Science.gov

Sample records for anechoic chamber facility

  1. An anechoic chamber facility for investigating aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.

    1972-01-01

    The aerodynamic noise facility was designed to be used primarily for investigating the noise-generating mechanisms of high-temperature supersonic and subsonic jets. The facility consists of an anechoic chamber, an exhaust jet silencer, instrumentation equipment, and an air heater with associated fuel and cooling systems. Compressed air, when needed for jet noise studies, is provided by the wind tunnel compressor facility on a continuous basis. The chamber is 8.1 m long, 5.0 m wide, and 3.0 m high. Provisions have been made for allowing outside air to be drawn into the anechoic chamber in order to replenish the air that is entrained by the jet as it flows through the chamber. Also, openings are provided in the walls and in the ceiling for the purpose of acquiring optical measurements. Calibration of the chamber for noise reflections from the wall was accomplished in octave bands between 31.2 Hz and 32 kHz.

  2. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  3. A portable miniature anechoic chamber

    NASA Astrophysics Data System (ADS)

    Lorthioir, Jack; Gavin, Paul

    The portable miniature anechoic chamber (PMAC), a low-cost alternative to a full-size anechoic chamber, is presented. The PMAC is a miniature, enclosed, RF-tight microwave antenna range, which approximates the performance of an indoor range over the C through Ku (G through J)-band frequencies. The small footprint, four by six feet, allows for ease of movement by one person to a test site, indoors or outdoors. The PMAC can be used at I (intermediate)-level to support the operational readiness (OR) requirements of the U.S. Army, Navy or Air Force. In conjunction with the antenna test equipment (ATE), and under TPS control, it can be used for performance verification, fault detection and fault isolation. A typical application using the PMAC in this operating mode is described.

  4. The ARL/FED anechoic chamber

    NASA Astrophysics Data System (ADS)

    Marboe, R. C.; Fitzgerald, J. M.

    1981-08-01

    This report documents the design and acoustic characteristics of the Applied Research Laboratory Department anechoic chamber. It is located on the above-console deck of the Garfield Thomas Water Tunnel situated so as to allow its use in conjunction with the Axial Flow Research Fan (AFRF). The internal free dimensions of the chamber are 2.74 x 3.05 x 1.98 meters (9 x 10 x 6.5 ft.). The sound absorbing walls are composed of polyurethane foam acoustic wedges, air voids, embossed acoustic foam wall lining, plywood and wood frame members. Air intake ducts, baffled and lined with a lead-foam sheet, provide an adequate air volume for the AFRF. Based on measurements of transmission loss and inverse square law, the chamber is considered anechoic for frequencies above 230 Hz and semi-anechoic for lower frequencies.

  5. Almond test body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  6. Anechoic chamber in industrial plants. [construction materials and structural design

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  7. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  8. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  9. Characteristics of an anechoic chamber for fan noise testing

    NASA Technical Reports Server (NTRS)

    Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.

    1977-01-01

    Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.

  10. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  11. Analysis of Anechoic Chamber Testing of the Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Fenigstein, David; Ruf, Chris; James, Mark; Simmons, David; Miller, Timothy; Buckley, Courtney

    2010-01-01

    The Hurricane Imaging Radiometer System (HIRAD) is a new airborne passive microwave remote sensor developed to observe hurricanes. HIRAD incorporates synthetic thinned array radiometry technology, which use Fourier synthesis to reconstruct images from an array of correlated antenna elements. The HIRAD system response to a point emitter has been measured in an anechoic chamber. With this data, a Fourier inversion image reconstruction algorithm has been developed. Performance analysis of the apparatus is presented, along with an overview of the image reconstruction algorithm

  12. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    NASA Technical Reports Server (NTRS)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  13. Design and analysis of a hemi-anechoic chamber at Michigan Technological University

    NASA Astrophysics Data System (ADS)

    Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.

    2005-09-01

    A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.

  14. Design, fabrication, and characterization of an anechoic wind tunnel facility

    NASA Astrophysics Data System (ADS)

    Mathew, Jose

    The design, fabrication, and characterization of an anechoic wind tunnel facility at the University of Florida are presented. The objective of this research is to develop and rigorously characterize an anechoic wind tunnel suitable for detailed aerodynamic and aeroacoustic research. A complete tunnel design methodology is developed to optimize the design of the individual components of the wind tunnel circuit, and modern analysis tools, such as computational fluid dynamics and structural finite element analyses, are used to validate the design. The wind tunnel design is an "L-shaped"open circuit with an open jet test section driven by a 300 HP centrifugal fan. Airflow enters the wind tunnel through a settling duct with a honeycomb section and a set of four screens. An optimized, minimum length (3.05 m) 8:1 contraction accelerates the flow into a rectangular test section that measures 0.74 m by 1.12 m by 1.83 m. Mach number similarity dictates the maximum velocity attainable in the test section to be 76 m/s; thus the maximum Reynolds number based on chord (chord=2/3 span) attainable is in the 3-4 million range. The flow leaving the test section enters an acoustically treated and 2D diffuser that simultaneously provides static pressure recovery and attenuates fan noise. The flow then turns a 90° corner with turning vanes and enters a second diffuser. The flow leaving the second diffuser enters the fan through a transition section. The wind tunnel was characterized rigorously at speeds up to 43 m/s to ensure the quality of the future aerodynamic and aeroacoustic measurements. The overall SPL from 100 Hz--20 kHz ranges from 54.8 dB at 18 m/s to 75.7 dB at 43 m/s. The freestream turbulence level has a value of 0.035%, and the flow non uniformity in the test section was found to be < 0.7% for a test section speed of 17 m/s. The outcome of this work is an anechoic wind tunnel with excellent flow quality, low background noise, and the largest Reynolds number capability among university-scale anechoic facilities in the US.

  15. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  16. Reduction of fan noise in an anechoic chamber by reducing chamber wall induced inlet flow disturbances

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Mackinnon, M. J.; Woodward, R. P.

    1978-01-01

    The difference between the flight and ground static noise of turbofan engines has been identified as a significant problem in engine noise testing. The additional noise for static testing has been attributed to inlet flow disturbances or turbulence interacting with the fan rotor. In an attempt to determine a possible source of inflow disturbances entering fans tested in the Lewis Research Center anechoic chamber the inflow field was studied using potential flow analysis. These potential flow calculations indicated that there was substantial flow over the wall directly behind the fan inlet that could produce significant inflow disturbances. Fan noise tests were run with various extensions added to the fan inlet to move the inlet away from this backwall and thereby reduce the inlet flow disturbances. Significant noise reductions were observed with increased inlet length. Over 5 dB reduction of the blade passage tone sound power level was observed between the shortest and longest inlets at 90% fan speed and the first overtone was reduced 9 dB. High frequency broadband noise was also reduced.

  17. Reduction of fan noise in an anechoic chamber by reducing chamber wall induced inlet flow disturbances

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Mackinnon, M. J.; Woodward, R. P.

    1978-01-01

    The difference between the flight and ground static noise of turbofan engines presents a significant problem in engine noise testing. The additional noise for static testing has been attributed to inlet flow disturbances or turbulence interacting with the fan rotor. In an attempt to determine a possible source of inflow disturbances entering fans tested in the Lewis Research Center anechoic chamber, the inflow field was studied using potential flow analysis. These potential flow calculations indicated that there was substantial flow over the wall directly behind the fan inlet that could produce significant inflow disturbances. Fan noise tests were run with various extensions added to the fan inlet to move the inlet away from this backwall and thereby reduce the inlet flow disturbances. Significant noise reductions were observed with increased inlet length. Over 5 db reduction of the blade passage tone sound power level was observed between the shortest and longest inlets at 90% fan speed and the first overtone was reduced 9 db. High frequency broadband noise was also reduced.

  18. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    SciTech Connect

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Barnett, L. R.; Chu, K. R.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.

    2014-08-15

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  19. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  20. Effect of inflow control on inlet noise of a cut-on fan. [in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.

    1980-01-01

    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

  1. Calibration of the Ames Anechoic Facility. Phase 1: Short range plan

    NASA Technical Reports Server (NTRS)

    Hickey, D.; Soderman, P. T.; Karamcheti, K.; Koutsoyannis, S. P.; Hopkins, R.; Mclachlan, B.

    1980-01-01

    A calibration was made of the acoustic and aerodynamic characteristics of a small, open-jet wind tunnel in an anechoic room. The jet nozzle was 102 mm diameter and was operated subsonically. The anechoic-room dimensions were 7.6 m by 5.5 m by 3.4 m high (wedge tip to wedge tip). Noise contours in the chamber were determined by various jet speeds and exhaust collector positions. The optimum nozzle/collector separation from an acoustic standpoint was 2.1 m. Jet velocity profiles and turbulence levels were measured using pressure probes and hot wires. The jet was found to be symmetric, with no unusual characteristics. The turbulence measurements were hampered by oil mist contamination of the airflow.

  2. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    NASA Astrophysics Data System (ADS)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  3. Effectiveness of an inlet flow turbulence control device to simulate flight noise fan in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis anechoic chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results show about a 5 db reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device, the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  4. Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis Anechoic Chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results showed about a 5 dB reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  5. Near-Far Field Corrections in the Measurement of an Interferometric Two-Dimensional Radiometer in Anechoic Chambers

    NASA Astrophysics Data System (ADS)

    Selva Valero, Daniel

    In 2006 the two-dimensional interferometric radiometer MIRAS will be launched in a satellite by ESA. MIRAS is a Y-shaped array of 64 antennas that provides a radiometric resolution of 1K and a spatial resolution of 10-20Km, a perfect performance for Earth Observation. For the first time it will be taking global direct measures of soil moisture and ocean salinity for three years. Since these parameters are of main importance in weather prediction, they are very useful in studies of Climatic change. Aperture synthesis radiometers reach the same performance than total power ones, but with a major advantage: a much lower mass. This kind of passive radar provides measures of the cross-correlations between each pair of antennas in the array, being each correlation a sample of the visibility function. The brightness temperature distribution can be obtained by Inverse Fourier transform of the visibility function. The image of the brightness temperature will be processed in order to obtain the soil moisture and the ocean salinity. Before the launching a hard work on design and testing the instrument has to be done. Software simulators are necessary to design and predict the behavior of the instrument, but once the instrument is developed, a prototype must be built and all the features have to be tested in anechoic chambers and natural scenarios. When the instrument will be in orbit it will be in far-field from the earth, but this doesn't apply in the chamber. Although it is true that the target is in far-field from every element of the antenna, it is not far enough from the array to consider far-field from the set of antennas. Hence, some corrections must be done in order to transform the results obtained in near-field to the ones that would be obtained in far field. The main contribution of this paper is the expression of the corrections that we must apply to make the measures in anechoic chambers.

  6. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  7. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  8. Electromagnetic Radiation (EMR) coupling to complex systems : aperture coupling into canonical cavities in reverberant and anechoic environments and model validation.

    SciTech Connect

    Charley, Dawna R.; Higgins, Matthew B.

    2007-12-01

    Mode-stirred chamber and anechoic chamber measurements were made on two sets of canonical test objects (cylindrical and rectangular) with varying numbers of thin slot apertures. The shielding effectiveness was compared to determine the level of correction needed to compensate the mode-stirred data to levels commensurate with anechoic data from the same test object.

  9. A multiple sampling ionization chamber for the External Target Facility

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  10. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  11. The Kevlar-walled anechoic wind tunnel

    NASA Astrophysics Data System (ADS)

    Devenport, William J.; Burdisso, Ricardo A.; Borgoltz, Aurelien; Ravetta, Patricio A.; Barone, Matthew F.; Brown, Kenneth A.; Morton, Michael A.

    2013-08-01

    The aerodynamic and acoustic performance of an anechoic wind tunnel test section with walls made from thin Kevlar cloth have been measured and analyzed. The Kevlar test section offers some advantages over a conventional free-jet arrangement. The cloth contains the bulk of the flow but permits the transmission of sound with little loss. The containment results in smaller far-field aerodynamic corrections meaning that larger models can be tested at higher Reynolds numbers. The containment also eliminates the need for a jet catcher and allows for a much longer test section. Model-generated noise is thus more easily separated from facility background using beamforming. Measurements and analysis of acoustic and aerodynamic corrections for a Kevlar-walled test section are presented and discussed, along with benchmark trailing edge noise measurements.

  12. Mode-Stirred Method Implementation for HIRF Susceptibility Testing and Results Comparison with Anechoic Method

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen, Sandra V.

    2001-01-01

    This paper describes the implementation of mode-stirred method for susceptibility testing according to the current DO-160D standard. Test results on an Engine Data Processor using the implemented procedure and the comparisons with the standard anechoic test results are presented. The comparison experimentally shows that the susceptibility thresholds found in mode-stirred method are consistently higher than anechoic. This is consistent with the recent statistical analysis finding by NIST that the current calibration procedure overstates field strength by a fixed amount. Once the test results are adjusted for this value, the comparisons with the anechoic results are excellent. The results also show that test method has excellent chamber to chamber repeatability. Several areas for improvements to the current procedure are also identified and implemented.

  13. Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Calvisi, Michael L.; Sun, Sidney C.

    1991-01-01

    The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.

  14. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  15. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  16. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  17. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments. PMID:18593229

  18. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  19. The vacuum chambers for the VUV SASE FEL at the TESLA test facility (TFF FEL) at DESY.

    SciTech Connect

    Den Hartog, P. K.; Erdmann, M.; Hahn, U.; Pfluger, J.; Ruter, M.; Trakhtenberg, E. M.; Wiemerslage, G.; Xu, S.

    1999-04-20

    A vacuum chamber for the VW SASE FEL undulatory at the TESLA Test Facility (TTF) was designed, a prototype was built and tested, and seven complete chambers were manufactured. The chambers use the aluminum extrusion technology developed for the insertion device vacuum chambers of the Advanced Photon Source. Each chamber is 4.5 m long with a beam aperture of 9.5 mm and an external thickness of 11.5 mm. Three of the chambers include ports for integral beam position monitors (10 horizontal and vertical pairs) inserted into the chambers, and all of the chambers include grooves for mounting correction coils. Bimetallic flanges (stainless steel to aluminum) are welded to the ends of the chamber for connection to the beamline. Special processing was performed to meet the stringent vacuum and particle-free requirements of the TTF.

  20. Performance of a drift chamber system for the time projection chamber detector facility at PEP - The PEP-4 TPC collaboration

    SciTech Connect

    Aihara, H.; Alston-Garnjost, M.; Badtke, D.H.; Bakken, J.A.; Barbaro-Galtieri, A.; Barnes, A.V.; Barnett, B.A.; Blumenfeld, B.

    1983-02-01

    A system of two cylindrical drift chambers has been designed and constructed to trigger the Time Projection Chamber and to assist in tracking and momentum reconstruction. Performance of these chambers has been studied with data collected from cosmic rays and actual e/sup +/e/sup -/ collisions during recent experimental runs.

  1. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  2. Ion-chamber-based loss monitor system for the Los Alamos Meson Physics Facility

    SciTech Connect

    Plum, M.A.; Brown, D.; Browman, A.; Macek, R.J.

    1995-05-01

    A new loss monitor system has been designed and installed at the Los Alamos Meson Physics Facility (LAMPF). The detectors are ion chambers filled with N{sub 2} gas. The electronics modules have a threshold range of 1:100, and they can resolve changes in beam loss of about 2% of the threshold settings. They can generate a trip signal in 2 {mu}s if the beam loss is large enough; if the response time of the Fast Protect System is included the beam will be shut off in about 37 {mu}s.

  3. New acoustic test facility at Georgia Tech

    NASA Astrophysics Data System (ADS)

    Biesel, Van; Cunefare, Kenneth

    2002-11-01

    Georgia Tech's Integrated Acoustics Laboratory (IAL) is a state of the art research facility dedicated to the study of acoustics and vibration. The centerpiece of the laboratory is a 24 ft x24 ft x20 ft full anechoic chamber, which has been in operation since 1998. The IAL is currently expanding to include a reverberation room and hemi-anechoic chamber, designed and built by Acoustic Systems. These two chambers will be joined by an 8 ft x8 ft transmission loss opening, allowing for a detailed measurement and analysis of complex barriers. Both chambers will accommodate vehicles and similarly large structures. The reverberation room will have adequate volume for standardized absorption measurements. Each chamber will be equipped with dedicated multichannel data acquisition systems and instrumentation for the support of simultaneous research in all areas of the laboratory. The new test chambers are funded by a grant from the Ford Motor Company and are planned to be completed and fully functional by 1 January 2003.

  4. Evaluation of Radiated Transfer Functions of a Fuselage Model in an Anechoic and in a Reverberating Radio Frequency Environment

    NASA Astrophysics Data System (ADS)

    Rasek, G. A.; Loos, S. E.; Neubauer, M.; Junqua, I.; Schröder, A.; Pascual-Gil, E.

    2012-05-01

    In an anechoic chamber and in a reverberation chamber Radio Frequency (RF) fields are generated to illuminate a fuselage model. The fields coupled into the fuselage model are assessed. This is done by measurement and numerical computer modelling. For the numerical com- puter modelling fundamentally different approaches are applied with entirely independent model generation. The experimental and numerical results for the two different RF Environments are provided and compared. Aim is to characterize both RF environments for a radiated trans- fer function task and compare experimental and different numerical results to each other.

  5. Flat-walled multilayered anechoic linings: Optimization and application

    NASA Astrophysics Data System (ADS)

    Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.

    2005-11-01

    The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.

  6. Tri-component phononic crystals for underwater anechoic coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2007-07-01

    Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band.

  7. SHIELDING ANALYSIS FOR X-RAY SOURCES GENERATED IN TARGET CHAMBER OF THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Khater, H Y; Brereton, S J; Singh, M S

    2008-03-27

    Prompt doses from x-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility (NIF). The maximum dose outside a Target Chamber diagnostic port is {approx} 1 rem for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (8 laser beams) drops to {approx} 40 mrem. Doses calculated outside the Target Bay doors and inside the Switchyards (except for the 17 ft.-6 in. level) range from a fraction of mrem to about 11 mrem for 192 beams, and scales down proportionally with smaller number of beams. At the 17ft.-6 in. level, two diagnostic ports are directly facing two of the Target Bay doors and the maximum doses outside the doors are 51 and 15.5 mrem, respectively. Shielding each of the two Target Bay doors with 1/4 in. Pb reduces the dose by factor of fifty. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the Switchyards.

  8. Diving accidents treated at a military hospital-based recompression chamber facility in Peninsular Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Halim, M Abd; Zin, B Mohd; Sulaiman, A

    2008-06-01

    This paper describes the pattern of diving accidents treated in a military hospital-based recompression chamber facility in Peninsular Malaysia. A retrospective study was carried out to utilize secondary data from the respective hospital medical records from 1st January 1996 to 31st December 2004. A total of 179 cases categorized as diving accidents received treatment with an average of 20 cases per year. Out of 179 cases, 96.3% (n = 173) received recompression treatment. Majority were males (93.3%), civilians (87.2%) and non-Malaysian citizens (59.2%). Commercial diving activities contributed the highest percentage of diving accidents (48.0%), followed by recreational (39.2%) and military (12.8%). Diving accidents due to commercial diving (n = 86) were mainly contributed by underwater logging activities (87.2%). The most common cases sustained were decompression illness (DCI) (96.1%). Underwater logging and recreational diving activities which contribute to a significant number of diving accidents must be closely monitored. Notification, centralised data registration, medical surveillance as well as legislations related to diving activities in Malaysia are essential to ensure adequate monitoring of diving accidents in the future. PMID:18942290

  9. University of Missouri-Rolla cloud simulation facility - Proto II chamber

    NASA Technical Reports Server (NTRS)

    White, Daniel R.; Carstens, John C.; Hagen, Donald E.; Schmitt, John L.; Kassner, James L.

    1987-01-01

    The design and supporting systems for the cooled-wall expansion cloud chamber, designated Proto II, are described. The chamber is a 10-sided vertical cylinder designed to be operated with interior wall temperatures between +40 and -40 C, and is to be utilized to study microphysical processes active in atmospheric clouds and fogs. Temperatures are measured using transistor thermometers which have a range of + or - 50 C and a resolution of about + or - 0.001 C; and pressures are measured in the chamber by a differential strain gauge pressure transducer. The methods used for temperature and pressure control are discussed. Consideration is given to the chamber windows, optical table, photographic/video, optical attenuation, Mie scattering, and the scanning system for the chamber. The system's minicomputer and humidifier, sample preparation, and chamber flushing are examined.

  10. Ventilation characterization of the Consumer Product Safety Commission combustion test chamber facility. Final report

    SciTech Connect

    Dols, W.S.

    1990-09-01

    The Consumer Product Safety Commission (CPSC) is evaluating pollutant emissions from kerosene and methane heaters using a test chamber. Under an interagency agreement with CPSC, the Indoor Air Quality and Ventilation Group of the National Institute of Standards and Technology (NIST) measured the air exchange rate of the chamber under various ventilation system operating conditions, the extent of air mixing within the chamber, and the interior volume of the chamber. The air exchange rate of the chamber was determined using the tracer gas decay method with sulfur hexafluoride as the tracer gas. Carbon dioxide was also used as a tracer gas in order to verify the decay rates obtained with the SF6 system; however CO2 could not be used during combustion tests. The effect of pollutant monitoring systems and combustion devices on air exchange rates was also examined. Based on multi-point concentration measurements during decays, the extent of mixing within the chamber appeared to be adequate to employ the single-zone tracer gas decay method. The interior air volume of the chamber was determined using the constant injection tracer gas technique and yielded a volume very close to the volume based on the physical dimensions of the chamber. Recommendations for an air exchange rate measurement system for the chamber and modifications to be made in order to more effectively utilize the system are made.

  11. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    SciTech Connect

    Arneodo, F.; Cavanna, F.; Mitri, I. De; Mortari, G. Piano; Benetti, P.; Borio di Tigliole, A.; Calligarich, E.; Cesana, E.; Dolfini, R.; Mauri, F.; Montanari, C.; Rappoldi, A.; Raselli, G. L.; Rubbia, C.; Terrani, M.; Vignoli, C.; Bonesini, M.; Boschetti, B.; Cavalli, D.; Curioni, A.

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  12. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  13. Processing of Prosthetic Heart Valve Sounds from Anechoic Tank Measurements

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-03-20

    People with serious cardiac problems have had their life span extended with the development of the prosthetic heart valve. However, the valves operate continuously at approximately 39 million cycles per year and are therefore subject to structural failures either by faulty design or material fatigue. The development of a non-invasive technique using an acoustic contact microphone and sophisticated signal processing techniques has been proposed and demonstrated on limited data sets. In this paper we discuss an extension of the techniques to perform the heart valve tests in an anechoic like. Here the objective is to extract a ''pure'' sound or equivalently the acoustical vibration response of the prosthetic valves in a quiet environment. The goal is to demonstrate that there clearly exist differences between values which have a specific mechanical defect known as single leg separation (SLS) and non-defective valves known as intact (INT). We discuss the signal processing and results of anechoic acoustic measurements on 50 prosthetic valves in the tank. Finally, we show the results of the individual runs for each valve, point out any of the meaningful features that could be used to distinguish the SLS from INT and summarize the experiments.

  14. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  15. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  16. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber wall acts as the primary heat exchanger. During removal, gas is pumped through the laser ports by turbo molecular-drag pumps (TM-DP). For the purpose of reducing organic based lubricants and seals, a magnetically levitated TM-DP is being investigated with pump manufacturers. Currently, magnetically levitated turbo molecular pumps are commercially available. The pumps will be exposed to thermal loads and ionizing radiation (tritium, Ar-41, post detonation neutrons). Although the TM-DP's will be subjected to these various radiations, current designs for similar pumping devices have been hardened and have the ability of locating control electronics in remote radiation shielded enclosures4. The radiation hardened TM-DP's will be 5 required to operate with minimal maintenance for periods of up to 18 continuous months. As part of this initial investigation for developing a conceptual engineering strategy for a gas fill solution, commercial suppliers of low pressure gas pumping systems have been contacted and engaged in this evaluation. Current technology in the area of mechanical pumping systems indicates that the development of a robust pumping system to meet the requirements of the FTF gas fill concept is within the limits of COTS equipment3,4.

  17. Directional loudness of narrow-band noises in an anechoic sound field

    NASA Astrophysics Data System (ADS)

    Sivonen, Ville P.; Ellermeier, Wolfgang

    2001-05-01

    In order to investigate the effect of sound incidence angle on loudness across a larger set of parameters than have been used in most previous studies, a listening experiment was carried out using a loudspeaker setup in an anechoic chamber. Eight subjects, whose absolute hearing thresholds and head-related transfer functions (HRTFs) were measured, participated in a total of 22 sessions each. On each trial their task was to judge which of two narrow-band noises sounded louder. These judgments were used in an adaptive procedure to find loudness matches between a frontal reference location and seven other sources, positioned both in the horizontal and median planes. Sound incidence angle, center frequency, and overall SPL were varied in the procedure. The results show that loudness is not constant over sound incidence angles, with matches varying over a range of 10 dB, and showing considerable frequency dependency. The pattern of results also varies substantially between subjects, but can be accounted for by interindividual variations in the listeners' HRTFs. [Work Kjær Sound & Vibration Measurement A/S.

  18. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation.

    PubMed

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-05-01

    The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1, and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based on the at-ear signals favored a sound-power summation model, according to which the maximum binaural gain is only 3 dB, over competing models based on larger gains, or on the summation of monaural loudness indices. PMID:16708953

  19. Analysis of absorption performances of anechoic layers with steel plate backing.

    PubMed

    Meng, Hao; Wen, Jihong; Zhao, Honggang; Lv, Linmei; Wen, Xisen

    2012-07-01

    Rubber layers with air-filled cavities or local resonance scatters can be used as anechoic coatings. A lot of researches have focused on the absorption mechanism of the anechoic coatings. As the anechoic coatings are bonded to the hull of submarine, the vibration of the hull should not be neglected when the analysis of the absorption characters is carried out. Therefore, it is more reasonable to treat the anechoic coating and the backing as a whole when the acoustic performance is analyzed. Considering the effects of the steel plate backing, the sound absorption performances on different models of anechoic coatings are investigated in this paper. The Finite Element Method is used to illustrate the vibrational behaviors of the anechoic coatings under the steel backings by which the displacement contours is obtained for analysis. The theoretical results show that an absorption peak is induced by the resonance of the steel slab and rubber layer. At the frequency of this absorption peak, the steel plate and the coating vibrates longitudinally like a mass-spring system in which the steel slab serves for mass and the coating layer is the spring. To illuminate the effects of the steel slab backing on the acoustic absorption, the thicknesses of the steel slab and the anechoic layer are discussed. Finally, an experiment is performed and the results show a good agreement with the theoretical analysis. PMID:22779456

  20. Venus Pressure Chamber: A Small Testing Facility Available to the Community

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M.; Wegel, D. C.

    2011-01-01

    Venus is an inhospitable planet where the surface mean. temperature is approximately 740K and the global mean pressure is approximately 95 bars. The atmosphere is comprised mostly of CO2 (approximately 96.5%) and N2 (approximately3.5%) with trace amounts of CO and other reactive gases. Although Venus is very similar in size and mass with the Earth and is Earth's nearest planetary neighbor, it has not received many visitors from Earth, especially those that can land on the surface. The challenge most often cited for this scarcity of surface probes is the workability/survivability of instruments and equipment in Venus' harsh environment. In order to overcome this obstacle, a small pressure chamber has been acquired for use by the scientific community. It is housed at Goddard Space. Flight Center in Maryland and is available to the community for testing of small flight components, instruments and short-term experiments that require high temperatures and pressures.

  1. Development and tests of interferometry facility in 6-m diameter radiometer thermal vacuum chamber in Tsukuba Space Center

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Katayama, Haruyoshi; Naitoh, Masataka; Imai, Tadashi; Miyamoto, Masashi; Maruyama, Kenta; Kaneda, Hidehiro; Tange, Yoshio; Nakagawa, Takao

    2010-07-01

    We present a test of optical metrology for 800-mm spaceborne optics in the 6-m radiometer thermal vacuum chamber at JAXA's Tsukuba Space Center of JAXA. Under the framework of the JAXA's large-optics study program for astronomy and Earth observations, we developed a test bench for interferometric metrology of large optics with an auto-collimation method in the chamber. The optical system was aligned in a horizontal light-axis configuration within the facility limit to handle a 3.5-m aperture telescope like SPICA. A high-speed interferometer was contained in an aluminum and titanmade pressure vessel, which was mounted on the five-axis stage. We tested the 800-mm lightweight C/SiC optics using a 900-mm diameter flat mirror. Alignment changes in tilts of about ten arcseconds were observed as pressure went down from 1 atm to vacuum. After we re-aligned the interferometer and flat mirror, the wavefronts through the optics under vacuum were observed to increase in astigmatism aberration by 0.07?RMS at ?=633nm from under atmosphere, which might be caused by a deformation in the test optics or flat mirror.

  2. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  3. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.

  4. Comparison of particle velocity and sound pressure measurements in anechoic and medfly bioassay chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects without tympanal ears do not perceive the pressure component of sound, but instead have movement receptors (usually small hairs on body or antennae) that are sensitive to sound particle velocity -- oscillations of air particles in the sound field. In our laboratory, efforts to develop...

  5. Sound absorption of a rib-stiffened plate covered by anechoic coatings.

    PubMed

    Fu, Xinyi; Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2015-03-01

    Underwater vehicles are often equipped with anechoic coatings to absorb the sound waves of active sonar and attenuate the noise emitted from the vessels. Rubber layers with periodically distributed air cavities are widely used as anechoic coatings. In this paper, the sound absorption of anechoic coatings embedded with doubly periodic cavities and backed with periodically rib-stiffened plates is investigated using a finite element method (FEM) with Bloch-periodic boundary conditions. Numerical results given by the FEM are compared with those of a simplified transfer impedance approach to explain the shifting of the main absorption peak. Further a simplified FEM approach, which reduces calculation time significantly and maintains the reasonable accuracy, is proposed for a comparison. The results indicate that the plate and the ribs can have significant impacts on the absorption performance of anechoic coatings, especially at low frequencies. PMID:25786965

  6. Ultra-light duct for an anechoic wind tunnel

    NASA Technical Reports Server (NTRS)

    Lambourion, J.; Lewy, S.; Papirnyk, O.; Rahier, G.; Remandet, J.-N.

    1989-01-01

    A tunnel ultra-light (or TUL) is a duct composed of acoustically transparent cloth designed to transform an open-jet wind tunnel into a closed-jet wind tunnel. This concept is of interest (a priori) for anechoic wind tunnels because it improves the aerodynamic quality without hindering the measurement of sound in the far field. A full scale device designed for the 3 m diameter test section of CEPRA 19 was described. The apparatus installation did not develop any significant problems, and the mechanical support turned out to be excellent. Aerodynamic and acoustic tests are discussed. Certain imperfections in the installation as tested - instabilities above 25 m/s and acceptable cloth transmission up to 4kHz were revealed. The system as tested could eventually be used in certain applications, for example, in ground based transport. However, the concept of TUL must be developed further to arrive at a reliable mechanism for use in a large number of applications.

  7. The V-3 contamination test of the chamber A facility and a subsequent cryogenic/vacuum study of the V-3 test quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Tashbar, P. W.

    1973-01-01

    The areas of orbital and ground contamination of flight experiment hardware have been well established. This report relates directly to results of vacuum chamber testing for the ground evaluation of flight experiment hardware performance. First, the data obtained during the V-3 contamination testing in the Johnson Space Center's Chamber A space simulation test facility are presented. Second, during the V-3 contamination tests, the MSFC Space Sciences Laboratory's quartz crystal microbalance exhibited two periods of anomalous readings. Therefore, a subsequent small chamber tests was conducted in a controlled cryogenic/vacuum environment. The objective was to reproduce with known parameters the anomalous behavior patterns of the V-3 test data. Analyses of the anomalous readings are made on the basis of these tests. Additionally, as a by-product of the small chamber tests, calibration curves then existing for the quartz crystal microbalance were empirically extended, and certain data-formatting aids were documented.

  8. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.

  9. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  10. Flow chamber

    DOEpatents

    Morozov, Victor (Manassas, VA)

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  11. Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Bin; Li, Yue; Zhao, Hong-Gang; Wen, Ji-Hong; Wen, Xi-Sen

    2014-10-01

    The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to 10 kHz for normal incidence, and the influence of the incident angle is also discussed.

  12. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  13. Implementation of Rogowski coil and Taylor discharge for ionospheric plasma chamber experiments in the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Rowlands, M.J.; Riddolls, R.J.; Lee, M.C.; Dalrymple, N.; Moriarty, D.

    1996-12-31

    The VTF is a large torus used to simulate ionospheric plasmas. Currently, plasmas can be generated by electron emission from four LaB{sub 6} cathodes, spaced around the bottom of the chamber, by electron cyclotron resonance heating (ECRH) with microwaves injected radially into the chamber from a 3 kilowatt magnetron, and by a Taylor discharge apparatus. Electron beams travel in a helical path till they reach a collector plate at the top of the chamber, and produce plasma currents from 500 to 1,500 amps. Recently, a Rogowski coil has been calibrated to quantitatively measure current in the plasma. A 4.2 meter coil of approximately 5,500 turns encircles the torus vertically. As a changing current goes through the coil, a changing magnetic field is produced perpendicular to each of the coil`s turns. Each turn produces a small voltage, and the sum of all the voltages from all the turns in the coil is proportional to the change in plasma current. The voltage signal is integrated and the result is the plasma current circulating toroidally inside the chamber. Good results measuring electron beam plasma current have been obtained and will be reported on. Continuing work will include measuring alternating current from the Taylor discharge plasma and is hoped to give insight as to how to increase plasma density using the Taylor discharge device.

  14. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  15. A new laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The ? Chamber

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Cantrell, Will; Chang, Kelken; Ciochetto, David; Bench, Jim; Shaw, Raymond

    2015-04-01

    A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. But despite extensive research activity during the last decades these interactions are still poorly understood and ill quantified. For example: Every cloud droplet in Earth's atmosphere (~1025) was catalyzed by a preexisting aerosol particle. While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation, known as activation, requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in the atmosphere is often catalyzed by aerosol particles, either activated or not. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes, but at least two other factors contribute greatly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor or trace gas concentration, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is recognized as one of the major research challenges in cloud physics today. We have developed a multiphase, turbulent reaction chamber - called the ? Chamber because of the internal volume of 3.14 m3 (with cylindical wall installed) - designed to address the open issues outlined above. It is capable of pressures ranging from sea level to ~60 mbar, and can sustain temperatures of +55 to -55

  16. Binaural Simulation Experiments in the NASA Langley Structural Acoustics Loads and Transmission Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Silcox, Richard (Technical Monitor)

    2001-01-01

    A location and positioning system was developed and implemented in the anechoic chamber of the Structural Acoustics Loads and Transmission (SALT) facility to accurately determine the coordinates of points in three-dimensional space. Transfer functions were measured between a shaker source at two different panel locations and the vibrational response distributed over the panel surface using a scanning laser vibrometer. The binaural simulation test matrix included test runs for several locations of the measuring microphones, various attitudes of the mannequin, two locations of the shaker excitation and three different shaker inputs including pulse, broadband random, and pseudo-random. Transfer functions, auto spectra, and coherence functions were acquired for the pseudo-random excitation. Time histories were acquired for the pulse and broadband random input to the shaker. The tests were repeated with a reflective surface installed. Binary data files were converted to universal format and archived on compact disk.

  17. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  18. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  19. Wire chamber

    DOEpatents

    Atac, Muzaffer (Wheaton, IL)

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  20. Ionization chamber

    DOEpatents

    Walenta, Albert H. (Port Jefferson Station, NY)

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  1. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  3. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  4. Quality assurance procedures for environmental control and monitoring in plant growth facilities. Report of the North Central Regional 101 Committee on Growth Chamber Use

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W. (Principal Investigator)

    1986-01-01

    This report includes procedures for ensuring the quality of the environment provided for plant growth in controlled environment facilities. Biologists and engineers may use these procedures for ensuring quality control during experiments or for ensuring quality control in the design of plant growth facilities. Environmental monitoring prior to and during experiments is included in these procedures. Specific recommendations cover control, acquisition, and calibration for sensor types for the separate parameters of radiation (light), temperature, humidity, carbon dioxide, and air movement.

  5. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  6. Equivalent modulus method for finite element simulation of the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate

    NASA Astrophysics Data System (ADS)

    Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2016-03-01

    The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.

  7. A new laboratory facility to study the interactions of aerosols, cloud droplets/ice crystals, and trace gases in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.

    2014-12-01

    A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting instrumentation includes a suite of aerosol generation and characterization techniques, a laser Doppler interferometer, and a holographic cloud particle imaging system.We will present detailed specifications, an overview of the supporting instrumentation, and initial characterization experiments from the Π chamber.

  8. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  9. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  10. Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.

    PubMed

    Filoux, Erwan; Mamou, Jonathan; Aristizábal, Orlando; Ketterling, Jeffrey A

    2011-05-01

    The spatial resolution of high-frequency ultrasound (HFU, >20 MHz) imaging systems is usually determined using wires perpendicular to the beam. Recently, two tissue-mimicking phantoms (TMPs) were developed to estimate three-dimensional (3-D) resolution. Each TMP consists of nine 1-cm-wide slabs of tissue-mimicking material containing randomly distributed anechoic spheres. All anechoic spheres in one slab have the same dimensions, and their diameter is increased from 0.1 mm in the first slab to 1.09 mm in the last. The scattering background for one set of slabs was fabricated using 3.5-?m glass beads; the second set used 6.4-?m glass beads. The ability of a HFU system to detect these spheres against a speckle background provides a realistic estimation of its 3-D spatial resolution. In the present study, these TMPs were used with HFU systems using single-element transducers, linear arrays, and annular arrays. The TMPs were immersed in water and each slab was scanned using two commercial imaging systems and a custom HFU system based on a 5-element annular array. The annular array had a nominal center frequency of 40 MHz, a focal length of 12 mm, and a total aperture of 6 mm. A synthetic-focusing algorithm was used to form images with an increased depth-of-field. The penetration depth was increased by using a linear-chirp signal spanning 15 to 65 MHz over 4 ?s. Results obtained with the custom system were compared with those of the commercial systems (40-MHz probes) in terms of sphere detection, i.e., 3-D spatial resolution, and contrast-to-noise ratio (CNR). Resulting B-mode images indicated that only the linear-array transducer failed to clearly resolve the 0.2-mm spheres, which showed that the 3-D spatial resolution of the single-element and annular-array transducers was superior to that of the linear array. The single-element transducer could only detect these spheres over a narrow 1.5 mm depth-of-field, whereas the annular array was able to detect them to depths of at least 7 mm. For any size of the anechoic spheres, the annular array excited by a chirp-coded signal provided images of the highest contrast, with a maximum CNR of 1.8 at the focus, compared with 1.3 when using impulse excitation and 1.6 with the single-element transducer and linear array. This imaging configuration also provided CNRs above 1.2 over a wide depth range of 8 mm, whereas CNRs would quickly drop below 1 outside the focal zone of the other configurations. PMID:21622055

  11. Graphite transmission ionization chamber

    SciTech Connect

    Austerlitz, C.; Sibata, C.H.; de Almeida, C.E.

    1987-11-01

    A pancake-type transmission chamber made of high-purity graphite and open to the atmosphere has been designed and constructed at the Secondary Standard Dosimetry Laboratory (SSDL-Rio de Janeiro). Tests performed on the chamber following the International Electrotechnical Commission recommendations indicate that its performance characteristics are comparable to those expected from a secondary standard ionization chamber.

  12. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  13. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D. (Evergreen, CO)

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  15. APS storage ring vacuum chamber fabrication

    NASA Astrophysics Data System (ADS)

    Goeppner, George A.

    1991-08-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber deisgn are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described.

  16. TRU waste characterization chamber gloveboxes.

    SciTech Connect

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  17. Space Station Live: Historic Vacuum Chamber to Test Webb Telescope - Duration: 5 minutes, 10 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot recently visited Johnson Space Center’s 400,000 cubic foot vacuum chamber, Chamber A, and spoke with Mary Cerimele, the lab manager for this historic facility.

  18. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  19. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  20. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  1. Lockheed sensor test facility

    NASA Astrophysics Data System (ADS)

    Grammer, J. R.; Forney, P. B.

    1980-01-01

    The general design features of a new low-background infrared sensor test facility which is being installed at Lockheed Missiles and Space Company, Inc. are described. A brief description of the following is given: the facility layout, clean room facility, vacuum chamber, cryo shroud, cryo/vacuum system, optical system, optical control system, infrared sources, and sensors, overall system control and instrumentation.

  2. BOREAS TGB-1 NSA SF6 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  3. Evaluation of Carbon Dioxide Dissipation within a Euthanasia Chamber

    PubMed Central

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P

    2014-01-01

    CO2 euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO2 to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO2 levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO2 dropped to below 10% CO2 within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO2 dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO2 dissipation. We recommend that users allow 2 min for CO2 to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate. PMID:25199098

  4. 16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS VERY CLOSE TO THE WATER'S EDGE AND HERE FOR DIVER EMERGENCY SUPPORT. A MEDICAL STAFF IS LOCATED ON THE MARSHALL SPACE FLIGHT CENTER (MSFC) AND SUPPORTS THE NBS PERSONNEL WHEN HYPERBARIC CHAMBER OPERATION IS NECESSARY. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. OUTDOOR SMOG CHAMBER EXPERIMENTS TO TEST PHOTOCHEMICAL MODELS

    EPA Science Inventory

    The smog chamber facility of the University of North Carolina was used in a study to provide experimental data for developing and testing kinetic mechanisms of photochemical smog formation. The smog chamber, located outdoors in rural North Carolina, is an A-frame structure covere...

  6. High resolution bubble chambers

    SciTech Connect

    Bizzarri, R.

    1984-01-01

    This chapter discusses the performances obtained or to be expected from small bubble chambers with ''classical'' optics (i.e. no holography). LEBC and HOLEBC, two hydrogen chambers, are used. The limits on the accessible cross sections, the limits on the accessible life times, the limits on the resolution, and bubble density are considered. In the experiment with the bubble chamber LEBC, two lenses were used of focal length f=180 mm, open at f/11 and with a space to film demagnification m=3.2. In the experiment with HOLBEC, lenses of f=300 mm at f/17 are used with a demagnification m=.9.

  7. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Beeman, Barton V. (San Mateo, CA); Benett, William J. (Livermore, CA); Hadley, Dean R. (Manteca, CA); Landre, Phoebe (Livermore, CA); Lehew, Stacy L. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  8. OUTDOOR CHAMBER STUDY TO TEST MULTI-DAY EFFECTS. VOLUME 2. ENVIRONMENTAL CHAMBER DATA TABULATIONS

    EPA Science Inventory

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume contains the printouts of all the data that were collected in the study. T...

  9. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  10. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. OUTDOOR CHAMBER STUDY TO TEST MULTI-DAY EFFECTS. VOLUME 1. RESULTS AND DISCUSSION

    EPA Science Inventory

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. Two chambers were used during this program: a 6,400-l indoor Teflon chamber with black...

  12. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  13. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  14. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.

    1986-01-01

    Two aeroacoustic facilities - the CEPRA 19 in France and the DNW in the Netherlands - are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper.

  15. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.

    1986-01-01

    Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);

  16. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  17. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  18. Flame-Test Chamber

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1984-01-01

    Experimental chamber provides controlled environment for observation and measurement of flames propagating in expanding plume of flammable air/fuel mixture under atmospheric conditions. Designed to evaluate quenching capability of screen-type flame arresters in atmospheric vents of fuel cargo tanks aboard marine cargo vessels.

  19. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  20. Metabolic simulation chamber

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work.

  1. A vacuum chamber feedthrough

    NASA Technical Reports Server (NTRS)

    Brown, V. D.

    1973-01-01

    Simple and inexpensive microwave feedthrough has been designed which transfers 130 ns, 5kV pulse into vacuum chamber. Feedthrough may be used over wide range and is adaptable to most coaxial cables, since either multistrand or single strand center conductor cable can be used.

  2. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  3. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  4. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  5. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  6. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  7. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  9. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have few crystals, in contrast to lavas from the same volcanoes. Hence, crystallisation must be a high-level process before eruption. Layering in mafic intrusions has many different origins, but some appears to be the result of crystal settling. If such mineralogical layering is present then so must crystals have been present in the magma. However, it is only necessary that crystals are present in local regions, such as along the floor, walls or roof. All this suggests that most mafic or intermediate magmas in chambers do not have substantial quantities of crystals, except at the peripheries. Felsic (sensu lato) rocks present a rather different story: Although there are many examples of low-crystallinity felsic tuffs and lavas, there are also large ignimbrites with high crystal contents, such as the Fish Canyon tuff. Indeed a 'typical' andesite or dacite is loaded with crystals, generally with long and complex histories. The widespread occurrence of megacrysts in felsic plutonic, and some volcanic, rocks also suggests that crystals are present in magma chambers and can exist for extended periods of time. This would suggest that it is possible, and indeed common, for a felsic magma chamber to have crystals throughout. The difficulty here for differentiation is the high viscosity of such magmas.

  10. Digital optical spark chambers

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Tuska, Evelyn

    1989-01-01

    The authors constructed and tested a prototype digital readout system for optical spark chambers using a linear, solid-state charge-coupled-device detector array. Position resolution of 0.013 mm (sigma) over a 25-cm field of view has been demonstrated. It is concluded that this technique should permit the construction of economical, lightweight and low-power trajectory hodoscopes for use in cosmic-ray instrumentation on balloons and in spacecraft.

  11. Vacuum Chamber Design of NSLS-II Storage Ring

    SciTech Connect

    Doom,L.; Ferreira, M.; Hseuh, H. C.; Lincoln, F.; Longo, C.; Ravindranath, V.; Sharma, S.

    2008-06-11

    National Synchrotron Light Source II (NSLS II) will be a 3-GeV, 792-meter circumference, 3rd generation synchrotron radiation facility, with ultra low emittance and extremely high brightness. the storage ring has 30 Double-Bend-Achromatic (DBA) cells. in each cell, there are five magnets and chamber girders, and one straight section for insertion devices or Radio Frequency (RF) cavities or injection. Most vacuum chambers are made from extruded aluminum with two different cross sections: one fitted in the dipole magnets, and the other surrounded by multipole magnets. They discuss the layout of the DBA cells, the detailed design of the cell's vacuum chambers, the mounting of the Beam-Position-Monitor (BPM) buttons, discrete absorbers, lumped pumps and the distributed Non-Evaporable Getter (NEG) strips, and describe the fabrication and testing of these prototype cell chambers. The account also details the development of the chamber bakeout process, the NEG stri's supports, and the RF shielded bellows.

  12. Using the Nova target chamber for high-yield targets

    SciTech Connect

    Pitts, J.H.

    1987-09-28

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10/sup -2/ Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm/sup 2/ on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs.

  13. Decontamination of Phebus Experimental Target Chamber Using Sprayed Foam

    SciTech Connect

    Fournel, B.; Angot, S.; Joyer, P.

    2002-07-01

    Phebus facility was designed in the eighties to lead inertial confinement fusion experiments on deuterium/ tritium targets. It has been decommissioned in 1999. Phebus chamber is an aluminum alloy (5086) sphere of 2,3 m diameter with an inner volume of about 8 m{sup 3}. The thickness of the chamber is about 12 cm. A large number of openings (around 230) were designed on its surface, for diagnostics implementation during experiments. (authors)

  14. A graphite transmission ionization chamber.

    PubMed

    Austerlitz, C; Sibata, C H; de Almeida, C E

    1987-01-01

    A pancake-type transmission chamber made of high-purity graphite and open to the atmosphere has been designed and constructed at the Secondary Standard Dosimetry Laboratory (SSDL-Rio de Janeiro). Tests performed on the chamber following the International Electrotechnical Commission recommendations indicate that its performance characteristics are comparable to those expected from a secondary standard ionization chamber. PMID:3696071

  15. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  16. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D. (Evergreen, CO)

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  17. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  18. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E. (South Setauket, NY); Smith, Graham (Port Jefferson, NY); Mahler, George J. (Rocky Point, NY); Vanier, Peter E. (Setauket, NY)

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  19. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative ejection fraction information of the highest quality. The detection of higher energy gamma rays has proved more problematical, needing a solid photon-electron convertor to be incorporated into the chamber. Several groups have been working on this problem with modest success so far. The only clinical detectors have been developed for positron emission tomography, where thin lead or lead-glass can provide an acceptable convertor for 511 keV photons. Two MWPC positron cameras have been evaluated clinically and one is now in routine use in clinical oncology. The problems of detection efficiency have not been solved by these detectors although reliability and large-area PET imaging have been proven.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8491229

  20. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  1. Anterior chamber keratinous horn.

    PubMed

    Abrishami, Mojtaba; Ghassemi, Fariba; Vahedian, Zakieh

    2014-06-01

    A 14-year-old boy presented with a 6-month history of small white masses in his right eye. Examination revealed a white floating fluffy lesion and 2 vegetative hornlike white lesions originating at the periphery of the iris. On ultrasound biomicroscopy, a normal echogenic mass was detected on the inferior iris root and angle, with no posterior chamber or cilliary body involvement. Histopathology following an excisional biopsy revealed keratinous material. There was no recurrence during 10 months of follow-up. PMID:24797250

  2. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  3. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior of the system, coupled with these processes, define the fundamental compositional and dynamic diversity of the Mush Column. In some ways it functions like a complex musical instrument. Entrainment, transport, and sorting of cumulate crystals as a function of repose time and the local flux intensity also contribute to the basic compositional diversity of the system. In the Ferrar dolerite system, about 104 km3 of dolerite is distributed throughout a fir-tree like stack of 4 or 5 extensive 300-750 m thick sills. The lowest sill contains a vast tongue of entrained orthopyroxene (opx) cumulates emplaced with the sill itself. The bulk sill composition varies from 20 pc MgO in the tongue center to 7 pc in the leading tip and margins of the sill, which itself defines the compositional spectrum of the whole complex and is remarkably similar to that exhibited by Hawaii. Relative sorting of large (1-50 mm) opx and small (1-3 mm) plagioclase due to kinetic sieving in the tongue produces pervasive anorthosite stringers. Through local ponding this has culminated in the formation of a small, well-formed layered intrusion consisting of alternating layers of orthopyroxenite and anorthosite. Upwards in the system the sills become progressively depleted in MgO and temporally and spatially contiguous flood basalts are low MgO tholeiites with no sign of opx cumulates. The size, extent, number of sills, and the internal structure of individual sills suggest a rhythm of injection similar to that of volcanic episodes. The continued horizontal stretching of a system of this type would lead to processes as recorded by ophiolites, and the repeated injection into a single reservoir would undoubtedly lead to a massive layered intrusion or to a series of high-level nested plutons.

  4. Environmental calibration chamber operations

    NASA Technical Reports Server (NTRS)

    Lester, D. L.

    1988-01-01

    Thermal vacuum capabilities are provided for the development, calibration, and functional operation checks of flight sensors, sources, and laboratory and field instruments. Two systems are available. The first is a 46 cm diameter diffusion pumped vacuum chambler of the bell jar variety. It has an internal thermal shroud, LN2 old trap, two viewing ports, and various electrical and fluid feedthroughs. The other, also an oil diffusion pumped system, consists of a 1.8 m diameter by 2.5 m long stainless steel vacuum tank, associated pumping and control equipment, a liquid nitrogen storage and transfer system and internal IR/visible calibration sources. This is a two story system with the chamber located on one floor and the pumping/cryogenic systems located on the floor below.

  5. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  6. Fast ion chambers for SLC

    SciTech Connect

    McCormick, D.

    1993-07-01

    Beam diagnostic ion chambers are used throughout the SLC to perform a variety of tasks including locating beam losses along the beam direction, determining localized losses from individual bunches in a multibunch beam, and detecting scattered particles from beam profile wire scanners where backgrounds are too high to use photomultiplier tubes. Construction and instrumentation of very fast ion chambers with pulse duration of less than 60ns are detailed. Long ion chambers referred to as PLIC (Panofsky`s Long Ion Chamber) are the primary diagnostic used to locate losses in all the SLC transport lines. Accurately locating beam loss with the use of fiducial cables and coaxial switches will be discussed.

  7. The AMY inner tracking chamber

    NASA Astrophysics Data System (ADS)

    Frautschi, M.; Johnson, D. R.; Kagan, H.; Kass, R.; Trahern, C. G.; Maeshima, K.; Malchow, R. L.; Sparks, K.; Williams, M. C. S.

    1991-09-01

    We have constructed and operated a pressurized "tube-style" charged particle tracking detector, the inner tracking chamber, for the AMY experiment at the TRISTAN e +e - storage ring. The AMY inner tracking chamber consists of a four layer, 144 cell per layer "tube-style" drift chamber system. It occupies the region between the beam pipe and the AMY central drift chamber. An overall spatial resolution of 80 ?m per layer has been obtained during the first two years of operation using argon-ethane gas at 1.45 bar for Bhabha scattering events. This article describes the design, construction, and operation of the device.

  8. Initial Back-to-Back Fission Chamber Testing in ATRC

    SciTech Connect

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  9. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. Contamination Effects Test Facility

    NASA Astrophysics Data System (ADS)

    Shaw, C. G.; Thornton, M. M.; Mullen, C. R.

    1987-01-01

    A test facility has been developed for in-situ measurement of the thermo-optical and electrical effects of molecular contamination deposited on sensitive spacecraft surfaces. The Contamination Effects Test Facility (CETF) consists of three separate vacuum chambers interconnected by gate valves through which test sample surfaces may be moved as needed by various vacuum manipulators. Deposition of contamination occurs in one chamber, where surface electrical properties can also be measured. In the second chamber, a wide range of thermo-optical properties can be measured by use of a unique ellipsoidal-mirror reflectometer. The third chamber maintains a vacuum environment around the test sample while the chamber is transported to facilities for solar ultraviolet (UV), electron, and proton irradiation of the sample at orbital intensities. By keeping atmosphere away from the contaminated surface at all times during the effects measurement and irradiation stages, the CETF provides a more realistic space simulation that avoids the possible effects of oxygen and water on the thermo-optical or electrical properties of the contaminant deposits. For testing of the volatile species produced by rocket propulsion systems, which are condensible only at cryogenic temperatures, continual vacuum capability precludes rapid icing due to atmospheric water vapor.

  11. A hyperbaric oxygen chamber for animal experimental purposes.

    PubMed

    Djasim, U M; Spiegelberg, L; Wolvius, E B; van der Wal, K G H

    2012-02-01

    Facilities for hyperbaric oxygen therapy that are suitable for animal experimental research are scarce. In this paper, the authors introduce a hyperbaric oxygen chamber that was developed specifically for animal experimental purposes. The hyperbaric oxygen chamber was designed to meet a number of criteria regarding safety and ease of use. The hyperbaric oxygen chamber conforms to 97/23/EC (Pressure Equipment Directive), Conformity Assessment Module G Product Group 1. It provides easy access, and can be run in manual mode, semi-automatic mode and full-automatic mode. Sensors for pressure level, oxygen level, temperature, humidity and carbon dioxide level allow full control. This state-of-the-art hyperbaric oxygen chamber for animal experimental purposes permits the investigation of the biological mechanisms through which hyperbaric oxygen therapy acts at a fundamental level. PMID:22209226

  12. Aging tests of full scale CMS muon cathode strip chambers

    SciTech Connect

    D. Acosta et al.

    2003-10-15

    Two CMS production Cathode Strip Chambers were tested for aging effects in the high radiation environment at the Gamma Irradiation Facility at CERN. The chambers were irradiated over a large area: in total, about 2.1 m{sup 2} or 700 m of wire in each chamber. The 40% Ar+50%CO{sub 2}+10%CF{sub 4} gas mixture was provided by an open-loop gas system for one of the chambers and by closed-loop recirculating gas system for the other. After accumulating 0.3-0.4 C per centimeter of a wire, which is equivalent to operation during about 30-50 years at the peak LHC luminosity, no significant changes in gas gain, chamber efficiency, and wire signal noise were observed for either of the two chambers. The only consistent signs of aging were a small increase in dark current from {approx}2 nA to {approx}10 nA per plane of 600 wires and a decrease of strip-to-strip resistance from 1000 G{Omega} to 10-100 G{Omega}. Disassembly of the chambers revealed deposits on the cathode planes, while the anode wires remained fairly clean.

  13. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  14. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  15. 13. VIEW OF VACUUM CHAMBER AND WELDING EQUIPMENT IN MODULE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF VACUUM CHAMBER AND WELDING EQUIPMENT IN MODULE E. PARTS WERE WELDED UNDER A VACUUM TO PREVENT CORROSION. (11/6/73) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  16. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  17. OUTDOOR SMOG CHAMBER EXPERIMENTS TO TEST PHOTOCHEMICAL MODELS: PHASE 2

    EPA Science Inventory

    The smog chamber facility of the University of North Carolina was used to provide experimental data for developing and testing kinetic mechanisms of photochemical smog formation. In this study, 128 pairs of experiments were performed using NOx and various hydrocarbons and hydroca...

  18. Submersible chamber water heater

    SciTech Connect

    Eising, J.P.

    1987-08-11

    A high efficiency water heating apparatus is described comprising a tank to contain water to be heated, means for withdrawing heated water from the upper end of the tank, heating means for heating water in the tank and comprising a tubular member disposed in an opening in the side wall of the tank and extending across the tank, a burner disposed in the tubular member, fuel supply means for supplying a combustible fuel to the burner, means for supplying air to the burner to provide a combustible fuel-air mixture, pilot light means for igniting the mixture and generating waste gases of combustion, a heat exchanger located beneath the tubular member, conduit means for conducting waste gases from the tubular member to the heat exchanger, a stack communicating with the heat exchanger for discharging the waste gases from the apparatus, means for flowing the waste gases from the combustion chamber through the heat exchanger to the stack, a vent tube separate from the stack, one end of the vent tube being disposed adjacent the pilot light means and extending along the outside of the tank and communicating with the atmosphere. The vent tube serves to vent gases generated by burning of the pilot light means.

  19. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  20. Proton beam monitor chamber calibration

    NASA Astrophysics Data System (ADS)

    Gomà, C.; Lorentini, S.; Meer, D.; Safai, S.

    2014-09-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams.

  1. National Ignition Facility system design requirements conventional facilities SDR001

    SciTech Connect

    Hands, J.

    1996-04-09

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

  2. OUTDOOR CHAMBER STUDY TO TEST MULTI-DAY EFFECTS. VOLUME 3. DOCUMENTATION FOR COMPUTER-READABLE ENVIRONMENTAL CHAMBER DATA

    EPA Science Inventory

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume includes documentation on the computer-readable magnetic tape that contain...

  3. MBE facility with two synchronized modulated beams

    SciTech Connect

    Gel`man, Yu.A.; Dynshitz, Yu.M.; Samokhvalov, Yu.F.

    1995-04-01

    An experimental four-chamber MBE facility with two mutually synchronized beams is described. A sapphire viewpoint can be used to study the effect of electromagnetic radiation ({lambda} = 250-4500 nm) on film condensation. The growth chamber has a quadrupole mass spectrometer and a reflection high-energy electron diffractometer (RHEED). An Auger spectrometer, RHEED diffractometer, ion etching system, and a quadrupole mass-spectrometer are included in the analytical chamber. Given two transfer mechanisms, a load-lock chamber, and a preparation chamber, substrates can be replaced without breaking the vacuum in the growth and analytical chambers. A pumping system provides a vacuum of {approximately} (2-3) {center_dot} 10{sup -9} torr in the growth chamber and 4 {center_dot} 10{sup -10} torr in the analytical chamber.

  4. BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  5. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  6. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  7. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is told to pick up a syringe filled with the correct quenchant solution and inject it into the chamber to stop the crystal growth. The chamber is then removed from the active site and placed into its original storage slot. Another chamber is then placed into the active site and the process is repeated in all of the active sites until all of the chambers have complted their growth. After ninety days (the scheduled time between shuttle visits), the crystal growth is completed, and the old drawers are replaced with new ones. Once the customer extracts the crystals, the chambers are retrieved for future customers.

  8. Extra Terrestrial Environmental Chamber Design

    NASA Technical Reports Server (NTRS)

    Hughes, David W.

    2008-01-01

    A vacuum chamber designed to simulate the dusty environment on the Moon or Mars has been built for Goddard Space Flight Center. The path from concept to delivery is reviewed, with lessons learned and pitfalls highlighted along the way.

  9. The PHENIX Time Expansion Chamber

    NASA Astrophysics Data System (ADS)

    Rosati, M.; Barish, K.; Botelho, S.; Chang, W. C.; de Gogoi, A. L.; Dietzsch, O.; Ferdousi, T.; Franz, A.; Fung, S. Y.; Gannon, J.; Harder, J.; Kandasamy, A.; Khomutnikov, A.; Kotchekov, D.; Lebedev, A.; Li, X. H.; Mahon, J.; Munirassimann, M.; Negrin, J.; O'Brien, E.; O'Connor, P.; Pisani, R.; Rankowitz, S.; Seto, R.; Takagui, E. M.; Wang, H. Q.; Time Expansion Chamber Group

    1999-12-01

    The TEC/TRD subsystem will track all charged particles and contribute to the particle identification by the measurement of energy loss. The design, construction and testing of the TEC chambers are described.

  10. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  11. Cyclically controlled welding purge chamber

    NASA Technical Reports Server (NTRS)

    Gallagher, Robert L. (Inventor)

    1996-01-01

    An arrangement for butt-welding cylindrical sections of large, thin-wall tanks includes a rotatable mandrel with side-by-side sets of radial position adjusters. Each set of adjusters bears on one of the tank sections adjacent the seam, to prevent the sections from sagging out-of-round. The mandrel rotates relative to the welder, so that a continuous seam is formed. A purge chamber is fixed in position behind the seam at the weld head, and is flushed with inert gas. The purge chamber includes a two-sided structure which is contiguous with the cylindrical sections and a circumferential vane to form an open-ended tube-like structure, through which the radial position adjusters pass as the mandrel and cylindrical workpiece sections rotate. The tube-like structure is formed into a chamber by a plurality of movable gates which are controlled to maintain a seal while allowing adjusters to progress through the purge chamber.

  12. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  13. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  14. Design and construction of a reverberation chamber for high-intensity acoustic testing.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    A high-intensity acoustic test facility was constructed at the Jet Propulsion Laboratory (JPL) to support the Mariner Mars 1971 project. For ease of construction, the reverberation chamber itself is rectangular, which resulted in very little sacrifice in acoustic performance. Levels as high as 156 dB can be achieved with the chamber empty and test levels of 150 dB have been used with a Mariner Mars spacecraft model (full size) in the chamber. Levels as high as this must be generated using electropneumatic transducers, which modulate gaseous nitrogen to this facility.

  15. Directional muon jet chamber for a muon collider (Groovy Chamber)

    SciTech Connect

    Atac, M. |

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-{psi} coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas.

  16. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  17. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  18. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  19. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  20. Operating manual for the radon-daughter chamber

    SciTech Connect

    Langner, G.H. Jr.; Nelson, T.

    1985-01-01

    A radon-daughter chamber was constructed at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility for the purpose of calibrating, testing and evaluating radon and radon-daughter measuring instruments used in support of DOE remedial action programs. The chamber is an environmentally controlled cylindrical vessel through which air containing radon can be circulated. Environmental parameters within the chamber and their respective controllable ranges include radon concentration (1 to 1000 pCi/1), ventilation rate (0.25 to 10 air changes per hour), temperature (0 to 45/sup 0/C), dew point (-10/sup 0/C to saturated), and condensation-nuclei concentration (10 to 10/sup 6//cm/sup 3/).

  1. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Technical Reports Server (NTRS)

    Parneil, T. A.; Derrickson, J. H.; Fountain, W. F.; Roberts, F. E.; Tabuki, T.; Watts, J. W.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Fuki, M.

    1990-01-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  2. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  3. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  4. RADIATION ENVIRONMENT OF GROWTH CHAMBERS

    EPA Science Inventory

    Radiation measurements with different types of meters in several controlled environment facilities have been compiled to demonstrate the problems associated with insuring uniform radiation levels in separate facilities. Data are provided for a quantum meter, three photometers, a ...

  5. Holography in small bubble chambers

    SciTech Connect

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments.

  6. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  7. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware, supports sustainability.

  8. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  9. Laboratory Course on Drift Chambers

    SciTech Connect

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-09-25

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  10. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  11. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  12. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot-fire testing at MSFC in 2001. These "full size" chambers will be similar in size to those used on the X33 engine (RS2200). One will be fabricated with a MMC structural jacket, while the other uses a PMC jacket. Each will be designed for thrust levels of 15,000 pounds in an oxygen/hydrogen environment with liquid hydrogen coolant. Both chambers will use GRCop-84 for its channel wall liner. Each unit is expected to be at least 60% lighter than a conventional design with traditional materials. Hot-fire testing on the full size units in late 2001 will directly compare performance results between a conventional chamber design and these "lightweight" alternatives. The technology developed and demonstrated by this effort will not only benefit next generation RLV programs, but it can be applied to other existing and future engine programs, as well. Efforts were sponsored by the Advanced Space Transportation Program for RLV Focused Technologies. The task team was led by MSFC with additional members from NASA-Glenn Research Center and the Rocketdyne Division of The Boeing Company. Specific materials development and fabrication processes were provided by Aerojet, Lockheed Martin Astronautics, Composite Optics, Inc., Hyper-Therm, Ceramic Composites, Inc., MSE Technology Applications, and Plasma Processes, Inc.

  13. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  14. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  15. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  16. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  17. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  18. Chamber Theatre: Staging Defamiliarized Prose.

    ERIC Educational Resources Information Center

    McGeever, Charles John

    The purpose of this paper is to advance the state of chamber-theatre theory by providing a mechanism not only for the staging of works of prose fiction using several narrators but also for those works which have been cast in a temporal sequence inconsistent with the customary perception of time. Venn diagrams are used to represent logical…

  19. Drift and proportional tracking chambers

    SciTech Connect

    Jaros, J.A.

    1980-11-01

    Many techniques have been exploited in constructing tracking chambers, particle detectors which measure the trajectories and momenta of charged particles. The particular features of high-energy interactions - charged particle multiplicities, angular correlations and complex vertex topologies, to name a few - and the experimental environment of the accelerator - event rates, background rates, and so on - accent the importance of certain detector characteristics. In high energy e/sup +/e/sup -/, anti pp and pp interactions the final states are dominated by closely collimated jets of high multiplicity, requiring good track-pair resolution in the tracking chamber. High energy particles deflect very little in limited magnetic field volumes, necessitating good spatial resolution for accurate momentum measurements. The colliding beam technique generally requires a device easily adapted to full solid-angle coverage, and the high event rates expected in some of these machines put a premium on good time resolution. Finally, the production and subsequent decays of the tau, charmed and beautiful mesons will provide multiple vertex topologies. To reconstruct these vertices reliably will require considerable improvements in spatial resolution and track-pair resolution. This lecture considers the proportional counter and its descendant, the drift chamber, as tracking chambers. Its goal is to review the physics of this device in order to understand its performance limitations and promises.

  20. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  1. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware, supports sustainability.

  2. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  3. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  4. Theoretical and numerical studies of plume flows in vacuum chambers

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    This thesis consists of three parts: a study of facility effects on the background flow in large vacuum chambers; an analytical study of free molecular flows out of exits with different shape representing thruster plumes; and particle simulations of plasma plume flows from a cluster of Hall thrusters. The first part of this thesis discusses the facility effects on large vacuum chambers, which is quite important to the Electric Propulsion (EP) community. Based on the fact that the background flows in large vacuum chambers equipped with cryogenic pumps are free molecular, five models are proposed to study the average background pressure and flow velocity and their relation to several facility effects, such as pump sticking coefficient, pump size, wall and pump temperatures, and chamber sidewall length. The analysis are based on the mass flow rates into and out of the chamber, the fluxes along two directions and various number density relations at various stations such as chamber ends and vacuum pumps. The second part of the thesis develops several sets of analytical solutions to free molecular flows out of exits with different shapes. It is demonstrated that the plasma plume flows expanding into vacuum can be studied analytically as a combination of several free molecular flows, if the electric field and collision effects are omitted. There exists a unique relation of velocity and positions. The last part of the thesis presents several three-dimensional particle simulations of plasma plume flows from a cluster of Hall thrusters. A detailed electron fluid model is used to solve important electron properties such as plasma potential and electron temperature. A finite element solver is developed to solve the equations of the electron properties on unstructured meshes. Several important implementation issues are discussed and one significant finding is that the class of particle-to-node weighting schemes based on areas or volumes on an unstructured mesh is inaccurate. This problem is not obvious if the Boltzmann relation is used to determine the plasma potential: however, if the detailed electron model is used to calculate the plasma potential, especially when ionization effects are included in the simulation, then the class of allocation schemes yields invalid results. The other significant treatment that distinguishes these simulations is that background static particles representing the backpressure are assigned velocities sampled from a distribution that takes into consideration the facilities effects. (Abstract shortened by UMI.)

  5. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  6. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  7. Two-zone combustion chamber

    SciTech Connect

    Thery, G.

    1980-11-25

    The present invention relates to an internal combustion engine comprising means at cylinder head and piston level for improving combustion while reducing the tendency to knocking and pollution. This engine comprises a double feed system, an intake port for a rich mixture being arranged in a hollow in the cylinder head and comprising a retaining cup at its base, an intake port for a poor mixture and a projecting part at the top of the piston covering the hollow and the retaining cup and defining a precombustion chamber for communicating with a part of the chamber opposite the hollow, via channels made at the base of the projecting part. The invention finds advantageous application in the domain of automobile vehicle construction.

  8. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  9. Single wire drift chamber design

    SciTech Connect

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  10. Resistive Plate Chambers in ATLAS

    NASA Astrophysics Data System (ADS)

    di Ciaccio, Anna; Atlas Muon Group

    1996-12-01

    The ATLAS first level muon trigger is based, in the rapidity region | ?| ? 1.05, on fast and finely segmented gaseous detectors, Resistive Plate Chambers (RPCs). A prototype of a small scale RPC trigger tower has been assembled and tested. We present results on efficiency, time resolution, cluster size and collected charge. The detectors, filled with a non-flammable and environment-safe gas mixture, have been operated in avalanche mode. The measurements have been made at the CERN SPS accelerator in the H8 test-beam area with muon fluxes up to 900 Hz/cm 2. A 14 mCi 60Co radiactive source has been used to illuminate the chambers with a flux of low energy photons, simulating LHC background conditions.

  11. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  12. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  13. The LIFE Dynamic Chamber System

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Latkowski, Jeffery; Cook, Andrew; Divol, Laurent; Loosmore, Gwendolen; Scott, Howard; Scullard, Christian; Tabak, Max; Wilks, Scott; Moses, Gregory; Heltemes, Thad; Sacks, Ryan; Pantano, Carlos; Kramer, Richard

    2011-10-01

    Dry-wall IFE designs such as LIFE utilize Xe fill gas to protect the target chamber first wall from x-ray heating and ionic debris. A key question is how cool, settled and clean the Xe must be to permit beam propagation and target transport, and how to reach this state at a 10+ Hz shot repetition rate. Xe is at low density in the target chamber, and purified Xe is reinjected at higher density and lower temperature into the larger outer chamber. Maintenance of this density difference due to blast waves generated by implosion of the target capsules is being assessed with HYDRA and 3D VTF, and possible validation experiments are being investigated. Detailed gas response near the wall is being studied using 3D Miranda. A laboratory-scale theta pinch experiment will study cooling and beam propagation in Xe. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  15. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  16. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  17. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  18. SMOG CHAMBER VALIDATION USING LAGRANGIAN ATMOSPHERIC DATA

    EPA Science Inventory

    A method was developed for validating outdoor smog chamber experiments as a means of determining the relationships between oxidant concentrations and its precursors - hydrocarbons and nitrogen oxides. When chamber experiments were performed in a manner that simulated relevant met...

  19. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  20. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  1. Ionisation Chambers and Secondary Emission Monitors at the PROSCAN Beam Lines

    SciTech Connect

    Doelling, Rudolf

    2006-11-20

    PROSCAN, the dedicated new medical facility at PSI using proton beams for the treatment of deep seated tumours and eye melanoma, is now in the commissioning phase. Air filled ionisation chambers in several configurations are used as current monitors, profile monitors, halo, position and loss monitors at the PROSCAN beam lines. Similar monitors based on secondary emission are used for profile and current measurements in the regime where saturation deteriorates the accuracy of the ionisation chambers.

  2. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  3. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  4. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  5. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  6. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  7. Wire chamber degradation at the Argonne ZGS

    SciTech Connect

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM.

  8. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  9. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  10. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  11. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended. This proved that it was stable. Another pre-test was the actuator slip test used to determine if there is an adequate coefficient of friction between the actuator drive wheels and drive cable to enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient of friction was not large enough to prevent slippage. Sandpaper was glued to the drive wheel and this eliminated the slippage problem. The class preformed a fit test in the CELSS chamber to ensure that the completed robot arm is capable of reaching the entire working envelope. The robot was centered in the chamber and the arm was fully extended to the sides of the chamber. The arm was also able to retract to clear the drain pipes separating the upper and lower plant trays.

  12. Experimental biomass burning emission assessment by combustion chamber

    NASA Astrophysics Data System (ADS)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  13. Design and construction of a sample preparation chamber for atomic beam scattering

    SciTech Connect

    Nielsen, C.

    1992-05-18

    A new type of atomic beam scattering spectrometer was built to advance the usefulness of the atomic beam scattering technique as a surface dynamics probe. The facility was not only built to investigate the typical alkali halide samples such as NaCl, NaF, and LiF, but also to investigate metallic surfaces. Metal samples are more complicated to study, due to their reactive surfaces and the sample preparation process. A surface analysis chamber was constructed as an attachment to the scattering facility to treat samples under ultra high vacuum (UHV) and then transfer these samples into the scattering facility. This surface analysis chamber is referred to as the sample preparation chamber and is the basis for this thesis.

  14. Chamber propagation physics for heavy ion fusion

    SciTech Connect

    Callahan, D.A.

    1995-09-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime ({approx_lt}0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime ({approx_gt}.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius ({approx} 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity.

  15. Studies with the Arapahoe smoke chamber

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Samples of polymethyl methacrylate, polyvinyl chloride, polyester, and polystyrene were evaluated using the Arapahoe smoke chamber. These same materials had been previously evaluated using the National Bureau of Standards (NBS) smoke chamber. The percent smoke based on initial weight as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under flaming conditions as determined using the NBS smoke chamber. In addition, the percent smoke based on weight loss as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under nonflaming conditions as determined using the NBS smoke chamber. The Arapahoe smoke chamber also offers the advantage of high sample throughput and the possibility of related studies of smoke particulates.

  16. Gas-Grain Simulation Facility (GGSF)

    NASA Technical Reports Server (NTRS)

    Greenwald, Ken

    1992-01-01

    The goal of the Gas-Grain Simulation Facility project is to provide a microgravity laboratory to facilitate research relevant to exobiology (the study of the origin and evolution of life in the universe). Such a facility will also be useful in other areas of study important to NASA including planetary science, biology, atmospheric science, astrophysics, chemistry, and physics. To achieve this goal, the project will develop and support the GGSF, a modular facility-class payload planned for inclusion on Space Station Freedom. The GGSF will consist of the following: an experiment chamber(s) supported by subsystems that provide chamber environment regulation and monitoring capabilities; sample generation, injection, positioning, and retrieval capabilities; and computer control, data acquisition, and housekeeping capabilities. The facility will also provide analytical tools such as light-scattering measurement systems, aerosol size-spectrum measurement devices, and optical imaging systems.

  17. Outdoor chamber study to test multi-day effects. Volume 2. Environmental chamber data tabulations. Final report, August 1982-August 1984

    SciTech Connect

    Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.

    1984-12-01

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume contains the printouts of all the data that were collected in the study. These data are suitable for use in developing and testing kinetic mechanisms of photochemical smog formation.

  18. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  19. Canister Decontamination Chamber No. 1 operability test results

    SciTech Connect

    Magoulas, V.E.

    1987-10-30

    The DWPF Canister Decontamination Chamber No. 1 (CDC) was installed at the TNX facility in October, 1986 for operability testing. Operability testing was required because this equipment is unique and is a critical part of the defense waste process. The test was successful in demonstrating the canister decontamination operation. Testing verified proper nozzle locations, frit suspension, level probe and CCTV operations. The following recommendations are based on data obtained from frit blasting 24 canisters: reduce the recirculation pump speed, to allow proper level probes operation; add an extension to the chamber rinse nozzle which allows removal of frit from the top of the upper guide rinse nozzle; increase visibility through the CCTV camera; make the CMM grapple jaw pins more compatible with the MSM; and improve canister guide capability to aid in canister loading. CDC Operability Testing was completed October, 1987. 6 refs., 11 figs., 2 tabs.

  20. [Taylor and Hill, Incorporated's JSC Cryo Chamber A

    NASA Technical Reports Server (NTRS)

    Morales, Rito

    2008-01-01

    NASA commissioned construction of an environmental simulation test chamber which was completed in 1964 at Johnson Space Center (JSC) in Houston, Texas. The facility, Chamber A, was invaluable for testing spacecraft and satellites before deployment to space. By testing spacecraft in an environment similar to the one they would be functioning in, potential problems could be addressed before launch. A new addition to NASA's observatory inventory is called the James Webb Space Telescope (JWST), after a former Administrator of NASA. The new telescope will have 7 times the mirror area of the Hubble, with a target destination approximately one million miles from earth. Scheduled for launch in 2013, the JWST will allow scientists the ability to see, for the first time, the first galaxies that formed in the early Universe. Pre-launch testing of JWST must be performed in environments that approximate its final target space environment as closely as possible.

  1. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  2. Thrust chamber material technology program

    NASA Astrophysics Data System (ADS)

    Andrus, J. S.; Bordeau, R. G.

    1989-03-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  3. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  4. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  5. Triple ion beam irradiation facility

    SciTech Connect

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  6. A molecular beam epitaxy facility for in situ neutron scattering

    NASA Astrophysics Data System (ADS)

    Dura, J. A.; LaRock, J.

    2009-07-01

    A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here.

  7. A molecular beam epitaxy facility for in situ neutron scattering.

    PubMed

    Dura, J A; LaRock, J

    2009-07-01

    A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here. PMID:19655964

  8. A molecular beam epitaxy facility for in situ neutron scattering

    SciTech Connect

    Dura, J. A.; LaRock, J.

    2009-07-15

    A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here.

  9. Variable oven chamber heating level

    SciTech Connect

    Minasov, A.M.; Sergeev, S.S.; Likhogyb, E.P.

    1984-01-01

    Changes in oven chambers were developed to prevent the uneven heating of a charge in a coke oven. The changes basically altered the heat flow to a charge into the upper section upon a variation in the shrinkage properties of a charge. The engineering modifications are described and illustrated. A damper placed in a converted door is sufficiently easily shifted in the vertical plane and is firmly fixed in the upper position. The distribution of temperatures in the upper part of coke cake is changed within the limits of 80/sup 0/C, depending on the location of the damper in the converted door. When the damper is in the lower position, heating of the upper part of the coke cake increases, and the difference in the temperatures of the coke relative to height is decreased, and vice versa.

  10. The Fission Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Heffner, Mike

    2009-10-01

    New high-precision fission experiments have become a priority within the nuclear energy community due to a growing, world wide, interest in nuclear reactors. In particular, the designs of next generation reactors require reductions in the uncertainties on a number of energy dependent, neutron induced fission cross sections. The fission Time Projection Chamber (fission TPC) is the instrument that has been selected to carry out these challenging cross section measurements. This 6000 pad TPC with 2mm hex pads has a volume of only 2 liters and is filled with a hydrogen working gas. A unique set of electronics have been designed for the TPC that use all off the shelf components to reduce development costs. In this talk, I will show how the TPC will improve previous measurements, the design specifics of the fission TPC and the progress to date.

  11. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  12. Sequential Notch activation regulates ventricular chamber development.

    PubMed

    D'Amato, Gaetano; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4-Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  13. Sub-chamber optimization for silencer design

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Tong, Yuhui; Pan, Jie; Cheng, Li

    2015-09-01

    This study proposes sub-chamber optimization for the design of a silencer. A theoretical basis is presented for a description of the overall transmission loss (TL) of the silencer, using the TLs of each of the cascade-connected multiple sub-chambers and the interactions between them. Three typical sub-chamber configurations are considered, representing the effects of varying geometrical parameters, adding internal partitions, and introducing perforated liners. The characteristics of the sub-chambers, influences of the parameters, and the limits of design are investigated to provide guidelines for optimization. It is demonstrated that, by connecting sub-chambers with optimized TLs to tackle different frequency regions, a desired broadband attenuation performance can be achieved. The proposed design scheme with sub-chamber optimization greatly reduces the design variables and calculation costs compared with global optimization, thus offering wider scope in silencer design.

  14. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  15. Saturation current of miniaturized fission chambers

    NASA Astrophysics Data System (ADS)

    Chabod, Sébastien P.

    2009-01-01

    We present the detailed formulae of the saturation currents for the four main categories of fission chambers operating in current mode. The results obtained are function of simple parameters: number of fission reactions within the chamber deposits, geometric characteristics of the electrodes and filling gas properties. A direct relation between the saturation current values and the ambient neutron flux is thus established. These results should reduce the number, the duration and the cost of the calibration procedures required to operate the fission chambers.

  16. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  17. Experimental investigation of a lightweight rocket chamber

    NASA Technical Reports Server (NTRS)

    Dalgleish, John E; Tischler, Adelbert O

    1953-01-01

    Experiments have been conducted with a jacketed rocket combustion chamber that was fabricated by hydraulic-forming from sheet metal. Rocket combustion chambers made by this method have been used successfully. Runs with these combustion chambers have been made at over-all heat-transfer rates 1.7 Btu per square inch per second with water cooling and also ammonia as a regenerative coolant.

  18. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  19. Advanced thrust chambers for miniaturized engines

    NASA Astrophysics Data System (ADS)

    Pavlinsky, Joseph

    1992-07-01

    The general approach in previous Kinetic Kill Vehicle (KKV) thruster design consisted of separate lightweight and low-cost thrust chambers, injectors and valves. A series of programs including hot-fire testing and hover flight tests has led to the design of a new generation liquid bipropellant thruster with an integrated chamber/injector/valve thruster design. System analyses indicate the composite approach provides thermal management for thrust chambers and that an integral injector/valve contributes to a high thrust to weight ratio thruster. Past experience and development test results of an Advanced Composite material are described. Advanced Composite material selection, chamber fabrication and testing program are discussed. The thrust chambers were evaluated on the basis of oxidation resistance, durability, permeability through the chambers walls, strength and performance with excellent results in all areas. Excellent thrust chamber durability was demonstrated with no measurable erosion after extensive accumulated hot-fire time at high chamber pressure. Results to date indicate that the existing technology provides producible, highly durable chambers for KKV applications.

  20. The Mark II Vertex Drift Chamber

    SciTech Connect

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  1. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  2. Large coil test facility

    SciTech Connect

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system.

  3. Optical testing cryogenic thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Dohogne, Patrick W.; Carpenter, Warren A.

    1990-01-01

    The construction of a turnkey cryogenic vacuum test facility was recently completed. The facility will be used to measure and record the surface profile of large diameter and 540 kg optics under simulated space conditions. The vacuum test chamber is a vertical stainless steel cylinder with a 3.5 diameter and a 7 m tangent length. The chamber was designed to maximize optical testing quality by minimizing the vibrations between the laser interferometer and the test specimen. This was accomplished by designing the chamber for a high natural frequency and vibration isolating the chamber. An optical test specimen is mounted on a movable presentation stage. During thermal vacuum testing, the specimen may be positioned to + or - 0.00025 cm accuracy with a fine adjustment mechanism. The chamber is evacuated by a close coupled Roots-type blower and rotary vane pump package and two cryopumps. The chamber is equipped with an optically dense gaseous nitrogen cooled thermal shroud. The thermal shroud is used to cool or warm the optical test specimen at a controlled rate. A control system is provided to automatically evacuate the chamber and cooldown the test specimen to the selected control temperature.

  4. A fast ionization chamber for fission cross-section measurements at n_TOF

    NASA Astrophysics Data System (ADS)

    N Tof Collaboration; Calviani, M.; Cennini, P.; Karadimos, D.; Ketlerov, V.; Konovalov, V.; Furman, W.; Goverdowski, A.; Vlachoudis, V.; Zanini, L.; n_TOF Collaboration

    2008-09-01

    An ionization chamber with fast timing properties was built at CERN for measuring fission cross-sections of minor actinides at the n_TOF neutron beam. The design of this new chamber and of the front-end electronics was optimized to match the innovative features of the n_TOF facility, in particular the high instantaneous neutron flux and low background. For the most radioactive isotopes, a special version of the chamber, designed according to the ISO2919 standards, was built in order to comply with the radioprotection requirements at CERN. The detector and front-end electronics are here described, together with the simulated and measured response to fission fragments and ?-particles. The performances of the chamber during the first measurement campaign at n_TOF are presented, focusing in particular on the fast time response, the good background rejection capability, low-background and high detection efficiency.

  5. study on trace contaminants control assembly for sealed environment chamber

    NASA Astrophysics Data System (ADS)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  6. Modeling smog chamber measurements of vehicle exhaust VOC reactivities

    SciTech Connect

    Chang, T.Y.; Nance, B.I.; Kelly, N.A.

    1997-12-31

    Vehicle exhaust VOC reactivities, measured at GM`s smog chamber facility, have been modeled using the SAPRC93 photochemical mechanism. The vehicle exhaust mixtures were generated by a single vehicle run over a portion of the Federal Test Procedure using three Auto/Oil reformulated test gasolines. For each run, up to 156 individual VOC species were identified. Initial HONO concentrations are needed to simulate reactivity measurement runs. (HONO is expected to be generated in a Tedlar bag holding the exhaust sample prior to its transfer to the smog chambers.) Measured and simulated relative incremental reactivities for the three exhaust mixtures are highly consistent. However, measured relative incremental reactivities are more sensitive to fuel effects than simulated ones. The maximum incremental reactivity (MIR)-based relative incremental reactivities, derived from individual species concentrations and MIR factors, are very close to simulated ones. A number of sensitivity simulation runs have been carried out to investigate the impact of HONO and other variables. Results show that relative reactivities of actual vehicle exhaust emissions can be measured by chamber runs in spite of the HONO effect.

  7. LAYOUT AND SIZING OF ESF ALCOVES AND REFUGE CHAMBERS

    SciTech Connect

    John Beesley and Romeo S. Jurani

    1995-08-25

    The purpose of this analysis is to establish size requirements and approximate locations of Exploratory Studies Facility (ESF) test and operations alcoves, including refuge chambers during construction of the Topopah Spring (TS) loop. Preliminary conceptual layouts for non-deferred test alcoves will be developed to examine construction feasibility based on current test plans and available equipment. The final location and configuration layout for alcoves will be developed when in-situ rock conditions can be visually determined. This will be after the TBM has excavated beyond the alcove location and the rock has been exposed. The analysis will examine the need for construction of walkways and electrical alcoves in the ramps and main drift. Niches that may be required to accommodate conveyor booster drives and alignments are not included in this analysis. The analysis will develop design criteria for refuge chambers to meet MSHA requirements and will examine the strategic location of refuge chambers based on their potential use in various ESF fire scenarios. This document supersedes DI:BABE00000-01717-0200-00003 Rev 01, ''TS North Ramp Alcove and Stubout Location Analysis'' in its entirety (Reference 5-6).

  8. Response of ionization chamber based pocket dosimeter to beta radiation.

    PubMed

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)<1 MeV and same was verified using (147)Pm, (85)Kr and (204)Tl beta sources. However, for beta particles having energy >1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles. PMID:23978508

  9. The NASA Ames Controlled Environment Research Chamber: Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  10. The NASA Ames Controlled Environment Research Chamber - Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration taskes external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  11. Assessing uniformity in soil plant atmosphere chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth chambers provide precisely controlled environments in which to grow plants and evaluate the effects of one or more controllable parameters on plant responses. Because of this precise control, it is arguable that less plant replication is required in growth chamber versus field studies. Howe...

  12. Space Simulation Chamber Rescues Water Damaged Books.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    More than 4,000 valuable water-damaged books were restored by using a space-simulation chamber at the Lockheed Missile and Space Company. It was the fifth time that the chamber has been used for the restoration of valuable books and documents. (Author/MLF)

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  14. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  15. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  16. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  17. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  18. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  19. A simple radon chamber for educational use.

    PubMed

    Moore, J A; Kearfott, K J

    2005-11-01

    Radon chambers are typically able to maintain a constant, known concentration of radon by pumping a constant activity concentration of radon gas into the chamber. A radon chamber has been designed by placing a radon source inside the chamber volume and allowing radon to build up inside the chamber. Because the radon concentration is not constant, calculations have been made to determine the integrated equivalent constant radon concentration in MBqhm for up to 4 d. The chamber, made by placing a radium dial inside an incubator, has interior dimensions of 87.6 cm x 55.9 cm x 51.4 cm for a total volume of 0.25 m. The chamber can produce an integrated equivalent constant radon activity concentration level of 0.013 MBq h m over the initial 24 h, 0.043 MBq h m over the initial 48 h, 0.078 MBq h m over the initial 72 h, and 0.118 MBq h m over the initial 96 h. The chamber can also demonstrate, for educational purposes, the kinetics of the build-up of a radioactive gas in an enclosed environment as well as the kinetics of washout and leakage. PMID:16224265

  20. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  1. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  2. Results from the MAC Vertex chamber

    SciTech Connect

    Nelson, H.N.

    1987-05-01

    The design, construction, and performance characteristics of a high precision gaseous drift chamber made of thin walled proportional tubes are described. The device achieved an average spatial resolution of 45 ..mu..m in use for physics analysis with the MAC detector. The B-lifetime result obtained with this chamber is discussed.

  3. Dual-purpose chamber-cooling system

    NASA Technical Reports Server (NTRS)

    Fraze, R. E.

    1968-01-01

    Inexpensive, portable system was designed for cooling small environmental test chambers with a temperature-controlled gas stream evaporated from a cryogenic liquid. The system reduces the temperature of a chamber to any desired point in a fraction of the time required by previous systems.

  4. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  5. OUTDOOR SMOG CHAMBER EXPERIMENTS TO TEST PHOTOCHEMICAL MODELS: MICROFICHE OF DATA COLLECTED IN THE STUDY

    EPA Science Inventory

    The smog chamber facility of the University of North Carolina was used in a study to collect experimental data for developing and testing kinetic mechanisms of photochemical smog formation. Listings and plots of the 115 dual all-day experiments conducted in the study are containe...

  6. ATRF Ribbon-Cutting Ceremony Coincides with Chamber of Commerce Centennial Gala | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer U.S. Rep. Roscoe Bartlett, NCI Deputy Director for Management John Czajkowski, and SAIC Corporate Chief Executive Officer (CEO) John Jumper were joined by representatives of the Frederick County Chamber of Commerce in cutting the ribbon for the National Cancer Institute’s Advanced Technology Research Facility (ATRF).

  7. MECHANISMS OF PHOTOCHEMICAL REACTIONS IN URBAN AIR. VOLUME II. CHAMBER STUDIES

    EPA Science Inventory

    The smog chamber facility of the Statewide Air Pollution Research Center has been employed in a study designed to provide experimental data required for the validation of kinetic computer models of chemical transformations in polluted atmospheres. A 5800-l, Teflon-coated, evacuab...

  8. INHALATION TOXICOLOGY OF RED AND VIOLET MIXTURES - CHAMBER CONCENTRATION AND PARTICLE SIZE DISTRIBUTION REPORT

    EPA Science Inventory

    An inhalation exposure facility was developed at the U.S. EPA, RTP, NC to conduct inhalation exposures of rodents and guinea pigs to dye mixtures used by the U.S. Army in the manufacture of smoke munitions. nitially, an evaluation of the prototype chamber aerosol homogeneity was ...

  9. MEASUREMENT OF GASEOUS EMISSION RATES FROM LAND SURFACES USING AN EMISSION ISOLATION FLUX CHAMBER. USER'S GUIDE

    EPA Science Inventory

    A promising method for monitoring ground emissions involves the use of an emission isolation flux chamber. The method is simple, easily available, and inexpensive. Applications would include RCRA and CERCLA facilities. To date, a uniform method operations does not exist. For this...

  10. ATRF Ribbon-Cutting Ceremony Coincides with Chamber of Commerce Centennial Gala | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer U.S. Rep. Roscoe Bartlett, NCI Deputy Director for Management John Czajkowski, and SAIC Corporate Chief Executive Officer (CEO) John Jumper were joined by representatives of the Frederick County Chamber of Commerce in cutting the ribbon for the National Cancer Institute’s Advanced Technology Research Facility (ATRF).

  11. Periphyton metabolism: A chamber approach

    NASA Astrophysics Data System (ADS)

    Brock, James T.; Royer, Todd V.; Snyder, Eric B.; Thomas, Steven A.

    In lotic ecosystems, the metabolism of periphyton is influenced strongly by natural and anthropogenic disturbances such as floods. Using recirculating metabolism chambers, we measured the metabolic activity of the Cladophora glomerata-dominated periphyton community in the Glen Canyon Dam tailwater, in relation to the 1996 controlled flood. Because scouring removes senescent plant material and detritus from periphyton, we hypothesized that productivity rates and the gross productivity/respiration (P/R) ratio of the periphyton community would be greater after the flood. Gross and net primary production (as chlorophyll-a) increased significantly after the flood and an approximately 2-fold increase was observed in net daily metabolism. Mean P/R ratio increased significantly from 1.3 in the pre-flood community to 2.6 in the post-flood community. Following the flood, periphyton on the rocks exhibited increased photosynthetic efficiency relative to measurements made before the flood. Given the importance of primary producers in desert rivers, such changes have implications for ecologically sound management of the Colorado and other rivers.

  12. EPA'S HUMAN STUDIES FACILITY AT CHAPEL HILL (BROCHURE)

    EPA Science Inventory

    EPA's Human Studies Facility is distiguished by unique, state-of-the art exposure systems designed for studing the health effects of airborne pollutants. The chambers can deliver most gaseous pollutants at precise concentrations and atmospheric conditions. Instrumentation enable...

  13. Characterizing the acoustic properties of the Jet Lab at the National Center for Physical Acoustics

    NASA Astrophysics Data System (ADS)

    Lieblong, Joshua Anderson

    Aerodynamic noise has been a problem since the first use of the jet engine for military aircraft in World War II. For further uses of the jet engine to be possible, problems due to jet noise must be researched and addressed. Anechoic chambers were proposed as a testing facility for research in aerodynamic noise because of their supposed free-field characteristics. The international standard ISO 3745-1977 was introduced to determine whether the facilities could be considered anechoic, semi-anechoic, or neither. An experiment was designed to determine at what frequencies the National Center for Physical Acoustics' Jet Lab Facility is non-anechoic, semi-anechoic, or anechoic. To comply with the guidelines of ISO 3745- 1977, three sources were designed and tested at frequencies from 25 Hz to 16000 Hz. The voltages were acquired at each frequency to calculate the sound pressure level and determine if the calculated values are within the allowed tolerance of the inverse square law.

  14. Signal propagation in long wire chambers

    NASA Astrophysics Data System (ADS)

    Bock, P.; Engelfried, J.; Friedrich, T.; Heintze, J.; Lennert, P.; Russ, M.; Zimmer, M.

    2012-09-01

    The propagation of signals in long proportional counters or multi-wire tracking chambers is simulated, using numerical solutions of the multi-wire telegraph equations. The results are compared to experimental data, recorded with a proportional counter and a multi-wire test chamber. The signal shape, the charge division ratio and, in the case of the drift chamber, also the cross talk between the wires, are well reproduced. Similar shapes for signals and their cross talk can be obtained with a properly chosen electrical termination. It is shown how data from a multi-wire chamber can then be corrected for cross talk. The effects limiting the precision of position measurements along the wires with the charge division method are discussed. The simulation was applied to the reconstruction of tracks measured with the OPAL JET chamber.

  15. Subcutaneously implanted tissue chambers: a pathophysiological study.

    PubMed

    Clarke, C R; Short, C R; Usenik, E A; Rawls, R

    1989-09-01

    Tissue and fluid changes occurring within tissue chambers were characterised as a function of time after subcutaneous implantation in cattle. Cytological and chemical investigation revealed that the composition of fluid within chambers approached the theoretical composition of true interstitial fluid as time after implantation progressed. Erythrocyte and leucocyte numbers decreased sharply immediately after implantation and had reached stable numbers by 40 days after implantation. At this stage, chamber fluid samples had lower total protein and albumin concentrations, higher K+ and Cl- concentrations and lower pH than corresponding blood samples. Despite an ongoing low-grade chronic inflammatory reaction resulting in fibrous encapsulation of chambers, the vascularity of chamber tissue did not diminish with time after implantation. By 40 days after implantation, the cellular and chemical constituents had stabilised enough to allow use of the model to study drug distribution. PMID:2508205

  16. Compact ion chamber based neutron detector

    SciTech Connect

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2015-11-05

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  17. Compact ion chamber based neutron detector

    SciTech Connect

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  18. Note: Small anaerobic chamber for optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Chauvet, Adrien A. P.; Agarwal, Rachna; Cramer, William A.; Chergui, Majed

    2015-10-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  19. Note: Small anaerobic chamber for optical spectroscopy.

    PubMed

    Chauvet, Adrien A P; Agarwal, Rachna; Cramer, William A; Chergui, Majed

    2015-10-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment. PMID:26520998

  20. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  1. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  2. The NASA Ames Closed Environmental Research Chamber: Present Status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Closed Environmental Research Chamber (CERC) at the NASA Ames Research Center was created to investigate both components and complete systems for life support of advanced space exploration missions. This facility includes a Main Chamber, an Airlock, a Sample Transfer Lock, a Vacuum System, an Air Recompression System, a dedicated control room and a pit area for housing supporting and environmental control systems. The Main Chamber provides 310 sq ft of internal working/living space on two levels. It is planned that the CERC will be a human-rated facility for habitation simulation under mass balance closure conditions. The internal pressure will be variable over the range of 14.7 psia to 5 psia with accompanying capability for variation in atmosphere composition to maintain the oxygen partial pressure at 160 mm Hg. The CERC will be provided with a core set of primary life support subsystems for temperature and humidity control, C02 removal and trace contaminant control. Interfacing with external life support technology test bds with be provided, along with connection to centralized, microprocessor-based data acquisition and control systems. This paper will discuss the current status of the CERC facility and show how it is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. In particular, it will be shown how the CERC, along with a human-powered centrifuge, a planetary terrain simulator and advanced displays and a virtual reality capability will work together to develop and demonstration applicable technologies for future planetary habitats. Artificial intelligence and expert system programming techniques will be used extensively to provide an automated environment for a 4-person crew. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of how effective are innovative new multidisciplinary test facilities to the investigation of the wide range of human and machine problems inherent in exploration missions.

  3. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2015-04-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor-wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, ?-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (?wi), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of ?w,i. For volatile and intermediate volatility organic compounds (small ?w,i), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large ?w,i, vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation.

  4. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2014-10-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be substantially underestimated owing to deposition of SOA-forming compounds to chamber walls. We present here an experimental protocol to constrain the nature of wall deposition of organic vapors in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, ?-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. The dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (?w,i), which can be correlated through its volatility (Ci*) with the number of carbons (nC) and oxygens (nO) in the molecule. Among the 25 compounds studied, the maximum wall deposition rate is approached by the most highly oxygenated and least volatile compounds. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and chamber walls. Gas-particle equilibrium partitioning is established relatively rapidly in the presence of perfect accommodation of organic vapors onto particles or when a sufficiently large concentration of suspended particles is present. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of ?w,i. For volatile and intermediate volatility organic compounds (small ?w,i), gas-particle partitioning will be dominant for typical particle number concentrations in chamber experiments. For large ?w,i, vapor transport to particles is suppressed by competition with the chamber walls even with perfect particle accommodation.

  5. Sample chambers with mother-daughter mode

    SciTech Connect

    Wilk, P.A.; Gregorich, K.E.; Hoffman, D.C.

    2001-07-12

    A set of eight stand-alone sample chambers with a common interface were constructed at LBNL for improved detection of alpha and fission decay chains over currently used designs. The stainless steel chambers (see Figure 1 for a schematic and Figure 2 for a photograph of a completed chamber) were constructed to allow for low background detection of a daughter event by removal of the sample following the detection of a parent event. This mother-daughter mode of operation has been utilized successfully with our Merry-go-Round (MG) detection system [Gregorich 1994].

  6. The Japanese Radon and Thoron Reference Chambers

    SciTech Connect

    Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Takahashi, Hiroyuki; Miyahara, Nobuyuki

    2008-08-07

    Passive detectors used for large-scale and long-term surveys are generally calibrated in a well-controlled environment such as a radon chamber. It has been also pointed out that some of them are sensitive to thoron. Thus it is necessary to check the thoron contribution to the detector response with the proposed or similar test before practical use. The NIRS accommodates radon/aerosol and thoron chambers for quality assurance and quality control of radon measurements. Thus both chambers work so well that they can supply us with the calibration technique and consequently, a good level of knowledge of the radon and thoron issue.

  7. Mechanical construction techniques for assembling wire chambers

    SciTech Connect

    MacArthur, D.W.

    1991-07-01

    This report is composed of the results of many experiments with multi-wire proportional chambers (MWPCs), particularly those built within N-2. All of the assembly construction techniques I discuss have been experimentally evaluated and found to be useful. Although most of these techniques were developed to answer specific problems with the N-2 chamber, many of them are equally applicable to similar designs. This text is intended for the individual who is troubleshooting actual chambers; I have included some MWPC design information and some detector comparisons, but neither of these is covered in detail here. 15 refs., 25 figs., 3 tabs.

  8. Initial Experiments with the Plasma Chambers Mago, Having no Central Current-Carrying POST in the Plasma Heating Compartment

    NASA Astrophysics Data System (ADS)

    Bazanov, A. A.; Pozdov, N. I.

    2004-11-01

    In all the experiments performed to date, the MAGO chambers had a central current-carrying post used for the introduction of the initial magnetic field into the chamber. The results of the first experiments on the capacitor bank facility CASCADE in which the initial magnetic field was not introduced into MAGO chamber, and the central current-carrying post was removed from the plasma heating compartment, are presented in the report. The experiments demonstrated the feasibility of obtaining high-temperature plasma in such chambers with neutron emission duration of 1-1.5 μs. The results may be very useful analyzing the mechanisms of the plasma preliminary heating in MAGO chambers and for testing the applied calculation techniques.

  9. Evaluation of the flux chamber method for measuring volatile organic emissions from surface impoundments. Final report

    SciTech Connect

    Gholson, A.R.; Albritton, J.R.; Jayanty, R.K.M.

    1989-01-01

    The research deals with the validation of the flux-chamber method for measuring volatile organic emissions from liquid surfaces in treatment, storage, and disposal facilities (TSDF). A simulated surface impoundment was constructed so that method precision and accuracy could be determined under controlled conditions. Operational parameters studied included sweep flow rate, sampling time, sweep flow position and chamber depth in the liquid. Environmental factors included wind velocity, solar intensity, emission rate, and chemical composition. Field testing was performed at two TSDFs, a waste-water treatment facility at a chemical plant, and a waste stabilization facility. The results showed that good precision can be obtained under a variety of conditions, but that the method suffers from a negative bias that varies with the compound under analysis.

  10. A telescience monitoring and control concept for a CELSS plant growth chamber

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Mian, Arshad

    1989-01-01

    Consideration is given to the use of telescience to monitor and control a Space Station CELSS plant growth chamber (PGC). The proposed telescience control system contains controllers for PGC subsystems, a local master controller, and remote controllers. The benefits of telescience are discussed and the functional requirements of the PGC are outlined. A typical monitoring and control scenario is described. It is suggested that the proposed concept would provide remote access to a ground-based CELSS research facility, Space Station plant growth facilities, lunar-based CELSS facilities, and manned interplanetary spacecraft.

  11. 11. Detail view west from airlock chamber of typical refrigerator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view west from airlock chamber of typical refrigerator door into Trophic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  12. HYLIFE-II reactor chamber design refinements

    SciTech Connect

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li{sub 2}BeF{sub 4}) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented.

  13. EFFECT OF DIETHYLHYDROXYLAMINE ON SMOG CHAMBER IRRADIATIONS

    EPA Science Inventory

    The addition of diethylhydroxylamine (DEHA) to the urban atmosphere had been suggested as a means of preventing photochemical smog. Smog chamber studies were carried out to investigate the photochemical smog formation characteristics of irradiated hydrocarbon-nitrogen oxides - DE...

  14. Ultra-high molecular sink vacuum chamber

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Yager, S. P.

    1970-01-01

    Double-wall vacuum chamber can be separated from the remainder of the system and pumped by ultra-clean techniques. Ultrahigh vacuum is maintained by the cryogenic effect of a cold wall and titanium chemisorption.

  15. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  16. Fast multilayer fission chamber with 239Pu

    NASA Astrophysics Data System (ADS)

    Bogdzel, A. A.; Gundorin, N. A.; Duka-Zolyòmi, À.; Kliman, J.; Grigoriev, Yu. V.

    1994-04-01

    For the investigation of neutron induced fission of heavy nuclei in the resonance energy range the fast multilayer ionization fission chamber with a 239Pu content of 1.6 g was constructed. The chamber is compact and a minimum of material has been used for its construction. The chamber is divided into 19 sections containing no more than 100 mg of 239Pu in a section whose intrinsic capacity is less than 100 pF. By using fast preamplifiers and constant fraction discriminators together with the combined method of amplitude and pulse length discrimination the background due to ?-particles is suppressed and a less perturbed pulse height distribution is obtained. The absolute fission fragments detection efficiency of the chamber is (60±8)%. Its time resolution does not exceed 2.6 ns.

  17. The Mars Chamber - Duration: 111 seconds.

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  18. Developing Cloud Chambers with High School Students

    NASA Astrophysics Data System (ADS)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  19. Studies of Helium Based Gas Mixtures Using a Small Cell Drift Chamber

    SciTech Connect

    Heise, Jaret; /British Columbia U.

    2006-07-07

    An international collaboration is currently working on the construction and design of an asymmetric B Factory at the Stanford Linear Accelerator Center that will be ready to collect data in 1999. The main physics motivation for such a facility is to test the description and mechanism of CP violation in the Standard Model of particle physics and provide insight into the question of why more matter than antimatter is observed in the universe today. In particular, this experiment will measure CP violation in the decay of B mesons. In the early stages of this effort, the Canadian contingent proposed to build the central tracking chamber for the BaBar detector. Presently, a prototype drift chamber is in operation and studies are being performed to test some of the unique features of drift chamber design dictated by the conditions of the experiment. Using cosmic muons, it is possible to study tracking and pattern recognition in the prototype chamber, and therefore calculate the efficiency and spatial resolution of the prototype chamber cells. These performance features will be used to test whether or not the helium-based gas mixtures proposed for the BaBar drift chamber are a viable alternative to the more traditional argon-based gases.

  20. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  1. Engine Knock and Combustion Chamber Form

    NASA Technical Reports Server (NTRS)

    Zinner, Karl

    1939-01-01

    The present report is confined to the effect of the combustion chamber shape on engine knock from three angles, namely: 1) The uniformity of flame-front movement as affected by chamber design and position of the spark plug; 2) The speed of advance of the flame as affected by turbulence and vibrations; 3) The reaction processes in the residual charge as affected by the walls.

  2. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  3. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  4. Facility design: introduction. [TRU facility

    SciTech Connect

    Unger, W.E.

    1980-08-11

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures. (DLC)

  5. Outdoor chamber study to test multi-day effects. Volume 3. Documentation for computer-readable environmental chamber data. Final report, August 1982-August 1984

    SciTech Connect

    Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.

    1984-12-01

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume includes documentation on the computer-readable magnetic tape that contains all the data collected in the study. The tape is suitable for use by modelers to develop and test kinetic mechanisms of photochemical smog formation.

  6. A TPC (Time Projection Chamber) detector for the study of high multiplicity heavy ion collisions

    SciTech Connect

    Rai, G.; Arthur, A.; Bieser, F.; Harnden, C.W.; Jones, R.; Klienfelder, S.; Lee, K.; Matis, H.S.; Nakamura, M.; McParland, C.; Nesbitt, D.; Odyniec, G.; Olson, D.; Pugh, H.G.; Ritter, H.G.; Symons, T.J.M.; Wieman, H.; Wright, M.; Wright, R. ); Rudge, A. )

    1990-01-01

    The design of a Time Projection Chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity ({approx} 200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described. 10 refs., 8 figs., 1 tab.

  7. BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites

    NASA Technical Reports Server (NTRS)

    Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.

  8. IFE thick liquid wall chamber dynamics: Governing mechanisms andmodeling and experimental capabilities

    SciTech Connect

    Raffray, A.R.; Meier, W.; Abdel-Khalik, S.; Bonazza, R.; Calderoni, P.; Debonnel, C.S.; Dragojlovic, Z.; El-Guebaly, L.; Haynes,D.; Latkowski, J.; Olson, C.; Peterson, P.F.; Reyes, S.; Sharpe, P.; Tillack, M.S.; Zaghloul, M.

    2005-01-24

    For thick liquid wall concepts, it is important to understand the different mechanisms affecting the chamber dynamics and the state of the chamber prior to each shot a compared with requirements from the driver and target. These include ablation mechanisms, vapor transport and control, possible aerosol formation, as well as protective jet behavior. This paper was motivated by a town meeting on this subject which helped identify the major issues, assess the latest results, review the capabilities of existing modeling and experimental facilities with respect to addressing remaining issues, and helping guide future analysis and R&D efforts; the paper covers these exact points.

  9. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  10. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  11. Internal combustion engine injected accumulation chamber

    SciTech Connect

    Ito, S.; Nohira, H.; Oki, H.

    1980-07-01

    A description is given of an internal combustion engine having an intake passage and an exhaust passage, comprising: a cylinder block having a cylinder bore therein; a cylinder head mounted on said cylinder block and having a fixed-volume, non-cooled cavity therein; a piston reciprocally movable in said cylinder bore; a combustion chamber formed between said cylinder head and said piston, said cavity having a port connected to said combustion chamber; an intake valve movably mounted on said cylinder head for leading a suction gas from the intake passage into said combustion chamber; an exhaust valve movably mounted on said cylinder head for discharging an exhaust gas into the atmosphere; means for feeding fuel into said cavity to create a combustible mixture therein, said feeding means comprising a fuel injector; a spark plug having a spark gap located in said combustion chamber; valve means for opening said port of the cavity once per cycle during the compression stroke to spout out a jet of the combustible mixture under pressure into said combustion chamber from said cavity during the first half of the compression stroke and permit the inflow of the suction gas into said cavity from said combustion chamber during the latter half of the compression stroke for temporarily accumulting the suction gas under pressure after said port is closed; and a fuel injection control device for starting the injecting operation of said fuel injector immediately after said valve means is closed.

  12. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  13. High-pressure promoted combustion chamber

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (inventor); Stoltzfus, Joel M. (inventor)

    1991-01-01

    In the preferred embodiment of the promoted combusiton chamber disclosed herein, a thick-walled tubular body that is capable of withstanding extreme pressures is arranged with removable upper and lower end closures to provide access to the chamber for dependently supporting a test sample of a material being evaluated in the chamber. To facilitate the real-time analysis of a test sample, several pressure-tight viewing ports capable of withstanding the simulated environmental conditions are arranged in the walls of the tubular body for observing the test sample during the course of the test. A replaceable heat-resistant tubular member and replaceable flame-resistant internal liners are arranged to be fitted inside of the chamber for protecting the interior wall surfaces of the combustion chamber during the evaluation tests. Inlet and outlet ports are provided for admitting high-pressure gases into the chamber as needed for performing dynamic analyses of the test sample during the course of an evaluation test.

  14. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  15. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  16. Investigation of the Unique Cryogenic Pumping System of the CHAFF-IV spacecraft-Thruster Interaction Facility

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.; Young, Marcus P.; Jamison, Andrew; Eccles, Brian; Muntz, E. P.

    2000-07-01

    Chamber -IV of the Collaborative High Altitude Flow Facility was designed to obtain high fidelity spacecraft- thruster interaction data. CHAFF-IV uses a total chamber pumping concept by lining the entire chamber with an array of cryogenically cooled, radial fins. Details of Monte Carlo numerical simulation and experimental investigation of the radial fin target array pumping efficiency are presented.

  17. Investigation of the unique cryogenic pumping system of the CHAFF-IV spacecraft-thruster interaction facility

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.; Young, Marcus P.; Jamison, Andrew; Eccles, Brain; Muntz, E. P.

    2001-08-01

    Chamber-IV of the Collaborative High Altitude Flow Facility was designed to obtain high fidelity spacecraft-thruster interaction data. CHAFF-IV uses a total chamber pumping concept by lining the entire chamber with an array of cryogenically cooled, radial fins. Details of Monte Carlo numerical simulation and experimental investigation of the radial fin target array pumping efficiency are presented.

  18. 12. View north of Tropic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View north of Tropic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  19. 13. View south of Arctic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View south of Arctic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  20. Characterization and testing of a new environmental chamber designed for emission aging studies

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2014-06-01

    A 29 m3 Teflon chamber, designed for aging studies of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber belongs to a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, as well as cell and animal exposure devices are side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from zero to 0.62 min-1. The irradiance spectrum is centered at 365 nm and the maximum irradiance, produced by 160 blacklight lamps, is 29.7 W m-2, which corresponds to the UV irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25 ± 1 °C when half of the blacklights are on. The chamber is kept in an overpressure with a moving top frame, which prevents sample dilution and contamination from entering the chamber during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 33-44%, depending on the initial conditions, such as the NOx concentration. The highest gaseous oxidation product yields of 14.4-19.5% were detected with ions corresponding to 2-butenedial (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044). Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  1. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-01

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O2/H2) and new ``green'' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lbf) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O2/H2 propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  2. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    SciTech Connect

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-22

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O{sub 2}/H{sub 2}) and new 'green' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lb{sub f}) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O{sub 2}/H{sub 2} propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  3. [Characterization of photochemical smog chamber and initial experiments].

