Science.gov

Sample records for angular correlation method

  1. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  2. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  3. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  4. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  5. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  6. Delocalized correlations in twin light beams with orbital angular momentum.

    PubMed

    Marino, A M; Boyer, V; Pooser, R C; Lett, P D; Lemons, K; Jones, K M

    2008-08-29

    We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.7 dB is demonstrated with beams carrying orbital angular momentum. Delocalized spatial correlations between the twin beams are observed. PMID:18851611

  7. Fully digital time differential perturbed angular correlation (TDPAC) spectrometer

    NASA Astrophysics Data System (ADS)

    Herden, C.; Röder, J.; Gardner, J. A.; Becker, K. D.

    2008-09-01

    A new generation time differential perturbed angular correlation (PAC) spectrometer has been designed and built. The design strategy and details of the data collection and reduction methodology are reported. First results obtained by the new spectrometer are reported and compared with PAC data obtained by more conventional means.

  8. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  9. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have

  10. Angular correlation in the two-electron continuum

    SciTech Connect

    Kheifets, A. S.; Bray, I.

    2006-02-15

    Following absorption of a single photon, angles of simultaneous emission of two electrons from a He(n {sup 1}S) atom become more correlated with increasing n. We find that the strength of this correlation is due to the two-electron continuum of the electron-impact ionization of the He{sup +}(ns) ion. The strength is determined by the width of the momentum profile of the ionic ns state but not the strength of the electron correlation in the He initial state. This can explain the increasing (over He) angular correlation strength found in double photoionization of targets such as Be, Ne, and H{sub 2}.

  11. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  12. Theory and imaging applications of the angular correlation of multiply-scattered optical fields

    NASA Astrophysics Data System (ADS)

    Hoover, Brian Gilday

    Through analysis of the field angular correlation the scattering of quasimonochromatic optical fields is considered as a coherence-based process well into the multiple scattering regime. Coherence analysis leads to the prediction of coherent effects in multiply-scattered light that can be applied to perform computed amplitude- phase imaging through turbid media and noninvasive laser material characterization. With the incentive of improved imaging through turbid media an experiment is described that directly compares the degradations, with the number of scattering mean free paths, of the field angular correlation and the correlation of the scattered wave with an unscattered reference wave, both of which can be used to form gates for imaging techniques in scattered light. Results for 20μ m polymer spheres show that the former correlation is consistently larger well into the multiple scattering regime (up to 10 mean free paths) for wavevector separations less than at least 50mm -1, and that the two correlations tend to merge in this scattering regime for larger wavevector separations. The implications of the results for imaging applications are considered. Complementary theoretical formulations of coherence effects in multiply-scattered fields are presented. Relations of the spatial coherence properties to the angular characteristics of the scattered field are established. A coherence-based model of multiple scattering processes is derived. The model predicts radiative-transfer-like behavior for restricted observational parameters, but also shows that the coherence-based process is required for an accurate description of the scattered field over an observational parameters. The applicability of the model to noninvasive laser material characterization is emphasized. A wavefront-sensor method is presented for measurement of the complex field angular correlation function of a three-dimensional turbid medium. The angular correlation function is measured at a series of

  13. Studying oxygen vacancies in ceramics by perturbed angular correlation spectroscopy

    SciTech Connect

    Su, Han-Tzong; Wang, Ruiping; Fuchs, H.; Gardner, J.A. . Dept. of Physics); Evenson, W.E. . Dept. of Physics); Sommers, J.A. )

    1990-01-01

    Perturbed angular correlation measurements in tetragonal and cubic zirconia and in ceria are described. A physically reasonable and self-consistent interpretation of these data implies that oxygen vacancies are trapped at a second neighbor position by Cd in tetragonal zirconia and by In in ceria. For Cd in tetragonal zirconia, the vacancy trap energy is found to be 0.44 eV, and the energy barrier between adjacent trap sites is approximately 0.8 eV. The activation energy of an oxygen vacancy hopping between trap sites around {sup 111}Cd in ceria is found to be 0.55 eV. The activation energy for oxygen vacancy hopping in cubic zirconia, as detected by {sup 181}Ta PAC, is about 1.0 eV and independent of the Y concentration. 12 refs., 4 figs.

  14. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  15. Angular Correlation of Electrons Emitted by Double Auger Decay of K-Shell Ionized Neon

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Philip

    2011-12-01

    We have investigated in detail the 4-body continuum state produced when core-ionized neon undergoes Double-Auger (DA) decay, using COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS ). We conducted the experiment at the Lawrence Berkeley National Laboratory's Advanced Light Source (LBNL-ALS) beamline 11.0.2. The synchrotron operated in 2-bunch mode and outputted an elliptically polarized, pulsed photon beam (hn=872.9eV), sufficient to K-shell ionize neon just above threshold. Our analysis supports research showing that Auger electrons tend to share energy asymmetrically. We qualitatively compared this result to Photo-Double Ionization (PDI) of helium. Further, we confirm research that shows how Auger electrons that share energy symmetrically can be modeled by the elastic-like knock-out process plus Post-Collision Interaction ( PCI) effects. New observations include the angular correlation between the photo-electron and each respective Auger electron, for specific ranges of energy sharing. We identify a broad feature in the asymmetric case that shows a level of interaction between electrons that until recently, has disagreed with theory. Additionally, we consider the angular correlation between the photo-electron and the momentum sum of the Auger electrons. We observe that the angular correlation between this sum and the photo-electron in the highly asymmetric case is nearly identical to the correlation between just the fast-Auger and the photo-electron - as expected. In the case of symmetric energy sharing, the sum momentum vector appears to be isotropic, particularly for small angles of interaction. Finally, we acknowledge two novel methods of calibration. The first, uses well known line-energies to calibrate the spectrometer. These lines correspond to the decay channels of core-excited neon, Ne(1 s-13p). The second, describes a method to statistically weight list-mode data in order to calibrate it to well known physical features (e.g., isotropic distributions).

  16. Two methods for examining angular response of personnel dosimeters

    SciTech Connect

    Plato, P.; Leib, R.; Miklos, J.

    1988-06-01

    The American National Standard ANSI N13.11-1983 is used to test the accuracy (bias plus precision) of dosimetry processors as part of the dosimetry accreditation program of the National Voluntary Laboratory Accreditation Program (NVLAP). Section 3.8 of the ANSI N13.11-1983 standard requires that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. The NVLAP accreditation program excluded Section 3.8, and thus no angular response data have been generated in an organized fashion. The objective of this project is to examine the feasibility of two alternative methods to test the angular response of personnel dosimeters. The first alternative involves static irradiations with the dosimeters at fixed angles to a radiation source. The second alternative involves dynamic irradiations with the dosimeters mounted on a rotating phantom. A Panasonic UD-802 personnel dosimetry system** was used to generate data to examine both alternatives. The results lead to two major conclusions. Firstly, Section 3.8 of the ANSI N13.11-1983 standard should be amended to require a pass/fail test for angular response. Secondly, a comparison between angular response data generated with a fixed or a rotating phantom shows that the rotating phantom is the more cost-effective method.

  17. Modes of correlated angular motion in live cells across three distinct time scales.

    PubMed

    Harrison, Andrew W; Kenwright, David A; Waigh, Thomas A; Woodman, Philip G; Allan, Victoria J

    2013-06-01

    Particle tracking experiments with high speed digital microscopy yield the positions and trajectories of lipid droplets inside living cells. Angular correlation analysis shows that the lipid droplets have uncorrelated motion at short time scales (τ < 1 ms) followed by anti-persistent motion for lag times in the range of 1 ⩽ τ ⩽ 10 ms. The angular correlation at longer time scales, τ > 10 ms, becomes persistent, indicating directed movement. The motion at all time scales is associated with the lipid droplets being tethered to and driven along the microtubule network. The point at which the angular correlation changes from anti-persistent to persistent motion corresponds to the cross over between sub-diffusive and super diffusive motion, as observed by mean square displacement analysis. Correct analysis of the angular correlations of the detector noise is found to be crucial in modelling the observed phenomena. PMID:23574726

  18. Angular correlation of the cosmic microwave background in the Rh = ct Universe

    NASA Astrophysics Data System (ADS)

    Melia, F.

