Measurements on B-hadron angular correlations at 7 TeV with the CMS experiment
NASA Astrophysics Data System (ADS)
Sala, Leonardo; CMS Collaboration
2012-09-01
A measurement of the angular correlations between beauty and anti-beauty hadrons produced in LHC proton-proton collisions at √s = 7 TeV is presented, probing for the first time the small angular separation region. The B hadrons are identified by the presence of secondary vertices from their decays and their kinematics reconstructed combining the decay vertex with the primary interaction vertex. The results are compared with predictions based on perturbative QCD calculations at leading and next-to-leading order.
NASA Astrophysics Data System (ADS)
Seo, Pil-Neyo
2004-05-01
The abBA collaboration is developing an experiment to measure the neutron beta decay angular correlations, a, b, B, A, to 0.1the very high pulsed cold neutron intensities in a new nuclear physics beam line that is under construction at SNS. The design of the experiment is based on three important technical advances: the pulsed cold neutron beam, a polarized ^3He neutron spin filter, and large-area thin-dead layer silicon detectors. Both electrons and protons resulting from the decay will be guided in the spectrometer by electric and magnetic fields and then detected in coincidence with two 2π large-segmented silicon detectors. Measuring the correlations in the same apparatus provides a redundant measurement of λ=G_A/G_V. I will describe the experiment and report the status of the development.
Mitigating systematic errors in angular correlation function measurements from wide field surveys
NASA Astrophysics Data System (ADS)
Morrison, C. B.; Hildebrandt, H.
2015-12-01
We present an investigation into the effects of survey systematics such as varying depth, point spread function size, and extinction on the galaxy selection and correlation in photometric, multi-epoch, wide area surveys. We take the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) as an example. Variations in galaxy selection due to systematics are found to cause density fluctuations of up to 10 per cent for some small fraction of the area for most galaxy redshift slices and as much as 50 per cent for some extreme cases of faint high-redshift samples. This results in correlations of galaxies against survey systematics of order ˜1 per cent when averaged over the survey area. We present an empirical method for mitigating these systematic correlations from measurements of angular correlation functions using weighted random points. These weighted random catalogues are estimated from the observed galaxy overdensities by mapping these to survey parameters. We are able to model and mitigate the effect of systematic correlations allowing for non-linear dependences of density on systematics. Applied to CFHTLenS, we find that the method reduces spurious correlations in the data by a factor of 2 for most galaxy samples and as much as an order of magnitude in others. Such a treatment is particularly important for an unbiased estimation of very small correlation signals, as e.g. from weak gravitational lensing magnification bias. We impose a criterion for using a galaxy sample in a magnification measurement of the majority of the systematic correlations show improvement and are less than 10 per cent of the expected magnification signal when combined in the galaxy cross-correlation. After correction the galaxy samples in CFHTLenS satisfy this criterion for zphot < 0.9 and will be used in a future analysis of magnification.
Wiedenhover, I.; Wuosmaa, A. H.; Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Amro, H.; Caggiano, J.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Siem, S.; Sonzogni, A.; Bhattacharyya, P.; Devlin, M.; Sarantites, D. G.; Sobotka, L. G.
2000-10-30
The high-lying, {alpha}-decaying states in {sup 24}Mg have been studied by measuring the complete decay path of {alpha} and {gamma} emissions using five segmented Silicon detectors in conjunction with GAMMASPHERE. The authors analyzed the ({alpha}{gamma}) triple angular correlations and, for the first time, ({alpha}{gamma}{gamma}) quadruple correlations. The data analysis is based on a new Fourier transformation technique. The power of the technique is demonstrated.
Proximal distributions from angular correlations: A measure of the onset of coarse-graining
Dyer, Kippi M.; Pettitt, B. Montgomery
2013-01-01
In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered. PMID:24320368
Proximal distributions from angular correlations: A measure of the onset of coarse-graining
NASA Astrophysics Data System (ADS)
Dyer, Kippi M.; Pettitt, B. Montgomery
2013-12-01
In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered.
Probing Angular Correlations in Sequential Double Ionization
Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.
2011-09-09
We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Valle Wemans, A. Do; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Fokitis, M.; Martin, T. Fonseca; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Jiménez, Y. Hernandez; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koneke, K.; Konig, A. C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Sterzo, F. Lo; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Verge, L. Miralles; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjornmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Herrera, C. Mora; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjolin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Volpini, G.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Ohsugi, T.
2012-05-01
We present a measurement of two-particle angular correlations in proton- proton collisions at √{s} = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T > 100 MeV and pseudorapidity | η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Das, P.; Guin, R.; Das, S. K.
2012-09-01
The thermal behavior of hafnium dioxide fiber has been investigated with the aid of time differential perturbed angular correlation (TDPAC) technique along with XRD and SEM measurements. This study has proved a good thermal stability of the fibrous material up to 1173 K and the fiber loses its crystallinity to a meager extent at 1673 K. No phase transition has been observed up to 1673 K in this fiber. TDPAC parameters for the HfO2 fiber annealed at 1173 K are ωQ=124.6 (3) Mrad/s and η=0.36 (1). These values remain unaltered for the HfO2 fiber annealed even at 1673 K. Electronic structure calculations based on the density functional theory (DFT) for HfO2 doped with tantalum impurity have been performed and the calculated EFG parameters are in reasonable agreement with the experimental values.
NASA Astrophysics Data System (ADS)
Zilevu, Kojo S.; Kammerman, Kelly L.; Nanzer, Jeffrey A.
2013-05-01
The design of a 29.5 GHz experimental active interferometer for the measurement of the angular velocity of moving humans is presented in this paper, as well as initial measurements of walking humans. Measurement of the angular motion of moving objects is a desirable function in remote security sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques however the process involves either continuous tracking with narrow beamwidth or angle-of arrival estimation algorithms. Recently, the authors presented a new method of measuring the angular velocity of moving objects using interferometry. The method measures the angular velocity of an object without tracking or complex processing. The frequency shift imparted on the signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. The experimental system consists of a transmitter and two separate receivers with two widely spaced antennas. The received signals in each of the two channels are downconverted and digitized, and post-processed offline. Initial results of a walking person passing through the interferometer beam pattern are presented, which verify the expected operation of the receiver derived from the initial theory.
NASA Astrophysics Data System (ADS)
Dahni, Anwar
Available from UMI in association with The British Library. The distribution of ^ {75}Se in tissue equivalent materials was investigated employing Gamma ray Emission Topography with a rectilinear scanner utilizing NaI(Tl) and BGO detectors. The reconstructed images, using Filtered Back Projection and Iterative techniques were presented in 2D colour and 3D representations. Using a lead collimator of aperture 1.5 x 20 mm and 70 length, the distribution of selenium with variation of volume and concentration was examined and clearly seen. Several corrections such as background, scattering, attenuation compensation and X-ray characteristic suppression, were performed to improve the quality of the images which was evaluated in terms of the fidelity factor. The possibility of quantifying an image was considered with regard to spatial resolution and least detectable concentration. The spatial resolution was measured using two small vials containing the same concentration of selenium, the value obtained was the same as the width of the collimator aperture. The value of the least detectable concentration of selenium however, was difficult to find, due to the many ambiguous factors involved. The binding site of selenium which is based on quadrupole interaction with the surrounding electric field, was investigated employing Perturbed Angular Correlation (PAC) experiments using NaI(Tl) and BaF_2 detectors. Using NaI(Tl) detectors, it was difficult to observe the perturbation, due to the poor time resolution. The BaF_2 detector according to the literature has a shorter light emission decay time constant (0.6 ns), suggested that a better time resolution than that found with the NaI(Tl) detectors could be obtained. A Perturbed Angular Correlation experiment employing BaF _2 detectors and a fast-slow coincidence system was set up. The time differential PAC of selenium in solution showed an unperturbed angular correlation pattern. The main problem is the very short half life of the
Angular correlation measurements for 4-{alpha} decaying states in {sup 16}O
Wuosmaa, A.H.; Back, B.B.; Betts, R.R.
1995-08-01
Previous measurements of the {sup 12}C({sup 12}C,{sup 8}Be){sup 16}O{sup *}(4 {alpha}) reaction identified discrete levels in {sup 16}O which decay by breakup into 4 {alpha} particles through a number of different decay sequences, including {sup 16}O{sup *} {yields} {sup 8}Be + {sup 8}Be and {alpha} + {sup 12}C (O{sub 2}{sup +}). These states are observed in a range of excitation energies where resonances are observed in inelastic {alpha} + {sup 12}C scattering leading to the {sup 8}Be + {sup 8}Be and {alpha} + {sup 12}C final states. These resonances were associated with 4 {alpha}-particle chain configurations in {sup 16}O. Should the states populated in the {sup 12}C + {sup 12}C reaction possess this same extended structure, it would serve as an important piece of evidence supporting the idea that even more deformed structures are formed in the {sup 24}Mg compound system. In order to more firmly make this association, it is important to determine the spins of the states populated in the {sup 12}C + {sup 12}C reaction.
Trainor, Thomas A.; Ray, R. L.
2011-09-09
A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that themore » glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less
Understanding GRETINA using angular correlation method
NASA Astrophysics Data System (ADS)
Austin, Madeline
2015-10-01
The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357
Angular correlation studies in noble gases
NASA Technical Reports Server (NTRS)
Coleman, P. G.
1990-01-01
There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.
Khachatryan, Vardan; et al.
2011-03-01
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Angular correlations and high energy evolution
Kovner, Alex; Lublinsky, Michael
2011-11-01
We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.
Noncontact measurement of angular deflection
NASA Technical Reports Server (NTRS)
Bryant, E. L.
1978-01-01
Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.
Interferometric measurement of angular motion
NASA Astrophysics Data System (ADS)
Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C.
2013-04-01
This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10-11 rad/sqrt{textrm {Hz}} from audioband down to 100 mHz and an angular measurement range of more than ±1°.
NASA Technical Reports Server (NTRS)
Currie, J. R.; Kissel, R. R.
1986-01-01
A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).
NASA Astrophysics Data System (ADS)
Currie, J. R.; Kissel, R. R.
1986-06-01
A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).
Seo, P.-N.; Bowman, J.D.; O'Donnell, J.M.; Mitchell, G.S.; Penttilae, S.I.; Wilburn, W.S.; Calarco, J.R.; Hersman, F.W.; Chupp, T.E.; Cianciolo, T.V.; Rykaczewski, K.P.; Young, G.R.; Desai, D.; Grzywacz, R.K.; Souza, R.T. de; Snow, W.M.; Frlez, E.; Pocanic, D.; Gentile, T.; Greene, G.L.
2005-05-24
The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2{pi} solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter {lambda}=gA/gV, providing a test of the standard electroweak interaction.
NASA Astrophysics Data System (ADS)
Seo, P.-N.; Bowman, J. D.; Calarco, J. R.; Chupp, T. E.; Cianciolo, T. V.; Desai, D.; De Souza, R. T.; O'Donnell, J. M.; Frlež, E.; Gentile, T.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Hersman, F. W.; Jones, G. L.; Mitchell, G. S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Snow, W. M.; Wilburn, W. S.; Young, G. R.
2005-05-01
The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2π solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter λ=gA/gV, providing a test of the standard electroweak interaction.
(Perturbed angular correlations in zirconia ceramics)
Not Available
1990-01-01
This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.
2016-04-01
Results on two-particle angular correlations for charged particles produced in p p collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb-1 . The correlations are studied over a broad range of pseudorapidity (|η | <2.4 ) and over the full azimuth (ϕ ) as a function of charged particle multiplicity and transverse momentum (pT ). In high-multiplicity events, a long-range (|Δ η | >2.0 ), near-side (Δ ϕ ≈0 ) structure emerges in the two-particle Δ η -Δ ϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K
2016-04-29
Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb^{-1}. The correlations are studied over a broad range of pseudorapidity (|η|<2.4) and over the full azimuth (ϕ) as a function of charged particle multiplicity and transverse momentum (p_{T}). In high-multiplicity events, a long-range (|Δη|>2.0), near-side (Δϕ≈0) structure emerges in the two-particle Δη-Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0
Khachatryan, Vardan
2015-10-13
Our results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb^{-1}. The correlations are studied over a broad range of pseudorapidity (|η| < 2.4) and over the full azimuth (Φ) as a function of charged particle multiplicity and transverse momentum (p_{T}). In high-multiplicity events, a long-range (|Δη| > 2.0), near-side (ΔΦ≈ 0) structure emerges in the two-particle Dh–Df correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < p_{T} < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity. The overall correlation strength at √s = 13 TeV is similar to that found in earlier pp data at √s = 7 TeV, but is measured up to much higher multiplicity values. We observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.
Calculation of fusion product angular correlation coefficients for fusion plasmas
Murphy, T.J.
1987-08-01
The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.
Wiedenhoever, I.; Vogel, O.; Klein, H.; Dewald, A.; von Brentano, P.; Gableske, J.; Nicolay, N.; Gelberg, A.; Wiedenhoever, I.; Janssens, R.V.; Carpenter, M.P.; Kruecken, R.; Petkov, P.; Gizon, A.; Gizon, J.; Bazzacco, D.; Rossi Alvarez, C.; Pavan, P.; de Angelis, G.; Lunardi, S.; Napoli, D.R.; Frauendorf, S.; Doenau, F.
1998-08-01
We analyze for the first time the full {gamma}{gamma} directional correlations from oriented states (DCO) in an experiment performed with the GASP detector array. Our analysis is based on a transformation of the directional information into expansion coefficients of an orthogonal basis. With this method, which we call SpeeDCO (spectral expansion of DCO), the complete DCO information is concentrated in 12 {gamma}{gamma} coincidence spectra. The analysis is applicable to all detector arrays which uniformly cover the solid angle. We show that the complete DCO information can be used for a reliable and unique determination of spins and multipolarity mixing ratios in weakly populated bands. We were able to establish the spins and the positive parity of the {Delta}I=1 {open_quotes}M1 band{close_quotes} in {sup 128}Ba and multipolarity mixing ratios of nine M1/E2 in-band transitions were derived as well. The measured values are in good agreement with those expected for a high-K rotational band. thinsp thinsp thinsp {copyright} {ital 1998} {ital The American Physical Society}
Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Saunier, N.
1980-06-01
The particle-particle angular correlation method is applied to the reaction /sup 12/C(/sup 6/Li,d)/sup 16/O ..-->.. ..cap alpha..+/sup 12/C. Deuterons were detected at theta/sup lab//sub d/=10/sup 0/. Information on the reaction mechanism is obtained by analyzing the shape and the angular shift of the experimental data. A dominant direct transfer mechanism is found for the primary reaction. The ratios GAMMA..cap alpha../sub 0//GAMMA and the ..cap alpha..-reduced widths ..gamma cap alpha../sub 0/ are deduced.
High intensity positron beam and angular correlation experiments at Livermore
Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.
1985-03-01
A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.
NASA Astrophysics Data System (ADS)
Dogra, R.; Junqueira, A. C.; Saxena, R. N.; Carbonari, A. W.; Mestnik-Filho, J.; Moralles, M.
2001-06-01
The perturbed angular correlation (PAC) technique was used to study the hyperfine interactions in the antiferromagnetic and paramagnetic regions of the distorted perovskites LaCrO3 and LaFeO3. The dilute 111In-->111Cd nuclear probes were introduced into the samples through a chemical process. The present measurements cover the temperature ranges from 15 to 848 K for LaCrO3 and 77 to 1324 K for LaFeO3. Two distinct electric-quadrupole interactions were observed in each compound. The lower quadrupole frequency was assigned to the transition-metal atom site while the higher frequency was attributed to the lanthanum site in both cases. Temperature dependence of the electric-quadrupole interaction parameters indicated structural phase transitions at around 512 and 1223 K, respectively, in LaCrO3 and LaFeO3. The phase transitions were associated with the change from an orthorhombic to rhombohedral structure and characterized by a sudden increase in the electric field gradient Vzz and a decrease in the asymmetry parameter η for both sites. PAC spectra measured below the Néel temperature revealed that at 0 K the supertransferred magnetic hyperfine field on 111Cd at the Cr site in LaCrO3 (2.4 T) is much smaller than at the Fe site in LaFeO3 (19.4 T). The magnetic field on 111Cd at La sites in both compounds is of the order of 0.3 T. Additional measurements were made to determine the magnetic hyperfine field using the probe nucleus 140La-->140Ce. The result reconfirmed that a relatively weak hyperfine field is supertransferred to the probe atoms at La sites.
Delocalized correlations in twin light beams with orbital angular momentum.
Marino, A M; Boyer, V; Pooser, R C; Lett, P D; Lemons, K; Jones, K M
2008-08-29
We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.7 dB is demonstrated with beams carrying orbital angular momentum. Delocalized spatial correlations between the twin beams are observed. PMID:18851611
Angular wander measurements of maser clusters
NASA Astrophysics Data System (ADS)
Mutel, Robert L.
Angular wander measurements of the relative positions of closely spaced maser features provides a powerful probe of interstellar turbulence associated with regions of star formation. Differential angular wander is easily measured in a maser complex and can strongly distinguish between shallow and steep power-law turbulence. The best candidates for such measurements appear to be the 6 and 12 GHz type II methanol masers.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Martins, M. Correa; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Montoya, C. A. Carrillo; Sierra, L. F. Chaparro; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Donckt, M. Vander; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Troendle, D.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fantinel, S.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Chang, S.; Kim, T. Y.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Vázquez, D. Domínguez; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Gomez, J. Piedra; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Graziano, A.; Jorda, C.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; David, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magaña; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Kaadze, K.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Polese, G.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.
2013-12-01
A study of proton-proton collisions in which two b hadrons are produced in association with a Z boson is reported. The collisions were recorded at a centre-of-mass energy of 7 TeVwith the CMS detector at the LHC, for an integrated luminosity of 5.2 fb-1. The b hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets, permitting the study of b-hadron pair production at small angular separation. Differential cross sections are presented as a function of the angular separation of the b hadrons and the Z boson. In addition, inclusive measurements are presented. For both the inclusive and differential studies, different ranges of Z boson momentum are considered, and each measurement is compared to the predictions from different event generators at leading-order and next-to-leading-order accuracy. [Figure not available: see fulltext.
Angular performance measure for tighter uncertainty relations
Hradil, Z.; Rehacek, J.; Klimov, A. B.; Rigas, I.; Sanchez-Soto, L. L.
