Science.gov

Sample records for anechoic chamber facility

  1. An anechoic chamber facility for investigating aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.

    1972-01-01

    The aerodynamic noise facility was designed to be used primarily for investigating the noise-generating mechanisms of high-temperature supersonic and subsonic jets. The facility consists of an anechoic chamber, an exhaust jet silencer, instrumentation equipment, and an air heater with associated fuel and cooling systems. Compressed air, when needed for jet noise studies, is provided by the wind tunnel compressor facility on a continuous basis. The chamber is 8.1 m long, 5.0 m wide, and 3.0 m high. Provisions have been made for allowing outside air to be drawn into the anechoic chamber in order to replenish the air that is entrained by the jet as it flows through the chamber. Also, openings are provided in the walls and in the ceiling for the purpose of acquiring optical measurements. Calibration of the chamber for noise reflections from the wall was accomplished in octave bands between 31.2 Hz and 32 kHz.

  2. Perspectives on anechoic chamber qualification

    NASA Astrophysics Data System (ADS)

    Cunefare, Kenneth A.; Biesel, Van B.

    2002-11-01

    The qualification of a new anechoic chamber requires demonstration that the chamber produces a free-field environment within some tolerance bounds and over some acceptable volume. At the most basic level, qualification requires measurement of sound levels at increasing distances from a test source, and then comparing the levels to a theoretical free-field decay. While simple in concept, the actual performance of a qualification test is problematic in implementation, with troublesome issues relevant to the nature of the sound source, test signal (broadband or pure tone), spatial resolution of measurements (e.g., measurements at discrete locations or spatially continuous), and comparison of the data to a theoretical decay. This presentation will provide a brief historical perspective on chamber qualification and review current practice. It will demonstrate the inadequacy of broadband noise and widely spaced discrete measurements for qualification purposes. It will demonstrate that pure tone signals and spatially continuous measurements provide a rigorous test of a chambers performance.

  3. Almond test body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  4. Anechoic chamber in industrial plants. [construction materials and structural design

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  5. Metallic spherical anechoic chamber for antenna pattern measurement

    NASA Astrophysics Data System (ADS)

    Farahbakhsh, Ali; Khalaj-Amirhosseini, Mohammad

    2016-08-01

    Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.

  6. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  8. Characteristics of an anechoic chamber for fan noise testing

    NASA Technical Reports Server (NTRS)

    Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.

    1977-01-01

    Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.

  9. Design and characterization of an anechoic aeroacoustic facility

    NASA Astrophysics Data System (ADS)

    Mathew, Jose; Bahr, Chris; Carroll, Bruce; Sheplak, Mark; Cattafesta, Lou

    2005-09-01

    The design and characterization of an anechoic wind tunnel facility at the University of Florida are presented. A previously existing and ISO 3745 validated 100-Hz anechoic chamber is upgraded to incorporate an open-jet anechoic wind tunnel facility suitable for airframe noise studies, including swept-wing trailing edge studies. For suitable modeling of landing conditions, a chord-based Reynolds number of 3 to 4 million is required. The wind tunnel is driven by a 224-kW centrifugal fan controlled by a variable frequency drive. The test section measures 0.74 m (29) by 1.12 m (44) by 1.83 m (6 ft). The estimated maximum velocity attainable in the test section is ~ 76 m/s (250 ft/s). Preliminary measurements at 17 m/s indicate excellent flow uniformity and a turbulence intensity of 0.11%. Background noise level measurements with an empty test section reveal an overall SPL from 100 Hz 20 kHz of 49.9 dB, with a peak 1/3 octave-band level of 46 dB at 100 Hz that decreases to 29.9 dB at 1 kHz. Facility characterization experiments over a range of test section speeds are also reported, along with the results of preliminary trailing edge noise experiments.

  10. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  11. Analysis of Anechoic Chamber Testing of the Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Fenigstein, David; Ruf, Chris; James, Mark; Simmons, David; Miller, Timothy; Buckley, Courtney

    2010-01-01

    The Hurricane Imaging Radiometer System (HIRAD) is a new airborne passive microwave remote sensor developed to observe hurricanes. HIRAD incorporates synthetic thinned array radiometry technology, which use Fourier synthesis to reconstruct images from an array of correlated antenna elements. The HIRAD system response to a point emitter has been measured in an anechoic chamber. With this data, a Fourier inversion image reconstruction algorithm has been developed. Performance analysis of the apparatus is presented, along with an overview of the image reconstruction algorithm

  12. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    NASA Technical Reports Server (NTRS)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  13. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  14. Design and analysis of a hemi-anechoic chamber at Michigan Technological University

    NASA Astrophysics Data System (ADS)

    Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.

    2005-09-01

    A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.

  15. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    SciTech Connect

    Stevenson, L.E.; Scott, L.D.; Oakes, E.T.

    1987-04-10

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  16. Design, fabrication, and characterization of an anechoic wind tunnel facility

    NASA Astrophysics Data System (ADS)

    Mathew, Jose

    The design, fabrication, and characterization of an anechoic wind tunnel facility at the University of Florida are presented. The objective of this research is to develop and rigorously characterize an anechoic wind tunnel suitable for detailed aerodynamic and aeroacoustic research. A complete tunnel design methodology is developed to optimize the design of the individual components of the wind tunnel circuit, and modern analysis tools, such as computational fluid dynamics and structural finite element analyses, are used to validate the design. The wind tunnel design is an "L-shaped"open circuit with an open jet test section driven by a 300 HP centrifugal fan. Airflow enters the wind tunnel through a settling duct with a honeycomb section and a set of four screens. An optimized, minimum length (3.05 m) 8:1 contraction accelerates the flow into a rectangular test section that measures 0.74 m by 1.12 m by 1.83 m. Mach number similarity dictates the maximum velocity attainable in the test section to be 76 m/s; thus the maximum Reynolds number based on chord (chord=2/3 span) attainable is in the 3-4 million range. The flow leaving the test section enters an acoustically treated and 2D diffuser that simultaneously provides static pressure recovery and attenuates fan noise. The flow then turns a 90° corner with turning vanes and enters a second diffuser. The flow leaving the second diffuser enters the fan through a transition section. The wind tunnel was characterized rigorously at speeds up to 43 m/s to ensure the quality of the future aerodynamic and aeroacoustic measurements. The overall SPL from 100 Hz--20 kHz ranges from 54.8 dB at 18 m/s to 75.7 dB at 43 m/s. The freestream turbulence level has a value of 0.035%, and the flow non uniformity in the test section was found to be < 0.7% for a test section speed of 17 m/s. The outcome of this work is an anechoic wind tunnel with excellent flow quality, low background noise, and the largest Reynolds number capability

  17. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  18. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system. PMID:25173291

  19. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    SciTech Connect

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Barnett, L. R.; Chu, K. R.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.

    2014-08-15

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  20. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  1. Supervised Self-Organizing Classification of Superresolution ISAR Images: An Anechoic Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Radoi, Emanuel; Quinquis, André; Totir, Felix

    2006-12-01

    The problem of the automatic classification of superresolution ISAR images is addressed in the paper. We describe an anechoic chamber experiment involving ten-scale-reduced aircraft models. The radar images of these targets are reconstructed using MUSIC-2D (multiple signal classification) method coupled with two additional processing steps: phase unwrapping and symmetry enhancement. A feature vector is then proposed including Fourier descriptors and moment invariants, which are calculated from the target shape and the scattering center distribution extracted from each reconstructed image. The classification is finally performed by a new self-organizing neural network called SART (supervised ART), which is compared to two standard classifiers, MLP (multilayer perceptron) and fuzzy KNN ([InlineEquation not available: see fulltext.] nearest neighbors). While the classification accuracy is similar, SART is shown to outperform the two other classifiers in terms of training speed and classification speed, especially for large databases. It is also easier to use since it does not require any input parameter related to its structure.

  2. Effect of inflow control on inlet noise of a cut-on fan. [in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.

    1980-01-01

    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

  3. Calibration of the Ames Anechoic Facility. Phase 1: Short range plan

    NASA Technical Reports Server (NTRS)

    Hickey, D.; Soderman, P. T.; Karamcheti, K.; Koutsoyannis, S. P.; Hopkins, R.; Mclachlan, B.

    1980-01-01

    A calibration was made of the acoustic and aerodynamic characteristics of a small, open-jet wind tunnel in an anechoic room. The jet nozzle was 102 mm diameter and was operated subsonically. The anechoic-room dimensions were 7.6 m by 5.5 m by 3.4 m high (wedge tip to wedge tip). Noise contours in the chamber were determined by various jet speeds and exhaust collector positions. The optimum nozzle/collector separation from an acoustic standpoint was 2.1 m. Jet velocity profiles and turbulence levels were measured using pressure probes and hot wires. The jet was found to be symmetric, with no unusual characteristics. The turbulence measurements were hampered by oil mist contamination of the airflow.

  4. LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility

    SciTech Connect

    Candy, J V

    1999-10-31

    This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

  5. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    NASA Astrophysics Data System (ADS)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  6. Effectiveness of an inlet flow turbulence control device to simulate flight noise fan in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis anechoic chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results show about a 5 db reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device, the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  7. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  8. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration

  9. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  10. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  11. Electromagnetic Radiation (EMR) coupling to complex systems : aperture coupling into canonical cavities in reverberant and anechoic environments and model validation.

    SciTech Connect

    Charley, Dawna R.; Higgins, Matthew B.

    2007-12-01

    Mode-stirred chamber and anechoic chamber measurements were made on two sets of canonical test objects (cylindrical and rectangular) with varying numbers of thin slot apertures. The shielding effectiveness was compared to determine the level of correction needed to compensate the mode-stirred data to levels commensurate with anechoic data from the same test object.

  12. Target area chamber system design for the National Ignition Facility

    SciTech Connect

    Wavrik, R.; Boyes, J.; Olson, C.; Dempsey, F.; Garcia, R.; Karpenko, V.; Anderson, A.; Tobin, M.; Latkowski, J.

    1994-06-01

    The National Ignition Facility (NIF) is a proposed Department of Energy facility which will contribute to the resolution of important Defense Program and inertial fusion energy issues for energy production in the future. The NIF will consist of a laser system with 192 independent beamlets transported to a target chamber. The target chamber is a multi-purpose structure that provides the interface between the target and the laser optics. The chamber must be capable of achieving moderate vacuum levels in reasonable times; it must remain dimensionally stable within micron tolerances, provide support for the optics, diagnostics, and target positioner; it must minimize the debris from the x-ray and laser light environments; and it must be capable of supporting external neutron shielding. The chamber must also be fabricated from a low activation material. The fusion reaction in the target gives off neutrons, x-ray and gamma rays. The x-rays and gamma rays interact with the interior of the target chamber wall while neutrons penetrate the wall. In order to minimize the neutron activation of components outside the target chamber and to absorb gammas emitted from the activated chamber, shielding will be placed immediately outside the chamber. The target chamber contains the target positioner. The target positioner moves the target from outside the chamber to the center of the chamber and positions the target at the focal spot of the laser beams. The target positioner must be survivable in a harsh radioactive environment. The materials used must be low activation and have a high stiffness to weight ratio to maintain target stability. This paper describes the conceptual design of the target chamber, target postioner, and shielding for the NIF.

  13. A multiple sampling ionization chamber for the External Target Facility

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  14. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  15. Method for material characterization in a non-anechoic environment

    NASA Astrophysics Data System (ADS)

    Pometcu, L.; Sharaiha, A.; Benzerga, R.; Tamas, R. D.; Pouliguen, P.

    2016-04-01

    This paper presents a characterization method for extracting the reflection coefficient of materials and the real part of their permittivity. The characterization is performed in a real environment, as opposed to the classical measurement methods that require an anechoic chamber. In order to reduce the effects of the multipath propagation, a free space bistatic measurement was performed at different distances material-antennas in far field. By using a Teflon sample and a commercial absorbing material sample, measurements have been performed in order to validate the characterization technique.

  16. Mode-Stirred Method Implementation for HIRF Susceptibility Testing and Results Comparison with Anechoic Method

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen, Sandra V.

    2001-01-01

    This paper describes the implementation of mode-stirred method for susceptibility testing according to the current DO-160D standard. Test results on an Engine Data Processor using the implemented procedure and the comparisons with the standard anechoic test results are presented. The comparison experimentally shows that the susceptibility thresholds found in mode-stirred method are consistently higher than anechoic. This is consistent with the recent statistical analysis finding by NIST that the current calibration procedure overstates field strength by a fixed amount. Once the test results are adjusted for this value, the comparisons with the anechoic results are excellent. The results also show that test method has excellent chamber to chamber repeatability. Several areas for improvements to the current procedure are also identified and implemented.

  17. Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Calvisi, Michael L.; Sun, Sidney C.

    1991-01-01

    The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.

  18. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  19. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  20. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  1. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  2. ATMOSPHERIC CHEMISTRY OF POTENTIAL EMISSIONS FROM FUEL CONVERSION FACILITIES. A SMOG CHAMBER STUDY

    EPA Science Inventory

    The atmospheric chemistry of chemical species that may be emitted from fuel conversion facilities were studied in smog chambers. Of 17 compounds assessed for ozone-forming potential, 6 compounds were selected along with a control species, propylene, for testing in the presence of...

  3. University of Missouri-Rolla cloud simulation facility: Proto II chamber

    NASA Astrophysics Data System (ADS)

    White, Daniel R.; Kassner, James L.; Carstens, John C.; Hagen, Donald E.; Schmitt, John L.; Alofs, Darryl J.; Hopkins, Alfred R.; Trueblood, Max B.; Alcorn, Max W.; Walker, William L.

    1987-05-01

    The Graduate Center for Cloud Physics Research at UMR has developed a cloud simulation facility to study phenomena occurring in terrestrial clouds and fogs. The facility consists of a pair of precision cooled-wall expansion chambers along with extensive supporting equipment. The smaller of these chambers, described in this article, is fully operational, and is capable of simulating a broad range of in-cloud thermodynamic conditions. It is currently being used to study water drop growth and evaporation for drops nucleated (activated) on well-characterized aerosol particles. Measurements have been made not only for continuous expansions (simulated updraft) but also for cyclic conditions, i.e., sequences of expansion-compression cycles resulting in alternating drop growth and evaporation. The larger of the two cloud chambers is nearing completion and will provide a broader range of conditions than the smaller chamber. The facility is supported by a fully implemented aerosol laboratory which routinely produces well-characterized condensation nuclei. The aerosol laboratory contains extensive instrumentation designed to both shape and measure the size distribution and nucleating characteristics of the generated aerosol. The cloud simulation facility also includes a humidifier to bring an air sample to a known humidity before it is put into the cloud chamber. A systematic program to infer effective condensation coefficients (of water vapor on cloud drop) under a variety of well-controlled simulated in-cloud conditions is now under way. Analysis of current experiments with standard drop growth theory indicates a variation of condensation coefficient with observation time, with values sufficiently low to explain one of the current mysteries in cloud physics: viz., the broad spread of drop sizes observed in natural clouds. This article includes a description and performance specifications of the smaller cloud simulation chamber.

  4. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments. PMID:18593229

  5. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  6. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  7. Ion-chamber-based loss monitor system for the Los Alamos Meson Physics Facility

    SciTech Connect

    Plum, M.A.; Brown, D.; Browman, A.; Macek, R.J.

    1995-05-01

    A new loss monitor system has been designed and installed at the Los Alamos Meson Physics Facility (LAMPF). The detectors are ion chambers filled with N{sub 2} gas. The electronics modules have a threshold range of 1:100, and they can resolve changes in beam loss of about 2% of the threshold settings. They can generate a trip signal in 2 {mu}s if the beam loss is large enough; if the response time of the Fast Protect System is included the beam will be shut off in about 37 {mu}s.

  8. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  9. SHIELDING ANALYSIS FOR X-RAY SOURCES GENERATED IN TARGET CHAMBER OF THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Khater, H Y; Brereton, S J; Singh, M S

    2008-03-27

    Prompt doses from x-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility (NIF). The maximum dose outside a Target Chamber diagnostic port is {approx} 1 rem for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (8 laser beams) drops to {approx} 40 mrem. Doses calculated outside the Target Bay doors and inside the Switchyards (except for the 17 ft.-6 in. level) range from a fraction of mrem to about 11 mrem for 192 beams, and scales down proportionally with smaller number of beams. At the 17ft.-6 in. level, two diagnostic ports are directly facing two of the Target Bay doors and the maximum doses outside the doors are 51 and 15.5 mrem, respectively. Shielding each of the two Target Bay doors with 1/4 in. Pb reduces the dose by factor of fifty. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the Switchyards.

  10. University of Missouri-Rolla cloud simulation facility - Proto II chamber

    NASA Technical Reports Server (NTRS)

    White, Daniel R.; Carstens, John C.; Hagen, Donald E.; Schmitt, John L.; Kassner, James L.

    1987-01-01

    The design and supporting systems for the cooled-wall expansion cloud chamber, designated Proto II, are described. The chamber is a 10-sided vertical cylinder designed to be operated with interior wall temperatures between +40 and -40 C, and is to be utilized to study microphysical processes active in atmospheric clouds and fogs. Temperatures are measured using transistor thermometers which have a range of + or - 50 C and a resolution of about + or - 0.001 C; and pressures are measured in the chamber by a differential strain gauge pressure transducer. The methods used for temperature and pressure control are discussed. Consideration is given to the chamber windows, optical table, photographic/video, optical attenuation, Mie scattering, and the scanning system for the chamber. The system's minicomputer and humidifier, sample preparation, and chamber flushing are examined.

  11. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  12. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    SciTech Connect

    Arneodo, F.; Cavanna, F.; Mitri, I. De; Mortari, G. Piano; Benetti, P.; Borio di Tigliole, A.; Calligarich, E.; Cesana, E.; Dolfini, R.; Mauri, F.; Montanari, C.; Rappoldi, A.; Raselli, G. L.; Rubbia, C.; Terrani, M.; Vignoli, C.; Bonesini, M.; Boschetti, B.; Cavalli, D.; Curioni, A.

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  13. The ASIBIA sea-ice facility: First results from the Atmosphere-Sea-Ice-Biogeochemistry in the Arctic chamber

    NASA Astrophysics Data System (ADS)

    France, James L.; Thomas, Max

    2016-04-01

    Working in the natural ocean-ice-atmosphere system is very difficult, as conducting fieldwork on sea-ice presents many challenges ice including costs, safety, experimental controls and access. The new ASIBIA (Atmosphere-Sea-Ice-Biogeochemistry in the Arctic) coupled Ocean-Sea-Ice-(Snow)-Atmosphere chamber facility at the University of East Anglia, UK, we are aiming to perform controlled first-year sea-ice investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice and quantification of the bi-directional flux of gases in various states of first-year sea-ice conditions. The facility is a medium sized chamber with programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The water depth can be up to 1 m (including up to 25 cm of sea-ice) and an optional 1 m tall Teflon film atmosphere on top of the sea-ice, thus creating a closed and coupled ocean-sea-ice-atmosphere mesocosm. Ice growth in the tank is well suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Underwater and above ice cameras are installed to record the physical development of the sea-ice. Here, we present the data from the first suites of experiments in the ASIBIA chamber focussing on sea-ice physics and give a brief description of the capabilities of the facility going forward. The ASIBIA chamber was funded as part of an ERC consolidator grant to the late Prof. Roland von Glasow and we hope this work and further development of the facility will act as a lasting legacy.

  14. Processing of Prosthetic Heart Valve Sounds from Anechoic Tank Measurements

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-03-20

    People with serious cardiac problems have had their life span extended with the development of the prosthetic heart valve. However, the valves operate continuously at approximately 39 million cycles per year and are therefore subject to structural failures either by faulty design or material fatigue. The development of a non-invasive technique using an acoustic contact microphone and sophisticated signal processing techniques has been proposed and demonstrated on limited data sets. In this paper we discuss an extension of the techniques to perform the heart valve tests in an anechoic like. Here the objective is to extract a ''pure'' sound or equivalently the acoustical vibration response of the prosthetic valves in a quiet environment. The goal is to demonstrate that there clearly exist differences between values which have a specific mechanical defect known as single leg separation (SLS) and non-defective valves known as intact (INT). We discuss the signal processing and results of anechoic acoustic measurements on 50 prosthetic valves in the tank. Finally, we show the results of the individual runs for each valve, point out any of the meaningful features that could be used to distinguish the SLS from INT and summarize the experiments.

  15. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  16. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  17. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  18. Analysis of absorption performances of anechoic layers with steel plate backing.

    PubMed

    Meng, Hao; Wen, Jihong; Zhao, Honggang; Lv, Linmei; Wen, Xisen

    2012-07-01

    Rubber layers with air-filled cavities or local resonance scatters can be used as anechoic coatings. A lot of researches have focused on the absorption mechanism of the anechoic coatings. As the anechoic coatings are bonded to the hull of submarine, the vibration of the hull should not be neglected when the analysis of the absorption characters is carried out. Therefore, it is more reasonable to treat the anechoic coating and the backing as a whole when the acoustic performance is analyzed. Considering the effects of the steel plate backing, the sound absorption performances on different models of anechoic coatings are investigated in this paper. The Finite Element Method is used to illustrate the vibrational behaviors of the anechoic coatings under the steel backings by which the displacement contours is obtained for analysis. The theoretical results show that an absorption peak is induced by the resonance of the steel slab and rubber layer. At the frequency of this absorption peak, the steel plate and the coating vibrates longitudinally like a mass-spring system in which the steel slab serves for mass and the coating layer is the spring. To illuminate the effects of the steel slab backing on the acoustic absorption, the thicknesses of the steel slab and the anechoic layer are discussed. Finally, an experiment is performed and the results show a good agreement with the theoretical analysis. PMID:22779456

  19. Management of unconverted light for the National Ignition Facility target chamber

    SciTech Connect

    Anderson, A. T.; Bletzer, K.; Burnham, A. K.; Dixit, S; Genin, F. Y.; Hibbard, W.; Norton, J.; Scott, J. M.; Whitman, P. K.

    1998-07-08

    The NIF target chamber beam dumps must survive high x-ray, laser, ion, and shrapnel exposures without excessive generation of vapors or particulate that will contaminate the final optics debris shields, thereby making the debris shields susceptible to subsequent laser damage. The beam dumps also must be compatible with attaining and maintaining the required target chamber vacuum and must not activate significantly under high neutron fluxes. Finally, they must be developed, fabricated, and maintained for a reasonable cost. The primary challenge for the beam dump is to survive up to 20 J/cm{sup 2} of lpm light and 1 - 2 J/cm{sup 2} of nominally 200 - 350 eV blackbody temperature x rays. Additional threats include target shrapnel, and other contamination issues. Designs which have been evaluated include louvered hot-pressed boron carbide (B{sub 4}C) or stainless steel (SS) panels, in some cases covered with transparent Teflon film, and various combinations of inexpensive low thermal expansion glasses backed by inexpensive absorbing glass. Louvered designs can recondense a significant amount of ablated material that would otherwise escape into the target chamber. Transparent Teflon was evaluated as an alternative way to capture ablated material. The thin Teflon sheet would need to be replaced after each shot since it exhibits both laser damage and considerable x- ray ablation with each shot. Uncontaminated B{sub 4}C, SS, and low thermal expansion glasses have reasonably small x-ray and laser ablation rates, although the glasses begin to fail catastrophically after 100 high fluence shots. Commercially available absorbing glasses require a pre-shield of either Teflon or low thermal expansion glass to prevent serious degradation by the x-ray fluence. Advantages of the hot-pressed B{sub 4}C and SS over glass are their performance against microshrapnel, their relative indifference to contamination, and their ability to be refurbished by aggressive cleaning using CO{sub 2

  20. Sound absorption of a rib-stiffened plate covered by anechoic coatings.

    PubMed

    Fu, Xinyi; Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2015-03-01

    Underwater vehicles are often equipped with anechoic coatings to absorb the sound waves of active sonar and attenuate the noise emitted from the vessels. Rubber layers with periodically distributed air cavities are widely used as anechoic coatings. In this paper, the sound absorption of anechoic coatings embedded with doubly periodic cavities and backed with periodically rib-stiffened plates is investigated using a finite element method (FEM) with Bloch-periodic boundary conditions. Numerical results given by the FEM are compared with those of a simplified transfer impedance approach to explain the shifting of the main absorption peak. Further a simplified FEM approach, which reduces calculation time significantly and maintains the reasonable accuracy, is proposed for a comparison. The results indicate that the plate and the ribs can have significant impacts on the absorption performance of anechoic coatings, especially at low frequencies. PMID:25786965

  1. Venus Pressure Chamber: A Small Testing Facility Available to the Community

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M.; Wegel, D. C.

    2011-01-01

    Venus is an inhospitable planet where the surface mean. temperature is approximately 740K and the global mean pressure is approximately 95 bars. The atmosphere is comprised mostly of CO2 (approximately 96.5%) and N2 (approximately3.5%) with trace amounts of CO and other reactive gases. Although Venus is very similar in size and mass with the Earth and is Earth's nearest planetary neighbor, it has not received many visitors from Earth, especially those that can land on the surface. The challenge most often cited for this scarcity of surface probes is the workability/survivability of instruments and equipment in Venus' harsh environment. In order to overcome this obstacle, a small pressure chamber has been acquired for use by the scientific community. It is housed at Goddard Space. Flight Center in Maryland and is available to the community for testing of small flight components, instruments and short-term experiments that require high temperatures and pressures.

  2. A facility for the test of large-area muon chambers at high rates

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H.; Silari, M.; Vitulo, P.; Wegner, M.

    2000-09-01

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm -2. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  3. Development and tests of interferometry facility in 6-m diameter radiometer thermal vacuum chamber in Tsukuba Space Center

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Katayama, Haruyoshi; Naitoh, Masataka; Imai, Tadashi; Miyamoto, Masashi; Maruyama, Kenta; Kaneda, Hidehiro; Tange, Yoshio; Nakagawa, Takao

    2010-07-01

    We present a test of optical metrology for 800-mm spaceborne optics in the 6-m radiometer thermal vacuum chamber at JAXA's Tsukuba Space Center of JAXA. Under the framework of the JAXA's large-optics study program for astronomy and Earth observations, we developed a test bench for interferometric metrology of large optics with an auto-collimation method in the chamber. The optical system was aligned in a horizontal light-axis configuration within the facility limit to handle a 3.5-m aperture telescope like SPICA. A high-speed interferometer was contained in an aluminum and titanmade pressure vessel, which was mounted on the five-axis stage. We tested the 800-mm lightweight C/SiC optics using a 900-mm diameter flat mirror. Alignment changes in tilts of about ten arcseconds were observed as pressure went down from 1 atm to vacuum. After we re-aligned the interferometer and flat mirror, the wavefronts through the optics under vacuum were observed to increase in astigmatism aberration by 0.07λRMS at λ=633nm from under atmosphere, which might be caused by a deformation in the test optics or flat mirror.

  4. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  5. The V-3 contamination test of the chamber A facility and a subsequent cryogenic/vacuum study of the V-3 test quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Tashbar, P. W.

    1973-01-01

    The areas of orbital and ground contamination of flight experiment hardware have been well established. This report relates directly to results of vacuum chamber testing for the ground evaluation of flight experiment hardware performance. First, the data obtained during the V-3 contamination testing in the Johnson Space Center's Chamber A space simulation test facility are presented. Second, during the V-3 contamination tests, the MSFC Space Sciences Laboratory's quartz crystal microbalance exhibited two periods of anomalous readings. Therefore, a subsequent small chamber tests was conducted in a controlled cryogenic/vacuum environment. The objective was to reproduce with known parameters the anomalous behavior patterns of the V-3 test data. Analyses of the anomalous readings are made on the basis of these tests. Additionally, as a by-product of the small chamber tests, calibration curves then existing for the quartz crystal microbalance were empirically extended, and certain data-formatting aids were documented.

  6. Simulation of Flight-Type Engine Fan Noise in the NASA-Lewis 9X15 Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Dietrich, D. A.

    1976-01-01

    Flight type noise as contrasted to the usual ground static test noise exhibits substantial reductions in the time unsteadiness of tone noise, and in the mean level of tones calculated to be nonpropagating or cut-off. A model fan designed with cuttoff of the fundamental tone was acoustically tested in the anechoic wind tunnel under both static and tunnel flow conditions. The properties that characterize flight type noise were progressively simulated with increasing tunnel flow. The distinctly lobed directivity pattern of propagating rotor/stator interaction modes was also observed. Excess noise attributed to the ingestion of the flow disturbances that prevail near most static test facilities is substantially reduced with tunnel flow.

  7. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  8. Flow chamber

    DOEpatents

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  9. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  10. Design of large pupil relief broadband collimator for use in a MMW/IR HWIL facility

    NASA Astrophysics Data System (ADS)

    Bender, Matt; Beasley, D. Brett

    2000-07-01

    Optical Sciences Corporation has designed and implemented a 116 inch exit pupil relief optical system for dynamic infrared scene projection to flight table mounted seekers at the U.S. Army Missile Command (AMCOM) Research, Development, and Engineering Center (RDEC). The optical system collimates the output from a 512 X 512 element resistor array in the 3 - 5 micrometer waveband. The large pupil stand-off is necessary to support projector operation in a millimeter wave (MMW) anechoic chamber. The facility is designed to stimulate a common aperture, dual-band seeker with millimeter wave and IR imagery via a dichroic beam combiner. The dichroic beam combiner is located in the anechoic chamber and reflects the IR scene while transmitting MMW signals. The optical system exhibits distortion of less than 0.5% over the full field of view and chromatic focal shift of less than 10% of the diffraction limited range. The performance of the system is limited by the diffraction limit. This document describes the simulation environment and arrangement, outlines the design procedure from predesign and achromatization to final tolerancing, and presents final test data and sample imagery.

  11. Subjective evaluation of auralizations created from multi-channel anechoic recordings of a talker in motion

    NASA Astrophysics Data System (ADS)

    Vigeant, Michelle C.; Wang, Lily M.

    2005-04-01

    A high degree of speech intelligibility is very important in educational environments. When designing such spaces, like classrooms, auralizations can be used to subjectively assess the degree of speech intelligibility and clarity. Auralizations are most commonly made by convolving the impulse response (IR) of an omni-directional source with a single channel anechoic speech recording. This paper explores the idea of using multi-channel recordings to create the auralizations, using a female talker in motion. An omni-directional source is split into quadrants and the IR is calculated for each section. These IR's are convolved with the appropriate channel of the anechoic recording and then the four auralizations are mixed to create one final auralization. The auralizations were made using four-channel anechoic recordings of a person walking on a platform while talking. Subjective tests were conducted to determine the ease with which subjects could identify the direction of the movement of the source in rooms with varying amounts of absorption. This method can be used to create more realistic classroom auralizations, as teachers typically move around the room as they teach. [Work supported by the National Science Foundation.

  12. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  13. A new laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Cantrell, Will; Chang, Kelken; Ciochetto, David; Bench, Jim; Shaw, Raymond

    2015-04-01

    A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. But despite extensive research activity during the last decades these interactions are still poorly understood and ill quantified. For example: Every cloud droplet in Earth's atmosphere (~1025) was catalyzed by a preexisting aerosol particle. While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation, known as activation, requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in the atmosphere is often catalyzed by aerosol particles, either activated or not. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes, but at least two other factors contribute greatly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor or trace gas concentration, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is recognized as one of the major research challenges in cloud physics today. We have developed a multiphase, turbulent reaction chamber - called the Π Chamber because of the internal volume of 3.14 m3 (with cylindical wall installed) - designed to address the open issues outlined above. It is capable of pressures ranging from sea level to ~60 mbar, and can sustain temperatures of +55 to -55

  14. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  15. Microchannel Anechoic Corner for Microparticle Manipulation via Travelling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    We present a particle manipulation device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethyl-siloxane (PDMS) microfluidic channel. Tunable travelling surface acoustic waves (TSAWs) produced by the SIDTs at desired locations are used to separate polystyrene (PS) microspheres of different diameters. The acoustic radiation force (ARF) acting on PS microspheres is estimated to predict the variable deflection of two distinct diameter microspheres that results in bi-separation of particles (3.2 and 4.8 μm). Interaction of TSAWs with the fluid and propagation of leaky acoustic waves at Rayleigh angle produce an anechoic corner inside the microchannel. An adequate choice of TSAW-frequency with reference to the particles' diameters, corresponding ARF-estimation and incorporation of the microchannel anechoic corner results in a tri-separation of PS microspheres (3, 4.2, 5 μm). The tri-separation is achieved by TSAWs - 135 MHz to deflect 5 μm particles upstream of microchannel and 175 MHz to deflect 4.2 μm particles downstream.

  16. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  17. Binaural Simulation Experiments in the NASA Langley Structural Acoustics Loads and Transmission Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Silcox, Richard (Technical Monitor)

    2001-01-01

    A location and positioning system was developed and implemented in the anechoic chamber of the Structural Acoustics Loads and Transmission (SALT) facility to accurately determine the coordinates of points in three-dimensional space. Transfer functions were measured between a shaker source at two different panel locations and the vibrational response distributed over the panel surface using a scanning laser vibrometer. The binaural simulation test matrix included test runs for several locations of the measuring microphones, various attitudes of the mannequin, two locations of the shaker excitation and three different shaker inputs including pulse, broadband random, and pseudo-random. Transfer functions, auto spectra, and coherence functions were acquired for the pseudo-random excitation. Time histories were acquired for the pulse and broadband random input to the shaker. The tests were repeated with a reflective surface installed. Binary data files were converted to universal format and archived on compact disk.

  18. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  19. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  20. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  1. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  2. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  3. Magma chambers

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1989-01-01

    Recent observational and theoretical investigations of terrestrial magma chambers (MCs) are reviewed. Consideration is given to the evidence for MCs with active convection and crystal sorting, problems of direct MC detection, theoretical models of MC cooling, the rheology and dynamics of solidification fronts, crystal capture and differentiation, convection with solidification, MC wall flows, and MC roof melting. Diagrams, graphs, and a list of problems requiring further research are provided.

  4. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  5. Equivalent modulus method for finite element simulation of the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate

    NASA Astrophysics Data System (ADS)

    Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2016-03-01

    The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.

  6. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  7. Space Station Live: Historic Vacuum Chamber to Test Webb Telescope

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot recently visited Johnson Space Center’s 400,000 cubic foot vacuum chamber, Chamber A, and spoke with Mary Cerimele, the lab manager for this historic facility.

  8. Quality assurance procedures for environmental control and monitoring in plant growth facilities. Report of the North Central Regional 101 Committee on Growth Chamber Use

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W. (Principal Investigator)

    1986-01-01

    This report includes procedures for ensuring the quality of the environment provided for plant growth in controlled environment facilities. Biologists and engineers may use these procedures for ensuring quality control during experiments or for ensuring quality control in the design of plant growth facilities. Environmental monitoring prior to and during experiments is included in these procedures. Specific recommendations cover control, acquisition, and calibration for sensor types for the separate parameters of radiation (light), temperature, humidity, carbon dioxide, and air movement.

  9. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  10. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  12. Improvement of Mode Distribution in a Triangular Prism Reverberation Chamber by QRS Diffuser

    NASA Astrophysics Data System (ADS)

    Rhee, Eugene; Rhee, Joong-Geun

    This paper presents the field uniformity characteristics in a triangular prism reverberation chamber that can be substituted for an open area test site or an anechoic chamber to measure electromagnetic interference. To improve size problems of a stirrer that is an official unit to generate a uniform field in the reverberation chamber, we suggest a diffuser of Quadratic Residue Sequence method. To validate the substitution of a diffuser for a stirrer, a diffuser is designed for 1-3GHz, and three types of equilateral triangular prism reverberation chambers are modeled. Afterwards, the field distributions in these three reverberation chambers are both simulated and tested. Using XFDTD 6. 2 of finite difference time domain method, field deviations of each structure are simulated and compared to each other. An evaluation of field uniformity is done by cumulative probability distribution which is specified in the IEC 61000-4-21. The result shows that the field uniformity in the chamber is within ±6dB tolerance and also within ±3dB standard deviation, which means a diffuser can satisfy the requirement of international standards.

  13. TRU waste characterization chamber gloveboxes.

    SciTech Connect

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  14. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  15. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  16. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  17. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  18. BOREAS TGB-1 NSA SF6 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  19. 16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS VERY CLOSE TO THE WATER'S EDGE AND HERE FOR DIVER EMERGENCY SUPPORT. A MEDICAL STAFF IS LOCATED ON THE MARSHALL SPACE FLIGHT CENTER (MSFC) AND SUPPORTS THE NBS PERSONNEL WHEN HYPERBARIC CHAMBER OPERATION IS NECESSARY. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  20. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  1. Scarf inlet aeroacoustics study/scarf inlet with Boeing ICD

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Photographs shows the Langley 12 inch ADP fan equipped with an inflow control device (ICD) borrowed from the Boeing company. The fan and ICD are inside the anechoic chamber of the ANRF. Photographed in building 1218A, the Anechoic Noise Research Facility.

  2. Scarf inlet aeroacoustics study/scarf inlet with Boeing ICD

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Photographs shows the Langley 12 inch ADP fan equipped with an inflow control device (ICD) borrowed from the Boeing company. The fan and ICD are inside the anechoic chamber of the ANRF. Lorenzo R. Clark is in the photograph. Photographed in building 1218A, the Anechoic Noise Research Facility.

  3. Final report for NIF chamber dynamics studies

    SciTech Connect

    Burnham, A; Peterson, P F; Scott, J M

    1998-09-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5].

  4. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  5. Sleeve reaction chamber system

    SciTech Connect

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  6. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.

    1986-01-01

    Two aeroacoustic facilities - the CEPRA 19 in France and the DNW in the Netherlands - are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper.

  7. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.

    1986-01-01

    Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);

  8. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  9. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  10. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  11. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  12. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  13. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  14. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  16. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  17. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  18. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  20. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  1. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  2. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  4. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  5. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  6. Advanced thrust chamber designs

    NASA Technical Reports Server (NTRS)

    Dietrich, F. J.; Leach, A. E.

    1971-01-01

    A regeneratively cooled thrust chamber has been designed and fabricated, consisting of an inner TD nickel liner which was spin formed, welded, and machined and an outer shell of electroformed nickel. Coolant channels were produced in the outer surface of the inner liner by the electric discharge machining process before electroforming the shell. Accessory manifolds and piping were attached by welding. Manufacturing processes employed are described.

  7. Digital optical spark chambers

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Tuska, Evelyn

    1989-01-01

    The authors constructed and tested a prototype digital readout system for optical spark chambers using a linear, solid-state charge-coupled-device detector array. Position resolution of 0.013 mm (sigma) over a 25-cm field of view has been demonstrated. It is concluded that this technique should permit the construction of economical, lightweight and low-power trajectory hodoscopes for use in cosmic-ray instrumentation on balloons and in spacecraft.

  8. Using the Nova target chamber for high-yield targets

    SciTech Connect

    Pitts, J.H.

    1987-09-28

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10/sup -2/ Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm/sup 2/ on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs.

  9. Vacuum Chamber Design of NSLS-II Storage Ring

    SciTech Connect

    Doom,L.; Ferreira, M.; Hseuh, H. C.; Lincoln, F.; Longo, C.; Ravindranath, V.; Sharma, S.

    2008-06-11

    National Synchrotron Light Source II (NSLS II) will be a 3-GeV, 792-meter circumference, 3rd generation synchrotron radiation facility, with ultra low emittance and extremely high brightness. the storage ring has 30 Double-Bend-Achromatic (DBA) cells. in each cell, there are five magnets and chamber girders, and one straight section for insertion devices or Radio Frequency (RF) cavities or injection. Most vacuum chambers are made from extruded aluminum with two different cross sections: one fitted in the dipole magnets, and the other surrounded by multipole magnets. They discuss the layout of the DBA cells, the detailed design of the cell's vacuum chambers, the mounting of the Beam-Position-Monitor (BPM) buttons, discrete absorbers, lumped pumps and the distributed Non-Evaporable Getter (NEG) strips, and describe the fabrication and testing of these prototype cell chambers. The account also details the development of the chamber bakeout process, the NEG stri's supports, and the RF shielded bellows.

  10. Calibration of PICO Bubble Chamber Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Jin, Miaotianzi; PICO Collaboration

    2016-03-01

    The PICO Collaboration builds bubble chambers for the direct detection of WIMP dark matter. I will present the suite of calibration experiments performed to measure the sensitivity of these chambers to nuclear recoils (the expected WIMP signal) and to gamma rays (a common background to the WIMP signal). These calibrations include measurements with a 10-ml C3F8 bubble chamber at Northwestern University and with a 30-ml C3F8 bubble chamber deployed in the University of Montreal's tandem Van de Graaf facility, giving the bubble chamber response to a variety of gamma rays, broad-spectrum neutron sources, and mono-energetic low energy neutrons. I will compare our measured sensitivities to those predicted by a simple thermodynamic model and will show how the results impact our ability to detect dark matter, with a focus on light WIMP searches. Supported by DOE Grant: DE-SC0012161.

  11. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  12. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  15. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  16. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  17. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  18. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  19. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  20. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  1. Initial Back-to-Back Fission Chamber Testing in ATRC

    SciTech Connect

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  2. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. ECRB REFUGE CHAMBER

    SciTech Connect

    J. W. Keifer

    2001-12-03

    The purpose of this calculation is to identify the initial design requirements for refuge stations, including the client requirements, standards, codes, laws, and regulations, general discipline design criteria, and design basis events and hazards. The scope of this document is for the specific task of designing and constructing refuge stations in the Enhanced Characterization Repository Block (ECRB) subsurface openings as necessary personnel safety enhancements to the current construction, maintenance and testing operations. This document is for the construction at the Exploratory Site Facility (ESF). The criteria is not intended to be incorporated into the proposed repository design and does not support Site Recommendation or License Application efforts. This calculation is prepared in accordance with N-3.12Q as a field support calculation and was prepared using the ''Technical Work Plan for Test Facilities Design FY01 Work Activities'' (TWP) (CRWMS M&O 2000b).

  4. Aging tests of full scale CMS muon cathode strip chambers

    SciTech Connect

    D. Acosta et al.

    2003-10-15

    Two CMS production Cathode Strip Chambers were tested for aging effects in the high radiation environment at the Gamma Irradiation Facility at CERN. The chambers were irradiated over a large area: in total, about 2.1 m{sup 2} or 700 m of wire in each chamber. The 40% Ar+50%CO{sub 2}+10%CF{sub 4} gas mixture was provided by an open-loop gas system for one of the chambers and by closed-loop recirculating gas system for the other. After accumulating 0.3-0.4 C per centimeter of a wire, which is equivalent to operation during about 30-50 years at the peak LHC luminosity, no significant changes in gas gain, chamber efficiency, and wire signal noise were observed for either of the two chambers. The only consistent signs of aging were a small increase in dark current from {approx}2 nA to {approx}10 nA per plane of 600 wires and a decrease of strip-to-strip resistance from 1000 G{Omega} to 10-100 G{Omega}. Disassembly of the chambers revealed deposits on the cathode planes, while the anode wires remained fairly clean.

  5. Preparation, verification, and operational control of a large space-environment-simulation chamber for contamination sensitive tests

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Ogden, J. W.; Ritter, M. L.; Smith, C. F.

    1972-01-01

    A 2-year program to prepare chamber A at the NASA Manned Spacecraft Center for Apollo telescope mount thermal-vacuum tests is discussed. This program covers modification to existing chamber systems, the development of facility and chamber operating procedures, the selection of chamber cleaning and control methods, and the development and evaluation of diagnostic instrumentation. Extensive efforts to ensure a minimum contamination environment for the Apollo telescope mount test series are illustrated. Recent thermal-vacuum tests of this chamber at progressive stages of cleanliness have demonstrated the success achieved in reducing the particulate and molecular contamination levels of the basic chamber interior.

  6. A compact Time Projection Chamber for the Crystal Ball

    NASA Astrophysics Data System (ADS)

    Steffen, O.; Wolfes, M.; Gradl, W.

    2016-07-01

    We report on a development of a compact Time Projection Chamber with triple Gas Electron Multiplier readout to replace the current tracking detector in the Crystal Ball/TAPS Experiment at the A2 Tagged Photon Facility at MAMI in Mainz, Germany. Challenges are the limitations in size and the absence of a longitudinal magnetic flied.

  7. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  8. 13. VIEW OF VACUUM CHAMBER AND WELDING EQUIPMENT IN MODULE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF VACUUM CHAMBER AND WELDING EQUIPMENT IN MODULE E. PARTS WERE WELDED UNDER A VACUUM TO PREVENT CORROSION. (11/6/73) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  9. Beam Window for Pressure Chambers

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Austin, J. G., Jr.

    1985-01-01

    Window resists products of combustion experiments. Sodium chloride window seals over chamber pressures from 0.1 to 13.8 MPa while absorbing minimal energy from CO2 laser beam that passes through it into chamber. Window inexpensive and easily replacable.

  10. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  11. Chamber Music: Skills and Teamwork.

    ERIC Educational Resources Information Center

    Villarrubia, Charles

    2000-01-01

    Focuses on the benefits of participating in chamber music ensembles, such as the development of a heightened level of awareness, and considers the role of the music educator/conductor. Provides tools and exercises that teachers can introduce to chamber music players to improve their rehearsals and performances. (CMK)

  12. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  13. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  14. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  15. National Ignition Facility system design requirements conventional facilities SDR001

    SciTech Connect

    Hands, J.

    1996-04-09

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

  16. Proton beam monitor chamber calibration.

    PubMed

    Gomà, C; Lorentini, S; Meer, D; Safai, S

    2014-09-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences-of the order of 3%-were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth-i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers-rather than cylindrical chambers-for the reference dosimetry of pseudo-monoenergetic proton beams. PMID:25109620

  17. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  18. BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  19. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  20. Starting a High School Chamber Music Group.

    ERIC Educational Resources Information Center

    Rutkowski, Joseph

    2000-01-01

    Presents ideas on how to begin a chamber music ensemble. Discusses how to find time to accomplish chamber music playing in and around the school day. Presents short descriptions of chamber music that can be used with ensembles. Includes chamber music resources and additional chamber works. (CMK)

  1. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  2. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  3. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  4. Drift and proportional tracking chambers

    NASA Astrophysics Data System (ADS)

    Jaros, J. A.

    1980-11-01

    The many techniques exploited in constructing tracking chambers, particle detectors which measure the trajectories and momenta of charged particles, are discussed. In high energy interactions, the final states are dominated by closely collimated jets of high multiplicity, requiring good track-pair resolution in the tracking chamber. High energy particles deflect very little in limited magnetic field volumes, necessitating good spatial resolution for accurate momentum measurements. The colliding beam technique requires a device easily adapted to full solid angle coverage, and the high event rates expected in some of these machines put a premium on good time resolution. Finally, the production and subsequent decays of the tau, charmed and beautiful mesons provide multiple vertex topologies. To reconstruct these vertices reliably requires improvements in spatial resolution and track pair resolution. The proportional counter and its descendant, the drift chamber, are considered as tracking chambers. The physics of this device are discussed in order to understand its performance limitations and promises.

  5. Cyclically controlled welding purge chamber

    NASA Technical Reports Server (NTRS)

    Gallagher, Robert L. (Inventor)

    1996-01-01

    An arrangement for butt-welding cylindrical sections of large, thin-wall tanks includes a rotatable mandrel with side-by-side sets of radial position adjusters. Each set of adjusters bears on one of the tank sections adjacent the seam, to prevent the sections from sagging out-of-round. The mandrel rotates relative to the welder, so that a continuous seam is formed. A purge chamber is fixed in position behind the seam at the weld head, and is flushed with inert gas. The purge chamber includes a two-sided structure which is contiguous with the cylindrical sections and a circumferential vane to form an open-ended tube-like structure, through which the radial position adjusters pass as the mandrel and cylindrical workpiece sections rotate. The tube-like structure is formed into a chamber by a plurality of movable gates which are controlled to maintain a seal while allowing adjusters to progress through the purge chamber.

  6. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  7. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  8. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  9. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Technical Reports Server (NTRS)

    Parneil, T. A.; Derrickson, J. H.; Fountain, W. F.; Roberts, F. E.; Tabuki, T.; Watts, J. W.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Fuki, M.

    1990-01-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  10. Numerical grid generation and flow simulation in SSME thrust chamber

    SciTech Connect

    Gross, K.W.; Daley, P.L.; Przekwas, A.J.

    1987-01-01

    The development of liquid and solid rocket engines for future space projects demands a detailed optimization process for highly efficient performance and cost reasons. Also, testing of full size engines may not be feasible when the large size requires test facilities which are cost prohibitive or if vacuum operation cannot be acquired. For such situations only scaling from small test scale measurements or accurate analytical predictions will provide the performance prior to actually flying the mission. A rigorous approach for simulating the combustion processes in liquid rocket engines by employing a direct solution of Navier-Stokes equations within the entire volume of the thrust chambers is presented. This method is illustrated in the solution of reactive flow in the Space Shuttle Main Engine (SSME) thrust chamber. The objective is to review recent improvements in the mathematical model and to present the grid generation methodology suitable for rocket thrust chamber geometries.

  11. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  12. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  13. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  14. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  15. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  16. RADIATION ENVIRONMENT OF GROWTH CHAMBERS

    EPA Science Inventory

    Radiation measurements with different types of meters in several controlled environment facilities have been compiled to demonstrate the problems associated with insuring uniform radiation levels in separate facilities. Data are provided for a quantum meter, three photometers, a ...

  17. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  18. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  19. The CLAS drift chamber system

    SciTech Connect

    Mestayer, M.D.; Carman, D.S.; Asavaphibhop, B.

    1999-04-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on a toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  20. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  1. CHAMBERS FERRY ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Chambers Ferry Roadless Area, Texas was conducted. The area has probable mineral-resource potential for oil and gas and for lignite. No metallic or additional energy resources were identified in the investigation. Detailed analyses of well logs from the vicinity of the Chambers Ferry Roadless Area, in conjunction with seismic data, are necessary to determine if the subsurface stratigraphy and structure are favorable for the accumulation of oil and gas. A shallow drilling program involving coring on a close-space grid is necessary for determination of the rank and continuity of seams of lignitic sediments in the area.

  2. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  3. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  4. Laboratory Course on Drift Chambers

    NASA Astrophysics Data System (ADS)

    García-Ferreira, Ix-B.; García-Herrera, J.; Villaseñor, L.

    2006-09-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  5. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  6. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  7. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  8. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  9. Microgravity Simulation Facility (MSF)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye

    2016-01-01

    The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.

  10. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  11. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  12. Chamber Music for Every Instrumentalist.

    ERIC Educational Resources Information Center

    Latten, James E.

    2001-01-01

    Discusses why students who play musical instruments should participate in a chamber music ensemble. Provides rationale for using small ensembles in the high school band curriculum. Focuses on the topic of scheduling, illustrating how to insert small ensembles into the lesson schedule, and how to set up a new schedule. (CMK)

  13. Chamber Music for Better Bands.

    ERIC Educational Resources Information Center

    Brown, Michael R.

    1998-01-01

    Considers why students should participate in a chamber music ensemble: (1) students develop a sense of collegiality and self-worth; (2) ensembles encourage practice time; and (3) ensembles provide flexible performance opportunities. Highlights the different aspects of creating an ensemble from the availability of faculty to selecting challenging…

  14. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  15. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  16. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  17. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  18. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  19. Theoretical and numerical studies of plume flows in vacuum chambers

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    This thesis consists of three parts: a study of facility effects on the background flow in large vacuum chambers; an analytical study of free molecular flows out of exits with different shape representing thruster plumes; and particle simulations of plasma plume flows from a cluster of Hall thrusters. The first part of this thesis discusses the facility effects on large vacuum chambers, which is quite important to the Electric Propulsion (EP) community. Based on the fact that the background flows in large vacuum chambers equipped with cryogenic pumps are free molecular, five models are proposed to study the average background pressure and flow velocity and their relation to several facility effects, such as pump sticking coefficient, pump size, wall and pump temperatures, and chamber sidewall length. The analysis are based on the mass flow rates into and out of the chamber, the fluxes along two directions and various number density relations at various stations such as chamber ends and vacuum pumps. The second part of the thesis develops several sets of analytical solutions to free molecular flows out of exits with different shapes. It is demonstrated that the plasma plume flows expanding into vacuum can be studied analytically as a combination of several free molecular flows, if the electric field and collision effects are omitted. There exists a unique relation of velocity and positions. The last part of the thesis presents several three-dimensional particle simulations of plasma plume flows from a cluster of Hall thrusters. A detailed electron fluid model is used to solve important electron properties such as plasma potential and electron temperature. A finite element solver is developed to solve the equations of the electron properties on unstructured meshes. Several important implementation issues are discussed and one significant finding is that the class of particle-to-node weighting schemes based on areas or volumes on an unstructured mesh is inaccurate

  20. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  1. Uncertainty analysis of the AEDC 7V chamber

    NASA Astrophysics Data System (ADS)

    Crider, Dustin; Lowry, Heard; Nicholson, Randy; Mead, Kimberly

    2005-05-01

    For over 30 years, the Space Systems Test Facility and space chambers at the Arnold Engineering Development Center (AEDC) have been used to perform space sensor characterization, calibration, and mission simulation testing of space-based, interceptor, and airborne sensors. In partnership with the Missile Defense Agency (MDA), capability upgrades are continuously pursued to keep pace with evolving sensor technologies. Upgrades to sensor test facilities require rigorous facility characterization and calibration activities that are part of AEDC's annual activities to comply with Major Range Test Facility Base processes to ensure quality metrology and test data. This paper discusses the ongoing effort to characterize and quantify Aerospace Chamber 7V measurement uncertainties. The 7V Chamber is a state-of-the-art cryogenic/vacuum facility providing calibration and high-fidelity mission simulation for infrared seekers and sensors against a low-infrared background. One of its key features is the high fidelity of the radiometric calibration process. Calibration of the radiometric sources used is traceable to the National Institute of Standards and Technology and provides relative uncertainties on the order of two to three percent, based on measurement data acquired during many test periods. Three types of sources of measurement error and top-level uncertainties have been analyzed; these include radiometric calibration, target position, and spectral output. The approach used and presented is to quantify uncertainties of each component in the optical system and then build uncertainty diagrams and easily updated databases to detail the uncertainty for each optical system. The formalism, equations, and corresponding analyses are provided to help describe how the specific quantities are derived and currently used. This paper presents the uncertainty methodology used and current results.

  2. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  3. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  4. MPS II drift chamber system

    SciTech Connect

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  5. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  6. Medical devices and procedures in the hyperbaric chamber.

    PubMed

    Kot, Jacek

    2014-12-01

    The aim of this paper is to present current controversies concerning the safety of medical devices and procedures under pressure in a hyperbaric chamber including: defibrillation in a multiplace chamber; implantable devices during hyperbaric oxygen treatment (HBOT) and the results of a recent European questionnaire on medical devices used inside hyperbaric chambers. Early electrical defibrillation is the only effective therapy for cardiac arrest caused by ventricular fibrillation or pulseless ventricular tachycardia. The procedure of defibrillation under hyperbaric conditions is inherently dangerous owing to the risk of fire, but it can be conducted safely if certain precautions are taken. Recently, new defibrillators have been introduced for hyperbaric medicine, which makes the procedure easier technically, but it must be noted that sparks and fire have been observed during defibrillation, even under normobaric conditions. Therefore, delivery of defibrillation shock in a hyperbaric environment must still be perceived as a hazardous procedure. Implantable devices are being seen with increasing frequency in patients referred for HBOT. These devices create a risk of malfunction when exposed to hyperbaric conditions. Some manufacturers support patients and medical practitioners with information on how their devices behave under increased pressure, but in some cases an individual risk-benefit analysis should be conducted on the patient and the specific implanted device, taking into consideration the patient's clinical condition, the indication for HBOT and the capability of the HBOT facility for monitoring and intervention in the chamber. The results of the recent survey on use of medical devices inside European hyperbaric chambers are also presented. A wide range of non-CE-certified equipment is used in European chambers. PMID:25596835

  7. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  8. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  9. SMOG CHAMBER VALIDATION USING LAGRANGIAN ATMOSPHERIC DATA

    EPA Science Inventory

    A method was developed for validating outdoor smog chamber experiments as a means of determining the relationships between oxidant concentrations and its precursors - hydrocarbons and nitrogen oxides. When chamber experiments were performed in a manner that simulated relevant met...

  10. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  11. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  12. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  13. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  14. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  15. Facility for testing solar cells

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1974-01-01

    Primary components of facility are test chamber and external solar simulator. Voltage--current performance characteristics of solar cells at various combinations of temperature and light intensity are plotted on X-Y recorder. Data are fed into computer for calculation of maximum power, curve shape factor, cell efficiency, and averages of each parameter.

  16. Ionisation Chambers and Secondary Emission Monitors at the PROSCAN Beam Lines

    SciTech Connect

    Doelling, Rudolf

    2006-11-20

    PROSCAN, the dedicated new medical facility at PSI using proton beams for the treatment of deep seated tumours and eye melanoma, is now in the commissioning phase. Air filled ionisation chambers in several configurations are used as current monitors, profile monitors, halo, position and loss monitors at the PROSCAN beam lines. Similar monitors based on secondary emission are used for profile and current measurements in the regime where saturation deteriorates the accuracy of the ionisation chambers.

  17. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  18. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  19. Making a fish tank cloud chamber

    NASA Astrophysics Data System (ADS)

    Green, Frances

    2012-05-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and construction are given.

  20. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  1. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  2. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  3. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  4. Vacuum chamber for an undulator straight section

    SciTech Connect

    Kim, S.; Wehrle, R.; Genens, L.

    1987-01-01

    A prototype aluminum extruded vacuum chamber for an undulator straight section of the Advanced Photon Source is described. The 52.-m long vacuum system is designed so that the undulator gap variation does not interfere with it. The chamber is gripped in a stiff close toleranced mounting structure to insure dimensional tolerance of the chamber height.

  5. TSNIIMASH's U-22 gasdynamic vacuum chamber

    NASA Astrophysics Data System (ADS)

    Anfimov, N. A.; Prochukhaev, M. V.

    1993-06-01

    The description of operating principles of the TSNIIMASH's U-22 large-scale gasdynamic vacuum chamber is presented. The chamber's key systems and their performances are described. Examples of using the gasdynamic vacuum chamber for conducting experimental research and ground testing of rockets, launch vehicles and spacecraft are given.

  6. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  7. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  8. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  9. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  10. Experimental biomass burning emission assessment by combustion chamber

    NASA Astrophysics Data System (ADS)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  11. A space simulation chamber for space power insulation

    NASA Astrophysics Data System (ADS)

    Banford, H. M.; Given, M. J.; Tedford, D. J.

