

    This simulation allows students to participate in the "ways" of ancient Chinese history and culture. The unit is organized into five major phases or "li's." Students may spend about one week on activities in each "li" which focuses on a major aspect of Chinese history, culture, or geography. In each "li" students participate in activities that…

  7. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    PubMed

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  8. Ganymede - Ancient Impact Craters in Galileo Regio

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ancient impact craters shown in this image of Jupiter's moon Ganymede taken by NASA's Galileo spacecraft testify to the great age of the terrain, dating back several billion years. At the margin at the left, half of a 19-kilometer-diameter (12-mile) crater is visible. The dark and bright lines running from lower right to upper left and from top to bottom are deep furrows in the ancient crust of dirty water ice. The origin of the dark material is unknown, but it may be accumulated dark fragments from many meteorites that hit Ganymede. In this view, north is to the top, and the sun illuminates the surface from the lower left about 58 degrees above the horizon. The area shown is part of Ganymede's Galileo Regio region at latitude 18 degrees north, longitude 147 degrees west; it is about 46 by 64 kilometers (29 by 38 miles) in extent. Resolution is about 80 meters (262 feet) per pixel. The image was taken June 27 at a range of 7.563 kilometers (4,700 miles). The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  9. Ancient and Medieval Earth in Armenia

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  10. Ancient-Pathogen Genomics: Coming of Age?

    PubMed Central

    2014-01-01

    ABSTRACT The potentially debilitating zoonotic disease brucellosis is thought to have been a scourge of mankind throughout history. New work by Kay et al. [mBio 5(4):e01337-14, 2014] adds to evidence for this by exploiting the huge advances in next-generation sequencing technology and applying shotgun metagenomics to a calcified nodule obtained from a 14th-century skeleton from Sardinia. While not the first DNA-based confirmation of Brucella in medieval DNA samples, Kay et al.’s study goes much further than previous reports based on single gene fragments in that it allows a full-genome reconstruction and thus facilitates meaningful comparative analysis of relationships with extant Brucella strains. These analyses confirm the close relationship of the genome to contemporary isolates from the western Mediterranean, illustrating the continuity of this lineage in the region over centuries. The study, along with recent studies characterizing other ancient-pathogen genomes, confirms that shotgun metagenomics offers us a powerful tool to fully characterize pathogens from ancient samples. Such studies promise to revolutionize our understanding of the nature of infectious disease in these materials and of the wider picture of the emergence, evolution, and spread of bacterial pathogens over history. PMID:25182326

  11. Ancient medical texts, modern reading problems.

    PubMed

    Rosa, Maria Carlota

    2006-12-01

    The word tradition has a very specific meaning in linguistics: the passing down of a text, which may have been completed or corrected by different copyists at different times, when the concept of authorship was not the same as it is today. When reading an ancient text the word tradition must be in the reader's mind. To discuss one of the problems an ancient text poses to its modern readers, this work deals with one of the first printed medical texts in Portuguese, the Regimento proueytoso contra ha pestenença, and draws a parallel between it and two related texts, A moche profitable treatise against the pestilence, and the Recopilaçam das cousas que conuem guardar se no modo de preseruar à Cidade de Lixboa E os sãos, & curar os que esteuerem enfermos de Peste. The problems which arise out of the textual structure of those books show how difficult is to establish a tradition of another type, the medical tradition. The linguistic study of the innumerable medieval plague treatises may throw light on the continuities and on the disruptions of the so-called hippocratic-galenical medical tradition. PMID:17308822

  12. Acoustical measurements in ancient Roman theatres

    NASA Astrophysics Data System (ADS)

    Farnetani, Andrea; Fausti, Patrizio; Pompoli, Roberto; Prodi, Nicola

    2001-05-01

    The Greek and Roman theatres are among the most precious and spectacular items of cultural heritage in the Mediterranean countries. The theatres are famous not only for their impressive architecture, but also for the acoustic qualities. For this reason it is important to consider these theatres as an acoustical heritage and to study their sound field. Within the activities of the ERATO (identification Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea) project, acoustical measurements were taken in well-preserved ancient Roman theatres at Aspendos (Turkey) and Jerash (Jordan). Roman theatres have an impressive stage building that forms a back wall in the orchestra area, and it was found that, from the analysis of the acoustical parameters, the reverberation time (e.g., 1.7 s at middle frequencies in the theatre of Aspendos) is quite long compared not only with other open-space theatres but also with closed spaces. Contrary to modern halls the clarity is high and this fact, together with a low sound level in most of the seats, gives the sound field a unique character.

  13. Ancient eclipses and the Earth's rotation

    NASA Astrophysics Data System (ADS)

    Morrison, L. V.; Stephenson, F. R.

    Observations of ancient and medieval eclipses are compared with predictions to measure changes in the Earth's rotation over the past 2500 years. The observations are treated in two broad categories: untimed and timed. An untimed observation must have the place and date, but not the time, as the special geometry of the eclipse path essentially supplies this. A timed observation requires the time of day of the eclipse as well as the date and place. In the period 700BC to AD1600 we have found 106 reliable untimed and 343 timed observations of solar and lunar eclipses recorded by the ancient/medieval civilizations of Babylon, China, the Arab Dominions and Europe. Analyses of these two independent datasets lead to the conclusion that the rate of rotation is decreasing, such that the length of the day (lod) is increasing on the average by 1.8 milliseconds per century (ms/cy). This is consistent to within the accuracy of measurement with the resultant sum of a tidal increase of 2.3 ms/cy and a decrease of 0.5 ms/cy due to post-glacial uplift following the end of the last ice-age. Besides these secular changes, there is clear evidence of fluctuations in the lod of several ms on a timescale of centuries.

  14. Mitochondrial Phylogenomics of Modern and Ancient Equids

    PubMed Central

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  15. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  16. Membrane-Mediated Interaction between Strongly Anisotropic Protein Scaffolds

    PubMed Central

    Schweitzer, Yonatan; Kozlov, Michael M.

    2015-01-01

    Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains. PMID:25710602

  17. The current state of scaffolds for musculoskeletal regenerative applications.

    PubMed

    Smith, Benjamin D; Grande, Daniel A

    2015-04-01

    Musculoskeletal disease and injury are highly prevalent conditions that lead to many surgical procedures. Autologous tissue transfer, allograft transplantation and nontissue prosthetics are currently used for the surgical treatment of critical-sized defects. However, the field of tissue engineering is actively investigating tissue-replacement solutions, many of which involve 3D scaffolds. Scaffolds must provide a balance of shape, biomechanical function and biocompatibility in order to achieve tissue replacement success. Different tissues can have different requirements for success, which has led to the development of various materials with unique characteristics. Articular cartilage scaffolds have the most robust clinical experience, with many scaffolds, mostly constructed of natural materials, showing promise, but levels of success vary. Tendon scaffolds also have proven clinical applications, with human-dermis-derived scaffolds showing the most potential. Synthetic and naturally derived meniscus scaffolds have been investigated in few clinical studies, but the results are encouraging. Bone scaffolds are limited to amorphous pastes and putties, owing to difficulties achieving adequate vascularization and biomechanical optimization. The complex physiological function and vascular demands of skeletal muscle have limited the widespread clinical use of scaffolds for engineering this tissue. Continued progress in preclinical study, not only of scaffolds, but also of other facets of tissue engineering, should enable the successful translation of musculoskeletal tissue engineering solutions to the clinic. PMID:25776947

  18. 3D Printing of Scaffolds for Tissue Regeneration Applications

    PubMed Central

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  19. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering.

    PubMed

    Eslami, Maryam; Vrana, Nihal Engin; Zorlutuna, Pinar; Sant, Shilpa; Jung, Sungmi; Masoumi, Nafiseh; Khavari-Nejad, Ramazan Ali; Javadi, Gholamreza; Khademhosseini, Ali

    2014-09-01

    Heart valve-related disorders are among the major causes of death worldwide. Although prosthetic valves are widely used to treat this pathology, current prosthetic grafts cannot grow with the patient while maintaining normal valve mechanical and hemodynamic properties. Tissue engineering may provide a possible solution to this issue through using biodegradable scaffolds and patients' own cells. Despite their similarity to heart valve tissue, most hydrogel scaffolds are not mechanically suitable for the dynamic stresses of the heart valve microenvironment. In this study, we integrated electrospun poly(glycerol sebacate) (PGS)-poly(ɛ-caprolactone) (PCL) microfiber scaffolds, which possess enhanced mechanical properties for heart valve engineering, within a hybrid hydrogel made from methacrylated hyaluronic acid and methacrylated gelatin. Sheep mitral valvular interstitial cells were encapsulated in the hydrogel and evaluated in hydrogel-only, PGS-PCL scaffold-only, and composite scaffold conditions. Although the cellular viability and metabolic activity were similar among all scaffold types, the presence of the hydrogel improved the three-dimensional distribution of mitral valvular interstitial cells. As seen by similar values in both the Young's modulus and the ultimate tensile strength between the PGS-PCL scaffolds and the composites, microfibrous scaffolds preserved their mechanical properties in the presence of the hydrogels. Compared to electrospun or hydrogel scaffolds alone, this combined system may provide a more suitable three-dimensional structure for generating scaffolds for heart valve tissue engineering. PMID:24733776

  20. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.