2010-01-15
The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.
Trainor, Thomas A.; Ray, R. L.
2011-09-09
A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(^{s}NN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.
Studying oxygen vacancies in ceramics by perturbed angular correlation spectroscopy
Su, Han-Tzong; Wang, Ruiping; Fuchs, H.; Gardner, J.A. . Dept. of Physics); Evenson, W.E. . Dept. of Physics); Sommers, J.A. )
1990-01-01
Perturbed angular correlation measurements in tetragonal and cubic zirconia and in ceria are described. A physically reasonable and self-consistent interpretation of these data implies that oxygen vacancies are trapped at a second neighbor position by Cd in tetragonal zirconia and by In in ceria. For Cd in tetragonal zirconia, the vacancy trap energy is found to be 0.44 eV, and the energy barrier between adjacent trap sites is approximately 0.8 eV. The activation energy of an oxygen vacancy hopping between trap sites around {sup 111}Cd in ceria is found to be 0.55 eV. The activation energy for oxygen vacancy hopping in cubic zirconia, as detected by {sup 181}Ta PAC, is about 1.0 eV and independent of the Y concentration. 12 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Ohkubo, Yoshitaka; Taniguchi, Akihiro; Xu, Qiu; Tanigaki, Minoru; Sato, Koichi
2014-08-01
Room-temperature time-differential perturbed-angular-correlation (TDPAC) spectra of 140Ce arising through 140Ba-140La from 140Cs in He-doped Fe, unannealed and annealed in vacuum at various temperatures, were obtained in order to examine whether Ce (or rather, La and Ba) and He form complexes having a definite geometrical structure in Fe, as suggested by first-principles density-functional theory calculations. No clear signal of such complexes was observed in the TDPAC spectra. However, the TDPAC spectra indicate that Ce and He form complexes having a variety of geometrical structures. Comparison with reported TDPAC results on 111Cd arising from 111In in He-doped stainless steel shows that the parent atoms (La and Ba) of 140Ce trap He atoms more efficiently than In atoms do, indicating stronger bonding of He to the former atoms, while different from the present case, 111Cd (In)-He complexes form a unique geometrical structure.
Fully digital time differential perturbed angular correlation (TDPAC) spectrometer
NASA Astrophysics Data System (ADS)
Herden, C.; Röder, J.; Gardner, J. A.; Becker, K. D.
2008-09-01
A new generation time differential perturbed angular correlation (PAC) spectrometer has been designed and built. The design strategy and details of the data collection and reduction methodology are reported. First results obtained by the new spectrometer are reported and compared with PAC data obtained by more conventional means.
Angular correlation in the two-electron continuum
Kheifets, A. S.; Bray, I.
2006-02-15
Following absorption of a single photon, angles of simultaneous emission of two electrons from a He(n {sup 1}S) atom become more correlated with increasing n. We find that the strength of this correlation is due to the two-electron continuum of the electron-impact ionization of the He{sup +}(ns) ion. The strength is determined by the width of the momentum profile of the ionic ns state but not the strength of the electron correlation in the He initial state. This can explain the increasing (over He) angular correlation strength found in double photoionization of targets such as Be, Ne, and H{sub 2}.
Ou, Iwa; Yamada, Yoshiyuki; Yano, Takatomi; Mori, Takaaki; Kayano, Tsubasa; Sakuda, Makoto; Kimura, Atsushi; Harada, Hideo
2014-05-02
We conducted an experiment using the JPARC-ANNRI spectrometer to measure the energy, multiplicity and correlation of γ-rays from the neutron capture of natural gadolinium. We incorporated the GEANT4 Monte Carlo (MC) simulation into the detector, and compared the data with the results of the MC simulation. We report our data analysis and compare our data with those obtained by the MC simulation.
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S
2015-05-15
We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.7<η<-3.1, Au-going direction). An enhanced near-side angular correlation across |Δη|>2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at sqrt[s_{NN}]=5.02 TeV. The magnitude of the mass ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions. PMID:26024164
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta’ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; et al
2015-05-12
In this study, we present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and aluminum bias p+p collisions at √sNN = 200 GeV. The charged hadron is measured at midrapidity lηl < 0.35, and the energy us measured at large rapidity (–3.7 < η < –3.1, Au-going direction). An enhanced near-side angular correlation across lΔηl > 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v₂ for inclusive charged hadrons at midrapidity up to pT = 4.5 GeV/c. We alsomore » present the measurement of v₂ for identified π± and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at √sNN = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.« less
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan
2016-08-15
Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107
ISOTROPY IN THE TWO-POINT ANGULAR CORRELATION FUNCTION OF THE COSMIC MICROWAVE BACKGROUND
Zhang, Sophie
2012-04-01
We study the directional dependence of the angular two-point correlation function in maps of the cosmic microwave background (CMB). We propose two new statistics: one which measures the correlation of each point in the sky with a ring of points separated an angle {theta} away, and a second one that measures the missing angular correlation above 60 deg as a function of direction. Using these statistics, we find that most of the low power in cut-sky maps measured by the Wilkinson Microwave Anisotropy Probe experiment comes from unusually low contributions from the directions of the lobes of the quadrupole and the octupole. These findings may aid a future explanation of why the CMB exhibits low power at large angular scales.
Noncontacting method for measuring angular deflection
NASA Technical Reports Server (NTRS)
Bryant, E. L. (Inventor)
1980-01-01
An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.
Angular correlation measurements for {sup 12}C{sup 12}C,{sup 12}C{sup 12}C 3{sup -} scattering
Wuosmaa, A.H.; Betts, R.R.; Freer, M.
1995-08-01
Previous studies of inelastic {sup 12}C + {sup 12}C scattering to a variety of final states identified significant resonance behavior in a number of different reaction channels. These resonances can be interpreted as either potential scattering resonances, or as population of cluster structures in the compound nucleus {sup 24}Mg, or as some interplay between the two mechanisms. Currently, for many of these resonances the situation remains unclear. One example is a large peak observed in the excitation function for the 3{sup -} - g.s. excitation, identified in previous work performed at the Daresbury Laboratory in England. This peak is observed at the same center-of-mass energy as one observed in the O{sub 2}{sup +}-O{sub 2}{sup +} inelastic scattering channel. That structure was suggested to correspond to exotic deformed configurations in the compound nucleus {sup 24}Mg. As the peak in the 3{sup -} + g.s. exit channel occurs at precisely the same energy as the purported resonance, it is tempting to associate the two. Before such an association can be confirmed or ruled out, further information must be obtained about the 3{sup -} + g.s. structure. In particular, it is important to determine the angular momenta that dominate the 3{sup -} + g.s. structure.
NASA Astrophysics Data System (ADS)
Carnelli, P. F. F.; Arazi, A.; Fernández Niello, J. O.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Figueira, J. M.; Hojman, D.; Martí, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.
2013-10-01
A new detection system for time-optimized heavy-ion angular distribution measurements has been designed and constructed. This device is composed by an ionization chamber with a segmented-grid anode and three position-sensitive silicon detectors. This particular arrangement allows identifying reaction products emitted within a 30° wide angular range with better than 1° angular resolution. As a demonstration of its capabilities, angular distributions of the elastic scattering cross-section and the production of alpha particles in the 7Li+27Al system, at an energy above the Coulomb barrier, are presented.
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information. PMID:19642631
Theory and imaging applications of the angular correlation of multiply-scattered optical fields
NASA Astrophysics Data System (ADS)
Hoover, Brian Gilday
Through analysis of the field angular correlation the scattering of quasimonochromatic optical fields is considered as a coherence-based process well into the multiple scattering regime. Coherence analysis leads to the prediction of coherent effects in multiply-scattered light that can be applied to perform computed amplitude- phase imaging through turbid media and noninvasive laser material characterization. With the incentive of improved imaging through turbid media an experiment is described that directly compares the degradations, with the number of scattering mean free paths, of the field angular correlation and the correlation of the scattered wave with an unscattered reference wave, both of which can be used to form gates for imaging techniques in scattered light. Results for 20μ m polymer spheres show that the former correlation is consistently larger well into the multiple scattering regime (up to 10 mean free paths) for wavevector separations less than at least 50mm -1, and that the two correlations tend to merge in this scattering regime for larger wavevector separations. The implications of the results for imaging applications are considered. Complementary theoretical formulations of coherence effects in multiply-scattered fields are presented. Relations of the spatial coherence properties to the angular characteristics of the scattered field are established. A coherence-based model of multiple scattering processes is derived. The model predicts radiative-transfer-like behavior for restricted observational parameters, but also shows that the coherence-based process is required for an accurate description of the scattered field over an observational parameters. The applicability of the model to noninvasive laser material characterization is emphasized. A wavefront-sensor method is presented for measurement of the complex field angular correlation function of a three-dimensional turbid medium. The angular correlation function is measured at a series of
Methods for measuring and transporting angular momentum in general relativity
NASA Astrophysics Data System (ADS)
Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin
2016-03-01
For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.
Development of an optical fiber sensor for angular displacement measurements.
Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon
2014-01-01
For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science. PMID:24211963
Weak measurements with orbital-angular-momentum pointer states.
Puentes, G; Hermosa, N; Torres, J P
2012-07-27
Weak measurements are a unique tool for accessing information about weakly interacting quantum systems with minimal back action. Joint weak measurements of single-particle operators with pointer states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information about quantum correlations that can be relevant for quantum information applications. Here we demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum (OAM), it is possible to extract weak values of the higher order moments of single-particle operators, an inaccessible quantity with Gaussian pointer states only. We provide a specific example that illustrates the advantages of our method both in terms of signal enhancement and information retrieval. PMID:23006067
Correlations among angular wave component amplitudes in elastic multiple-scattering random media.
Hoover, Brian G; Deslauriers, Louis; Grannell, Shawn M; Ahmed, Rizwan E; Dilworth, David S; Athey, Brian D; Leith, Emmett N
2002-02-01
The propagation of scalar waves through random media that provide multiple elastic scattering is considered by derivation of an expression for the angular correlation of the scattered wave amplitudes. Coherent wave transmission is shown to occur through a mechanism similar to that responsible for coherent backscattering. While the properties of the scattered wave are generally consistent with radiative-transfer theory for sufficiently small incident and scattering angles, coherent transmission provides corrections to radiative-transfer results at larger angles. The theoretical angular correlation curves are fit, by specifying the probability densities of two random variables that correspond to material parameters, to measured data of laser light scattering from various polymer microsphere suspensions. PMID:11863685
Scanning Twyman interferometer for measuring small angular displacement
NASA Astrophysics Data System (ADS)
Ma, Jianguo; Tong, Yue
2010-12-01
We present a simple but effective method for measuring small angular displacement based on a scanning Twyman interferometer ,in which, one of the two mirrors is mounted on the piezoelectric ceramic (PZT) droved by saw-tooth voltage, the status of interference fringes changes from static to dynamic. A photoelectric detector detects this dynamic photo-signal and changes into electronic signal. The signal is inputted into an oscillograph. The oscillogram will present interference crests. The method for measuring small angular displacement is based on the linear relation between the angular displacement and the crest shift on the oscillogram.
Scanning Twyman interferometer for measuring small angular displacement
NASA Astrophysics Data System (ADS)
Ma, Jianguo; Tong, Yue
2011-05-01
We present a simple but effective method for measuring small angular displacement based on a scanning Twyman interferometer ,in which, one of the two mirrors is mounted on the piezoelectric ceramic (PZT) droved by saw-tooth voltage, the status of interference fringes changes from static to dynamic. A photoelectric detector detects this dynamic photo-signal and changes into electronic signal. The signal is inputted into an oscillograph. The oscillogram will present interference crests. The method for measuring small angular displacement is based on the linear relation between the angular displacement and the crest shift on the oscillogram.
NASA Astrophysics Data System (ADS)
Takada, S.; Iwata, T.; Kawashima, K.; Saito, H.; Nagashima, Y.; Hyodo, T.
2000-06-01
Time dependence of the kinetic energy of positronium atoms in the free space between the grains of a pressed tablet (1 g/cm 3) of ultrafine silica powder (Cab-O-Sil EH-5) has been measured with time-resolved angular correlation of annihilation radiation (ACAR) apparatus. The apparatus has a momentum resolution of 1.29×10 -3 mc in full width at half maximum and a time resolution of 2.7 ns in full width at half maximum. It is found that the energy of positronium falls below 0.1e V in ˜10 ns after the formation.
Measuring Two Angularities on a Single Jet
NASA Astrophysics Data System (ADS)
Larkoski, Andrew; Moult, Ian; Neill, Duff
2015-02-01
We present an analysis of the complete singular phase space of a jet when multiple measurements have been made about the jet structure. Using Soft-Collinear Effective Field Theory, strict factorization theorems are found only for the boundaries of physical phase space in these multi-differential cross-sections. These theorems have incompatible evolution equations, but nonetheless, a resummation ansazt can be found that interpolates between the boundaries. While logarithmic accuracy cannot be guaranteed in the bulk of phase space, the ansazt reproduces the correct resummation exactly at any boundary. Aside from jet physics, applications to more exclusive PDF's and Drell-Yan event shapes are indicated.
Measurement of angular velocity in the perception of rotation.
Barraza, José F; Grzywacz, Norberto M
2002-09-01
Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius. PMID:12367744
Optical orbital angular momentum for optical communication and its measurements
NASA Astrophysics Data System (ADS)
Ke, Xi-zheng; Lv, Hong; Wu, Jing-zhi; Hu, Shu-qiao
2009-07-01
The beam with orbital angular momentum is a present domestic and foreign research key direction. Its application and development will bring the profound influence in the optical communications field. At the same time, light's orbital angular momentum promises potential applications in both classical and quantum optical communication. The research progress of the beam with orbital angular momentum and encoding information as light's OAM for free-space optical communication were reviewed in this article, the existing design method, mechanism and description methods of encoding information as light's OAM were discussed. In quantum communication, qudits can be encoded in photons using their OAM for creating high-dimensional entanglement based on entangled photon pairs from SPDC. In this paper, light's OAM is used as information carrier for classical and quantum communication, which is promising to ensures the security of atmospheric laser communication, improves the density and precision of information transmission. It is apparent that an efficient way to measure the orbital angular momentum of individual photons and light beams with good efficiency would be of potentially great importance for optical communications and quantum information. In view of the above, the measurements of orbital angular momentum of individual photons and light beams are analyzed and discussed in detail.
Modes of correlated angular motion in live cells across three distinct time scales.
Harrison, Andrew W; Kenwright, David A; Waigh, Thomas A; Woodman, Philip G; Allan, Victoria J
2013-06-01
Particle tracking experiments with high speed digital microscopy yield the positions and trajectories of lipid droplets inside living cells. Angular correlation analysis shows that the lipid droplets have uncorrelated motion at short time scales (τ < 1 ms) followed by anti-persistent motion for lag times in the range of 1 ⩽ τ ⩽ 10 ms. The angular correlation at longer time scales, τ > 10 ms, becomes persistent, indicating directed movement. The motion at all time scales is associated with the lipid droplets being tethered to and driven along the microtubule network. The point at which the angular correlation changes from anti-persistent to persistent motion corresponds to the cross over between sub-diffusive and super diffusive motion, as observed by mean square displacement analysis. Correct analysis of the angular correlations of the detector noise is found to be crucial in modelling the observed phenomena. PMID:23574726
NASA Astrophysics Data System (ADS)
Cekić, B. Dj.; Umićević, A. B.; Belošević-Čavor, J. N.; Koteski, V. J.; Ivanovski, V. N.; Stojković, M. N.
2008-03-01
The hyperfine magnetic field (H) in 0.2 at.% Hf-Ni alloy is measured at the 181Ta probe using the time-differential perturbed angular correlation (TDPAC) method, in the temperature range 78-675 K. The obtained value of 8.6 (3) T at room temperature is in good agreement with the previously reported measurements for similar Hf concentrations in Ni. X-ray powder diffraction (XRPD) experiments confirmed that small atomic concentrations of Hf atoms (<1 at.%) mainly substitute on Ni lattice sites in the fcc crystal lattice without forming any intermetallic phase. In addition, ab-initio calculation using all-electron augmented plane waves plus local orbitals (APW+lo) formalism is performed and the obtained result for the hyperfine magnetic field at Ta site is in accordance with the measurement.
Correlative Measurements Program
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1988-01-01
The GSFC Correlative Measurements Program at the Wallops Flight Facility was represented on the Satellite/Satellite Intercomparisons Working Group. The Correlative Measurements Program uses the Rocket Ozonesonde (ROCOZ-A) and the Electrochemical Concentration Cell (ECC) balloon borne ozonesonde to measure the vertical profile of ozone amount in the atmosphere. The balloon work is described in a separate report. The ROCOZ-A instrument was used for many years to provide in situ truth data for various satellite ozone measuring systems, such as SBUV on Nimbus-7, SAGE-II, SBUV-II on the NOAA series of polar orbiting satellites, SME, LIMS, etc. The particular data sets of interest to the Ozone Trends Panel Working Group were collected at Natal, Brazil. The major results produced for and used by the Ozone Trends Panel are shown. The ROCOZ-A average ozone density profile is plotted versus altitude on the left. ECC ozonesondes were used for the portion of the profile below 20 km, the lower limit for ROCOZ-A. The difference between SAGE-II and ROCOZ-A average density profiles is shown.
Angular correlations in gluon production at high energy
Kovner, Alex; Lublinsky, Michael
2011-02-01
We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.
Measurement of polarization with the Degree Angular Scale Interferometer.
Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S
Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station. PMID:12490940
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
Angular-Rate Estimation using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Angular-Rate Estimation Using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Measuring angular diameter distances of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jee, I.; Komatsu, E.; Suyu, S. H.
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.
A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.
Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad
2015-01-01
This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance. PMID:22695598
Li Ke; Kuang Cuifang; Liu Xu
2013-01-15
A novel method for small angular displacement measurement based on an autocollimator and a common-path compensation principle by using single CCD detector was proposed. The principles of the angular displacement measurement and the common-path compensation were analyzed. The feasibility of measurement method was verified and the experimental results revealed that the linear correlativity between the relative displacement of the measuring beam spot and the angular displacement is 0.99996. And the measurement resolution is about 0.03 arcsec. To test the compensation's effect, a series of experiments introducing three different interferences from system and external environment were performed. The experimental results indicated that the standard deviations of the measuring beam spot's angular drift were improved by at least 25.0% to at most 80.0% in x direction while by at least 28.2% to at most 95.6% in y direction. Thus, the stability of the system and the measurement resolution were improved.
Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift
NASA Technical Reports Server (NTRS)
Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; Amblard, A.; Auld, R.; Baes, M.; Bonfield, D.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D.; Dariush, A.; deZotti, G.; Dye, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.
2010-01-01
We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.
A new all-digital time differential {gamma}-{gamma} angular correlation spectrometer
Nagl, Matthias; Vetter, Ulrich; Uhrmacher, Michael; Hofsaess, Hans
2010-07-15
A new digital time differential perturbed angular correlation spectrometer, designed to measure the energy of and coincidence time between correlated detector signals, here correlated {gamma} photons, is presented. The system overcomes limitations of earlier digital approaches and features improved performance and handling. By consequently separating the data recording and evaluation, it permits the simultaneous measurement of decays with several {gamma}-ray cascades at once and avoids the necessity of premeasurement configuration. Tests showed that the spectrometer reaches a time resolution of 460 ps [using a {sup 60}Co sample and Lu{sub 1.8}Y{sub 0.2}SiO{sub 5}:Ce (LYSO) scintillators, otherwise better than 100 ps], an energy resolution that is equivalent to the limit of the used scintillation material, and a processing capability of more than 200 000 {gamma} quanta per detector and second. Other possible applications of the presented methods include nuclear spectroscopy, positron emission tomography, time of flight studies, lidar, and radar.
Matula, O.; Surzhykov, A.; Fritzsche, S.; Currell, F. J.
2011-11-15
We investigate the angular correlations between the photons emitted in the dielectronic recombination (DR) of initially hydrogenlike heavy ions. The theoretical analysis is performed based on a density-matrix approach and Dirac's relativistic theory. Special emphasis has been placed upon the effects of the higher-order, nondipole terms in the expansion of the electron-photon interaction. To illustrate these effects, we present and discuss detailed calculations for K-LL DR of initially hydrogenlike xenon, gold, and uranium. These computations show that the angular correlations are significantly affected by interference between the leading electric-dipole (E1) and the magnetic-quadrupole (M2) transitions.
Surakka, J; Alanen, E; Aunola, S; Karppi, S L
2001-07-01
Isoresistive trunk muscle dynamometer is a potentially useful piece of equipment in evaluation of trunk muscle velocity, but to date, studies analysing the possibilities and limitations of such measurements are scarce. The aim of this study was to analyse the trunk muscle velocity in repetitive flexion and extension movements at three different angular phases, using an isoresistive trunk muscle dynamometer, and to assess the reliability of the measurements. The study population consisted of 120 healthy, sedentary men and women who volunteered for the study. The measurements were carried out before and after a 22-week training intervention programme. The results show that the peak velocities of the phases between 15 and 35 degrees in flexion and 20-0 degrees in extension (i.e. the second phases) correlated highly (r=0.99 in flexion and in extension) with the peak velocity of the whole movement ranging from -5 to 55 degrees in flexion and 40 to -20 degrees in extension. Correlations were high, both before and after the intervention. The LISREL model analysis showed high reliability of measurement for the second angular phases (in flexion and extension). According to the model, the correlation between the first and second measurement (with a 22-week training intervention in between) was 0.78 in flexion and 0.81 in extension. In conclusion, the angular phases from 15 to 35 degrees in flexion and from 20 to 0 degrees in extension represent the peak velocity of the whole movement. Negative residual correlations between the first and last angular phases in the LISREL model reflect the way of performing the movement: the faster the start the slower the end, and vice versa. PMID:11442583
Correlation of angular and lateral distributions of electrons in extensive air showers
NASA Astrophysics Data System (ADS)
Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz
2016-08-01
The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.
NASA Astrophysics Data System (ADS)
Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi
2015-12-01
Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz1/2 and 0.5 nrad/Hz1/2 at 1 Hz.
Precisely measuring the orbital angular momentum of beams via weak measurement
NASA Astrophysics Data System (ADS)
Qiu, Jiangdong; Ren, Changliang; Zhang, Zhiyou
2016-06-01
We proposed and analyzed a scheme of precisely measuring orbital angular momentum (OAM) of the vortex beams with the help of weak measurement process. The orbital angular momentum information l of the unknown OAM state can be obtained by its spatial displacements. The valid condition of precisely measuring orbital angular momentum was completely discussed. Interestingly, it is shown that the measurement by using the two-dimensional spatial displacements jointly is very useful for precisely measuring the OAM state with a large orbital angular momentum l . The signal-to-noise ratio of the measurement can be enhanced by increasing the weak-coupling γ linearly as the valid condition is still satisfied. For fixed γ , the maximal signal-to-noise ratio for each weak value increases with the decrease of the weak value.
Direct measure of quantum correlation
Yu, Chang-shui; Zhao, Haiqing
2011-12-15
The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.
Measurements of electron density profiles using an angular filter refractometer
Haberberger, D. Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.
2014-05-15
A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.
Leach, Jonathan; Courtial, Johannes; Skeldon, Kenneth; Barnett, Stephen M; Franke-Arnold, Sonja; Padgett, Miles J
2004-01-01
We propose interferometric methods capable of measuring either the total angular momentum, or simultaneously measuring the spin and orbital angular momentum of single photons. This development enables the measurement of any angular momentum eigenstate of a single photon. The work allows the investigation of single-photon two-qubit entangled states and has implications for high density information transfer. PMID:14753990
Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum
NASA Astrophysics Data System (ADS)
Joyce, Tennesse; Varga, Kálmán
2016-05-01
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.
Angular bias errors in three-component laser velocimeter measurements
Chen, C.Y.; Kim, P.J.; Walker, D.T.
1996-09-01
For three-component laser velocimeter systems, the change in projected area of the coincident measurement volume for different flow directions will introduce an angular bias in naturally sampled data. In this study, the effect of turbulence level and orientation of the measurement volumes on angular bias errors was examined. The operation of a typical three-component laser velocimeter was simulated using a Monte Carlo technique. Results for the specific configuration examined show that for turbulence levels less than 10% no significant bias errors in the mean velocities will occur and errors in the root-mean-square (r.m.s.) velocities will be less than 3% for all orientations. For turbulence levels less than 30%, component mean velocity bias errors less than 5% of the mean velocity vector magnitude can be attained with proper orientation of the measurement volume; however, the r.m.s. velocities may be in error as much as 10%. For turbulence levels above 50%, there is no orientation which will yield accurate estimates of all three mean velocities; component mean velocity errors as large as 15% of the mean velocity vector magnitude may be encountered.
Effects of angular correlations on particle-particle propagation in infinite nuclear matter
NASA Astrophysics Data System (ADS)
Romero-Barrientos, J.; Arellano, H. F.
2016-05-01
The effect of angular correlations on self-consistent solutions for single-particle (sp) potentials in infinite nuclear matter is investigated. To this end we treat explicitly the angular dependence of the particle-particle (pp) propagator in Brueckner-Hartree-Fock (BHF) equation for the g matrix. It is observed that the exact angular dependence of the pp propagator yields highly fluctuating structures, posing stringent difficulties in the actual search of self-consistent solutions for the sp energy. A perturbative approach is presented to evaluate the effect of the angular correlations in the self-consistent solutions. Solutions at Fermi momenta kF in the range 1.20 - 1.75 fm-1 are reported using Argonne v 18 nucleon- nucleon potential. Although the sp potentials are sensitive to the treatment of the angular behaviour of the propagator, such sensitivity appears at momenta well above the Fermi surface. As a result, the saturation properties of symmetric nuclear matter differ marginally from those calculated using angle-averaged energy denominators in pp propagators.
Fast two-position initial alignment for SINS using velocity plus angular rate measurements
NASA Astrophysics Data System (ADS)
Chang, Guobin
2015-10-01
An improved two-position initial alignment model for strapdown inertial navigation system is proposed. In addition to the velocity, angular rates are incorporated as measurements. The measurement equations in full three channels are derived in both navigation and body frames and the latter of which is found to be preferred. The cross-correlation between the process and the measurement noises is analyzed and addressed in the Kalman filter. The incorporation of the angular rates, without introducing additional device or external signal, speeds up the convergence of estimating the attitudes, especially the heading. In the simulation study, different algorithms are tested with different initial errors, and the advantages of the proposed method compared to the conventional one are validated by the simulation results.
Calibration method for angular measurement of moiré patterns
NASA Astrophysics Data System (ADS)
He, Fan; Bai, Jian; Wang, Kaiwei; Hou, Xiyun; Yao, Jiang
2014-09-01
In this paper, a high-accuracy calibration method for angular measurement of deformed and curved Moiré patterns, based on template matching algorithm, is presented. We report a feasible and accurate method, based on Talbot interferometry and Moiré deflectometry, to measure long focal-length lenses. Theoretical analysis indicates that the precision of this method is mainly influenced by the angle of Moiré patterns. However, it's difficult to obtain high-accuracy angle of Moiré patterns, since the Moiré patterns derived from experiment are constantly deformed or curved. We demonstrate a method, based on template matching algorithm, to calibrate deformed and curved Moiré patterns, thus their angle can be calculated fast and accurately in sub-pixel domain. Numerical analysis and simulation prove that the method mentioned above demonstrates high precision and stability, and experiment results show that the accuracy of the long focal lengths measurement is improved obviously.
On the Extraction of Angular Velocity from Attitude Measurements
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.
2006-01-01
In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
NASA Astrophysics Data System (ADS)
Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.
An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.
NASA Astrophysics Data System (ADS)
Nasab, Nariman Majdi; Samei, Ehsan
2006-03-01
In this paper, we evaluate the performance of biplane correlation imaging (BCI) using a set of off-angle projections acquired from an anthropomorphic chest phantom. BCI reduces the effect of anatomical noise, which would otherwise impact the detection subtle lesions in planar images. BCI also minimizes the number of false positives (FPs) when used in conjunction with computer aided diagnosis (CAD) applied to a set of coronal chest x-ray projections by eliminating non-correlated nodule candidates. In BCI, two digital images of the chest are acquired within a short time interval from two slightly different posterior projections. The image data are then incorporated into the CAD algorithm in which nodules are detected by examining the geometrical correlation of the detected signals in the two views, thus largely "canceling" the impact of anatomical noise. Seventy-one low exposure posterior projections were acquired of an anthropomorphic chest phantom containing tissue equivalent lesions with small angular separations (0.32 degree) over a range of 20 degrees, [-10°, +10°], along the vertical axis. The data were analyzed to determine the accuracy of the technique as a function of angular separation. The results indicated that the best performance was obtained when the angular separation of the projection pair was greater than 6 degrees. Within the range of optimum angular separation, the number of FPs per image, FPpI, was ~1.1 with average sensitivity around 75% (supported by a grant from the NIH R01CA109074).
Rimbert, J N; Kellershohn, C; Dumas, F; Hubert, C
1981-03-01
TDPAC measurements of the 356-81 keV gamma-ray cascade resulting from electron capture decay of 133Ba have been performed at room temperature on BaCl2 (aqueous solution and polycrystalline powder), and on samples where the 133Ba nucleus is bound to bone powder, and also to synthesised hydroxylapatite, all after absorption in vitro. As expected, the angular correlation is not perturbed in the solution. However, in the polycrystalline chloride the time dependence of the anisotropy of the cascade of 133Cs nuclide indicates that the decaying nucleus undergoes electric interactions due to different electric field gradients acting at the site of the nucleus. In 133Ba-bone powder the results show a static quadrupolar interaction differing with the absorption contact time during sample preparation, indicating that depth of 133Ba ion fixation in the bone crystal is dependent on this contact time. These results seem to be confirmed by the TDPAC measurements performed on 133Ba-hydroxylapatite samples where the contact times for absorption of active-ion 133Ba and hydroxylapatite in suspension were very different. PMID:7220599
Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions.
Sun, Peng; Yuan, C-P; Yuan, Feng
2014-12-01
We derive all order soft gluon resummation in dijet azimuthal angular correlation in hadronic collisions at the next-to-leading logarithmic level. The relevant coefficients for the Sudakov resummation factor, the soft and hard factors, are calculated. The theory predictions agree well with the experimental data from D0 Collaboration at the Tevatron. This provides a benchmark calculation for the transverse momentum dependent QCD resummation for jet productions in hadron collisions. PMID:25526118
Inconsistent [ital K]-[ital L] x-ray angular correlations in uranium
Papp, T.; Maxwell, J.A.; Teesdale, W.J.; Campbell, J.L. )
1993-01-01
Angular correlations between [ital K][alpha][sub 1] x rays and subsequent [ital L][sub 3] x-ray transitions were measured using a [sup 233]Pa radionuclide source and high-resolution x-ray detectors. The results provide separately the values of [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 1]) and [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 2]) as opposed to the compound quantity [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha]). For the [ital Ll] and [ital L][alpha][sub 2] transitions, the [ital A][sub 22] values agreed closely with those based upon theoretical (Hartree-Fock) [ital E]1 and [ital M]2 transition rates. For the less intense [ital L][beta][sub 6] and [ital L][beta][sub 2,15] transitions, agreement was also observed, although within larger uncertainties. In contrast, the value of [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 1]) was 0.085[plus minus]0.007, which is somewhat larger than the predicted value of 0.073. Possible causes for this discrepancy are explored.
Stability of erythrocyte ghosts: a gamma-ray perturbed angular correlation study.
Kruse, C A; Tin, G W; Baldeschwieler, J D
1983-01-01
The structural integrity of erythrocyte ghosts made by the preswell and slow-dialysis techniques has been studied in vitro by use of gamma-ray perturbed angular correlation (PAC) techniques and also by standard in vitro leakage methods employing sequestered labeled markers. Complexes of 111In3+ and nitrilotriacetate were encapsulated in ghosts made from human, rabbit, rat, and mouse erythrocytes, and their leakage was monitored by both methods. In addition, 125I-labeled bovine serum albumin was encapsulated, and ghost integrity was monitored by conventional leakage measurements. With the PAC technique the percentage of material released from human ghosts was determined quantitatively, and the results were equivalent to those obtained by the conventional method. In addition, at various times after intravenous injection, tissue distribution of the ghosts in the mouse was studied. The percent injected dose per gram of tissue of the labeled surface proteins of erythrocyte ghosts in circulation approximated that of the entrapped labeled albumin. This suggests that the ghost membrane and contents are strongly associated in vivo. Large 125I-labeled bovine serum albumin molecules and small 111In3+-nitrilotriacetate complexes were delivered in high quantitites to the lung initially, and to the liver and spleen. Because erythrocyte ghosts have the ability to entrap a wide range of substances and deliver them to specific organs, ghosts may be preferable to other drug carriers or drug therapy for treatment of certain disorders. PMID:6572379
NASA Astrophysics Data System (ADS)
Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.
2016-09-01
We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.
NASA Astrophysics Data System (ADS)
Kauder, Kolja
A unique state of matter is created in ultra-relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), the Quark Gluon Plasma (QGP). It displays the properties of a near-perfect liquid of quarks and gluons (partons) interacting collectively via the strong force. Properties of this medium can be explored using high-energy probes created in the form of back-to-back pairs (jets) in hard scatterings. A distinct feature of the QGP is jet quenching, which describes the large energy loss of such probes observed in measurements of hadron distributions in head-on heavy ion collisions. A more differential measurement of jet quenching is achieved using di-hadron correlations, where relative angular distributions are studied with respect to a leading (high energy) "trigger" hadron. Two striking features found in di-hadron correlations are the emergence of a long-range plateau on the near-side (at small relative azimuth), the so-called "ridge", and a broadening and deformation of the away-side, back to back with the trigger. Using 200 GeV central gold-gold and minimum bias deuteron-gold collision data collected by the STAR detector at RHIC, a systematic study of the dependence of di-hadron correlation structures on the identity of the trigger particle is carried out in this work by statistically separating pion from non-pion (i.e. proton and kaon) triggers, offering new insights into the hadronization mechanisms in the QGP. The jet-like yield at small relative angles is found enhanced for leading pions in Au+Au data with respect to the d+Au reference, while leading non-pions (protons and kaons) do not elicit such an enhancement. These findings are discussed within the context of quark recombination. At large angles, the correlated yield is significantly higher for leading non-pions than pions. Parameters extracted from two-dimensional model fits are used to test consistency with the constituent quark scaling assumptions
LACK OF ANGULAR CORRELATION AND ODD-PARITY PREFERENCE IN COSMIC MICROWAVE BACKGROUND DATA
Kim, Jaiseung; Naselsky, Pavel
2011-10-01
We have investigated the angular correlation in the recent cosmic microwave background data. In addition to the known large-angle correlation anomaly, we find the lack of correlation at small angles with high statistical significance. We have investigated various non-cosmological contamination as well as the Wilkinson Microwave Anisotropy Probe (WMAP) team's simulated data. However, we have not found a definite cause. In the angular power spectrum of WMAP data, there exists anomalous odd-parity preference at low multipoles. Noting the equivalence between the power spectrum and the correlation, we have investigated the association between the lack of large-angle correlation and the odd-parity preference. From our investigation, we find that the odd-parity preference at low multipoles is, in fact, a phenomenological origin of the lack of large-angle correlation. Further investigation is required to find out whether the origin of the anomaly is cosmological or due to unaccounted systematics. The data from the Planck surveyor, which has systematics distinct from WMAP, will greatly help us to resolve its origin.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. PMID:26176206
Measurement of aggregates' size distribution by angular light scattering
NASA Astrophysics Data System (ADS)
Caumont-Prim, Chloé; Yon, Jérôme; Coppalle, Alexis; Ouf, François-Xavier; Fang Ren, Kuan
2013-09-01
A novel method is introduced for in situ determination of the size distribution of submicronic fractal aggregate particles by unique measurement of angular scattering of light. This method relies on the dependence of a new defined function Rg⋆ on the polydispersity of the aggregates' size distribution. The function Rg⋆ is then interpreted by the use of iso-level charts to determine the parameters of the log-normal soot size distribution. The main advantage of this method is its independence of the particle optical properties and primary sphere diameter. Moreover, except for the knowledge of fractal dimension, this method does not require any additional measurement. It is validated on monodisperse particles selected by a differential mobility analyzer and polydisperse soot from ethylene diffusion flame whose size distribution is independently determined by Transmission Electron Microscopy. Finally, the size distribution of soot generated by a commercial apparatus is measured by the proposed method and the comparison to that given by a commercial granulometer shows a good agreement.
NASA Astrophysics Data System (ADS)
Alberti, Margarita; Gimenez, Xavier; Aguilar, Antonio; Gonzalez Urena, Angel
Extensive quasi-classical trajectory (QCT) calculations have been carried out to study the disposal of both rotational and orbital angular momentum in the B + OH BO + H reaction. The potential energy surface (PES) of this reaction shows two minima associated with the HOB and HBO configurations. In addition, two distinct PESs were used each having a different geometrical structure of the HOB intermediate: bent for surface 1 and linear for surface 2. For the title reaction the product angular momentum disposal shows significant deviations from the kinematic limit expected for a heavy + heavy-light (HH L) reaction. The analysis of the product angular momenta distribution clearly indicates a correlation with the topology of the PES used. It was found that while the insertion mechanism associated with PES1 (HOB bent intermediate) favours a significant disposal into product rotational and orbital momenta, little disposal into both momenta is obtained for reactive trajectories occurring through the collinear HOB intermediate of PES2, for which BO is highly stretched. A simple modification of the conventional kinematic expressions, aimed at incorporating the effect of the dynamics into the angular momenta transfer, is proposed and tested. Modified expressions give results strongly consistent with those obtained from QCT calculations.
Ceolín, M
2000-09-11
The hydrodynamic behaviour of the bovine serum albumin (BSA) was studied by means of the Perturbed Angular Correlation (PAC) technique as a function of the hydrostatic pressure (up to 4.1 kbar) applied to the sample. The results have clearly shown that at moderated pressures (around 1.5 kbar) the BSA molecule suffers structural modifications which produces an increase of the molecular volume and the rotational correlation time of the molecule. About the reversibility of the process, our results indicate that the changes are fully irreversible. Our experiments are the first devoted to the study of the high-pressure behaviour of biological molecules using the PAC technique. PMID:10989128
NASA Astrophysics Data System (ADS)
Rivola, Alessandro; Troncossi, Marco
2014-02-01
An experimental test campaign was performed on the valve train of a racing motorbike engine in order to get insight into the dynamic of the system. In particular the valve motion was acquired in cold test conditions by means of a laser vibrometer able to acquire displacement and velocity signals. The valve time-dependent measurements needed to be referred to the camshaft angular position in order to analyse the data in the angular domain, as usually done for rotating machines. To this purpose the camshaft was fitted with a zebra tape whose dark and light stripes were tracked by means of an optical probe. Unfortunately, both manufacturing and mounting imperfections of the employed zebra tape, resulting in stripes with slightly different widths, precluded the possibility to directly obtain the correct relationship between camshaft angular position and time. In order to overcome this problem, the identification of the zebra tape was performed by means of the original and practical procedure that is the focus of the present paper. The method consists of three main steps: namely, an ad-hoc test corresponding to special operating conditions, the computation of the instantaneous angular speed, and the final association of the stripes with the corresponding shaft angular position. The results reported in the paper demonstrate the suitability of the simple procedure for the zebra tape identification performed with the final purpose to implement a computed order tracking technique for the data analysis.
Kawasuso, A.; Chiba, T.; Higuchi, T.
2005-05-15
Electron-positron momentum distributions associated with vacancy defects in 6H-SiC after irradiation with 2-MeV electrons and annealing at 1000 deg. C have been studied using angular correlation of annihilation radiation measurements. It was confirmed that the above vacancy defects have dangling bonds along the c axis and the rotational symmetry around it. The first-principles calculation suggested that the vacancy defects are attributable to either carbon-vacancy-carbon-antisite complexes or silicon-vacancy-nitrogen pairs, while isolated carbon vacancies, silicon vacancies, and nearest neighbor divacancies are ruled out.
NASA Astrophysics Data System (ADS)
Newhouse, Randal Leslie
Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using
Angular correlations in the two-photon decay of heliumlike heavy ions
Surzhykov, A.; Fratini, F.; Volotka, A.; Santos, J. P.; Indelicato, P.; Plunien, G.; Stoehlker, Th.; Fritzsche, S.
2010-04-15
The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory and Dirac's relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e., how the angular correlation function depends on the shell structure of the ions in their initial and final states). Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s {sup 1}S{sub 0}, 1s2s {sup 3}S{sub 1}, and 1s2p {sup 3}P{sub 0} states of helium-like Xe{sup 52+}, Au{sup 77+}, and U{sup 90+} ions.
NASA Astrophysics Data System (ADS)
Rakshit, D.; Blume, D.
2012-06-01
It has been predicted that four-body systems with angular momentum L=1 and parity π=+1 exhibit four-body resonances [1,2] and Efimov physics [3]. To treat these phenomena in the hyperspherical framework, we extend the work of von Stecher and Greene [4] to finite angular momenta. In particular, we employ explicitly correlated Gaussian basis functions with global vectors to solve the hyperangular Schr"odinger equation for four-body systems with L^π=1^+ and 1^- symmetry. We apply the approach to four-fermion systems with unequal masses.[4pt] [1] K. M. Daily and D. Blume, Phys. Rev. Lett. 105, 170403 (2010).[0pt] [2] S. Gandolfi and J. Carlson, arXiv: 1006.5186v1.[0pt] [3] Y. Castin, C. Mora and L. Pricoupenko, Phys. Rev. Lett. 105, 223201 (2010).[0pt] [4] J. von Stecher and C. H. Greene, Phys. Rev. A. 80, 022504 (2009).
Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H
2001-06-20
Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.
Angular Correlation of Electrons Emitted by Double Auger Decay of K-Shell Ionized Neon
NASA Astrophysics Data System (ADS)
Jones, Matthew Philip
2011-12-01
We have investigated in detail the 4-body continuum state produced when core-ionized neon undergoes Double-Auger (DA) decay, using COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS ). We conducted the experiment at the Lawrence Berkeley National Laboratory's Advanced Light Source (LBNL-ALS) beamline 11.0.2. The synchrotron operated in 2-bunch mode and outputted an elliptically polarized, pulsed photon beam (hn=872.9eV), sufficient to K-shell ionize neon just above threshold. Our analysis supports research showing that Auger electrons tend to share energy asymmetrically. We qualitatively compared this result to Photo-Double Ionization (PDI) of helium. Further, we confirm research that shows how Auger electrons that share energy symmetrically can be modeled by the elastic-like knock-out process plus Post-Collision Interaction ( PCI) effects. New observations include the angular correlation between the photo-electron and each respective Auger electron, for specific ranges of energy sharing. We identify a broad feature in the asymmetric case that shows a level of interaction between electrons that until recently, has disagreed with theory. Additionally, we consider the angular correlation between the photo-electron and the momentum sum of the Auger electrons. We observe that the angular correlation between this sum and the photo-electron in the highly asymmetric case is nearly identical to the correlation between just the fast-Auger and the photo-electron - as expected. In the case of symmetric energy sharing, the sum momentum vector appears to be isotropic, particularly for small angles of interaction. Finally, we acknowledge two novel methods of calibration. The first, uses well known line-energies to calibrate the spectrometer. These lines correspond to the decay channels of core-excited neon, Ne(1 s-13p). The second, describes a method to statistically weight list-mode data in order to calibrate it to well known physical features (e.g., isotropic distributions).
NASA Astrophysics Data System (ADS)
Ross, Ashley J.; Brunner, Robert J.; Myers, Adam D.
2008-08-01
We present a novel technique with which to measure σ8. It relies on measuring the dependence of the second-order bias of a density field on σ8, using two separate techniques. Each technique employs area-averaged angular correlation functions (bar omegaN), one relying on the shape of bar omega2, the other relying on the amplitude of s3 (s3 = bar omega3/bar omega22). We confirm the validity of this method by testing it on a mock catalog drawn from Millennium Simulation data and finding a value of σ8 - σtrue8 = - 0.002 +/- 0.062. We create a catalog of photometrically selected LRGs from SDSS DR5 and separate it into three distinct data sets by photometric redshift, with median redshifts of 0.47, 0.53, and 0.61. Measurements of c2 and σ8 are made for each data set, with the assumption of a flat geometry and WMAP3 best-fit priors on Ωm, h, and Γ. We find, with increasing redshift, that c2 = 0.09 +/- 0.04, 0.09 +/- 0.05, and 0.09 +/- 0.03, and σ8 = 0.78 +/- 0.08, 0.80 +/- 0.09, and 0.80 +/- 0.09. We combine these three consistent σ8 measurements to produce σ8 = 0.79 +/- 0.05. Allowing the parameters Ωm, h, and Γ to vary within their WMAP3 1 σ error, we find that the best-fit value of σ8 does not change by more than 8%, and we are thus confident that our measurement is accurate to within 10%. We anticipate that future surveys, such as Pan-STARRS, DES, and LSST, will be able to employ this method in order to measure σ8 to great precision, and this will serve as an important check, complementarily, on the values determined via more established methods.
Sumikama, T.; Matsuta, K.; Ogura, M.; Iwakoshi, T.; Nakashima, Y.; Fujiwara, H.; Fukuda, M.; Mihara, M.; Nagatomo, T.; Minamisono, K.; Yamaguchi, T.; Minamisono, T.
2011-06-15
The {beta}-ray angular correlations for the spin alignments of {sup 8}Li and {sup 8}B have been observed in order to test the conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known {beta}-{alpha} angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak magnetism term, 7.5{+-}0.2, deduced from the {beta}-ray correlation terms was consistent with the CVC prediction 7.3{+-}0.2, deduced from the analog-{gamma} decay measurement based on the CVC hypothesis. However, there was no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The experimental value for the second-forbidden term was 1.0{+-}0.3, while the CVC prediction was 0.1{+-}0.4 or 2.1{+-}0.5.
NASA Astrophysics Data System (ADS)
Henzl, V.; Kilburn, M. A.; Chajęcki, Z.; Henzlova, D.; Lynch, W. G.; Brown, D.; Chbihi, A.; Coupland, D. D. S.; Danielewicz, P.; Desouza, R. T.; Famiano, M.; Herlitzius, C.; Hudan, S.; Lee, Jenny; Lukyanov, S.; Rogers, A. M.; Sanetullaev, A.; Sobotka, L. G.; Sun, Z. Y.; Tsang, M. B.; Vander Molen, A.; Verde, G.; Wallace, M. S.; Youngs, M.
2012-01-01
The angular dependence of proton-proton correlation functions is studied in central 40Ca+40Ca and 48Ca+48Ca nuclear reactions at E/A=80 MeV. Measurements were performed with the High Resolution Array (HiRA) complemented by the 4π Array at the National Superconducting Cyclotron Laboratory. A striking angular dependence in the laboratory frame is found within proton-proton correlation functions for both systems that greatly exceeds the measured and expected isospin dependent difference between the neutron-rich and neutron-deficient systems. Sources measured at backward angles reflect the participant zone of the reaction, while much larger sources observed at forward angles reflect the expanding, fragmenting, and evaporating projectile remnants. The decrease of the size of the source with increasing momentum is observed at backward angles while a weaker trend in the opposite direction is observed at forward angles. The results are compared to the theoretical calculations using the Boltzmann-Uehling-Uhlenbeck (BUU) transport model.
Super-resolving angular rotation measurement using binary-outcome homodyne detection.
Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Zhang, Jiandong; Cen, Longzhu; Wang, Feng; Zhao, Yuan
2016-08-01
There has been much recent interest in high precision angular rotation measurement using photon orbital angular momentum to realize super-resolving angular rotation measurement. It is well known that quantum detection strategies can obtain a quantum-enhanced performance. Here, we prove that binary-outcome homodyne detection method can obtain a narrower signal peak, showing better resolution compared with the existing data processing method. Since the photon loss is unavoidable in the actual non-ideal optical system, this paper further discusses the impact of photon loss on the resolution and sensitivity of angular rotation measurement with binary-outcome homodyne detection method. PMID:27505811
Time correlators from deferred measurements
NASA Astrophysics Data System (ADS)
Oehri, D.; Lebedev, A. V.; Lesovik, G. B.; Blatter, G.
2016-01-01
Repeated measurements that typically occur in two-time or multitime correlators rely on von Neumann's projection postulate, telling how to restart the system after an intermediate measurement. We invoke the principle of deferred measurement to describe an alternative procedure in which coevolving quantum memories extract system information through entanglement, combined with a final readout of the memories described by Born's rule. Our approach to repeated quantum measurements respects the unitary evolution of quantum mechanics during intermediate times, unifies the treatment of strong and weak measurements, and reproduces the projected and (anti)symmetrized correlators in the two limits. As an illustration, we apply our formalism to the calculation of the electron charge correlator in a mesoscopic physics setting, where single electron pulses assume the role of flying memory qubits. We propose an experimental setup that reduces the measurement of the time correlator to the measurement of currents and noise, exploiting the (pulsed) injection of electrons to cope with the challenge of performing short-time measurements.
Studies of point-defect interactions in solids using perturbed angular correlations
Schuhmann, R.B.
1988-01-01
Vacancy defect production and migration in {sup 111}In doped Au, Pt and Ni following plastic deformation are studied via {sup 111}Cd perturbed {gamma}-{gamma} angular correlations (TDPAC). In all three metals, deformation produces the same defect species as are seen following irradiation. In Au, a particular In-vacancy complex which is probably a trapped divacancy exists in two distinct configurations. Thermal conversion from one configuration to the other occurs near 200K. In Pt, an In-vacancy complex exhibits a strongly temperature dependent electric field gradient, indicating the presence of local resonant modes. In Ni, a relaxed In-trivacancy complex forms via simple, single-step trapping of a migrating trivacancy. Once formed, the In-trivacancy complex in Ni can trap up to four guest H or D atoms. These are bound to the complex with an energy of {approximately}0.5 eV, irrespective of isotopic mass. By monitoring the damping of the TDPAC precession not associated with a bound defect, the author observed release of untrapped interstitial H from the lattice. These experiments give a consistent, microscopic picture of H diffusion and release from Ni. The use of BaF{sub 2} scintillators allows for an eightfold improvement in TDPAC time resolution. This makes possible experiments in systems previously inaccessible due to large precessional frequencies. The author demonstrates the utility of BaF{sub 2} in several examples, including {sup 100}RhNi, {sup 99}TcFe, {sup 101}RuFe, {sup 100}RhCo and {sup 100}RhFe, systems which had not been studied previously due to time resolution limitation. The Larmor frequency for {sup 100}RhFe, 5565 Mrad/s, is the highest frequency ever measured via TDPAC.
Angular correlation of the cosmic microwave background in the Rh = ct Universe
NASA Astrophysics Data System (ADS)
Melia, F.
2014-01-01
Context. The emergence of several unexpected large-scale features in the cosmic microwave background (CMB) has pointed to possible new physics driving the origin of density fluctuations in the early Universe and their evolution into the large-scale structure we see today. Aims: In this paper, we focus our attention on the possible absence of angular correlation in the CMB anisotropies at angles larger than ~60°, and consider whether this feature may be the signature of fluctuations expected in the Rh = ct Universe. Methods: We calculate the CMB angular correlation function for a fluctuation spectrum expected from growth in a Universe whose dynamics is constrained by the equation-of-state p = -ρ/3, where p and ρ are the total pressure and density, respectively. Results: We find that, though the disparity between the predictions of ΛCDM and the WMAP sky may be due to cosmic variance, it may also be due to an absence of inflation. The classic horizon problem does not exist in the Rh = ct Universe, so a period of exponential growth was not necessary in this cosmology in order to account for the general uniformity of the CMB (save for the aforementioned tiny fluctuations of 1 part in 100 000 in the WMAP relic signal). Conclusions: We show that the Rh = ct Universe without inflation can account for the apparent absence in CMB angular correlation at angles θ ≳ 60° without invoking cosmic variance, providing additional motivation for pursuing this cosmology as a viable description of nature.
Perturbed angular correlation study of radiation-induced defects in Rh metal
NASA Astrophysics Data System (ADS)
Chawda, M.; Patel, N.; Sebastian, K. C.; Somayajulu, D. R. S.; Sarkar, M.; Singh, R. P.; Murlithar, S.; Awasthi, D. K.
2006-06-01
Radiation-induced defects are studied in cubic rhodium metal, using the local probe technique 'Time differential perturbed angular correlation (TDPAC) at liquid N-2 temperature. Isochronal annealing was done at 300, 1073 and 1473 K temperatures. The irradiated sample showed two quadrupole interaction frequencies at 1150 and 93 MHz. The low frequency disappeared at room-temperature annealing, which was assigned to In trapped at a vacancy, whereas the higher frequency remained up to high temperatures and was attributed to In trapped at Rh-C complexes in the Rh matrix.
Video-analysis Interface for Angular Joint Measurement
NASA Astrophysics Data System (ADS)
Mondani, M.; Ghersi, I.; Miralles, M. T.
2016-04-01
Real-time quantification of joint articular movement is instrumental in the comprehensive assessment of significant biomechanical gestures. The development of an interface, based on an automatic algorithm for 3D-motion analysis, is presented in this work. The graphical interface uses open-source libraries for video processing, and its use is intuitive. The proposed method is low-cost, of acceptable precision (|εθ| < 1°), and minimally invasive. It allows to obtain angular movement of joints in different planes, synchronized with the video of the gesture, as well as to make comparisons and calculate parameters of interest from the acquired angular kinematics.
NASA Astrophysics Data System (ADS)
Jäger, Markus; Butz, Tilman
2012-05-01
We report on the measurement of the nuclear quadrupole interaction (NQI) at Hf sites using the nuclear probe 180mHf in HfF4·HF·2H2O at 300 K by exploiting all possible start quanta in the stretched cascade with a digital Time Differential Perturbed Angular Correlation (TDPAC) spectrometer. With conventional spectrometers, multiple prompt start signals would paralyze the router. The gain in coincidence rate is about a factor of 5 compared to a conventional spectrometer using a single start only. With multiple starts 180mHf is a promising new isomeric nuclear probe in TDPAC experiments. As an additional feature we implemented the possibility to measure up to four cascades simultaneously in order to save data collection time or to measure isobaric contaminations like 111mCd and 111In.
Angular correlation between photoelectrons and auger electrons from K-shell ionization of neon.
Landers, A L; Robicheaux, F; Jahnke, T; Schöffler, M; Osipov, T; Titze, J; Lee, S Y; Adaniya, H; Hertlein, M; Ranitovic, P; Bocharova, I; Akoury, D; Bhandary, A; Weber, Th; Prior, M H; Cocke, C L; Dörner, R; Belkacem, A
2009-06-01
We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process. PMID:19658860
Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon
Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.
2009-06-05
We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.
Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.
2012-12-15
Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than {+-}0.1 mrad ( Almost-Equal-To 0.036 mrad) and has an excellent repeatability with an error of less than 2%.
Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.
2010-09-21
The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT’s of 1-3GeV/c, 2.0< |??|<4.8 and ?f˜0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142
Neutron-neutron angular correlations in spontaneous and neutron-induced fission
NASA Astrophysics Data System (ADS)
Vogt, Ramona; Randrup, Jorgen
2015-04-01
For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.
Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.
None
2011-10-06
The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT?s of 1-3GeV/c, 2.0< |??|<4.8 and ?f?0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
A Simple Method to Measure the Angular Speed of a Spinning Object
ERIC Educational Resources Information Center
Misra, Raj M.
2008-01-01
The angular speed of a spinning object is commonly measured using a stroboscope or a mechanically or optically coupled tachometer. We present here an alternate, simple, and instructive method to measure it using a microphone and a computer.
Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field
NASA Astrophysics Data System (ADS)
Elyiv, A.; Clerc, N.; Plionis, M.; Surdej, J.; Pierre, M.; Basilakos, S.; Chiappetti, L.; Gandhi, P.; Gosset, E.; Melnyk, O.; Pacaud, F.
2012-01-01
Aims: Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. Methods: We measure the two-point angular correlation function of 5700 and 2500 X-ray point-like sources over the 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. Results: We have found significant angular correlations with the power-law parameters γ = 1.81 ± 0.02, θ0 = 1.3'' ± 0.2'' for the soft, and γ = 2.00 ± 0.04, θ0 = 7.3'' ± 1.0'' for the hard bands. The amplitude of the correlation function w(θ) is higher in the hard than in the soft band for fx ≲ 10-14 erg s-1 cm-2 and lower above this flux limit. We confirm that the clustering strength θ0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial correlation function, but only for the soft band. In the hard band, it remains almost constant with r0 ≃ 10h-1 Mpc, irrespective of the flux limit. Our analysis of AGN subsamples with different hardness ratios shows that the sources with a hard-spectrum are more clustered than soft-spectrum ones. This result may be a hint that the two main types of AGN populate different environments. Finally, we find that our clustering results correspond to an X-ray selected AGN bias factor of 2.5 for the soft band sources (at a median bar{z} ≃ 1.1) and 3.3 for the hard band sources (at a median bar{z} ≃ 1), which translates into a host dark matter halo mass of 1013h-1M⊙ and 1013.7h-1M⊙ for the soft and hard bands, respectively. This paper is dedicated to the memory of Olivier Garcet who has initiated the present work just before his sudden death.
Measurement of the angular-motion parameters of a base by a dynamically adjustable gyroscope
NASA Astrophysics Data System (ADS)
Zbrutskii, A. V.
1986-04-01
The paper examines the dynamics and errors of a balanced dynamically adjustable gyroscope as a sensor of the angular deviations and angular velocities of the base. Attention is given to measurements made under conditions of uniform and uniformly accelerated rotation of the base.
Daniel, Mariappan Jonathan; Srinivasan, Subramaniam Vasudevan; Koliyan, Ramadoss; Kumar, Jimsha Vannathan
2015-01-01
Background Bone remodeling is a continuous and complex process which occurs throughout life. Radiomorphometric and radioangular indices on the orthopantomogram are the predictors of bone remodeling associated with mandible. Bone mineral density is the amount of calcified tissue in a certain volume of the bone. Materials and Methods Fifty normal healthy individuals within the age range of 25-55 years were included in the study. Linear measurements including mandibular cortical width (MCW) and panoramic mandibular index (PMI); and angular measurements including mandibular angle (MA) and antegonial angle (AGA) were recorded. Quantitative ultrasound bone mineral density (BMD) scan of the heel bone (calcaneus) of the same patient were also performed. Results In our study, for both males and females, antegonial angle (AGA) had highest correlation with calcaneus bone mineral density. In the age group of less than 35 years, PMI in males, and AGA in females had highest correlation. In the age range of more than 35 years, MA in males and AGA in females had highest correlation. Conclusion There is a correlation between the mandibular bone remodelling changes and calcaneal bone mineral density in case of elder subjects and thus these parameters may be used as an inexpensive alternative screening method to assess the bone mineral density and identify individuals at risk for osteoporosis and fractures and also for dental treatment planning. PMID:26393197
Magnetic interaction in NdScGe: a local investigation by perturbed angular correlation spectroscopy
NASA Astrophysics Data System (ADS)
Mishra, S. N.; Dhar, S. K.
2004-02-01
The magnetic and electric hyperfine interactions for the 111Cd probe nucleus in the equi-atomic ferromagnetic compound NdScGe (T_{\\mathrm {c}}\\sim 200 K) have been investigated by the time differential perturbed angular correlation (TDPAC) technique. The Cd probe occupying the Sc site experiences a large magnetic hyperfine field with saturation value Bhf(0) = -8.5 T. By comparing the results with the hyperfine field data in Nd metal and estimates made with the RKKY interaction, we find an indication for sizeable spin polarization of the conduction electrons in NdScGe. In addition, we find evidence of lattice softening near the Curie temperature reflected by an abrupt decrease in the quadrupole interaction frequency ngrQ(T).
The muon capture in {sup 16}O: the angular and polarization correlations
Karpeshin, F. F.; Isakov, V. I.
2012-02-15
Longitudinal polarization of the daughter nuclei {sup 16}N which arises in Micro-Sign {sup -} capture on {sup 16}O as a function of the recoil angle, together with the angular distribution and the alignment of the recoil nucleus are calculated. The neutrinos born escape mainly along the muon spin. The polarization is found to vary from zero (recoil momentum counter to the muon spin direction) up to 50% (along the muon spin direction). The results can be applied to the experimental tests of T conservation, to the analysis of the projects of constructing the powerful mono-energetic neutrino sources, to the experimental study of the pseudo-scalar form factor and the K-electron capture, and to other spin-polarization correlation experiments.
Neural correlates for angular head velocity in the rat dorsal tegmental nucleus
NASA Technical Reports Server (NTRS)
Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)
2001-01-01
Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.
Neural correlates for angular head velocity in the rat dorsal tegmental nucleus.
Bassett, J P; Taube, J S
2001-08-01
Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal. PMID:11466446
NASA Astrophysics Data System (ADS)
Gómez de León, F. C.; Meroño Pérez, P. A.
2010-07-01
The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement.
A Perturbed-Angular-Correlation Study of Hyperfine Interactions at 181Ta in α-Fe2O3
NASA Astrophysics Data System (ADS)
Pasquevich, A. F.; Junqueira, A. C.; Carbonari, A. W.; Saxena, R. N.
2004-11-01
The hyperfine interactions at 181Ta ions on Fe3+ sites in α-Fe2O3 (hematite) were studied in the temperature range 11 1100 K by means of the perturbed angular correlation (PAC) technique. The 181Hf(β-)181Ta probe nuclei were introduced chemically into the sample during the preparation. The hyperfine interaction measurements allow to observe the magnetic phase transition and to characterize the supertransferred hyperfine magnetic field Bhf and the electric field gradient (EFG) at the impurity sites. The angles between Bhf and the principal axes of the EFG were determined. The Morin transition was also observed. The results are compared with those of similar experiments carried out using 111Cd probe.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta’ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D’Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En’yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H. -Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E. -J.; Kim, Y. -J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O’Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J. -C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.
2015-05-12
In this study, we present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and aluminum bias p+p collisions at √s_{NN} = 200 GeV. The charged hadron is measured at midrapidity lηl < 0.35, and the energy us measured at large rapidity (–3.7 < η < –3.1, Au-going direction). An enhanced near-side angular correlation across lΔηl > 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v₂ for inclusive charged hadrons at midrapidity up to p_{T} = 4.5 GeV/c. We also present the measurement of v₂ for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at √s_{NN} = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.
How does angular resolution affect diffusion imaging measures?
Zhan, Liang; Leow, Alex D; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Toga, Arthur W; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J; Thompson, Paul M
2010-01-15
A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6
NASA Astrophysics Data System (ADS)
Britton, D. T.; Minani, E.; Knoesen, D.; Schut, H.; Eijt, S. W. H.; Furlan, F.; Giles, C.; Härting, M.
2006-02-01
Hydrogenated amorphous silicon (a-Si:H) is a widely used thin film semiconductor material which is still incompletely understood. It is generally assumed to form a continuous random network, with a high concentration of coordination defects (dangling bonds), which are hydrogen terminated. Neither the exact nature of these sites nor the degree of medium range order has been fully determined. In this paper, we present the first results for the local structure, from a combined study using angular correlation of positron annihilation radiation (ACAR) and synchrotron radiation diffraction. Reciprocal space information is obtained directly, for the mesoscale structure and the local defect structure, from the orientation dependent diffraction and 2D-ACAR patterns, respectively. Furthermore, inversion of both patterns yields a comparison of real space information through maps of the silicon-silicon pair correlation function and the electron-positron autocorrelation function B2 γ( r). From this information, it is possible to identify the dominant structural defect as a vacancy-size dangling bond cluster, around which the network strain is fully relaxed.
Measurement of Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Direct Reactions
NASA Astrophysics Data System (ADS)
Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert
2015-04-01
The surrogate method has previously been used to successfully measure (n , f) cross sections of a variety of difficult to produce actinide isotopes. These measurements are inaccurate at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239 Pu(d , pf) and 239 Pu(α ,α' f) reactions has been developed. This method consists on charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the beam. An array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments with high angular resolution. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2012-DN-130-NF0001.
Sawyer, Lee; /Louisiana Tech. U.
2010-01-01
We report the measurement of the cross-section for three-jet production and the ratio of inclusive three-jet to two-jet cross-sections, as well as a study of angular correlations in minimum bias events, based on data taken with the D0 experiment at the Fermilab Tevatron proton-antiproton collider. The differential inclusive three-jet cross section as a function of the invariant three-jetmass (M{sub 3jet}) is measured in p{bar p} collisions at {radical}s = 1.96 TeV using a data set corresponding to an integrated luminosity of 0.7 fb{sup -1}. The measurement is performed in three rapidity regions (|y| < 0.8, |y| < 1.6 and |y| < 2.4) and in three regions of the third (ordered in p{sub T}) jet transverse momenta (p{sub T3} > 40 GeV, p{sub T3} > 70 GeV, p{sub T3} > 100 GeV) for events with leading jet transverse momentum larger than 150 GeV and well separated jets. NLO QCD calculations are found to be in a reasonable agreement with the measured cross sections. Based on the same data set, we present the first measurement of ratios of multi-jet cross sections in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The ratio of inclusive trijet and dijet cross sections, R{sub 3/2}, has been measured as a function of the transverse jet momenta. The data are compared to QCD model predictions in different approximations. Finally, we present a new way to describe minimum bias events based on angular distributions in {approx}5 million minimum bias p{bar p} collisions collected between April 2002 and February 2006 with the D0 detector. We demonstrate that the distribution of {Delta}{phi} in the detector transverse plane between the leading track and all other tracks is a robust observable that can be used for tuning of multiple color interaction models. Pseudorapidity correlations of the {Delta}{phi} distributions are also studied.
Jäger, Markus; Iwig, Kornelius; Butz, Tilman
2011-06-01
A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a (60)Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr(3)(Ce) scintillators and 254 ps with BaF(2) scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a (44)Ti in rutile source and a positron lifetime measurement using (22)Na. The maximum possible data rate of the spectrometer is 1.1 × 10(6) γ quanta per detector and second. PMID:21721728
Jaeger, Markus; Butz, Tilman; Iwig, Kornelius
2011-06-15
A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the {gamma}-{gamma} correlation diagrams. Tests were performed which showed that the time resolution using a {sup 60}Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr{sub 3}(Ce) scintillators and 254 ps with BaF{sub 2} scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a {sup 44}Ti in rutile source and a positron lifetime measurement using {sup 22}Na. The maximum possible data rate of the spectrometer is 1.1 x 10{sup 6} {gamma} quanta per detector and second.
NASA Astrophysics Data System (ADS)
Jäger, Markus; Iwig, Kornelius; Butz, Tilman
2011-06-01
A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a 60Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr3(Ce) scintillators and 254 ps with BaF2 scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a 44Ti in rutile source and a positron lifetime measurement using 22Na. The maximum possible data rate of the spectrometer is 1.1 × 106 γ quanta per detector and second.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
NASA Astrophysics Data System (ADS)
Lahamer, Amer Said
1990-01-01
Measurements of the hyperfine magnetic field in a series of Heusler alloys were performed. The probes were in (^{119}Sn) and cadmium (^{111}Cd). These measurements were performed at the University of Cincinnati in Cincinnati, Ohio. Two techniques were used. The first technique was the Mossbauer effect, which was used to measure the hyperfine magnetic field on ^{119 }Sn in Co_2TiZ (Z = Si, Ge, and Sn), and the second technique was the Time Differential Perturbed Angular Correlation which was used to measure the hyperfine magnetic field on ^ {111}Cd in the Co_2MnZ (Z = Si, Ge, Sn, and Ga). The probes are expected to go to the Z sites of the alloys. The hyperfine magnetic field measurements on ^{119}Sn in Co _2TiZ (Z = Si, Ge, and Sn) alloys were done at room, dry ice and liquid nitrogen temperatures by using the Mossbauer effect technique. The data were fitted by using a least squares fit from which three parameters were extracted. These parameters are the isomer shift, the quadrupole splitting and the hyperfine magnetic field. Temperature variation measurements of the hyperfine magnetic field were performed on ^{111 }Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. The data were fitted again by using a least squares fit from which the Larmor frequency which is related to the hyperfine magnetic field was extracted. Also the Fourier Transforms were taken of the data, on the one hand to confirm the results of the least squares fit and on the other hand to look for more frequencies. Results of the Fourier Transforms show that some of the probe, ^{111}In, did go to the Co site in the Co_2MnZ (Z = Ga, Si, and Ge) alloys. The hmf on ^{111 }Cd in the Co site of these alloys is found to be 68 kOe which is consistent with the value found in the literature. Two theoretical models were examined for the trends of hyperfine magnetic field on ^{119 }Sn and ^{111}Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. These are the Campbell and Blandin model and the Stearns' overlap model
Danilyan, G. V.; Wilpert, T.; Granz, P.; Krakhotin, V. A.; Mezei, F.; Novitsky, V. V.; Pavlov, V. S.; Russina, M. V.; Shatalov, P. B.
2008-12-15
A new approach to searching for and studying scission neutrons, which is based on the analysis of specific angular correlations in nuclear fission induced by polarized neutrons, is described and used to evaluate the fraction of scission neutrons in the total number of prompt neutrons of {sup 235}U fission emitted perpendicularly to the fission axis.
NASA Astrophysics Data System (ADS)
Zou, L. K.; Zhang, Y.; Gu, L.; Cai, J. W.; Sun, L.
2016-02-01
Angular-dependent magnetoresistance (MR) is considered to be intrinsic to spintronic materials, represented by the classical anisotropic MR (AMR) phenomenon and the recently emerged spin Hall MR (SMR). So far, isotropic AMR, AMR with geometric size effect and interfacial effect, and SMR have been treated separately to explain distinct MR correlations observed in various systems. Current study shows all four types of MR correlations can be reproduced in Fe thin films depending on the film thickness, texture, interface, and morphology. Results suggest previous explanations of the thin-film MR correlations are incomplete and it is inappropriate to use a specific MR angular-dependent correlation as the sole criterion in determining the origin of AMR or ascertaining the exclusive existence of SMR.
Perturbed angular correlation study of the ion exchange of indium into silicalite zeolites
NASA Astrophysics Data System (ADS)
Ramallo-López, J. M.; Requejo, F. G.; Rentería, M.; Bibiloni, A. G.; Miró, E. E.
1999-09-01
Two indium-containing silicalite zeolites (In/H ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500ºC in air before and after reduction reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites.
Hsieh, Hung-Lin; Lee, Ju-Yi; Chen, Lin-Yu; Yang, Yang
2016-04-01
An angular displacement measurement sensor with high resolution for large range measurement is presented. The design concept of the proposed method is based on the birefringence effect and phase detection of heterodyne interferometry. High system symmetry and simple operation can be easily achieved by employing an innovative sandwich optical design for the angular sensor. To evaluate the feasibility and performance of the proposed method, several experiments were performed. The experimental results demonstrate that our angular displacement measurement sensor can achieve a measurement range greater than 26°. Considering the high-frequency noise, the measurement resolution of the system is approximately 1.2° × 10^{-4}. Because of the common-path arrangement, our proposed method can provide superior immunity against environmental disturbances. PMID:27136979
SUB-M-RAD ANGULAR STABILITY MEASUREMENTS BY USE OF LONG TRACE PROFILER BASED SYSTEMS.
QIAN,S.
1999-07-23
High accuracy angle measurement at the sub-{mu}rad level requires extremely high instrument stability. In order to reach sub-{mu}rad stability (0.1 arc second or less) over long time periods, it is necessary to maintain the test object and almost all of the optical components in the measuring instrument in very steady positions. However, mechanical force relaxation, thermal expansion, and asymmetric structures produce angular and linear displacements in the system resulting in angular measurement error. A Long-Trace-Profiler (LTP)-based stable equipment is used to test precision angular stability with sub-{mu}rad resolution. Long term stability over 15 hours has been measured on different kind of mechanical structures. Temperature monitoring during the tests is extremely important. Some test results showing the effects of thermal variations are presented, which indicate that temperature stability on the order of 0.1 C is absolutely necessary for repeatable sub-{mu}rad measurements. The optical method, using optics with an even number of reflecting surfaces (for example, a right angle prism, pentaprism, or rhomboid prism) to reduce the influence of existing angular displacement, is introduced and the comparison measurement is presented. An optical fiber transfer line is able to reduce the laser angular shift from about 10 {mu}rad to a level of 0.3 {mu}rad rms. Careful system configuration, design and operation are very important for the sub-{mu}rad angle stability.
NASA Astrophysics Data System (ADS)
Dey, S. K.; Dey, C. C.; Saha, S.
2016-06-01
Temperature dependent perturbed angular correlation (PAC) measurements in crystalline compounds Rb2ZrF6 and Cs2HfF6 have been performed in the temperature range 298-753 K. In Rb2ZrF6, four discrete quadrupole interaction frequencies have been observed at room temperature which correspond to four minor structural modifications. From previous measurements, on the other hand, two structural modifications of this compound were known. A displacive phase transition, probably, occurs at low temperature due to rotation of the ZrF62- octahedron and produces different structural modifications. From present measurements in Rb2ZrF6, two quadrupole interaction frequencies [ωQ=26.1(3) Mrad/s, η=0.55(2), δ=5(1)% and ωQ=148.7(3) Mrad/s, η=0.538(5), δ=1.2%] have been found at room temperature which were not found from previous studies. In Cs2HfF6, these new structural modifications have not been observed.
Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena
2011-08-15
We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.
Uncertainty of angular displacement measurement with a MEMS gyroscope integrated in a smartphone
NASA Astrophysics Data System (ADS)
de Campos Porath, Maurício; Dolci, Ricardo
2015-10-01
Low-cost inertial sensors have recently gained popularity and are now widely used in electronic devices such as smartphones and tablets. In this paper we present the results of a set of experiments aiming to assess the angular displacement measurement errors of a gyroscope integrated in a smartphone of a recent model. The goal is to verify whether these sensors could substitute dedicated electronic inclinometers for the measurement of angular displacement. We estimated a maximum error of 0.3° (sum of expanded uncertainty and maximum absolute bias) for the roll and pitch axes, for a measurement time without referencing up to 1 h.
NASA Astrophysics Data System (ADS)
Piscionere, Jennifer A.; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Román
2015-06-01
We measure the angular clustering of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7″–320″) in a range of luminosity threshold samples (absolute r-band magnitudes from ‑18 up to ‑21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales, and we discuss the possible impact that fiber collisions have on our measurements. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro–Frenk–White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples ({{M}r} < ‑20 and ‑21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower-luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. while using different clustering measurements and modeling methodology.
Surrogate Reaction Measurement of Angular Dependent 239Pu (n , f) Probabilities
NASA Astrophysics Data System (ADS)
Koglin, Johnathon; Burke, Jason; Casperson, Robert; Jovanovic, Igor
2015-10-01
The surrogate method has previously been used to measure (n , f) cross sections of difficult to produce actinide isotopes. These measurements have inaccuracies at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239Pu (d , pf) and 239Pu (α ,α' f) reactions has been developed. This experimental apparatus consists of charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the particle beam. A segmented array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission rates matrix obtained from this analysis determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed.
Fission Fragment Angular Distributions measured with a Time Projection Chamber
Kleinrath, Verena
2015-04-28
The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for ^{235}U); and Future Work (Refine ^{235}U result, Process ^{239}Pu data).
Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit
2013-03-01
The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI. PMID:23724603
NASA Astrophysics Data System (ADS)
Wodniecki, P.; Kulińska, A.; Wodniecka, B.
The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q =336(1) MHz→V zz =5.9×1017 V cm-2, η=0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2)×10-5 K-1. The results are compared with those for other isostructural compounds.
NASA Astrophysics Data System (ADS)
Wodniecki, P.; Kulińska, A.; Wodniecka, B.
2007-06-01
The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q = 336(1) MHz→V zz =5.9 × 1017 V cm - 2, η = 0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2) × 10 - 5 K - 1. The results are compared with those for other isostructural compounds.
NASA Technical Reports Server (NTRS)
Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)
2003-01-01
Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.
Using Doppler Shifts of GPS Signals To Measure Angular Speed
NASA Technical Reports Server (NTRS)
Campbell, Charles E., Jr.
2006-01-01
A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.
SAGE II aerosol correlative observations - Profile measurements
NASA Technical Reports Server (NTRS)
Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.
1989-01-01
Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.
Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.
1985-03-12
One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.
Measurement and analysis of angular velocity variations of twelve-cylinder diesel engine crankshaft
NASA Astrophysics Data System (ADS)
Bulatović, Ž. M.; Štavljanin, M. S.; Tomić, M. V.; Knežević, D. M.; Biočanin, S. Lj.
2011-11-01
This paper presents the procedures for measuring and analyzing the angular velocity variation of twelve-cylinder diesel engine crankshaft on its free end and on the power-output end. In addition, the paper deals with important aspects of the measurement of crankshaft torsional oscillations. The method is based on digital encoders placed at two distances, and one of them is a sensor not inserted directly on the shaft, i.e. a non-contact method with a toothed disc is used. The principle based on toothed disc is also used to measure the actual camshaft angular velocity of in-line compact high-pressure pump the engine is equipped with, and this paper aims to demonstrate the possibility of measuring the actual angular velocity of any rotating shaft in the engine, on which it is physically possible to mount a toothed disc. The method was created completely independently during long-range development and research tests of V46 family engines. This method is specific for its particular adaptability for use on larger engines with extensive vibrations and torsional oscillations. The main purpose of this paper is a practical contribution to all the more interesting research of the use of engine crankshaft angular velocity as a diagnostic tool for identifying the engine irregular running.
NASA Astrophysics Data System (ADS)
Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin
2015-07-01
Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.
He, Li; Li, Huan; Li, Mo
2016-01-01
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072
He, Li; Li, Huan; Li, Mo
2016-09-01
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072
A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments
Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar
2010-01-01
This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements. PMID:22319320
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method
NASA Astrophysics Data System (ADS)
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm. PMID:27587137
NASA Technical Reports Server (NTRS)
Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.
2015-01-01
We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.
Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Pisano, Silvia
2016-06-01
Deeply-virtual Compton scattering provides the cleanest access to the 3D imaging of the nucleon structure encoded in the generalized parton distributions, that correlate the fraction of the total nucleon momentum carried by a constituent to its position in the transverse plane. Besides the information on the spatial imaging of the nucleon, GPDs provide an access, through the Ji relation, to the contribution of the angular momentum of quarks to proton spin. An accurate estimate of such a contribution will lead to a better understanding of the origin of the proton spin. Jefferson Lab has been an ideal environment for the study of exclusive processes, thanks to the combination of the high-intensity and high-polarization electron beam provided by the CEBAF, with the complementary equipments of the three experimental halls. This has allowed high-precision measurements of the DVCS observables in a wide kinematic region, with focus on those observable s that provide access to the GPDs entering the Ji relation. These studies will be further widened by the projected data from the 12-GeV era, which will improve the existing measurements both in terms of precision and phase-space coverage. The important results on the proton DVCS obtained during the 6-GeV era will be discussed, together with the upcoming experiments approved for the 12-GeV upgrade, that foresees measurements with both proton and quasi-free neutron targets and that, when combined, will lead to the extraction of the Compton Form Factors for separate quark flavors.
Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Pisano, Silvia
2016-08-01
Deeply-virtual Compton scattering provides the cleanest access to the 3D imaging of the nucleon structure encoded in the generalized parton distributions, that correlate the fraction of the total nucleon momentum carried by a constituent to its position in the transverse plane. Besides the information on the spatial imaging of the nucleon, GPDs provide an access, through the Ji relation, to the contribution of the angular momentum of quarks to proton spin. An accurate estimate of such a contribution will lead to a better understanding of the origin of the proton spin. Jefferson Lab has been an ideal environment for the study of exclusive processes, thanks to the combination of the high-intensity and high-polarization electron beam provided by the CEBAF, with the complementary equipments of the three experimental halls. This has allowed high-precision measurements of the DVCS observables in a wide kinematic region, with focus on those observable s that provide access to the GPDs entering the Ji relation. These studies will be further widened by the projected data from the 12-GeV era, which will improve the existing measurements both in terms of precision and phase-space coverage. The important results on the proton DVCS obtained during the 6-GeV era will be discussed, together with the upcoming experiments approved for the 12-GeV upgrade, that foresees measurements with both proton and quasi-free neutron targets and that, when combined, will lead to the extraction of the Compton Form Factors for separate quark flavors.
Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time
NASA Astrophysics Data System (ADS)
Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan
1998-10-01
Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half
Pagano, A.; Aiello, S.; De Filippo, E.; Lanzano, G.; Lo Nigro, S.; Milone, C. ); Mermaz, M.C. )
1994-08-01
In-plane and out-of-plane angular correlations of fission fragments detected in coincidence with projectilelike residues produced in the nuclear collisions [sup 16]O+[sup 238]U at 110 MeV have been investigated. The data present the essential features of a targetlike sequential fission process. A quantitative description of the experimental angular anisotropies requires the storage in the fissioning nucleus of a mean angular momentum in agreement with a dominant mass transfer mechanism.
Cavallaro, S. ); Prete, G. ); Viesti, G. )
1990-04-01
Angular correlation measurements between heavy residues ({ital Z}{sub {ital R}}=23--13) and light fragments ({ital Z}{sub {ital L}}=2--10) have been performed for the reaction {sup 32}S+{sup 26}Mg at {ital E}{sub lab}=163.5 MeV. The binary nature of the mechanisms competing with fusion-evaporation is evidenced. Linear momentum analysis and velocity plots indicate contributions of binary reactions also for those elements that are generally believed to be produced by fusion-evaporation mechanisms.
High energy angular distribution measurements of the exclusive deuteron photodisintegration reaction
Elaine Schulte; et. Al.
2002-10-01
The first complete measurements of the angular distributions of the two-body deuteron photodisintegration differential cross section at photon energies above 1.6 GeV were performed at the Thomas Jefferson National Accelerator Facility. The results show a persistent forward-backward asymmetry up to Egamma = 2.4 GeV, the highest-energy measured in this experiment. The Hard Rescattering and the Quark-Gluon string models are in fair agreement with the results.
Lyakin, D V; Ryabukho, V P
2013-10-31
The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)
Postulates for measures of genuine multipartite correlations
Bennett, Charles H.; Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel
2011-01-15
A lot of research has been done on multipartite correlations, but the problem of satisfactorily defining genuine multipartite correlations--those not trivially reducible to lower partite correlations--remains unsolved. In this paper we propose three reasonable postulates which each measure or indicator of genuine multipartite correlations (or genuine multipartite entanglement) should satisfy. We also introduce the concept of degree of correlations, which gives partial characterization of multipartite correlations. Then, we show that covariance does not satisfy two postulates and hence it cannot be used as an indicator of genuine multipartite correlations. Finally, we propose a candidate for a measure of genuine multipartite correlations based on the work that can be drawn from a local heat bath by means of a multipartite state.
Kim, Yong Hyun; Kang, Seok Joo
2016-01-01
Background We conducted this study to analyze the values of the key cephalometric angular measurements of the mandible using 3-dimensional (3D) computed tomography scans. Methods In the 106 enrolled patients, a 3D cephalometric analysis was performed to measure the angular variables of the mandible. These values were compared between the two sides and between the two sexes. Results The frontal measurements revealed that the mandibular body curve angle was larger on the left (Lt) side (right [Rt], 141.24±7.54; Lt, 142.68±6.94; P=0.002) and the gonial angle was larger on the right side (Rt, 134.37±8.44; Lt, 131.54±7.14; P<0.001). The sagittal measurements showed that the gonial angle was larger on the right side (Rt, 134.37±8.44; Lt, 131.54±7.14; P>0.05). Further, the transverse measurements revealed that the mandibular body curve angle was larger on the right side (Rt, 140.28±7.05; Lt, 137.56±6.23; P<0.001). Conclusions These results provide an average of the mandibular angular measurements for the Korean population, establishing a standard for determining surgical patient groups and outcome evaluations in the field of mandible contour surgery. PMID:26848443
Is v3 necessary or even informative in describing angular correlation data from RHIC and the LHC?
NASA Astrophysics Data System (ADS)
Ray, Lanny; Trainor, Thomas; Prindle, Duncan
2013-10-01
One of the more interesting observations from the heavy-ion program at RHIC and now at the LHC are long-range correlations on relative pseudorapidity at small azimuth opening angles. In 2010 Alver and Roland suggested that this so-called same-side ridge could be explained in terms of higher-order, azimuth cosine distributions generated by event-wise energy density fluctuations in the initial-state plus hydrodynamic flow. Applications of third- and higher-order harmonics in analysis of angular correlations from heavy-ion collisions have become ubiquitous in the literature. However, we question the introduction of ``higher harmonics'' to the 2D data description. Extending previous work we examine the necessity and utility of v3. We find that the net effect of v3 is to accommodate minor non-Gaussian structure in the same-side 2D peak for pt-integral correlations from RHIC. A single Gaussian hypothesis for those data is not falsified within statistics. Model ambiguities and instabilities resulting from v3 are discussed and resolved. Lastly, we demonstrate that the 0-1% angular correlation data for 2.76 TeV Pb-Pb collisions from ATLAS do not require a v3 component. Supported in part by the U.S. Dept. of Energy.
Cuenca, Juan; Sobrino, José A
2004-08-10
One condition for precise multiangle algorithms for estimating sea and land surface temperature with the data from the Advanced Along Track Scanning Radiometer is accurate knowledge of the angular variation of surface emissivity in the thermal IR spectrum region. Today there are very few measurements of this variation. The present study is conducted to provide angular emissivity measurements for five representative samples (water, clay, sand, loam, gravel). The measurements are made in one thermal IR broadband (8-13 microm) and three narrower bands (8.2-9.2, 10.3-11.3, and 11.5-12.5 microm) at angles of 0 degrees-60 degrees (at 5 degrees increments) to the surface normal. The results show a general decrease in emissivity with increasing viewing angles, with the 8.2-9.2-microm channel the most sensitive to this dependence and sand the sample showing the greatest variation. PMID:15376438
Angular Magnetoresistance and Hall Measurements in New Dirac Material, ZrSiS
NASA Astrophysics Data System (ADS)
Ali, Mazhar; Schoop, Leslie; Lotsch, Bettina; Parkin, Stuart
Dirac and Weyl materials have shot to the forefront of condensed matter research in the last few years. Recently, the square-net material, ZrSiS, was theorized and experimentally shown (via ARPES) to host several highly dispersive Dirac cones, including the first Dirac cone demanded by non-symmorphic symmetry in a Si square net. Here we report the magnetoresistance and Hall Effect measurements in this compound. ZrSiS samples with RRR = 40 were found to have MR values up to 6000% at 2 K, be predominantly p-type with a carrier concentration of ~8 x 1019 cm-3 and mobility ~8500 cm2/Vs. Angular magnetoresistance measurements reveal a peculiar behavior with multiple local maxima, depending on field strength, indicating of a sensitive and sensitive Fermi surface. SdH oscillations analysis confirms Hall and angular magnetoresistance measurements. These results, in the context of the theoretical and ARPES results, will be discussed.
Salman, Muhammad; Sabra, Karim G
2012-09-01
A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues. PMID:22978867
Weak Measurements Destroy Too Much Quantum Correlation
NASA Astrophysics Data System (ADS)
Wu, Shao-xiong; Zhang, Jun; Yu, Chang-shui; Song, He-shan
2016-01-01
The quantum correlation under weak measurements is studied via skew information. For 2 × d-dimensional states, it can be given by a closed form which linearly depends on the quantum correlation [EPL. 107 (2014) 10007] determined by the strength of the weak measurement. It is found that the quantum correlation under weak measurements only captures partial quantumness of the state. In particular, the extraction of the residual quantumness by the latter measurements will inevitably destroy too much quantumness. To demonstration, the Werner state is given as an example.
Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator
Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.
2014-07-22
This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.
NASA Astrophysics Data System (ADS)
Junqueira, Astrogildo C.; Carbonari, Artur W.; Saxena, Rajendra N.; Mestnik-Filho, José; Dogra, Rakesh
2005-11-01
The time differential perturbed angular correlation (TDPAC) technique was used to study the temperature dependence of electric field gradient (EFG) in LaCoO3 perovskite using {}^{111}\\mathrm {In}\\rightarrow {}^{111}\\mathrm {Cd} and {}^{181}\\mathrm {Hf} \\rightarrow {}^{181}\\mathrm {Ta} nuclear probes. The radioactive parent nuclei 111In and 181Hf were introduced into the oxide lattice through a chemical process during sample preparation and were found to occupy only the Co sites in LaCoO3. The PAC measurements with 111Cd and 181Ta probes were made in the temperature range of 4.2-1146 K and 4.2-1004 K, respectively. No long-range magnetic order was observed up to 4.2 K. The EFGs at 111Cd and 181Ta show very similar temperature dependences. They increase slowly between 4.2 and about 77 K and then decrease almost linearly with increasing temperature until about 500-600 K, where a broad peak-like structure is observed, followed by linear decrease at still higher temperatures. These discontinuities at about 77 K and 500-600 K have been interpreted as thermally activated spin state transitions from the low-spin (t2g6eg0) ground state configuration to the intermediate-spin (t2g5eg1) state and from the intermediate-spin to the high-spin (t2g4eg2) state of the Co3+ ion, confirming previous observation in other recent studies. An indication of a Jahn-Teller distortion, which stabilizes the intermediate-spin state with orbital ordering, is also pointed out.
Measurement of the angular distribution in anti-p p ---> psi(2S) ---> e+ e-
Ambrogiani, M.; Andreotti, M.; Argiro, S.; Bagnasco, S.; Baldini, W.; Bettoni, D.; Borreani, G.; Buzzo, A.; Calabrese, R.; Cester, R.; Cibinetto, G.; Dalpiaz, P.; Fan, X.; Garzoglio, G.; Gollwitzer, K.E.; Graham, M.; Hahn, A.; Hu, M.; Jin, S.; Joffe, D.; Kasper, J.; /Fermilab /INFN, Ferrara /Ferrara U. /INFN, Genoa /Genoa U. /INFN, Turin /Turin U. /Northwestern U. /UC, Irvine /Minnesota U.
2004-12-01
The authors present the first measurement of the angular distribution for the exclusive process {bar p}p {yields} {psi}(2S) {yields} e{sup +}e{sup -} based on a sample of 6844 events collected by the Fermilab E835 experiment. They find that the angular distribution is well described by the expected functional form dN/d cos {theta}* {proportional_to} 1 + {lambda} cos{sup 2} {theta}*, where {theta}* is the angle between the antiproton and the electron in the center of mass frame, with {lambda} = 0.67 {+-} 0.15(stat.) {+-} 0.04(sys.). The measured value for {lambda} implies a small but non zero {psi}(2S) helicity 0 formation amplitude in {bar p}p, comparable to what is observed in J/{psi} decays to baryon pairs.