    2014-01-01

    Context. The emergence of several unexpected large-scale features in the cosmic microwave background (CMB) has pointed to possible new physics driving the origin of density fluctuations in the early Universe and their evolution into the large-scale structure we see today. Aims: In this paper, we focus our attention on the possible absence of angular correlation in the CMB anisotropies at angles larger than ~60°, and consider whether this feature may be the signature of fluctuations expected in the Rh = ct Universe. Methods: We calculate the CMB angular correlation function for a fluctuation spectrum expected from growth in a Universe whose dynamics is constrained by the equation-of-state p = -ρ/3, where p and ρ are the total pressure and density, respectively. Results: We find that, though the disparity between the predictions of ΛCDM and the WMAP sky may be due to cosmic variance, it may also be due to an absence of inflation. The classic horizon problem does not exist in the Rh = ct Universe, so a period of exponential growth was not necessary in this cosmology in order to account for the general uniformity of the CMB (save for the aforementioned tiny fluctuations of 1 part in 100 000 in the WMAP relic signal). Conclusions: We show that the Rh = ct Universe without inflation can account for the apparent absence in CMB angular correlation at angles θ ≳ 60° without invoking cosmic variance, providing additional motivation for pursuing this cosmology as a viable description of nature.

  19. Mitigating systematic errors in angular correlation function measurements from wide field surveys

    NASA Astrophysics Data System (ADS)

    Morrison, C. B.; Hildebrandt, H.

    2015-12-01

    We present an investigation into the effects of survey systematics such as varying depth, point spread function size, and extinction on the galaxy selection and correlation in photometric, multi-epoch, wide area surveys. We take the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) as an example. Variations in galaxy selection due to systematics are found to cause density fluctuations of up to 10 per cent for some small fraction of the area for most galaxy redshift slices and as much as 50 per cent for some extreme cases of faint high-redshift samples. This results in correlations of galaxies against survey systematics of order ˜1 per cent when averaged over the survey area. We present an empirical method for mitigating these systematic correlations from measurements of angular correlation functions using weighted random points. These weighted random catalogues are estimated from the observed galaxy overdensities by mapping these to survey parameters. We are able to model and mitigate the effect of systematic correlations allowing for non-linear dependences of density on systematics. Applied to CFHTLenS, we find that the method reduces spurious correlations in the data by a factor of 2 for most galaxy samples and as much as an order of magnitude in others. Such a treatment is particularly important for an unbiased estimation of very small correlation signals, as e.g. from weak gravitational lensing magnification bias. We impose a criterion for using a galaxy sample in a magnification measurement of the majority of the systematic correlations show improvement and are less than 10 per cent of the expected magnification signal when combined in the galaxy cross-correlation. After correction the galaxy samples in CFHTLenS satisfy this criterion for zphot < 0.9 and will be used in a future analysis of magnification.

  20. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  1. Evaluating angular deflections from the digital gradient sensing method with rigid-motion deleted

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    2016-06-01

    The digital gradient sensing method is used for measuring small angular deflections of light rays due to local stresses in transparent planar solids. The method is based on two-dimensional (2D) digital image correlation (DIC) to measure the angular deflection of light rays; however, when a specimen is subjected to loading, deformation measurement from DIC is not perfect because of the existence of small in-plane and out-of-plane motions of the test sample surface that occurred after loading. These disadvantages will lead to errors in the measured angular deflections. The influence of unavoidable in-plane and out-of-plane motions was discussed, and a method to eliminate the influence to show the pure stress gradient of polymethy methacrylate is demonstrated.

  2. ISOTROPY IN THE TWO-POINT ANGULAR CORRELATION FUNCTION OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Zhang, Sophie

    2012-04-01

    We study the directional dependence of the angular two-point correlation function in maps of the cosmic microwave background (CMB). We propose two new statistics: one which measures the correlation of each point in the sky with a ring of points separated an angle {theta} away, and a second one that measures the missing angular correlation above 60 deg as a function of direction. Using these statistics, we find that most of the low power in cut-sky maps measured by the Wilkinson Microwave Anisotropy Probe experiment comes from unusually low contributions from the directions of the lobes of the quadrupole and the octupole. These findings may aid a future explanation of why the CMB exhibits low power at large angular scales.

  3. Hyperfine magnetic field at Ta impurities in nickel: Perturbed angular correlation and first principle calculation study

    NASA Astrophysics Data System (ADS)

    Cekić, B. Dj.; Umićević, A. B.; Belošević-Čavor, J. N.; Koteski, V. J.; Ivanovski, V. N.; Stojković, M. N.

    2008-03-01

    The hyperfine magnetic field (H) in 0.2 at.% