Science.gov

Sample records for andira fraxinifolia benthan

  1. Purification of a thermostable antinociceptive lectin isolated from Andira anthelmia.

    PubMed

    Nascimento, Kyria Santiago; Nascimento, Francisco Lucas Faustino do; Silva, Mayara Torquato Lima; Nobre, Camila Bezerra; Moreira, Cleane Gomes; Brizeno, Luiz André Cavalcante; da Ponte, Edson Lopes; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa

    2016-06-01

    Andira anthelmia (tribe Dalbergieae), a plant from Brazilian Amazon, possesses a seed lectin that was purified by affinity chromatography in sepharose-mannose. This novel Dalbergieae lectin, named AAL, agglutinated rabbit erythrocytes treated with trypsin. The hemagglutinating activity of AAL was maintained after incubation at a wide range of temperature (40 to 70 °C) and pH, was shown to be dependent on divalent cations, and was inhibited by d-mannose and d-sucrose. AAL showed an electrophoretic profile in sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to other lectins of the tribe Dalbergieae, presenting a double band of molecular weight with approximately 20 kDa and other minor bands of 17, 15, and 13 kDa, being the smaller fragment glycosylated. AAL injected by intravenous route in mice showed antinociceptive activity in two behavioral tests (writhing and formalin). In the writhing test induced by acetic acid, AAL showed inhibitory effect at 0.01 mg/kg (68%), 0.1 mg/kg (46%) and 1 mg/kg (74%). In the formalin test, AAL (0.1 mg/kg) inhibited by 48% the licking time in the inflammatory phase, an effect that was recovered by the lectin association with mannose. In conclusion, AAL presents analgesic effect involving the lectin domain via peripheral mechanisms of inflammatory nociception. This activity highlights the importance of lectins as tools to be used for understanding the interaction of protein-carbohydrate in processes associated to inflammatory pain. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26638121

  2. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    SciTech Connect

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; Kyrpides, Nikos; Reeve, Wayne

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  3. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE PAGESBeta

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; et al

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  4. Pollen grain morphology of Fabaceae in the Special Protection Area (SPA) Pau-de-Fruta, Diamantina, Minas Gerais, Brazil.

    PubMed

    Luz, Cynthia F P da; Maki, Erica S; Horák-Terra, Ingrid; Vidal-Torrado, Pablo; Mendonça Filho, Carlos Victor

    2013-01-01

    The presented paper considered the pollen morphology of thirteen species belonging to seven genera of the Fabaceae family occurring in the Pau-de-Fruta Special Protection Area (SPA), Diamantina, state of Minas Gerais, Brazil. The pollen grains of six species of Chamaecrista [C. cathartica (Mart.) H.S. Irwin & Barneby, C. debilis Vogel, C. flexuosa (L.) Greene, C. hedysaroides (Vogel) H.S. Irwin & Barneby, C. glandulosa (L.) Greene, and C. papillata H.S. Irwin & Barneby] have a similar morphology, characterized by three long colporated apertures with a central constriction. The species share specific morphological features regarding pollen size, endoaperture type (circular, lalongate or lolongate) and SEM ornamentation patterns of the exine (rugulate with perforations or perforate). Andira fraxinifolia Benth., Dalbergia miscolobium Benth, Galactia martii DC, Periandra mediterranea (Vell.) Taub., Senna rugosa (G.Don) H.S. Irwin & Barneby and Zornia diphylla (L.) Pers showed different pollen types in small to large size; oblate spheroidal to prolate form; colpus or colporus apertures; circular, lalongate or lolongate endoapertures and distinctive SEM ornamentation patterns of the exine (perforate, microreticulate, reticulate or rugulate with perforations). Only Stryphnodendron adstringens (Mart.) Coville presents polyads. The pollen morphology variation of these species allowed the Fabaceae family to be characterized as eurypalynous in the SPA Pau-de-Fruta. PMID:24346795

  5. Decline in Bee Diversity and Abundance from 1972-2004 in a Flowering Leguminous Tree, Andira inermis in Costa Rica at the Interface of Disturbed Dry Forest and the Urban Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term monitoring of bees in specific sites provides information on changes in diversity and abundance, especially in areas close to human habitation. Evaluations of this monitoring data combined with relevant measures of anthropogenic activity can aide in interpreting emerging patterns of bee p...

  6. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes.

    PubMed

    Ramos, Gustavo; de Lima, Haroldo Cavalcante; Prenner, Gerhard; de Queiroz, Luciano Paganucci; Zartman, Charles E; Cardoso, Domingos

    2016-04-01

    Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology. PMID:26748266

  7. RRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica.

    PubMed

    Parker, Matthew A

    2004-05-01

    Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events. PMID:15214639

  8. Zinc and Liming Effects on the Development of Cerrado Forest Species

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Soares, M. R.; Moraes, M. I. M.

    2012-04-01

    The Brazilian Cerrado is considered priority area for conservation of biodiversity. The biome has covered approximately 33% of the territory of the State of São Paulo, but, currently, there are isolated fragments of Cerrado that correspond to less than 7% of its original area. One of the consequences of the natural vegetation removal and soil degradation is the loss of fertility, reduction the nutrient content. There is limited knowledge of the nutritional requirements of native forest species from Cerrado, especially about micronutrients. The aims of this work are: (i) verify the influence of four levels of Zn in soil and three levels of liming on development of six forest species native to the Cerrado biome; (ii) assess Zn deficiency symptoms in native species of Savannah. The treatments were four levels of Zn (0.0; 2.0; 4.0;-1 6.0 kg ha of Zn) and three levels of base saturation (V% = natural, V% = 50% and V% = 70%), cultivated in green house. The forest species studied have different responses to soil correction and fertilization, and were not observed responses regarding biometric parameters (growth in height and dry matter) with respect to the correction of base saturation and soil fertilization with Zn, for seedlings of Tabebuia aurea, Eugenia dysenterica and Astronium graveolens, showing that these species are highly adapted to the conditions of low fertility and showing efficient physiology for Zn absorption, since there was satisfactory growth in conditions of low base saturation (36%), very low content of Zn in soil (0.3 mg dm-3 ) and ideal supply of other nutrients. The species Andira cuyabensis and Anacardium giganteum responded well to fertilization and soil remediation. The omission of Zn resulted in visual symptoms of nutritional deficiency only for the species Tabebuia aurea, Astronium graveolens and Anacardium giganteum. The content of Zn presented significance interaction between Zn doses and V% for species Hymenaea courbaril, Tabebuia aurea and

  9. Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    An all sky map of the apparent temperature and optical depth of thermal dust emission is constructed using the Planck-HFI (350μm to 2 mm) andIRAS(100μm) data. The optical depth maps are correlated with tracers of the atomic (Hi) and molecular gas traced by CO. The correlation with the column density of observed gas is linear in the lowest column density regions at high Galactic latitudes. At high NH, the correlation is consistent with that of the lowest NH, for a given choice of the CO-to-H2 conversion factor. In the intermediate NH range, a departure from linearity is observed, with the dust optical depth in excess of the correlation. This excess emission is attributed to thermal emission by dust associated with a dark gas phase, undetected in the available Hi and CO surveys. The 2D spatial distribution of the dark gas in the solar neighbourhood (|bII| > 10°) is shown to extend around known molecular regions traced by CO. The average dust emissivity in the Hi phase in the solar neighbourhood is found to be τD/NHtot = 5.2×10-26 cm2 at 857 GHz. It follows roughly a power law distribution with a spectral index β = 1.8 all the way down to 3 mm, although the SED flattens slightly in the millimetre. Taking into account the spectral shape of the dust optical depth, the emissivity is consistent with previous values derived fromFIRAS measurements at high latitudes within 10%. The threshold for the existence of the dark gas is found at NHtot = (8.0±0.58)×1020 H cm-2 (AV = 0.4mag). Assuming the same high frequency emissivity for the dust in the atomic and the molecular phases leads to an average XCO = (2.54 ± 0.13) × 1020 H2 cm-2/(K km s-1). The mass of dark gas is found to be 28% of the atomic gas and 118% of the CO emitting gas in the solar neighbourhood. The Galactic latitude distribution shows that its mass fraction is relatively constant down to a few degrees from the Galactic plane. A possible explanation for the dark gas lies in a dark molecular phase, where