    1995-01-01

    An account is given of an experimental facility which has been designed specifically for the study of electrical insulation in a simulated space environment. Insulation in space can experience a very wide range of environmental stimuli and it is very difficult if not impossible to stimulate them all. Those that are considered in the present work are vacuum, temperature, nuclear radiation and atomic oxygen. The facility consists of a stainless steel high-vacuum chamber with a sample mounting arrangement which allows sample temperatures to be varied between 80 and 470 K. Test specimens can also be exposed to electromagnetic radiation within the chamber. Atomic oxygen treatment of materials takes place before they are introduced to the chamber. The materials being considered are Kapton and an epoxy resin formulation. Various electrical measurements are being undertaken and comprise primarily dielectric loss by frequency domain spectroscopy and pre-breakdown current pulse activity under direct stress, while the provision exists for conductivity and breakdown measurements as well. These are made in real time under vacuum, temperature and low dose rate electromagnetic radiation following an ageing procedure which involves combinations of these three foregoing environmental stimuli and atomic oxygen.

  12. Design and construction of a sample preparation chamber for atomic beam scattering

    SciTech Connect

    Nielsen, C.

    1992-05-18

    A new type of atomic beam scattering spectrometer was built to advance the usefulness of the atomic beam scattering technique as a surface dynamics probe. The facility was not only built to investigate the typical alkali halide samples such as NaCl, NaF, and LiF, but also to investigate metallic surfaces. Metal samples are more complicated to study, due to their reactive surfaces and the sample preparation process. A surface analysis chamber was constructed as an attachment to the scattering facility to treat samples under ultra high vacuum (UHV) and then transfer these samples into the scattering facility. This surface analysis chamber is referred to as the sample preparation chamber and is the basis for this thesis.

  13. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  14. Portable Ethylene Oxide Sterilization Chamber

    PubMed Central

    Songer, J. R.; Mathis, R. G.

    1969-01-01

    A portable ethylene oxide sterilization chamber was designed, constructed, and tested for use in the sterilization of embolectomy catheters. The unit can accommodate catheters up to 40 inches (101.6 cm) in length and can be operated for less than 4 cents per cycle. A constant concentration of 500 mg of ethylene oxide per liter of space and holding periods of 4 and 6 hr at 43 and 22 C, respectively, were adequate when tested with B. subtilis spores. The estimated cost of construction was $165.00. If temperature control is unnecessary, the cost is approximately $80.00. Images PMID:4977644

  15. The DELPHI time projection chamber

    SciTech Connect

    Brand, C.; Cairanti, G.; Charpentier, P.; Clara, M.P.; Delikaris, D.; Foeth, H.; Heck, B.W.; Hilke, H.J.; Sulkowski, K.; Aubret, C.

    1989-02-01

    The central tracking device of the DELPHI Experiment at LEP is a Time Projection Chamber (TPC) with an active volume of 2 x 1.34m in length and 2.22m in diameter. Since spring 1988 the TPC has undergone extensive tests in a cosmic ray set-up. It will be installed in the LEP tunnel by early 1989. This report covers the construction, the read-out electronics and the contribution of the TPC to the DELPHI trigger. Emphasis is given to novelties which are not used in similar detectors.

  16. Gas-Grain Simulation Facility (GGSF)

    NASA Technical Reports Server (NTRS)

    Greenwald, Ken

    1992-01-01

    The goal of the Gas-Grain Simulation Facility project is to provide a microgravity laboratory to facilitate research relevant to exobiology (the study of the origin and evolution of life in the universe). Such a facility will also be useful in other areas of study important to NASA including planetary science, biology, atmospheric science, astrophysics, chemistry, and physics. To achieve this goal, the project will develop and support the GGSF, a modular facility-class payload planned for inclusion on Space Station Freedom. The GGSF will consist of the following: an experiment chamber(s) supported by subsystems that provide chamber environment regulation and monitoring capabilities; sample generation, injection, positioning, and retrieval capabilities; and computer control, data acquisition, and housekeeping capabilities. The facility will also provide analytical tools such as light-scattering measurement systems, aerosol size-spectrum measurement devices, and optical imaging systems.

  17. Studies with the Arapahoe smoke chamber

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Samples of polymethyl methacrylate, polyvinyl chloride, polyester, and polystyrene were evaluated using the Arapahoe smoke chamber. These same materials had been previously evaluated using the National Bureau of Standards (NBS) smoke chamber. The percent smoke based on initial weight as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under flaming conditions as determined using the NBS smoke chamber. In addition, the percent smoke based on weight loss as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under nonflaming conditions as determined using the NBS smoke chamber. The Arapahoe smoke chamber also offers the advantage of high sample throughput and the possibility of related studies of smoke particulates.

  18. Outdoor chamber study to test multi-day effects. Volume 2. Environmental chamber data tabulations. Final report, August 1982-August 1984

    SciTech Connect

    Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.

    1984-12-01

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume contains the printouts of all the data that were collected in the study. These data are suitable for use in developing and testing kinetic mechanisms of photochemical smog formation.

  19. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  20. Canister Decontamination Chamber No. 1 operability test results

    SciTech Connect

    Magoulas, V.E.

    1987-10-30

    The DWPF Canister Decontamination Chamber No. 1 (CDC) was installed at the TNX facility in October, 1986 for operability testing. Operability testing was required because this equipment is unique and is a critical part of the defense waste process. The test was successful in demonstrating the canister decontamination operation. Testing verified proper nozzle locations, frit suspension, level probe and CCTV operations. The following recommendations are based on data obtained from frit blasting 24 canisters: reduce the recirculation pump speed, to allow proper level probes operation; add an extension to the chamber rinse nozzle which allows removal of frit from the top of the upper guide rinse nozzle; increase visibility through the CCTV camera; make the CMM grapple jaw pins more compatible with the MSM; and improve canister guide capability to aid in canister loading. CDC Operability Testing was completed October, 1987. 6 refs., 11 figs., 2 tabs.

  1. [Taylor and Hill, Incorporated's JSC Cryo Chamber A

    NASA Technical Reports Server (NTRS)

    Morales, Rito

    2008-01-01

    NASA commissioned construction of an environmental simulation test chamber which was completed in 1964 at Johnson Space Center (JSC) in Houston, Texas. The facility, Chamber A, was invaluable for testing spacecraft and satellites before deployment to space. By testing spacecraft in an environment similar to the one they would be functioning in, potential problems could be addressed before launch. A new addition to NASA's observatory inventory is called the James Webb Space Telescope (JWST), after a former Administrator of NASA. The new telescope will have 7 times the mirror area of the Hubble, with a target destination approximately one million miles from earth. Scheduled for launch in 2013, the JWST will allow scientists the ability to see, for the first time, the first galaxies that formed in the early Universe. Pre-launch testing of JWST must be performed in environments that approximate its final target space environment as closely as possible.

  2. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  3. A Fast Ionization Chamber for GODDESS

    NASA Astrophysics Data System (ADS)

    Lumb, R. T.; Lipman, A. S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.; Kozub, R. L.

    2014-09-01

    Transfer reactions are among the main methods used in nuclear physics to probe the structure of nuclei. Such information is needed to constrain nuclear models and to understand various nucleosynthesis processes. In many cases, the nuclear level densities are too high to be resolved in transfer reactions via charged particle detection alone. This problem and issues arising from contaminants in radioactive beams can be addressed by using particle- γ coincidence techniques along with heavy recoil identification in inverse kinematics. A device to accomplish these tasks is Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS), currently being commissioned for the ATLAS facility at ANL. We are currently building a compact, tilted grid ionization chamber for GODDESS to detect and identify beam-like recoils near zero degrees in the lab. The tilt (30 degrees off normal to the beam) helps the ion pairs to be detected quickly, after drifting only a short distance away from the beam axis. This reduces the response time, allowing counting rates of ~500,000/s. The design and current status of the project will be presented. Research supported by the U. S. DOE.

  4. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  5. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  6. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  7. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  8. Formation of crustal magma chambers in Iceland

    SciTech Connect

    Gudmundsson, A.

    1986-02-01

    Formation of crustal magma chambers in Iceland may be facilitated by the occurrence of stress barriers that lead to formation of thick sills. Such sills absorb the magma of all dikes that enter them and may evolve into magma chambers. Ideal sites for stress barriers, and hence for magma chambers, are rock formations where individual layers have different elastic properties. The rocks formed during the Pleistocene have notably different elastic properties, and when buried in the volcanic zones, they form more promising sites for magma chambers than the Tertiary rocks. This may explain why the number of magma chambers, indicated by the number of corresponding central volcanoes, during the late Pleistocene (i.e., during the past 0.7 m.y.) appears to be proportionally greater than the number of chambers (i.e., central volcanoes) active during Tertiary time.

  9. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  10. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.