Flow Angularity Measurements in the NASA-Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Wilbur, Matthew L.; Mirick, Paul H.; Rivera, Jose A., Jr.
2005-01-01
An investigation using a survey rake with 11 five-hole pyramid-head probes has been conducted in the Langley Transonic Dynamics Tunnel (TDT) to measure the test section flow angularity. Flow measurements were made in a 10-ft square grid centered about the test section centerline at a single streamwise location for nine Mach numbers ranging from 0.50 to 1.19 at dynamic pressures of 100 and 225 pounds per square foot. Test section flow angularity was found to be minimal with a generally random flow pattern. Corrections for survey rake induced in-plane flow were determined to be necessary; however, corrections for rake induced lift effects were not required.
Orbital Angular Momentum: How to Define it and How to Measure it
NASA Astrophysics Data System (ADS)
Leader, Elliot
2015-01-01
In the context of the controversy concerning the ambiguities in the definition of quark and gluon angular momentum we explain pedagogically the origin of these ambiguities and stress that there are fundamentally only three physically relevant variants. We give precise expressions for the sum rules involving them. We consider their measurement, both experimentally and on the lattice, and discuss some attempts to calculate them in models.
Strasburger, Krzysztof
2014-07-28
Method of construction of wave functions approximating eigenfunctions of the L{sup ^2} operator is proposed for high angular momentum states of few-electron atoms. Basis functions are explicitly correlated Gaussian lobes, projected onto irreducible representations of finite point groups. Variational calculations have been carried out for the lowest states of lithium atom, with quantum number L in the range from 1 to 8. Nonrelativistic energies accurate to several dozens of nanohartree have been obtained. For 2{sup 2}P, 3{sup 2}D, and 4{sup 2}F states they agree well with the reference results. Transition frequencies have been computed and compared with available experimental data.
Tilt angular anisoplanatism and a full-aperture tilt-measurement technique with a laser guide star.
Belen'kii, M S
2000-11-20
A method is presented for sensing atmospheric wave-front tilt from a laser guide star (LGS) by observing a laser beacon with auxiliary telescopes. The analysis is performed with a LGS scatter model and Zernike polynomial expansion of wave-front distortions. It is shown that integration of the LGS image over its angular extent and the position of the auxiliary telescope in an array reduce the tilt sensing error associated with the contribution from the downward path. This allows us to single out only the wave-front tilt of the transmitted beam on the uplink path that corresponds to the tilt for the scientific object. The tilt angular correlation is analyzed in the atmosphere with a finite turbulence outer scale. The tilt correlation angle depends on the angular size of the telescope and the outer scale of turbulence. The tilt sensing error increases with the auxiliary telescope diameter, suggesting that an auxiliary telescope must be small. The Strehl ratio associated with the contribution from the downward path is in the range from 0.1 to 0.9 when the relative telescope diameter D/r(0) varies from 4 to 93 and the turbulence outer scale is in the 10-150-m range. Tilt correction increases the Strehl ratio compared with the uncorrected image for all the system parameters and seeing conditions considered. The method discussed gives a higher performance than the conventional technique, which uses an off-axis natural guide star. A scheme for measuring tilt with a beam projected from a small aperture is described. This scheme allows us to avoid phosphorescence of the main optical train for a sodium LGS. PMID:18354615
Prescriptions for measuring and transporting local angular momenta in general relativity
NASA Astrophysics Data System (ADS)
Flanagan, Éanna É.; Nichols, David A.; Stein, Leo C.; Vines, Justin
2016-05-01
For observers in curved spacetimes, elements of the dual space of the set of linearized Poincaré transformations from an observer's tangent space to itself can be naturally interpreted as local linear and angular momenta. We present an operational procedure by which observers can measure such quantities using only information about the spacetime curvature at their location. When applied by observers near spacelike or null infinity in stationary, vacuum, asymptotically flat spacetimes, there is a sense in which the procedure yields the well-defined linear and angular momenta of the spacetime. We also describe a general method by which observers can transport local linear and angular momenta from one point to another, which improves previous prescriptions. This transport is not path independent in general, but becomes path independent for the measured momenta in the same limiting regime. The transport prescription is defined in terms of differential equations, but it can also be interpreted as parallel transport in a particular direct-sum vector bundle. Using the curvature of the connection on this bundle, we compute and discuss the holonomy of the transport law. We anticipate that these measurement and transport definitions may ultimately prove useful for clarifying the physical interpretation of the Bondi-Metzner-Sachs charges of asymptotically flat spacetimes.
Static Magnetic Properties of Films Measured by Means of Angular Perturbative Magnetoresistance
NASA Astrophysics Data System (ADS)
Oliveira, Alexandre; Melo, Abner; da Costa, Ricardo; Chesman, Carlos
In this work we introduced a new technique to measure magnetic anisotropies and magnetoelectrical properties, such as Anisotropic Magnetoresistance (AMR) and Giant Magnetoresistance (GMR) amplitudes. The Perturbative Magnetoresistance (PMR) consist of a regular collinear four probe magnetoresistance set up with an AC magnetic field (hac) applied perpendicular to the DC (Hdc) one. hac amplitude is about 1.0 Oe and oscillate at 270 Hz. We successfully interpreted the signal response from the voltage measured by lock-in amplifier and proposed a model based on energy minimization to extract magnetic anisotropies, AMR and GMR amplitudes. Measuring the in-plane angular dependency of PMR signal we were able to identify the usual magnetic anisotropy, such as uniaxial, unidirectional and cubic. Taking into account the perturbative nature of this technique (small hac amplitude and low frequency), we argue that angular PMR can be used to investigate some dynamic magnetic effects where static technique can not provide such information. A distinct feature of angular PMR is the capability to be used in saturated and non-saturated regime, so revealing magnetic properties dependency on applied field strength. We addressed the Rotatable Anisotropy as an example in this work.
A Proposed Frequency Synthesis Approach to Accurately Measure the Angular Position of a Spacecraft
NASA Technical Reports Server (NTRS)
Bagri, D. S.
2005-01-01
This article describes an approach for measuring the angular position of a spacecraft with reference to a nearby calibration source (quasar) with an accuracy of a few tenths of a nanoradian using a very long baseline interferometer of two antennas that measures the interferometer phase with a modest accuracy. It employs (1) radio frequency phase to determine the spacecraft position with high precision and (2) multiple delay measurements using either frequency tones or telemetry signals at different frequency spacings to resolve ambiguity of the location of the fringe (cycle) containing the direction of the spacecraft.
Norm-based measurement of quantum correlation
Wu Yuchun; Guo Guangcan
2011-06-15
In this paper we derived a necessary and sufficient condition for classical correlated states and proposed a norm-based measurement Q of quantum correlation. Using the max norm of operators, we gave the expression of the quantum correlation measurement Q and investigated the dynamics of Q in Markovian and non-Markovian cases, respectively. Q decays exponentially and vanishes only asymptotically in the Markovian case and causes periodical death and rebirth in the non-Markovian case. In the pure state, the quantum correlation Q is always larger than the entanglement, which was different from other known measurements. In addition, we showed that locally broadcastable and broadcastable are equivalent and reproved the density of quantum correlated states.
Complexity measures, emergence, and multiparticle correlations.
Galla, Tobias; Gühne, Otfried
2012-04-01
We study correlation measures for complex systems. First, we investigate some recently proposed measures based on information geometry. We show that these measures can increase under local transformations as well as under discarding particles, thereby questioning their interpretation as a quantifier for complexity or correlations. We then propose a refined definition of these measures, investigate its properties, and discuss its numerical evaluation. As an example, we study coupled logistic maps and study the behavior of the different measures for that case. Finally, we investigate other local effects during the coarse graining of the complex system. PMID:22680558
Complexity measures, emergence, and multiparticle correlations
NASA Astrophysics Data System (ADS)
Galla, Tobias; Gühne, Otfried
2012-04-01
We study correlation measures for complex systems. First, we investigate some recently proposed measures based on information geometry. We show that these measures can increase under local transformations as well as under discarding particles, thereby questioning their interpretation as a quantifier for complexity or correlations. We then propose a refined definition of these measures, investigate its properties, and discuss its numerical evaluation. As an example, we study coupled logistic maps and study the behavior of the different measures for that case. Finally, we investigate other local effects during the coarse graining of the complex system.
A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements
Volpe, Francesco
2010-10-15
A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.
NASA Astrophysics Data System (ADS)
Zhang, Lu-lu; Chen, Xing; Cui, Da-fu
2016-05-01
This paper presents a surface plasmon resonance (SPR) imaging system based on angular modulation (AM) and intensity measurement (IM) together to avoid the mechanical errors of the angle scanning device. The SPR resonant angle was found by angular scanning method and then the light intensity changes were collected at a fixed incident angle. Glycerol gradient solution (0%, 1%, 2%, 3% (weight percentage) glycerol dissolved in water) experiments were conducted, which indicate that the best fixed angle location is the middle of the linear range of SPR absorption peak and the central area signals are more uniform than those of the border areas. The sensitivity differences of different areas of SPR images are studied, and an optimized algorithm is developed.
On the measurability of quantum correlation functions
Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre
2015-05-15
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
NASA Astrophysics Data System (ADS)
Cieplicka-Oryńczak, N.; Szpak, B.; Leoni, S.; Fornal, B.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.
2016-07-01
The multipolarity of the main transition leading to the ground state in 210Bi was investigated using the angular correlations of γ rays. The analyzed γ -coincidence data were obtained from the 209Bi(n ,γ )210Bi experiment performed at Institut Laue-Langevin Grenoble at the PF1B cold-neutron facility. The EXILL (EXOGAM at the ILL) multidetector array, consisting of 16 high-purity germanium detectors, was used to detect γ transitions. The mixing ratio of the 320-keV γ ray was defined by minimizing a multivariable χΣ2 function constructed from the coefficients of angular correlation functions for seven pairs of strong transitions in 210Bi. As a result, the almost pure M 1 multipolarity of the 320-keV γ ray was obtained, with an E 2 admixture of less than 0.6% only (95% confidence limit). Based on this multipolarity the neutron-capture cross section leading to the ground state in 210Bi, that decays in turn to radiotoxic 210Po, was determined to be within the limits 21.3(9) and 21.5(9) mb. This result is important for nuclear reactor applications.
Prokhorova, E.; Goennenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttge, L.; Dorvaux, O.; Wollersheim, H.-J.
2007-05-22
A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.
NASA Astrophysics Data System (ADS)
Prokhorova, E.; Gönnenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttgé, L.; Dorvaux, O.; Wollersheim, H.-J.
2007-05-01
A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.
Nikneshan, Sima; Sharafi, Mohamad
2013-01-01
Purpose This study assessed the accuracy of linear and angular measurements on panoramic radiographs taken at different positions in vitro. Materials and Methods Two acrylic models were fabricated from a cast with normal occlusion. Straight and 75° mesially and lingually angulated pins were placed, and standardized panoramic radiographs were taken at standard position, at an 8° downward tilt of the occlusal plane compared to the standard position, at an 8° upward tilt of the anterior occlusal plane, and at a 10° downward tilt of the right and left sides of the model. On the radiographs, the length of the pins above (crown) and below (root) the occlusal plane, total pin length, crown-to-root ratio, and angulation of pins relative to the occlusal plane were calculated. The data were subjected to repeated measures ANOVA and LSD multiple comparisons tests. Results Significant differences were noted between the radiographic measurements and true values in different positions on both models with linear (P<0.001) and those with angulated pins (P<0.005). No statistically significant differences were observed between the angular measurements and baselines of the natural head posture at different positions for the linear and angulated pins. Conclusion Angular measurements on panoramic radiographs were sufficiently accurate and changes in the position of the occlusal plane equal to or less than 10° had no significant effect on them. Some variations could exist in the pin positioning (head positioning), and they were tolerable while taking panoramic radiographs. Linear measurements showed the least errors in the standard position and 8° upward tilt of the anterior part of the occlusal plane compared to other positions. PMID:24083213
Measuring and modeling correlations in multiplex networks.
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance. PMID:26465526
Measuring and modeling correlations in multiplex networks
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.
NASA Astrophysics Data System (ADS)
Javahiraly, Nicolas; Chakari, Ayoub
2013-05-01
To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range (± several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 μm rc (core radius) = 50 μm nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20°C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.
2015-11-01
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.
Angular correlations in beauty production at the Tevatron at sqrt(s) = 1.96 TeV
Wijngaarden, Daniel A
2005-06-01
Measurements of the b quark production cross section at the Tevatron and at Hera in the final decades of the 20th century have consistently yielded higher values than predicted by Next-to-Leading Order (NLO) QCD. This discrepancy has led to a large efforts by theorists to improve theoretical calculations of the cross sections and simulations of b quark production. As a result, the difference between theory and experiment has been much reduced. New measurements are needed to test the developments in the calculations and in event simulation. In this thesis, a measurement of angular correlations between b jets produced in the same event is presented. The angular separation between two b jets is directly sensitive to higher order contributions. In addition, the measurement does not depend strongly on fragmentation models or on the experimental luminosity and efficiency, which lead to a large uncertainty in measurements of the inclusive cross section. At the Tevatron, b{bar b} quark pairs are predominantly produced through the strong interaction. In leading order QCD, the b quarks are produced back to back in phase space. Next-to-leading order contributions involving a third particle in the final state allow production of b pairs that are very close together in phase space. The Leading Order and NLO contributions can be separated into three different processes: flavour creation, gluon splitting and flavour excitation. While the separation based on Feynman diagrams is ambiguous and the three processes are not each separately gauge invariant in NLO QCD, the distinction can be made explicitly in terms of event generators using LO matrix elements. Direct production of a b{bar b} quark pair in the hard scatter interaction is known as flavour creation. The quarks emerge nearly back to back in azimuth. In gluon splitting processes, a gluon is produced in the hard scatter interaction. The gluon subsequently splits into a b{bar b} quark pair. The quarks are very close in phase
NASA Astrophysics Data System (ADS)
Ramos, J. M.; Carbonari, A. W.; Martucci, T.; Costa, M. S.; Cabrera-Pasca, G. A.; Macedo, M. A. V.; Saxena, R. N.
Nano-structured samples of SnO2 doped with Fe prepared by the sol-gel method were studied by the Perturbed Gamma-Gamma Angular Correlation (PAC) Spectroscopy using 111In (111Cd) probe nuclei as well as by 57Fe Mšssbauer spectroscopy. The samples were prepared from very pure metallic Sn and Fe. Carrier-free 111In nuclei were introduced during the sol-gel process of sample preparation for PAC measurements. The PAC measurements were carried out after annealing the samples at different temperatures and the results show a combined electric quadrupole and magnetic dipole interaction for probe nuclei that do not occupy the regular Sn sites. The hyperfine parameters revealed weak magnetic interactions.
NASA Astrophysics Data System (ADS)
Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Bezverkhny, B. I.; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, C. O.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, H. A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reid, J. G.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; H. G., Ritter; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.
2006-06-01
Measurements of two-particle correlations on angular difference variables η1-η2 (pseudorapidity) and ϕ1-ϕ2 (azimuth) are presented for all primary charged hadrons with transverse momentum 0.15≤pt≤2 GeV/c and |η|≤1.3 from Au-Au collisions at sNN=130 GeV. Large-amplitude correlations are observed over a broad range in relative angles where distinct structures appear on the same-side and away-side (i.e., relative azimuth less than π/2 or greater than π/2). The principal correlation structures include that associated with elliptic flow plus a strong, same-side peak. It is hypothesized that the latter results from correlated hadrons associated with semi-hard parton scattering in the early stage of the heavy-ion collision which produces a jet-like correlation peak at small relative angles. The width of the jet-like peak on η1-η2 increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. The new methods of jet analysis introduced here provide access to scattered partons at low transverse momentum well below the kinematic range where perturbative quantum chromodynamics and standard fragmentation models are applicable.
A novel method for full position and angular orientation measurement of moving objects
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.
2015-05-01
Angular orientation of an object such as a projectile, relative to the earth or another object such as a mobile platform continues to be an ongoing topic of interest for guidance and/or steering. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable on-board solution for many applications, particularly for gun-fired munitions. We present a viable solution, which combines open-aperture sensors with custom designed radiation patterns and one or more amplitude modulated polarization scanning reference sources. Subsequently, the sensor system presents a new approach to angle measurements, with several key advantages over traditional cross-polarization based rotation sensors. Primarily, angular information is coded into a complex spatiotemporal pattern, which is insensitive to power fluctuations caused by environmental factors, while making the angle measurement independent of distance from the referencing source. Triangulation, using multiple sources, may be also used for onboard position measurement. Both measurements are independent of GPS localization; are direct and relative to the established local referencing system; and not subject to drift and/or error accumulation. Results of laboratory tests as well as field tests are presented.
Ceyer, S. T.; Siekhaus, W. J.; Somorjai, G. A.
1980-11-01
A molecular beam surface scattering apparatus designed for the study of corrosion and catalyticsurfacereactions is described. The apparatus incorporates two molecular or atomic beams aimed at a surface characterized by low energy electron diffraction (LEED) and Auger electron spectroscopy (AES), a rotatable, differentially pumped quadrupole mass spectrometer, and a versatile manipulator. Angular distributions and energy distributions as a funcion of angle and independent of the surface residence time can be measured. Typical data for the oxidation of deuterium to D{sub 2}O on a Pt(lll) crystal surface are presented.
NASA Astrophysics Data System (ADS)
Storm van Leeuwen, Sam
The design and development of angular displacement transducers for flight test instrumentation systems are considered. Calibration tools, developed to meet the accuracy requirements, allowed in situ calibration with short turn around times. The design of the control surface deflection measurement channels for the Fokker 100 prototype aircraft is discussed in detail. It is demonstrated that a bellows coupling provides accurate results, and that the levers and push-pull rod drive mechanisms perform well. The results suggest that a complex mechanical drive mechanism reduces the system accuracy.
Fluid flow vorticity measurement using laser beams with orbital angular momentum.
Ryabtsev, A; Pouya, S; Safaripour, A; Koochesfahani, M; Dantus, M
2016-05-30
Vorticity is one of the most important dynamic flow variables and is fundamental to the basic flow physics of many areas of fluid dynamics, including aerodynamics, turbulent flows and chaotic motion. We report on the direct measurements of fluid flow vorticity using a beam with orbital angular momentum that takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Experiments are carried out on fluid flows with well-characterized vorticity and the experimental results are found to be in excellent agreement with the expected values. This method allows for localized real-time determination of vorticity in a fluid flow with three-dimensional resolution. PMID:27410101
Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji
2014-01-15
The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup −7} rad /√( Hz ) at the signal frequency of 2 mHz, which contributes a 0.4 ppm uncertainty to the G value.
Two-dimensional single-shot measurement of angular dispersion for compressor alignment.
Börzsönyi, A; Mangin-Thro, L; Cheriaux, G; Osvay, K
2013-02-15
Misalignment of the stretcher-compressor stages of chirped pulse amplification (CPA) lasers can aggravate the spatiotemporal shape of ultrashort pulses. We demonstrate a simple technique for angular dispersion measurement, which offers real-time single-shot two-dimensional characterization across the entire beam profile. The accuracy of our pilot experiment approaches its current theoretical limit of 0.1 μrad/nm. Unlike the current one-dimensional techniques working in the near field, the method works in the far field; hence, it is especially appropriate for assisting the most accurate alignment of a CPA laser compressor ensuring the maximum intensity on the target. PMID:23455085
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
Ternary Fission Studies by Correlation Measurements with Ternary Particles
NASA Astrophysics Data System (ADS)
Mutterer, Manfred
2011-10-01
The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.
NASA Astrophysics Data System (ADS)
Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.
2014-12-01
We study heavy flavor evolution and hadronization in relativistic heavy-ion collisions. The in-medium evolution of heavy quarks is described using our modified Langevin framework that incorporates both collisional and radiative energy loss mechanisms. The subsequent hadronization process for heavy quarks is calculated with a fragmentation plus recombination model. We find significant contribution from gluon radiation to heavy quark energy loss at high pT; the recombination mechanism can greatly enhance the D meson production at medium pT. Our calculation provides a good description of the D meson nuclear modification at the LHC. In addition, we explore the angular correlation functions of heavy flavor pairs which may provide us a potential candidate for distinguishing different energy loss mechanisms of heavy quarks inside the QGP.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control. PMID:24517806
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Generating nonclassical correlations without fully aligning measurements
Wallman, Joel J.; Bartlett, Stephen D.; Liang, Yeong-Cherng
2011-02-15
We investigate the scenario where spatially separated parties perform measurements in randomly chosen bases on an N-partite Greenberger-Horne-Zeilinger state. We show that without any alignment of the measurements, the observers will obtain correlations that violate a Bell inequality with a probability that rapidly approaches 1 as N increases and that this probability is robust against noise. We also prove that restricting these randomly chosen measurements to a plane perpendicular to a common direction will always generate correlations that violate some Bell inequality. Specifically, if each observer chooses their two measurements to be locally orthogonal, then the N observers will violate one of two Bell inequalities by an amount that increases exponentially with N. These results are also robust against noise and perturbations of each observer's reference direction from the common direction.
Directional correlation measurements for gamma transitions in /sup 127/Te
de Souza, M.O.M.D.; Saxena, R.N.
1985-02-01
The directional correlation of coincident ..gamma.. transitions in /sup 127/Te has been measured following the ..beta../sup -/ decay of /sup 127/Sb (T/sub 1/2/ = 3.9 d) using Ge(Li)-Ge(Li) and Ge(Li)-NaI(T1) gamma spectrometers. Measurements have been carried out for 14 gamma cascades resulting in the determination of multipole mixing ratios delta(E2/M1) for 15 ..gamma.. transitions. The present results permitted a definite spin assignment of (7/2) for the 785 keV level and confirmation of several previous assignments to other levels in /sup 127/Te. The g factor of the 340 keV ((9/2)/sup -/) level has also been measured using the integral perturbed angular correlation method in the hyperfine magnetic field of a Te in Ni matrix. The results of the g factor as well as the mixing ratio for the 252 keV ((9/2)/sup -/..-->..(11/2)/sup -/) transition support the earlier interpretation of this state as an anomalous coupling state.
Computer Anxiety: Definition, Measurement, and Correlates.
ERIC Educational Resources Information Center
Cambre, Marjorie A.; Cook, Desmond L.
This review examines the definition, measurement, and correlates of computer anxiety as provided in available research. The concept of computer anxiety reflects an anxiety state, rather than an anxiety trait, thus rendering it susceptible to change over time. Computer anxiety is similar in nature to math anxiety and test anxiety. Two approaches to…
PHENIX Measurements of Correlations at RHIC
NASA Astrophysics Data System (ADS)
Taranenko, Arkadiy
2016-01-01
Relativistic heavy-ion collisions provide a unique opportunity to study the expansion dynamics and the transport properties of the produced strongly interacting quark gluon plasma (QGP). This article reviews the recent soft physics results obtained via correlation measurements from the PHENIX experiment at RHIC: space-time extent of the pion emission source and azimuthal anisotropy of the particle production.
Quantum Correlations and the Measurement Problem
NASA Astrophysics Data System (ADS)
Bub, Jeffrey
2014-10-01
The transition from classical to quantum mechanics rests on the recognition that the structure of information is not what we thought it was: there are operational, i.e., phenomenal, probabilistic correlations that lie outside the polytope of local correlations. Such correlations cannot be simulated with classical resources, which generate classical correlations represented by the points in a simplex, where the vertices of the simplex represent joint deterministic states that are the common causes of the correlations. The `no go' hidden variable theorems tell us that we can't shoe-horn phenomenal correlations outside the local polytope into a classical simplex by supposing that something has been left out of the story. The replacement of the classical simplex by the quantum convex set as the structure representing probabilistic correlations is the analogue for quantum mechanics of the replacement of Newton's Euclidean space and time by Minkowski spacetime in special relativity. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are generic features of correlations that lie outside the classical simplex. This paper is an elaboration of these ideas, which have their source in work by Pitowsky (J. Math. Phys. 27:1556, 1986; Math. Program. 50:395, 1991; Phys. Rev. A 77:062109, 2008), Garg and Mermin (Found. Phys. 14:1-39, 1984), Barrett (Phys. Rev. A 75:032304, 2007; Phys. Rev. A 7:022101, 2005) and others, e.g., Brunner et al. (arXiv:1303.2849, 2013), but the literature goes back to Boole (An Investigation of the Laws of Thought, Dover, New York, 1951). The final section looks at the measurement problem of quantum mechanics in this context. A large part of the problem is removed by seeing that the inconsistency in reconciling the entangled state at the end of a quantum measurement process with the definiteness of the macroscopic pointer reading and the definiteness of the correlated value of the measured micro
Molodij, Guillaume
2011-08-01
A general expression of the spatial correlation functions of quantities related to the phase fluctuations of a wave that have propagated through the atmospheric turbulence are derived. A generalization of the method to integrand containing the product of an arbitrary number of hypergeometric functions is presented. The formalism is able to give the coefficients of phase-expansion functions orthogonal over an arbitrary circularly symmetric weighting function for an isotropic turbulence spectrum, as well as to describe the effect of the finite outer and inner scales of the turbulence and to describe the spherical propagation or to derive the effects of the analytical operators acting on the phase such as the derivatives of any order. The derivation of the generalized integrals with multiparameters is based on the Mellin transforms integration method. PMID:21811336
Measurements of the Angular Distributions in the Decays B → K(*) µ+µ- at CDF
Aaltonen, T.
2012-02-24
We reconstruct the decays B → K(*) µ+µ- and measure their angular distributions in pp̄ collisions at √s = 1.96 TeV using a data sample corresponding to an integrated luminosity of 6.8 fb-1. The transverse polarization asymmetry AT(2) and the time-reversal-odd charge-and-parity asymmetry Aim are measured for the first time, together with the K* longitudinal polarization fraction FL and the µ on forward-backward asymmetry AFB, for the decays B0→K*0µ+µ- and B0→K*+µ+µ-. Our results are among the most accurate to date and consistent with those from other experiments.
Measurement of angular antispring effect in optical cavity by radiation pressure
Sakata, Shihori; Nishizawa, Atsushi; Ishizaki, Hideharu; Kawamura, Seiji; Miyakawa, Osamu
2010-03-15
We present a measurement of an angular antispring effect caused by radiation pressure in an optical cavity with a mirror of 20 mg suspended by a silica fiber of 10 {mu}m in diameter. The antispring effect occurred since the torque on the suspended mirror is increased with the higher radiation pressure force, pushing the system towards instability. We measured shifts of the rotational resonant frequencies of the suspended mirror from 2.0 Hz to 1.0 Hz with the increased circulating power. It is verified that the result agrees with the theoretical curve to show the antispring effect. The result proves that it will be possible to make a reliable control system model of the radiation pressure effect for the second generation of the gravitational wave detectors.
Measurements of the Angular Distributions in the Decays B→K(*)μ+μ- at CDF
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al
2012-02-01
We reconstruct the decays B → K(*) µ+µ- and measure their angular distributions in pp collisions at √s = 1.96 TeV using a data sample corresponding to an integrated luminosity of 6.8 fb-1. The transverse polarization asymmetry AT(2) and the time-reversal-odd charge-and-parity asymmetry Aim are measured for the first time, together with the K* longitudinal polarization fraction FL and the µ on forward-backward asymmetry AFB, for the decays B0→K*0µ+µ- and B0→K*+µ+µ-. Our results are among the most accurate to date and consistent with those from other experiments.
Evolution equation for geometric quantum correlation measures
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng
2015-05-01
A simple relation is established for the evolution equation of quantum-information-processing protocols such as quantum teleportation, remote state preparation, Bell-inequality violation, and particularly the dynamics of geometric quantum correlation measures. This relation shows that when the system traverses the local quantum channel, various figures of merit of the quantum correlations for different protocols demonstrate a factorization decay behavior for dynamics. We identified the family of quantum states for different kinds of quantum channels under the action of which the relation holds. This relation simplifies the assessment of many quantum tasks.
NASA Astrophysics Data System (ADS)
Jiang, Xiaodong; P-1039 Collaboration
2013-10-01
A Letter-Of-Intent (P-1039) has been submitted to the Fermilab's Program Advisory Committee in May 2013, for a measurement of transversely polarized proton target (NH3) single-spin asymmetry (SSA) in Drell-Yan reaction with a 120 GeV/c unpolarized proton beam using a similar setup as in the ongoing unpolarized target experiment (E906). The goal of this LOI is to clearly pin down the u -quark Sivers distribution in the x range of 0.1-0.3, where a large sea flavor asymmetry (d / u) has been observed. A non-vanishing quark Sivers distribution arises from the imaginary piece of amplitudes interference between quark angular momentum L = 0 , and L ≠ 0 wave functions. Existing semi-inclusive DIS Sivers-type SSA data from HERMES, COMPASS and JLab-Hall A, while sensitive to valence quarks' Sivers distributions, do not provide much constrains on sea quarks' Sivers distributions. In the case that u -quark carries zero angular momentum, one expects u -quark's Sivers distribution to vanish, therefore observing a zero target SSA in Drell-Yan reaction in P-1039.
Angular Cross-correlation of Spitzer IRAC and Herschel Spire Sources
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, A.; Wang, L.; HerMES Consortium
2011-01-01
The Spitzer Deep Wide-Field Survey (SDWFS) and the Herschel Multi-tiered Extragalactic Survey (HerMES) each provide deep and wide coverage, centered on the Bootes field, at infrared and sub-millimeter wavelengths. The SDWFS covers approximately 8.5 square degrees with sensitivities of galaxies out to z 3. From the public SDWFS source catalog, we remove stars and contaminants by concentration, using selection methods based on IRAC and optical colors; optical photometry is provided by the NOAO Deep Wide-Field Survey. Photometric redshifts of detected IRAC sources are then determined using the 1.6 micron spectral feature (or 'bump'). We classify three different kinds of bumps, (bump 1- bump 3), with redshifts ranging approximately from 0-1.3, 1.3-2, and 2-3 respectively. The number of bump 1 sources in the SDWFS catalogs were found to be in excess of 25,000 at the 5 sigma detection limit of the 3.6 micron channel of the IRAC instrument. Bump 2 and bump 3 source identification yielded similar, but slightly fewer counts. We also extract a separate catalog of 2500 or so dust-obscured galaxies (DOGs) at z 2 using 24 micron and r-band fluxes. As part of HerMES observations with SPIRE, the Bootes field contain more than 15,000 clearly detected SPIRE sources at 250 microns, In this paper we report on the cross correlation function of these bump sources with the source catalogs from three bands of the SPIRE instrument onboard Herschel. The aim is to broadly reconstruct the redshift distribution of SPIRE sources using redshift distributions of bump and DOGs in the bootes field and the relative clustering strengths.
Monitoring quantum transport: Backaction and measurement correlations
NASA Astrophysics Data System (ADS)
Hussein, Robert; Gómez-García, Jorge; Kohler, Sigmund
2014-10-01
We investigate a tunnel contact coupled to a double quantum dot (DQD) and employed as a charge monitor for the latter. We consider both the classical limit and the quantum regime. In the classical case, we derive measurement correlations from conditional probabilities, yielding quantitative statements about the parameter regime in which the detection scheme works well. Moreover, we demonstrate that not only the DQD occupation but also the corresponding current may strongly correlate with the detector current. The quantum-mechanical solution, obtained with a Bloch-Redfield master equation, shows that the backaction of the measurement tends to localize the DQD electrons, and thus significantly reduces the DQD current. Moreover, it provides the effective parameters of the classical treatment. It turns out that already the classical description is adequate for most operating regimes.
Ferreira, Jânio A.; Botelho, Ricardo V.
2015-01-01
Background: Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain's line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. Methods: We evaluated the CLV in a sample of CVJM, BI, CM patients and a control group of normal subjects and correlated their data with craniocervical angular craniometry. Results: A total of 97 subjects were studied: 32 normal subjects, 41 CM patients, 9 basilar invagination type 1 (BI1) patients, and 15 basilar invagination type 2 (BI2) patients. The mean CLV violation in the groups were: The control group, 0.16 ± 0.45 cm; the CM group, 0.32 ± 0.48 cm; the BI1 group, 1.35 ± 0.5 cm; and the BI2 group, 1.98 ± 0.18 cm. There was strong correlation between CLV and Boogard's angle (R = 0.82, P = 0.000) and the clivus canal angle (R = 0.7, P = 0.000). Conclusions: CM's CLV is discrete and similar to the normal subjects. BI1 and BI2 presented with at least of 0.95 cm CLV and these violations were strongly correlated with a primary cranial angulation (clivus horizontalization) and an acute clivus canal angle (a secondary craniocervical angle). PMID:26229733
Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie
2014-04-15
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.
Chi, Yuan; Hu, Chundong; Zhuang, Ge
2014-02-15
Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.
Nonsymmetrized correlations in quantum noninvasive measurements.
Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand; Belzig, Wolfgang
2013-06-21
A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction. PMID:23829718
Nonsymmetrized Correlations in Mesoscopic Current Measurements
NASA Astrophysics Data System (ADS)
Belzig, Wolfgang; Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand
2014-03-01
A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like < I(ω) I(- ω) > , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme [A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys. Rev. Lett. 110, 250404 (2013)]. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction.
Long-range angular correlations of π, K and p in p-Pb collisions at √{sNN}=5.02 TeV
NASA Astrophysics Data System (ADS)
Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; D Erasmo, G.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.
2013-10-01
Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3
NASA Astrophysics Data System (ADS)
Jiménez Espadafor, Francisco J.; A. Becerra Villanueva, José; Palomo Guerrero, Daniel; Torres García, Miguel; Carvajal Trujillo, Elisa; Fernández Vacas, Francisco
2014-12-01
This paper presents an investigation into the potential of using direct measurement of engine torque for diagnostic purposes in large engines - in this case applied to power generation. The procedures for measuring and analyzing the instantaneous torque, the angular displacement on the generator output end and the angular displacement on its free end for a ten-cylinder, low speed two stroke diesel engine are presented. Angular speed oscillations are frequently used for combustion engine diagnostics although they cannot be used to measure engine power directly. In addition, and for engines with huge inertia generators such as those used in power plants, speed oscillations are very low and this reduces the signal to noise ratio and makes the evaluation of the instantaneous angular speed very noisy. In the work described here, torque and angular displacement measurements carried out at the same point and with the same engine conditions are compared and the superior performance of torque is demonstrated. Harmonic analysis of instantaneous torque allowed the identification of the dynamic characteristics of the power train of the diesel group and clearly suggests that this signal can be used as a diagnostic tool for excitation, combustion malfunctions, or for the mechanical characteristics of the system and crankshaft stiffness. The torque distortion introduced by the generator due to the discontinuity imposed by the pole pairs is also observed in the torque signal, suggesting that the torque signal can be used to identify generator malfunction.
NASA Astrophysics Data System (ADS)
Dey, Chandi C.
2012-11-01
Time-differential perturbed angular correlation (TDPAC) studies in hafnium metal (~5%Zr) have been carried out at different temperatures. It is found that hafnium metal on heating at 873 K continuously for two days in air, transforms partially and abruptly to HfO2 while no component of oxide has been observed for heating up to 773 K and during initial heating at 873 K for 1 day. This result is strikingly different to that expected from the Arrhenius theory. Also, a strong nuclear relaxation effect has been observed at 873 K due to rapid fluctuation of hafnium atoms in hexagonal closepacked (hcp) hafnium. At this temperature, ~ 5% probe nuclei experience static perturbation due to monoclinic HfO2, ~ 50% experience fluctuating interaction, and ~ 5% produce static defect configuration of hcp hafnium. With lowering of temperature, defect configurations of hafnium increase at the cost of fluctuating interaction. An almost total fluctuating interaction observed in hcp hafnium at a temperature much lower than its melting point is another interesting phenomenon.
Evenson, W.E. . Dept. of Physics and Astronomy); Gardner, J.A.; Wang, Ruiping . Dept. of Physics); Su, Han-Tzong ); McKale, A.G. )
1990-01-01
Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed-time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case of I = (5/2) electric quadrupole interactions. We report detailed analysis for a family of simple models: XYZ + Z'' models, in which the symmetry axis of an axial efg is allowed to fluctuate among orientations along x, y, and z axes, and a static axial efg oriented along the z axis is added to the fluctuating efgs. When the static efg is zero, this model is termed the XYZ'' model. Approximate forms are given for G{sub 2}(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models are given for zirconia and ceria ceramics. 14 refs.