    PubMed

    Jia, Long; Xu, Yong-Fu; Shi, Yu-Zhen

    2011-02-01

    A self-made new indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosols has been introduced and characterized. The characterization experiments include the measurements of wall effects for reactive species and the determination of chamber dependent * OH radical sources by CO-NO(x) irradiation experiments. Preliminary ethene-NO(x) and benzene-NO(x) experiments were conducted as well. The results of characterization experiments show that the wall effects for O3 and NO2 in a new reactor are not obvious. Relative humidity has a great effect on the wall losses in the old reactor, especially for O3. In the old reactor, the rate constant for O3 wall losses is obtained to be 1.0 x 10(-5) s(-1) (RH = 5%) and 4.0 x10(-5) s(-1) (RH = 91%), whereas for NO2, it is 1.0 x 10(-6) s(-1) (RH = 5%) and 0.6 x 10(-6) s(-1) (RH = 75%). The value for k(NO2 --> HONO) determined by CO-NO(x) irradiation experiments is (4.2-5.2) x 10(-5) s(-1) and (2.3-2.5) x 10(-5) s(-1) at RH = 5% and RH 75% -77%, respectively. The average *OH concentration is estimated to be (2.1 +/- 0.4) x 10(6) molecules/cm3 by using a reaction rate coefficient of CO and * OH. The sensitivity of chamber dependent auxiliary reactions to the O3 formation is discussed. Results show that NO2 --> HONO has the greatest impact on the O3 formation during the initial stage, N2O5 + H2O --> 2HNO3 has a minus effect to maximum O3 concentration, and that the wall losses of both O3 and NO2 have little impact on the O3 formation. The results from the ethene-NO(x) and benzene-NO(x) experiments are in good agreement with those from the MCM simulation, which reflects that the facility for the study of the formation of secondary pollution of ozone and secondary organic aerosols is reliable. This demonstrates that our facility can be further used in the deep-going study of chemical processes in the atmosphere. PMID:21528554

  4. Numerical models on shallow magma chamber formation

    NASA Astrophysics Data System (ADS)

    Barnett, Zoe; Gudmundsson, Agust

    2013-04-01

    A magma chamber can be defined as a body within the crust that is either partially or totally molten which is injected with new magma from a deep-seated reservoir. A shallow magma chamber acts as a sink as it receives magma from the deeper reservoir, and as a source for volcanic eruptions. Most shallow magma chambers appear to develop from sills, and some, such as many mid-ocean ridge magma chambers, maintain the sill geometry through their lifetimes. For a sill to function as a magma chamber, certain conditions must be met: (1) The sill thickness must be in the order of tens of metres. This thickness is reached by either a) when a complex of thinner sills amalgamates or b) magma accumulates due to multiple dyke arrests at the contact with the sill. (2) The sill must receive a fairly constant magma replenishment so the chamber remains partially or (more rarely) totally molten. Here, we present numerical models based on geophysical data on how an individual sill can evolve into a magma chamber. Sills generally exhibit a concave-upward or straight geometry, although they may take other forms e.g. stepped, saucer-shaped, or concave-downward. Seismic studies suggest that many shallow ocean-ridge magma chambers have a moderately smooth geometry (ellipsoidal) rather than an irregular network of dykes and sills. Our numerical results indicate as follows: Firstly, the deflection of dykes into sills is most favoured in the upper crust where there are many layers generating stress barriers/delaminations due to elastic mismatch, that is, contrasting mechanical properties. Secondly, a sill grows primarily by elastic-plastic deformation of the host rock in which it is emplaced, while host rock anatexis/stoping may generate space for some large sills. The elastic-plastic expansion is partly reflected in upward bending of the overburden and partly in downward bending of the underburden. Thirdly, while the initial sill stays liquid or 'soft', subsequent dyke injections become arrested at the contact with the sill and their magmas become partly absorbed into the sill, which thereby grows. Fourthly, the sill must remain totally or at least partially molten, which requires a high injection rate of dykes feeding the sills to have a chance of developing into a shallow magma chamber. A high dyke injection rate is most likely to be reached at high extension rates, such as at fast-spreading ridges. This may be one reason for the common sill-like magma chambers being located at fast-spreading ridges.

  5. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Calibration of ion chambers for use in mammography.

    PubMed

    Law, J

    1993-01-01

    There is at present no UK calibration service for ion chambers for mammography, where X-ray beams are produced from tubes having molybdenum targets and filters. This paper reports calibrations against a radiotherapy secondary standard (calibrated for beams from tungsten targets with aluminium filters) using beams from both types of target and filter. Two examples of the Radcal mammography dosimeter were found to have calibration factors which varied by less than 1% in molybdenum target beams from 30 to 40 kV. Differences between calibrations using the two types of X-ray beam did not exceed about 2%. All calibration factors were within about +/- 2% of 1.0. Errors are thought to be within +/- 3%. The results of an independent calibration of one of these dosimeters against a similar chamber calibrated by CEC are also reported. Calibrations of this kind can only be temporary expedients until adequate calibration facilities for mammography beams become available, but are nevertheless useful. PMID:8428251

  7. Thermal environmental tests on space simulation chamber

    SciTech Connect

    Akau, R.L.; Freshour, J.P.; Wilde, S.L.

    1989-09-01

    Thermal testing of space payloads at Sandia National Laboratories is conducted in a large cylindrical (7.0 feet in diameter) vacuum chamber with temperature controlled walls. The payload is generally attached to a baseplate with independent temperature controls. To establish well-defined boundary conditions during the tests, uniform wall temperatures are desired in the test chamber. Thermal-vacuum tests were conducted on this space simulation chamber to determine if temperature gradients existed on the chamber shroud and end-bells. Recorded temperature measurements indicated large temperature gradients on the chamber shroud and end-bells. Furthermore, it was difficult to manually control the flow of liquid to the end-bells in order to achieve equal end-bell temperatures. However, results from these tests were used in a computer program developed to predict locations on the shroud and end-balls where a thermocouple would measure the best area-weighted average temperature. These measurements provide necessary boundary temperatures that can be used in a thermal model of a satellite payload. Results were obtained for different shroud and baseplate temperature settings. 8 figs., 5 tabs.

  8. Organization of inspection of bubble chamber photographs

    SciTech Connect

    Gritsaenko, I.A.; Fenyuk, A.B.; Petrovykh, L.P.; Petrovykh, Yu.L.

    1986-03-01

    A program for inspection of bubble chamber photographs is described. The program was developed for a DEC-10 computer and is designed for PUOS-2M and PUOS-4 semiautomatic inspection and measuring projectors. Formalization of the inspection procedure allows it to be used for various physics experiments. As an example the authors consider the problem of the physical inspection in an experiment on scattering of kaons plus with momenta of 70 GeV/c by protons performed in a BEBC chamber. Primary vertices were analyzed in the following cases: low quality of reconstruction of parameters in the geometric program; lack of agreement of the number of reconstructed tracks with that indicated by inspection; and unmeasured events and events with candidate tracks for identification of proton tracks by degree of ionization. The performance of the program in these cases is evaluated. The program has been used to process 50,000 events recorded with a BEBC chamber as well as experiments recorded with the SCAT chamber and the European Hybrid Spectrometer using the RCBC, LEBC and HOLEBC chambers.

  9. Aging effect in the BESIII drift chamber

    NASA Astrophysics Data System (ADS)

    Ming-Yi, Dong; Qing-Lei, Xiu; Ling-Hui, Wu; Zhi, Wu; Zhong-Hua, Qin; Pin, Shen; Fen-Fen, An; Xu-Dong, Ju; Yi, Liu; Kai, Zhu; Qun, Ou-Yang; Yuan-Bo, Chen

    2016-01-01

    As the main tracking detector of BESIII, the drift chamber provides accurate measurements of the position and the momentum of the charged particles produced in e+e? collisions at BEPCII. After six years of operation, the drift chamber is suffering from aging problems due to huge beam-related background. The gains of the cells in the first ten layers show an obvious decrease, reaching a maximum decrease of about 29% for the first layer cells. Two calculation methods for the gain change (Bhabha events and accumulated charges with 0.3% aging ratio for inner chamber cells) give almost the same results. For the Malter effect encountered by the inner drift chamber in January 2012, about 0.2% water vapor was added to the MDC gas mixture to solve this cathode aging problem. These results provide an important reference for MDC operating high voltage settings and the upgrade of the inner drift chamber. Supported by the CAS Center for Excellence in Particle Physics (CCEPP)

  10. Calibration of IR test chambers with the missile defense transfer radiometer

    NASA Astrophysics Data System (ADS)

    Kaplan, Simon G.; Woods, Solomon I.; Carter, Adriaan C.; Jung, Timothy M.

    2013-05-01

    The Missile Defense Transfer Radiometer (MDXR) is designed to calibrate infrared collimated and flood sources over the fW/cm2 to W/cm2 power range from 3 ?m to 28? m in wavelength. The MDXR operates in three different modes: as a filter radiometer, a Fourier-transform spectrometer (FTS)-based spectroradiometer, and as an absolute cryogenic radiometer (ACR). Since 2010, the MDXR has made measurements of the collimated infrared irradiance at the output port of seven different infrared test chambers at several facilities. We present a selection of results from these calibration efforts compared to signal predictions from the respective chamber models for the three different MDXR calibration modes. We also compare the results to previous measurements made of the same chambers with a legacy transfer radiometer, the NIST BXR. In general, the results are found to agree within their combined uncertainties, with the MDXR having 30 % lower uncertainty and greater spectral coverage.

  11. The High Momentum Spectrometer Drift Chambers in Hall C at CEBAF

    SciTech Connect

    Vulcan, William; Kross, Brian; Beaufait, Joseph; Baker, O.; Carlini, Roger; Majewski, Stanislaw; Johnson, A.; McCauley, A.; Niculescu, Gabriel; Niculescu, Maria-Ioana; Cha, Jinseok; Shin, Taeksu; Naing, Win; Danagoulian, Samuel

    1995-12-01

    The mutiwire drift chambers to be used in the High Momentum Spectrometer (HMS) at the Continuous Electron Beam Accelerator Facility (CEBAF) have been designed and constructed, and recently employed in initial data-taking runs.These chambers are used to reconstruct scattered charged particle momenta in the HMS using 12C and BeO2 targets for incident electron energies up to 2.2 GeV.Offline analysis of the data indicate that these drift chambers have spatial resolution (per plane) of about 115 mu-m (sigma) in rates approaching a KHz/wire/mm.It is expected that this performance will improve at higher momenta where multiple scattering contributions are smaller.

  12. Stability of A-150 plastic ionization chamber response over a ~30 year period

    SciTech Connect

    Kroc, Thomas K.; Lennox, Arlene J.; /Fermilab

    2007-08-01

    At the NIU Institute for Neutron Therapy at Fermilab, the clinical tissue-equivalent ionization chamber response is measured every treatment day using a cesium source that was configured to match readings obtained at the National Bureau of Standards. Daily measurements are performed in air using the air-to-tissue dose conversion factors given in AAPM Report no. 7. The measured exposure calibration factors have been tabulated and graphed as a function of time from 1978 to present. For A-150 plastic ionization chambers, these factors exhibit a sinusoidal variation with a period of approximately one year and amplitude of {+-} 1%. This variation, attributable to the hygroscopic nature of A-150 plastic, is correlated with the relative humidity of the facility, and is greater than the humidity corrections for gas described in the literature. Our data suggest that chamber calibration should be performed at least weekly to accommodate these variations.

  13. Proton Recoil Detectors and Fission Ionization Chambers for Neutron Dosimetry

    NASA Astrophysics Data System (ADS)

    Wilson, Brent; McMahan, Peggy; Barquest, Brad; Johnson, Mike

    2006-10-01

    This research involved the creation and development of detectors for the measurement of neutron flux. These detectors will be utilized to obtain dose information for fast neutron irradiations of electronic components, materials, and biological samples in the new neutron beamline at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. As a first step, we have developed two well-established neutron detectors -- the proton recoil detector and the fission ionization chamber -- for the energy range of the neutrons at our facility, 5 to 30 MeV. Using activation foil measurements (to obtain absolute neutron flux) and time-of-flight measurements with a Stilbene detector (to obtain the neutron energy spectra), we can calculate the efficiency of our detectors for both monoenergetic and white spectrum neutrons in this energy range.

  14. Team Huddle Before Lifting Phoenix into Test Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Spacecraft specialists huddle to discuss the critical lift of NASA's Phoenix Mars Lander into a thermal vacuum chamber.

    In December 2006, the spacecraft was in a cruise configuration prior to going into environmental testing at a Lockheed Martin Space Systems facility near Denver. At all stages of assembly and testing, the spacecraft is handled with extreme care and refinement.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  15. Design characteristics of a heat pipe test chamber

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Jang, J. Hoon; Yu, Juin S.

    1992-01-01

    LeRC has designed a heat pipe test facility which will be used to provide data for validating heat pipe computer codes. A heat pipe test chamber that uses helium gas for enhancing heat transfer was investigated. The conceptual design employs the technique of guarded heating and guarded cooling to facilitate accurate measurements of heat transfer rates to the evaporator and from the condenser. The design parameters are selected for a baseline heat pipe made of stainless steel with an inner diameter of 38.10 mm and a wall thickness of 1.016 mm. The heat pipe operates at a design temperature of 1000 K with an evaporator radial heat flux of 53 W/sq. cm.

  16. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  17. Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847

    SciTech Connect

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-07-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 {Angstrom}) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO{sub 2} Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation [1-6]. This report provides a summary of the work completed this year, as well as copies fo presentation materials that have not been published elsewhere. In particular, the Appendix contains copies of presentations made on CO{sub 2} cleaning that are not available elsewhere.

  18. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  19. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  20. Radon progeny behavior in diffusion chamber

    NASA Astrophysics Data System (ADS)

    Nikezi?, D.; Stevanovi?, N.

    2005-10-01

    The behavior of short-lived radon progeny in a diffusion chamber was modeled based on the random Brownian motion and diffusion. The modeling enables calculations of the fraction of radon progeny that decays in air, as well as, the distribution of the atoms deposited onto the inner walls of the diffusion chamber. Up to 23% of 218Po decays in air, while 214Pb and 214Bi are almost fully deposited before decaying. The distribution of deposited progeny was found to be non-uniform. In the second part of the paper, deposition of charged progeny atoms was also considered. The influence of non-uniform deposition of radon progeny on the total sensitivity was investigated for an LR 115 detector in one typical diffusion chamber. The electric charge increases the deposition of radon progeny.

  1. Emulsion chamber experiments for the Space Station

    NASA Astrophysics Data System (ADS)

    Wilkes, R. J.

    Emulsion chambers offer several unique features for the study of ultrahigh-energy cosmic-ray interactions and spectra aboard a permanent manned Space Station. Emulsion-chamber experiments provide the highest acceptance/weight ratio of any current experimental technique, are invulnerable to mechanical shocks and temperature excursions associated with space flight, do not employ volatile or explosive components or materials, and are not dependent upon data communications or recording systems. Space-Station personnel would be employed to replace track-sensitive materials as required by background accumulation. Several emulsion-chamber designs are proposed, including both conventional passive calorimetric detectors and a hybrid superconducting-magnetic-spectrometer system. Results of preliminary simulation studies are presented. Operational logistics are discussed.

  2. TRIDENT high-energy-density facility experimental capabilities and diagnostics

    SciTech Connect

    Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N.

    2008-10-15

    The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

  3. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, S.; Effinger, M.; Holmes, R.; Lee, J.; Jaskowiak, M.

    2000-01-01

    Traditional metals like steel and copper alloys have been used for many years to fabricate injector and chamber components of thruster assemblies. While the materials perform well, reducing engine weights would help existing and future vehicles gain performance and payload capability. It may now be possible to reduce current thruster weights up to 50% by applying composite materials. In this task, these materials are being applied to an existing thrust cell design to demonstrate new fabrication processes and potential weight savings. Two ceramic matrix composite (CMC) designs, three polymer matrix composite (PMC) designs, and two metal matrix composite (MMC) designs are being fabricated as small chamber demonstration units. In addition, a new alloy of copper, chrome, and niobium (Cu-8Cr-4Nb) is being investigated for thrust chamber liners since it offers higher strength and increased cycle life over traditional alloys. This new alloy is being used for the liner in each MMC and PMC demonstration unit. During June-August of 2000, hot-fire testing of each unit is planned to validate designs in an oxygen/hydrogen environment at chamber pressures around 850 psi. Although the weight savings using CMC materials is expected to be high, they have proven to be much harder to incorporate into chamber designs based on current fabrication efforts. However, the PMC & MMC concepts using the Cu-8Cr-4Nb liner are nearly complete and ready for testing. Additional efforts intend to use the PMC & MMC materials to fabricate a full size thrust chamber (60K lb(sub f) thrust class). The fabrication of this full size unit is expected to be complete by October 2000, followed by hot-fire testing in November-December 2000.

  4. RCRA FACILITIES

    EPA Science Inventory

    Points represent facilities that are regulated by the EPA under the Resource Conservation and Recovery Act (RCRA). Facilities regulated under RCRA generate, dispose of, treate or transport hazardous waste. RCRA is a law enacted by Congress in 1976 and amended in 1984 to include ...

  5. Cosmic muon detector using proportional chambers

    NASA Astrophysics Data System (ADS)

    Varga, Dezs?; Gál, Zoltán; Hamar, Gerg?; Sára Molnár, Janka; Oláh, Éva; Pázmándi, Péter

    2015-11-01

    A set of classical multi-wire proportional chambers was designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  6. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  7. Advanced technology application for combustion chamber concepts

    NASA Technical Reports Server (NTRS)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  8. NSTAR Extended Life Test Discharge Chamber Flake Analysis

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Karniotis, Christina A.

    2005-01-01

    The Extended Life Test (ELT) of the NASA Solar Electric Propulsion Technology Readiness (NSTAR) ion thruster was concluded after 30,352 hours of operation. The ELT was conducted using the Deep Space 1 (DS1) back-up flight engine, a 30 cm diameter xenon ion thruster. Post-test inspection of the ELT engine revealed numerous contaminant flakes distributed over the bottom of the cylindrical section of the anode within the discharge chamber (DC). Extensive analyses were conducted to determine the source of the particles, which is critical to the understanding of degradation mechanisms of long life ion thruster operation. Analyses included: optical microscopy (OM) and particle length histograms, field emission scanning electron microscopy (FESEM) combined with energy dispersive spectroscopy (EDS), and atomic oxygen plasma exposure tests. Analyses of the particles indicate that the majority of the DC flakes consist of a layered structure, typically with either two or three layers. The flakes comprising two layers were typically found to have a molybdenum-rich (Mo-rich) layer on one side and a carbon-rich (C-rich) layer on the other side. The flakes comprising three layers were found to be sandwich-like structures with Mo-rich exterior layers and a C-rich interior layer. The presence of the C-rich layers indicates that these particles were produced by sputter deposition build-up on a surface external to the discharge chamber from ion sputter erosion of the graphite target in the test chamber. This contaminant layer became thick enough that particles spalled off, and then were electro-statically attracted into the ion thruster interior, where they were coated with Mo from internal sputter erosion of the screen grid and cathode components. Atomic oxygen tests provided evidence that the DC chamber flakes are composed of a significant fraction of carbon. Particle size histograms further indicated that the source of the particles was spalling of carbon flakes from downstream surfaces. Analyses of flakes taken from the downstream surface of the accelerator grid provided additional supportive information. The production of the downstream carbon flakes, and hence the potential problems associated with the flake particles in the ELT ion thruster engine is a facility induced effect and would not occur in the space environment.

  9. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.; Yost, M. C.; Tobin, R. D.

    1973-01-01

    Tests were conducted on the regenerative cooled thrust chamber of the space shuttle orbit maneuvering engine. The conditions for the tests and the durations obtained are presented. The tests demonstrated thrust chamber operation over the nominal ranges of chamber pressure mixture ratio. Variations in auxiliary film coolant flowrate were also demonstrated. High pressure tests were conducted to demonstrate the thrust chamber operation at conditions approaching the design chamber pressure for the derivative space tug application.

  10. Measurements of a 1/4-scale model of an explosives firing chamber

    SciTech Connect

    Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

    1995-01-27

    In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) proposes to construct a 60-kg firing chamber to provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the generated hazardous waste. The major design consideration of such a chamber is its overall structural dynamic response in terms of long-term containment of all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was designed, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design. Factors of safety for dynamic yield of the firing chamber structure were calculated and compared to the design criterion of totally elastic response. The rectangular, reinforced-concrete chamber model exhibited a lightly damped vibrational response that placed the structure in alternating cycles of tension and compression. During compression, both the reinforcing steel and the concrete remained elastic.

  11. Outdoor smog chamber experiments to test photochemical models. Final report May 78-May 81

    SciTech Connect

    Feffries, H.E.; Kamens, R.M.; Sexron, K.G.; Gerhardt, A.A.

    1982-04-01

    The smog chamber facility of the University of North Carolina was used in a study to provide experimental data for developing and testing kinetic mechanisms of photochemical smog formation. The smog chamber, located outdoors in rural North Carolina, is an A-frame structure covered with Teflon film. Because the chamber is partitioned into two sections, each with a volume of 156 cu m, two experiments can be conducted simultaneously. The dual chamber is operated under natural conditions of solar radiation, temperature, and relative humidity. In this study, 115 dual all-day experiments were conducted using NOx and a variety of organic species. The organic compounds investigated included various paraffins, olefins, aromatics and oxygenates, both singly and in mixtures of two or more components. In this report the data collected over the three-year period of the study are described. The experimental procedures and analytical methods used in this study and the limitations and uncertainties of the data are discussed. Guidance for modeling of the data is also given, including a detailed discussion of how to estimate photolytic rate constants from the available UV and total solar radiation data and how to treat such chamber artifacts as dilution, wall sources and losses of pollutants, and reactivity of the background air.

  12. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  13. Photon quality correction factors for ionization chambers in an epithermal neutron beam.

    PubMed

    Munck af Rosenschöld, P M; Ceberg, C P; Giusti, V; Andreo, P

    2002-07-21

    Photon quality correction factors (kQy) for ionization chamber photon dosimetry in an epithermal neutron beam were determined according to a modified absorbed dose to water formalism which was extended to mixed radiation fields. We have studied two commercially available ionization chambers in the epithermal neutron beam optimized for BNCT at the facility at Studsvik, Sweden. One of the chambers is nominally neutron insensitive; a magnesium-walled detector flushed with pure argon gas (denoted by Mg/Ar). The second chamber has approximately the same sensitivity for neutrons and photons; it is considered a 'tissue equivalent' detector, with A-150 walls flushed with methane-based tissue-equivalent gas (denoted by TE/TE). The kQy-factors in epithermal neutron beams have previously been assumed to be equal to unity or estimated from measurements in clinical accelerator produced photon beams. In this work the kQy-factors have been determined from absorbed dose calculations using cavity theory together with Monte Carlo derived electron fluences obtained with the MCNP4c system for water and PMMA phantoms. The calculated quality correction factors differ substantially from unity, being in the order of 10% for the Mg/Ar detector at shallow phantom depths, and between 2 and 4% for other depths and for the TE/TE chamber. PMID:12171330

  14. Photon quality correction factors for ionization chambers in an epithermal neutron beam

    NASA Astrophysics Data System (ADS)

    Rosenschöld, P. M. Munck af; Ceberg, C. P.; Giusti, V.; Andreo, P.

    2002-07-01

    Photon quality correction factors (kQ?) for ionization chamber photon dosimetry in an epithermal neutron beam were determined according to a modified absorbed dose to water formalism which was extended to mixed radiation fields. We have studied two commercially available ionization chambers in the epithermal neutron beam optimized for BNCT at the facility at Studsvik, Sweden. One of the chambers is nominally neutron insensitive; a magnesium-walled detector flushed with pure argon gas (denoted by Mg/Ar). The second chamber has approximately the same sensitivity for neutrons and photons; it is considered a 'tissue equivalent' detector, with A-150 walls flushed with methane-based tissue-equivalent gas (denoted by TE/TE). The kQ?-factors in epithermal neutron beams have previously been assumed to be equal to unity or estimated from measurements in clinical accelerator produced photon beams. In this work the kQ?-factors have been determined from absorbed dose calculations using cavity theory together with Monte Carlo derived electron fluences obtained with the MCNP4c system for water and PMMA phantoms. The calculated quality correction factors differ substantially from unity, being in the order of 10% for the Mg/Ar detector at shallow phantom depths, and between 2 and 4% for other depths and for the TE/TE chamber.

  15. HERL BIOLOGICAL EXPOSURE CHAMBER CONCEPTUAL DESIGN

    EPA Science Inventory

    Because of the current interest in biotesting of potentially hazardous air pollutants, the Health Effects Research Laboratory (HERL) of EPA/RTP has contracted Radian to design biological exposure chambers that can be used to expose text organisms to the secondary aerosol effluent...

  16. Lifetime tests for MAC vertex chamber

    SciTech Connect

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  17. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A. (Moraga, CA); Woolley, Adam T. (Albany, CA)

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  18. Heat-barrier coatings for combustion chambers

    NASA Technical Reports Server (NTRS)

    Carpenter, H. W.

    1970-01-01

    Arc-plasma-sprayed layered coating of graded Inconel and zirconia protects film-coolant ring below injector plate of rocket engine combustion chamber. Interfacial temperature is designed for minimum buildup of stress and to avoid melting of the metal phase in the graded layers.

  19. All-inorganic spark-chamber frame

    NASA Technical Reports Server (NTRS)

    Heslin, T. M.

    1980-01-01

    Outgassing is reduced by using ceramic and glass materials exclusively. Frames are assembled from four beams with rabbeted ends. Only ceramic or glass adhesives are used, and printed circuit is applied by screen printing directly on beams. Inorganic frames provide stable spark-chamber operation without gas refill, useful in terrestrial gamma-ray studies, in high-energy physics research, and other applications.

  20. Chamber of Commerce reception for Dr. Lucas

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Dr. William R. Lucas, Marshall's fourth Center Director (1974-1986), delivers a speech in front of a picture of the lunar landscape with Earth looming in the background while attending a Huntsville Chamber of Commerce reception honoring his achievements as Director of Marshall Space Flight Center (MSFC).

  1. Simple chamber facilitates chemiluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Marts, E. C.; Wilkins, J. R.

    1970-01-01

    Test chamber enables rapid estimation of bacteria in a test sample through the reaction of luminol and an oxidant with the cytochrome C portion of certain species of bacteria. Intensity of the light emitted in the reaction is a function of the specific bacteria in the test sample.

  2. Acoustical-Levitation Chamber for Metallurgy

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  3. OUTDOOR SMOG CHAMBER EXPERIMENTS USING AUTOMOBILE EXHAUST

    EPA Science Inventory

    Outdoor smog chamber experiments using automobile exhaust were performed in this study. The purpose of the study was to provide a data base that modelers could use to develop new, improved mechanisms for use in the Empirical Kinetics Modeling Approach (EKMA). Thirty-three dual sm...

  4. PAINT COATINGS: CONTROLLED FIELD AND CHAMBER EXPERIMENTS

    EPA Science Inventory

    To determine the impact of pollution levels on the weathering rates of coatings, laboratory chamber experiments and controlled field exposures at North Carolina and Ohio sites were conducted in such a manner to separate the contributions due to dry deposition, wet deposition, pre...

  5. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  6. Internal current generation in respiration chambers

    NASA Astrophysics Data System (ADS)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  7. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  8. Pneumatic micropumps with serially connected actuation chambers

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Wei; Huang, Song-Bin; Lee, Gwo-Bin

    2006-11-01

    This study presents a new pneumatic micropump featuring three membrane-enclosed air chambers with different volumes, such that serially connected actuation of these membranes can generate fluid movement. When compressed air fills the chambers, the membranes are pushed downward sequentially, resulting in the liquid in the underlying fluid channels being pumped forward peristaltically. Since the chambers are filled up sequentially with compressed air, from the smallest to largest chamber, this time delay generates a peristaltic motion in the membranes and forces the liquids to flow only along one direction. The pneumatic micropump is made of polydimethylsiloxane (PDMS) using soft lithography techniques. When compared with other pneumatic micropumps that usually require at least three electromagnetic valves (EMV), this new micropump can be operated by using a single EMV. Experimental results show that the micropump provides good performance even at low flow rates. The back pressure of the pneumatic micropump is measured at a fixed peak frequency to demonstrate the functionality of the micropump. The optimum operating conditions and geometric parameters of the micropump are systematically explored. A maximum flow of 108 µl min-1 is obtained at a driving frequency of 10 Hz and an air pressure of 25 psi (172.4 kPa) when a membrane with a thickness of 80 µm and a microchannel with a width of 500 µm are tested. The development of these micropumps could be crucial for automatic miniature biomedical and chemical analysis systems.

  9. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    SciTech Connect

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new {open_quotes}threshold{close_quotes} bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and {rho}R measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed.

  10. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    SciTech Connect

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1997-01-01

    We propose a new {open_quotes}threshold{close_quotes} bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and {rho}R measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor and National Ignition Facility experiments will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  11. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent accumulation of electric charge on them, they are spray-coated with an anti-static material. During use, the base plate and the sides and top of the chamber are grounded as a further measure to minimize the buildup of electric charge.

  12. Development of a EUV test facility at the Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Jonathan; Gaskin, Jessica; Winebarger, Amy; Krause, Linda; McGuirk, Michael; Darnel, Jonathan

    2011-09-01

    This paper will describe a new Extreme Ultraviolet (EUV) test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, Hi-C, the high resolution coronal imager (a sounding rocket program), and SUVI, the Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the NSSTC EUV test chamber) where this facility will be used.

  13. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  14. Four chamber pacing in dilated cardiomyopathy.

    PubMed

    Cazeau, S; Ritter, P; Bakdach, S; Lazarus, A; Limousin, M; Henao, L; Mundler, O; Daubert, J C; Mugica, J

    1994-11-01

    A 54-year-old man received a four chamber pacing system for severe congestive heart failure (NYHA functional Class IV). His ECG showed a left bundle branch block (200-msec QRS duration) with 200-msec PR interval, normal QRS axis, and 90-msec interatrial interval. An acute hemodynamic study with insertion of four temporary leads was performed prior to the implant, which demonstrated a significant increase in cardiac output and decrease of pulmonary capillary wedge pressure. A permanent pacemaker was implanted based on the encouraging results of the acute study. The right chamber leads were introduced by cephalic and subclavian approaches. The left atrium was paced with a coronary sinus lead, Medtronic SP 2188-58 model. An epicardial Medtronic 5071 lead was placed on the LV free wall. The four leads were connected to a standard bipolar DDD pacemaker, Chorus 6234. The two atrial leads were connected via a Y-connector to the atrial channel of the pacemaker with a bipolar pacing configuration. The two ventricular leads were connected in a similar fashion to the ventricular channel of the device. The right chamber leads were connected to the distal poles. The left chamber leads were connected to the proximal poles of the pacemaker. Six weeks later, the patient's clinical status improved markedly with a weight loss of 17 kg and disappearance of peripheral edema. His functional class was reduced to NYHA II. Four chamber pacing is technically feasible. In patients with evidence of interventricular dyssynchrony, this original pacing mode probably provides a mechanical activation sequence closer to the natural one.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7845801

  15. Test plan pressure fed thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn

    1990-01-01

    Aerojet is developing the technology for the design of a reliable, low cost, efficient, and lightweight LOX/RP-1 pressure fed engine. This technology program is a direct result of Aerojet's liquid rocket booster (LRB) study and previous NASA studies that identified liquid engines using high bulk density hydrocarbon fuels as very attractive for a space transportation system (STS). Previous large thrust LOX/RP-1 engine development programs were characterized by costly development problems due to combustion instability damage. The combustion stability solution was typically obtained through trial and error methods of minimizing instability damage by degrading engine performance. The approach to this program was to utilize existing and newly developed combustion analysis models and design methodology to create a thrust chamber design with features having the potential of producing reliable and efficient operation. This process resulted in an engine design with a unique high thrust-per-element OFO triplet injector utilizing a low cost modular approach. Cost efficient ablative materials are baselined for the injector face and chamber. Technology demonstration will be accomplished through a hot fire test program using appropriately sized subscale hardware. This subscale testing will provide a data base to supplement the current industry data bank and to anchor and validate the applied analysis models and design methodology. Once anchored and validated, these analysis models and design methodology can be applied with greatly increased confidence to design and characterize a large scale pressure fed LOX/RP-1 thrust chamber. The objective of this test program is to generate a data base that can be used to anchor and validate existing analysis models and design methodologies and to provide early concept demonstration of a low cost, efficient LOX/RP-1 thrust chamber. Test conditions and hardware instrumentation were defined to provide data sufficient to characterize combustion stability, performance, and thermal operation over a wide thrust chamber throttling range.

  16. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  17. Health Facilities

    MedlinePLUS

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you choose ...

  18. School Facilities.

    ERIC Educational Resources Information Center

    Athletic Business, 2002

    2002-01-01

    Describes the building designs of eight school athletic and recreational facilities, including the educational contexts and design goals. Includes information on architects and designers, construction cost, size, and occupancy date. Also provides photographs. (EV)

  19. A new extended-length parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Maia, Ana F.; Caldas, Linda V. E.

    2005-08-01

    A special parallel-plate ionization chamber was developed. The motivation for the construction of this new chamber was mainly to fulfil the need of a reference system for computed tomography standard beams in the Calibration Laboratory of IPEN. However, the chamber was tested also in standard radiation beams of mammography and conventional diagnostic radiology. The chamber was manufactured at the institute workshop, as simply and cheaply as possible. Its design differs from the common ionization chambers used in dosimetric procedures of computed tomography equipment, because it is a parallel-plate chamber instead of a cylindrical chamber. However, its dimensions and sensitive volume are very similar to those of a commercial pencil ionization chamber. The new ionization chamber was submitted to several characterization and quality control tests, showing its very good performance.

  20. Thermistors Used in Climatic Chamber at High Temperature and Humidity

    NASA Astrophysics Data System (ADS)

    van Geel, J. L. W. A.; Bosma, R.; van Wensveen, J.; Peruzzi, A.

    2015-03-01

    In 2011, VSL initiated the development of a facility for a relative humidity between and for calibrating high-temperature relative humidity sensors at pressures other than atmospheric. The setup for calculating the relative humidity uses the dew-point temperature, measured by a chilled mirror hygrometer, and the temperature distribution in the chamber, measured by a series of thermistors. This paper describes the results of thermal tests performed on the thermistors to ensure that they meet the requirements of the humidity calibration facility. Different types of thermistors were evaluated up to , and the selected type showed a short-term drift of less than 2 mK. Exposure of these thermistors to temperatures up to gave an initial hysteresis of 40 mK, but after this initial hysteresis, the hysteresis, over the range from up to , was less than 10 mK. Use of a digital multimeter, with a low-power option, limited the self-heating of the thermistors, over the range from up to , to less than 5 mK. During use in the new setup, the thermistors were exposed to changing humidities between 1 %Rh and 90 %Rh and temperatures up to , showing drifts of less than 10 mK.

  1. Sandia National Laboratories' new high level acoustic test facility

    SciTech Connect

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  2. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Mo?nik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions could become a far larger source of ambient PM than diesel vehicles. Therefore this large increase in the PM mass of gasoline vehicle aerosol emissions due to SOA formation has significant implications for our understanding of the contribution of on-road vehicles to ambient aerosols and merits further study.

  3. Pressure Control System Design for a Closed Crop Growth Chamber

    NASA Technical Reports Server (NTRS)

    Tsai, K.; Blackwell, C.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) is an area of active research at NASA. CELSS is a plant-based bioregenerative life support system for long term manned space flights where resupply is costly or impractical. The plants in a CELSS will function to convert the carbon dioxide (exhaled by the crew) into oxygen, purify non-potable water into potable quality water, and provide food for the crew. Prior to implementing a CELSS life support system, one must have knowledge on growing plants in a closed chamber under low gravity. This information will come from research to be conducted on the CELSS Test Facility that will operate on the Space Station Freedom. Currently a ground-based CELSS Test Facility is being built at NASA Ames Research Center. It is called the EDU (Engineering Development Unit). This system will allow researchers to identify issues that may cause difficulties in the development of the CELSS Test Facility and aid in the development of new needed technologies. The EDU consists of a 1 m2 crop growth chamber that is surrounded by a containment enclosure. The containment enclosure isolates the system so there is very little mass and thermal exchange with the ambient. The leakage rate is on the order of 1 % of the enclosure's volume per day (with 0.2S psi pressure difference). The thermal leakage is less than 0.5% of the electrical power supplied to the system per degree Celsius difference from the surrounding. The pressure in the containment enclosure is regulated at 62.5 Pa below the ambient by an active controller. The goal is to maintain this set point for a variety of conditions, such as a range of operating temperatures, heat load variations that occur when the lights are turned on and off, and fluctuations in ambient pressure. In addition certain transition tracking performance is required. This paper illustrates the application of some advanced systems control methods to the task of synthesizing the EDU's pressure control system.

  4. National Ignition Facility system alignment.

    PubMed

    Burkhart, S C; Bliss, E; Di Nicola, P; Kalantar, D; Lowe-Webb, R; McCarville, T; Nelson, D; Salmon, T; Schindler, T; Villanueva, J; Wilhelmsen, K

    2011-03-10

    The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37?cm square beams, each generating up to 9.6?kJ of 351?nm laser light in a 20?ns beam precisely tailored in time and spectrum. The Facility houses a massive (10?m diameter) target chamber within which the beams converge onto an ?1?cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5?m×2?m×1?m) line-replaceable optics assemblies to within ±1?mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10?min and alignment to target chamber center within 44?min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50??m rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams. PMID:21394186

  5. Anterior chamber fixation of a posterior chamber intraocular lens: A novel technique

    PubMed Central

    Kükner, A ?ahap; Alagöz, Gürsoy; Erdurmu?, Mesut; Serin, Didem; Do?an, Ümit; Y?lmaz, Turgut

    2014-01-01

    We aimed to evaluate the implantation of a posterior chamber intraocular lens (IOL) in the anterior chamber (AC) with the haptics passing through two iridectomies to the posterior chamber. A total of 33 eyes of 33 patients with inadequate posterior capsular support due to either previous aphakia or posterior capsular rupture during cataract extraction were included in the study. A double iridectomy was performed on all patients using a vitrectomy probe on the midperiphery of the iris. IOLs were implanted in the AC, and the haptics were passed through the iridectomies to the posterior chamber. The mean follow-up time was 25.3 months. AC hemorrhage occurred in five patients during the iridectomy procedure. Corneal edema was detected in eight of 14 patients with primary IOL insertions. Haptic dislocation was detected in only one patient. This technique may be a good alternative to scleral-fixated IOL implantation in eyes with aphakia. PMID:24817750

  6. Achievable field strength in reverberation chambers

    NASA Astrophysics Data System (ADS)

    Eulig, N.; Enders, A.; Krauthäuser, H. G.; Nitsch, J.

    2003-05-01

    Feldvariable Kammern (FVK, engl.: modestirred- chamber) werden unter anderem für EMV-Störfestigkeitsprüfungen verwendet. Ein häufig genanntes Argument, das die Einführung dieser Kammern als normgerechte Prüfumgebung vorantreiben soll, ist eine hohe Feldstärke, die im Vergleich zu anderen Testumgebungen mit relativ moderaten HF-Leistungen erreicht werden kann. Besonders für sicherheitskritische Geräte, wie Komponenten aus der Avionik- oder KFZ-Industrie, sind heutzutage Testfeldstärken von mehreren 100 V/m notwendig. Derart hohe Feldstärken können in Umgebungen, die ein ebenes Wellenfeld erzeugen oder nachbilden, nur mit großen HFLeistungen generiert werden. Durch die Resonanzeigenschaften einer FVK können demgegenüber mit sehr viel weniger Leistung und damit Verstärkeraufwand vergleichbare Werte der Feldstärke erzeugt werden. Allerdings sinkt mit zunehmendem Volumen die erreichbare Feldstärke bei gleicher Speiseleistung. Idealerweise sollen Feldvariable Kammern bei möglichst niedrigen Frequenzen für EMVTests nutzbar sein, was jedoch ein großes Kammervolumen erfordert. Das Problem, bei niedrigen Frequenzen hohe Feldstärken erzeugen zu können, relativiert deshalb den Vorteil von FVKn gegenüber bekannten Testumgebungen bei niedrigen Testfrequenzen. Der Posterbeitrag erläutert, welche Feldstärken in verschieden großen Feldvariablen Kammern beim Einspeisen einer bestimmten hochfrequenten Leistung erreicht werden können. Anhand dieser Ergebnisse wird aufgezeigt, oberhalb welcher Grenzfrequenz eine Anwendung von FVKn nur sinnvoll erscheint. Mode-stirred chambers (MSCs) can be used for radiated immunity tests in EMC testing. Advantageous compared to conventional test methods is the high field strength which can here be generated with less RF-Power. This point is often the main argument for pushing the standardization of MSCs as an other EMC testing environment. Especially for safety-critical electronic equipment like avionic or automotive systems, immunity tests with field strengths of several 100 V/m are necessary. Such high field strengths can only be generated with substantial RF power and therefore expensive amplifiers if the test is performed in an environment with plane waves. Due to resonance effects in mode-stirred chambers, comparable values of the field strength can there be obtained with significantly less power. In these chambers the field strength declines with increasing volume for a constant input power. As an ideal testing environment a mode-stirred chamber should also work at low frequencies which requires a large volume, however. Hence there is a contradiction between generating high level field strengths on the one hand and obtaining a lowest usable frequency of several 10 MHz on the other. This relativizes the advantage of generating high field strengths with less power if the chamber is supposed to work down to low frequencies. This article deals with the field strengths that can be obtained in mode-stirred chambers with a certain size. Data of different mode-stirred chambers are compared. From this a frequency limit can be derived, above which the use a mode-stirred chamber for achieving high field strengths seems meaningful only.

  7. Response of National Ignition Facility first wall materials to target x rays and debris

    SciTech Connect

    Peterson, R.R.

    1996-12-31

    The target chamber of the National Ignition Facility must maintain an environment in which the laser optics can remain clean enough to avoid damage. Therefore melting and vaporization of target chamber materials by target explosions must be minimized. Computer simulations have been performed of the response of target chamber wall materials and laser debris shields to the target explosions. Additionally the deposition of tritium from the targets in the wall and optical materials has been calculated. 9 refs., 2 figs., 6 tabs.

  8. Soil Flux Chamber Measurements with Five Species CRDS and New Realtime Chamber Flux Processor

    NASA Astrophysics Data System (ADS)

    Saad, N.; Alstad, K. P.; Arata, C.; Franz, P.

    2014-12-01

    Continuous soil flux chamber measurements remains a key tool for determining production and sequestration of direct and indirect greenhouse gases. The Picarro G2508 Cavity Ring-down Spectrometer has radically simplified soil flux studies by providing simultaneous measurements of five gases: CO2, CH4, N2O, NH3, and H2O, and by lending itself to field deployment. Successful use of the Picarro G2508 for continuous soil flux measurements in a variety of ecosystem types has already been demonstrated. Most recently, Picarro is developing a real-time processing software to simplify chamber measurements of soil flux with the G2508 CRDS. The new Realtime Chamber Flux Processor is designed to work with all chamber types and sizes, and provides real-time flux values of N2O, CO2 & CH4. The software features include chamber sequence table, flexible data tagging feature, ceiling concentration measurement shut-off parameter, user-defined run-time interval, temperature/pressure input for field monitoring and volumetric conversion, and manual flux measurement start/stop override. Realtime Chamber Flux Processor GUI interface is presented, and results from a variety of sampling designs are demonstrated to emphasize program flexibility and field capability.

  9. Development of in-vessel neutron monitor using micro-fission chambers for ITER

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Nishitani, T.; Ochiai, K.; Morimoto, Y.; Hori, J.; Ebisawa, K.; Kasai, S.; Walker, C.

    2003-03-01

    A neutron monitor using micro-fission chambers to be installed inside the vacuum vessel has been designed for the International Thermonuclear Experimental Reactor (ITER). The monitoring system needs to be insensitive to the changes of the plasma position and the profile, and the locations behind upper and lower outboard blankets were selected as appropriate based on the neutron transport calculations with the Monte Carlo code for neutron and photon transport (MCNP). Employing both pulse counting and Campbelling modes in the electronics, the ITER requirement of 107 dynamic range with 1 ms temporal resolution will be accomplished. The system meets the 10% accuracy required for the fusion power monitor. A set of a 235U micro-fission chamber with 12 mg UO2 and a fissile-material-free "blank" detector to eliminate noise issues arising from ? rays, etc. were fabricated based on the design. The vacuum leak rate of the chamber with the mineral insulated (MI) cable, resistances between the central conductor and outer sheath, and mechanical strength up to 50 G acceleration were tested to meet the design criteria. The output signals for ? rays were measured with the 60Co ?-ray irradiation facility at Japan Atomic Energy Research Institute (JAERI)-Takasaki and the influence was estimated to be less than 0.1% of the signals for neutrons. Excellent linearities between count rates, square of Campbelling voltage, and neutron fluxes were confirmed in the temperature range from 20 °C (room) to 250 °C with the Fusion Neutronics Source (FNS) facility of JAERI. The influence of the surrounding material was studied with the shielding blanket mock-up, and it was verified that the chamber provides an effective response although the sensitivity was enhanced by slow-downed neutrons. As a result, it was concluded that the present micro-fission chamber is applicable to ITER power monitoring.

  10. Gas Injection Apparatus for Vacuum Chamber

    SciTech Connect

    Almabouada, F.; Louhibi, D.; Hamici, M.

    2011-12-26

    We present in this article a gas injection apparatus which comprises the gas injector and its electronic command for vacuum chamber applications. Some of these applications are thin-film deposition by a pulsed laser deposition (PLD) or a cathodic arc deposition (arc-PVD) and the plasma generation. The electronic part has been developed to adjust the flow of the gas inside the vacuum chamber by controlling both of the injector's opening time and the repetition frequency to allow a better gas flow. In this case, the system works either on a pulsed mode or a continuous mode for some applications. In addition, the repetition frequency can be synchronised with a pulsed laser by an external signal coming from the laser, which is considered as an advantage for users. Good results have been obtained using the apparatus and testing with Argon and Nitrogen gases.

  11. The KLOE drift chamber VCI 2001

    NASA Astrophysics Data System (ADS)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S. A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervell, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; De Lucia, E.; De Robertis, G.; De Sangro, R.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M. L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M. L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U. v.; Han, H. G.; Han, S. W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y. Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C. S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R. D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G. L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y. G.; Zhao, P. P.; Zhou, Y.

    2002-02-01

    The main goal of the KLOE experiment at the Frascati DA?NE ?- factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K L ( ? L=3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K L decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  12. Wiring the new COMPASS Drift Chamber

    NASA Astrophysics Data System (ADS)

    Medlock, Lacey; Compass Dc5 Team

    2014-09-01

    COMPASS, a fixed-target experiment at CERN, will examine the first ever polarized Drell-Yan events that may illuminate how the quark angular momentum contributes to the spin of the proton. A new drift chamber must be constructed to replace an older straw chamber that is currently in use. In order to construct the drift chamber 4616 gold-plated tungsten wires are used, half are 100 micron (field wires) which provide an electrical field and half are 20 micron (sense wires) which measure position. Because of the difference in wire width, two very different stringing techniques had to be developed. The 20 micron sense wire was too fragile and thin to be handled in the same manner as the 100 micron field wire, so different tools had to be used in order to ensure the stability and efficacy of the chamber. Additionally, different soldering techniques had to be used for the two different types of wires to guarantee both that the field wires did not slip out of their solder joints during the process of stringing the sense wires and that both types of wires had smooth, even solder joints that would not require repair. This poster will detail several aspects of wire stringing, including how to string different widths of wire and how to overcome difficulties arising from using two different types of wire during the stringing process. COMPASS, a fixed-target experiment at CERN, will examine the first ever polarized Drell-Yan events that may illuminate how the quark angular momentum contributes to the spin of the proton. A new drift chamber must be constructed to replace an older straw chamber that is currently in use. In order to construct the drift chamber 4616 gold-plated tungsten wires are used, half are 100 micron (field wires) which provide an electrical field and half are 20 micron (sense wires) which measure position. Because of the difference in wire width, two very different stringing techniques had to be developed. The 20 micron sense wire was too fragile and thin to be handled in the same manner as the 100 micron field wire, so different tools had to be used in order to ensure the stability and efficacy of the chamber. Additionally, different soldering techniques had to be used for the two different types of wires to guarantee both that the field wires did not slip out of their solder joints during the process of stringing the sense wires and that both types of wires had smooth, even solder joints that would not require repair. This poster will detail several aspects of wire stringing, including how to string different widths of wire and how to overcome difficulties arising from using two different types of wire during the stringing process. This research was supported in part by the DOE under Grant Number DE-FG03-94ER40860.

  13. Application of Fission Chamber to Uranium Microanalysis

    NASA Astrophysics Data System (ADS)

    Yamada, Kimio; Izumi, Shigeru; Otsuka, Hisao; Matsumoto, Tetsuo

    1983-02-01

    The possibility of using a fission chamber for quantitative analysis of uranium impurity in dynamic memory materials was studied. The fission chamber had two pairs of parallel disk electrodes. One electrode of each pair was used as a collector and was made of Teflon with a pure aluminum coating, while the other electrode was the material to be measured. Carbon dioxide was used as the ionization gas. Uranium in the materials was irradiated with neutrons and the number of fissions was counted to give the impurity content. Uranium contents in aluminum (99.8%) and Teflon were calculated, and measured values showed a fairly good reproducibility. The detection limit, determined by background fluctuations, for uranium impurity contained in the aluminum coated Teflon electrode was 4.0 ppb.

  14. Combustion interaction with radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.

    1990-01-01

    Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.

  15. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, X.; McCreary, E.I.; Atencio, J.H.; McCown, A.W.; Sander, R.K.

    1998-08-01

    A novel concept for trace chemical analysis in liquid has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10{sup 12} level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed. {copyright} 1998 Optical Society of America

  16. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1987-01-01

    A program to design, fabricate, and test a 50 lb sub f (222 N) thruster was undertaken to demonstrate the applicability of the reverse flow concept as an item of auxillary propulsion for the Space Station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f-seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52N/sq cm) and a nozzle area ratio of 40. A successful demonstration of an (0/F) of 4 thruster, was followed by the design objective of operating at (O/F) of 8. The demonstration of this thruster resulted in the order of and additional (O/F) of 8 thruster chamber under the present NAS 3-24883 contract. The effort to fabricate and test the second (0/F) of 8 thruster is documented.

  17. Compact Vapor Chamber Cools Critical Components

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Advancements in the production of proton exchange membrane fuel cells have NASA considering their use as a power source for spacecraft and robots in future space missions. With SBIR funding from Glenn Research Center, Lancaster, Pennsylvania-based Thermacore Inc. developed strong, lightweight titanium vapor chambers to keep the fuel cells operating at optimum temperatures. The company is now selling the technology for cooling electronic components.

  18. Visual-Inspection Probe For Cryogenic Chamber

    NASA Technical Reports Server (NTRS)

    Friend, Steve; Valenzuela, James; Yoshinaga, Jay

    1990-01-01

    Visual-inspection probe that resembles borescope enables observer at ambient temperature to view objects immersed in turbulent flow of liquid oxygen, liquid nitrogen, or other cryogenic fluid. Design of probe fairly conventional, except special consideration given to selection of materials and to thermal expansion to provide for expected range of operating temperatures. Penetrates wall of cryogenic chamber to provide view of interior. Similar probe illuminates scene. View displayed on video monitor.

  19. Image digitizer system for bubble chamber laser

    SciTech Connect

    Haggerty, H

    1986-12-08

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed. (LEW)

  20. High pressure hydrogen time projection chamber

    SciTech Connect

    Goulianos, K.

    1983-01-01

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H/sub 2/ with 2 kV/cm drift field and 7 kV on the 35..mu.. sense wires, the drift velocity is about 0.5 cm/..mu..sec and the spatial resolution +-200..mu...

  1. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  2. Multi-chamber controllable heat pipe

    NASA Technical Reports Server (NTRS)

    Shlosinger, A. P. (Inventor)

    1970-01-01

    A temperature controllable heat pipe switching device is reported. It includes separate evaporating and condensing chambers interconnected by separate vapor flow and liquid return conduits. The vapor flow conduit can be opened or closed to the flow of vapor, whereas the liquid return conduit blocks vapor flow at all times. When the vapor flow path is open, the device has high thermal conductivity, and when the vapor flow path is blocked the device has low thermal conductivity.

  3. In-vacuum target transfer facility

    NASA Astrophysics Data System (ADS)

    Kabiraj, D.; Mandal, Samit; Avasthi, D. K.

    1995-02-01

    In order to transfer highly oxidizing and hygroscopic targets in-vacuum or in controlled atmosphere and to change the target ladder without affecting the chamber vacuum, an in-vacuum target transfer system has been designed, fabricated and installed. It consists of a transfer body, compatible flanges with gate valves at the bell jar and the chamber. Ca, being a highly oxidizing element, was taken as a test case to stress the utility of the in-vacuum target transfer system. Using the elastic recoil detection analysis (ERDA) technique, we could see that there was only 11.5% of O 2 in the target when it was transferred from the bell jar to the scattering chamber using the in-vacuum target transfer facility. When the target was exposed to air for 35 min the O 2 content rose to 63.5 at.%

  4. LOTIS facility initial operational capabilities: flexible user interfaces

    NASA Astrophysics Data System (ADS)

    Hutchison, Sheldon B.; Bell, Raymond M., Jr.; Borota, Stephen A.; Cuzner, Gregor J.; Cochrane, Andrew T.

    2010-10-01

    The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA, has successfully reached Initial Operational Capability (IOC). LOTIS is designed for the verification and testing of optical systems. The facility consists of a large, temperature stabilized vacuum chamber that also functions as a class 10k cleanroom. Within this chamber and atop an advanced vibration-isolation bench are the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. IOC included completion of the entire facility as well as operation of the LOTIS collimator in air. Wavefront properties of the collimator will be described as well as facility vibration isolation properties and turbulence levels within the collimator test chamber. User-specific test capabilities will also be addressed for two major areas of concern.

  5. Sperm Cell Dynamics in Shallow Chambers

    NASA Astrophysics Data System (ADS)

    Condat, Carlos; Marconi, Veronica; Guidobaldi, Alejandro; Giojalas, Laura; Silhanek, Alejandro; Jeyaram, Yogesh; Moshchalkov, Victor

    2015-03-01

    Self-propelled microorganisms are attracted to surfaces. This makes their dynamic behavior in restricted geometries very different from that observed in the bulk. Here we analyze the motion of spermatozoids confined to shallow chambers, investigating the nature of the cell trajectories and their accumulation near the side boundaries. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and down surfaces separated by stretches of quasi-free motion near the center of the gap. Use of microstructured petal-shaped edges limits accumulation near the borders and contributes to increase the concentration in the chamber interior. System stabilization occurs over times of the order of minutes, which agrees well with a theoretical estimate that assumes that the cell mean-square displacement is largely due to the quasi-linear segments. Pure quasi-circular trajectories would require several hours to stabilize. Our estimates also indicate that stabilization proceeds 2.5 times faster in the rosette geometries than in the smooth-edged chambers, which is another practical reason to prefer the former.

  6. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  7. The Large Mars Atmosphere Simulation Chamber at the University of Winnipeg

    NASA Astrophysics Data System (ADS)

    Cole, S. B.; Cloutis, E.; Cuddy, M.; Izawa, M. R.; Mann, P.; Craig, M. A.; Pietrasz, V. B.; Squyres, S. W.

    2014-12-01

    We present a new Mars atmosphere simulation chamber (ME: Mars Environment) at the University of Winnipeg Planetary Spectroscopy Facility, available for community use. Our rectangular chamber is 36" wide, 25" high, and 24" deep, with a versatile design capable of accommodating powdered samples, moderately-sized instruments, and geological hand samples and exposing them to a simulated Martian atmosphere. Viewing windows span the upper front and one side, and there are two additional 10"x10" transparent ports on the front, which can be easily opened to install and manipulate apparatus prior to pumping the system down. The windows and ports, which allow for full viewing of the interior, consist of 0.75" thick polycarbonate. The chamber was fabricated from 0.5" thick Al alloy.Our system includes two externally-controlled sample wheels, each of which can hold up to 16 one-inch diameter samples. The samples can be viewed from above through a pair of windows for spectroscopic analysis. In our current configuration, one window above each wheel is ZnS and the other is sapphire, but these can be easily exchanged with other materials to suit various wavelength transmission ranges. One sample wheel is in thermal contact with copper tubing for heating or cooling; the wheel is removable and the tubing manifold can be configured to hold a hand sample for spectroscopic analysis under a controlled temperature and Martian atmospheric pressure.The chamber is large enough to accommodate instruments under consideration for landed missions. A 24-wire electrical pass through enables applications such as powering instruments or monitoring chamber properties (temperatures, atmospheric pressure, etc.).The chamber is available for national and international collaborations and can be used to support a diversity of projects. Our commissioning experiment involves examining the medium-term (several weeks) stability of various water-bearing minerals exposed to Martian surface conditions.

  8. Simulation, design, and construction of a 137Cs irradiation facility.

    PubMed

    Studenski, Matthew T; Haverland, Nathan P; Kearfott, Kimberlee J

    2007-05-01

    Regulatory entities require that for any radiation facility the surrounding areas must be restricted unless the dose equivalent is less than 0.02 mSv in any one hour. Two Monte Carlo radiation transport simulation codes, MCNP5 and Mercurad, were used to design a facility to shield a 3.48 x 10(5) MBq 137Cs irradiator that meets these requirements. Simulations showed that the dose equivalent rates were below the legal limit for unrestricted access and the facility was constructed using available concrete block and student labor to minimize costs. To verify the accuracy of the Monte Carlo radiation transport codes, an ion chamber was used to characterize the facility. Ion chamber measurements in the actual, as-built irradiation facility showed that the Monte Carlo codes, MCNP5 and Mercurad, agreed by a factor of better than 6% and better than 11%, respectively. PMID:17440327

  9. INTERIOR VIEW, NORTH WALL OF THE SOUTHEAST BED CHAMBER. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH WALL OF THE SOUTHEAST BED CHAMBER. THE DOOR TO THE RIGHT OF THE FIREPLACE OPENS ONTO THE NORTHEAST BED CHAMBER - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  10. DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  13. 23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration equipment, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  14. 1. View southeast of Climatic Chambers Building from roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View southeast of Climatic Chambers Building from roof of Research Building. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  15. 21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  17. 17. View northwest of Tropic Chamber refrigeration equipment, in machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View northwest of Tropic Chamber refrigeration equipment, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  18. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  19. 7. Detail view west of Arctic Chamber wind tunnel shell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view west of Arctic Chamber wind tunnel shell (typical) in east elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  20. Quartz crystals detect gas contaminants during vacuum chamber evacuation

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1967-01-01

    Piezoelectric quartz crystals detect condensable gas contaminants backstreaming into a vacuum chamber when a pump is evacuating the chamber. One crystal acts as a thermometer, the other detects mass change. They are energized by electronic equipment which records frequency changes.

  1. 11. Second floor, northwest chamber, south wall. Former passage to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Second floor, northwest chamber, south wall. Former passage to southwest chamber (door blocked off on far side) on left; closet on right. - Conner Homestead, House, Epping Road (State Route 101), Exeter, Rockingham County, NH

  2. Utilizing Chamber Data for Developing and Validating Climate Change Models

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  3. DESIGN, CONSTRUCTION, AND EVALUATION OF A CHAMBER FOR AEROBIOLOGY

    EPA Science Inventory

    A chamber was designed and constructed for aeromicrobiology applications. An ultraviolet (UV) radiation source was incorporated to sterilize the chamber between trials. Twelve bacterial species originally isolated from air samples and obtained from the American Type Culture Colle...

  4. DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. CONTAINMENT SYSTEM, SPRAY CHAMBER, LOOKING NORTH WITH MIST COOLING MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTAINMENT SYSTEM, SPRAY CHAMBER, LOOKING NORTH WITH MIST COOLING MOLTEN STEEL SLABS AS THEY PROGRESS THROUGH THIS CHAMBER. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  6. THE NOAA/EPA FLUID MODELING FACILITY'S CONTRIBUTIONS TO THE UNDERSTANDING OF THE ATMOSPHERIC DISPERSION

    EPA Science Inventory

    Over the past thirty years, scientists at the Environmental Protection Agency's (EPA) Fluid Modeling Facility (FMF) have conducted laboratory studies of fluid flow and pollutant dispersion within three distinct experimental chambers: a meteorological wind tunnel, a water-channel ...

  7. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.

  8. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  9. Skylab M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF) tested and demonstrated a facility approach for materials process experimentation in space. It also provided a basic apparatus and a common interface for a group of metallic and nonmetallic materials experiments. The MPF consisted of a vacuum work chamber and associated mechanical and electrical controls. The M518 Multipurpose Electric Furnace (MEF) was an electric furnace system in which solidification, crystal growth, and other experiments involving phase changes were performed.

  10. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  11. 51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE SECOND FLOOR. ALL BRICK KILNS AT THE MORAVIAN POTTERY AND TILE WORKS HAD TWO CHAMBERS. WARE WAS STACKED IN THE LOWER CHAMBERS FOR FIRING AND THE UPPER CHAMBERS PROVIDED ACCESS TO FLUES AND DAMPERS FROM THE SECOND FLOOR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  12. Drift chambers on the basis of Mylar tube blocks

    NASA Astrophysics Data System (ADS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  13. Herds of methane chambers grazing bubbles

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.

  14. An improved nutrient delivery system for SPAR chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Crop Systems and Global Change Laboratory (CSGCL), located at Beltsville, MD, maintains and operates 18 outdoor, natural sunlit plant growth chambers referred to as soil-plant-atmosphere research (SPAR) growth chambers. Each state-of-the-art SPAR chamber provides precise control over a...

  15. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  16. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  17. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  18. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  19. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  20. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  1. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device...

  2. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device...

  3. MEASUREMENT OF SOIL RESPIRATION IN SITU: CHAMBER TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chambers temporarily sealed to the soil surface are important and often the only means of measuring trace gas emissions to the atmosphere. However, such chamber measurements are not exempt from methodological problems. This review article identifies known sources of chamber-induced errors encounte...

  4. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R.; Mitselmakher, G.; Gordeev, A.; Johnson, C.V.; Polychronakos, V.A.; Golutvin, I.A.

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  5. Cloud Chamber Activities for the High School Classroom.

    ERIC Educational Resources Information Center

    Perry, John Timothy; Sankey, Mary Ann

    1995-01-01

    Presents the idea that cloud chambers can be used by students as an experimental tool enabling them to conduct their own investigations on radiation. Provides detail regarding the construction of a cloud chamber and suggestions for student assignments that involve the cloud chamber. (DDR)

  6. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  7. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that...

  8. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that...

  9. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that...

  10. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  11. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  12. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  13. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  14. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  15. Music Facilities.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    The layouts and specifications in this booklet are intended to assist those involved in planning music facilities for elementary and secondary schools. Drawings, room plans, and text illustrate specifications for location; space relationship; combined and separate instrumental and vocal rooms; practice rooms; and auxiliary areas. Particular…

  16. Science Facilities.

    ERIC Educational Resources Information Center

    Butin, Dan

    This paper discusses the components of key spaces found within elementary and secondary school science facilities, and highlights the common design features that facilitate quality science instruction in these areas. Three educational trends that have shaped today's school science education are also examined. Common design features highlighted…

  17. A combination drift chamber/pad chamber for very high readout rates

    SciTech Connect

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. ); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. ); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. Istituto Nazionale di Fisica Nucleare, Rome ); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  18. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  19. Measurements of trace contaminants in closed-type plant cultivation chambers

    NASA Astrophysics Data System (ADS)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  20. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    NASA Astrophysics Data System (ADS)

    Coburn, Jonathan; Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell

    2016-02-01

    When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  2. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  3. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  4. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  5. CFD-CAA Coupled Calculations of a Tandem Cylinder Configuration to Assess Facility Installation Effects

    NASA Technical Reports Server (NTRS)

    Redonnet, Stephane; Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2011-01-01

    This paper presents a numerical assessment of acoustic installation effects in the tandem cylinder (TC) experiments conducted in the NASA Langley Quiet Flow Facility (QFF), an open-jet, anechoic wind tunnel. Calculations that couple the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) of the TC configuration within the QFF are conducted using the CFD simulation results previously obtained at NASA LaRC. The coupled simulations enable the assessment of installation effects associated with several specific features in the QFF facility that may have impacted the measured acoustic signature during the experiment. The CFD-CAA coupling is based on CFD data along a suitably chosen surface, and employs a technique that was recently improved to account for installed configurations involving acoustic backscatter into the CFD domain. First, a CFD-CAA calculation is conducted for an isolated TC configuration to assess the coupling approach, as well as to generate a reference solution for subsequent assessments of QFF installation effects. Direct comparisons between the CFD-CAA calculations associated with the various installed configurations allow the assessment of the effects of each component (nozzle, collector, etc.) or feature (confined vs. free jet flow, etc.) characterizing the NASA LaRC QFF facility.

  6. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  7. The space simulation facilities at IAL SPACE

    NASA Technical Reports Server (NTRS)

    Henrist, M.; Cucchiaro, A.; Domken, I.; Macau, J. P.

    1990-01-01

    The thermal vacuum facilities of IAL SPACE were tailored for testing of the ESA payloads. They were progressively upgraded for cryogenic payloads including 4 K (liquid helium temperature) experiments. A detailed review of the three vacuum chambers, ranging from 1.5 to 5 m diameter, is presented including the corresponding capabilities in the vacuum, thermal, and optical fields. The various aspects of cleanliness, product assurance, and quality control are also presented.

  8. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  9. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.

  10. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara A.; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.

  11. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  12. Sensing circuits for multiwire proportional chambers

    NASA Technical Reports Server (NTRS)

    Peterson, H. T.; Worley, E. R.

    1977-01-01

    Integrated sensing circuits were designed, fabricated, and packaged for use in determining the direction and fluence of ionizing radiation passing through a multiwire proportional chamber. CMOS on sapphire was selected because of its high speed and low power capabilities. The design of the proposed circuits is described and the results of computer simulations are presented. The fabrication processes for the CMOS on sapphire sensing circuits and hybrid substrates are outlined. Several design options are described and the cost implications of each discussed. To be most effective, each chip should handle not more than 32 inputs, and should be mounted on its own hybrid substrate.

  13. Review of isothermal haze chamber performance

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. W.; Rogers, C. F.; Hudson, J. G.

    1981-01-01

    The theory of this method of characterizing cloud condensation nuclei (CCN) over the critical supersaturation range of about 0.01% to 0.2% was reviewed, and guidelines for the design and operation of IHC's are given. IHC data are presented and critically analyzed. Two of the four IHC's agree to about 40% over the entire range of critical. a third chamber shows similar agreement with the first two over the lower part of the critical supersaturation range but only a factor of two agreement at higher supersaturation. Some reasons for the discrepancies are given.

  14. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  15. Detector Characterization Report, Response Related to Linear Movement and Radiation Levels for an Oak Ridge National Laboratory (ORNL)-Developed Ion Chamber and a Commercial Ion Chamber

    SciTech Connect

    Chiaro, P.J.

    2001-01-11

    Recent activities regarding the safeguarding of radioactive material have indicated there is a need to use radiation sensors to monitor intentional or unintentional material movement. Existing radiation detection systems were not typically designed for this type of operation since most of their use accounted for monitoring material while the material is stationary. To ensure that a radiation monitoring system is capable of detecting the movement of radioactive material, a series of tests were needed. These tests would need to be performed in known radiological conditions, under controlled environmental conditions, and at known movement speeds. The Radiation Effects Facility (REF), located at the Radiation Calibration Laboratory, provided the necessary capabilities to perform these tests. This report provides a compilation of the results from a characterization of two different sensors--a simple, air ionization chamber-based sensor developed at ORNL that consists of an ion chamber connected to a separate amplifier, and an Eberline model RO-7-LD. The RO-7-LD is also an air ionization chamber-based sensor, but the electronics are in the same physical package.

  16. Liquid Engine Design: Effect of Chamber Dimensions on Specific Impulse

    NASA Technical Reports Server (NTRS)

    Hoggard, Lindsay; Leahy, Joe

    2009-01-01

    Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.

  17. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  18. Investigation on temperature separation and flow behaviour in vortex chamber

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  19. Plasma optical emission analysis for chamber condition monitor

    NASA Astrophysics Data System (ADS)

    Mao, Zhigang; Zhou, Tiecheng; Grimbergen, Michael; Bivens, Darin; Knick, David; Koch, Renee; Chandrachood, Madhavi; Chen, Jeff; Ibrahim, Ibrahim; Kumar, Ajay

    2009-04-01

    Optical emission represents the bulk property of plasma, which in turn can be correlated to the chamber surface condition and can be exploited for monitoring and characterizing chamber condition. This presentation demonstrates the approach of utilizing plasma optical emission spectra (OES) for the application on Applied Materials' TetraTM etcher chamber condition monitor. Time-resolved plasma optical emission spectra are collected with a spectrometry unit built in to the TetraTM photomask etch module. Studies on OES analysis show that information related to chamber surface condition can be correlated to the changes in emission spectrum of plasma. The effectiveness of this methodology can be verified by Cr etch rates. Results can lead to procedure development for chamber monitoring, chamber recovery and chamber seasoning applications.

  20. Vacuum chamber with a supersonic-flow aerodynamic window

    DOEpatents

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.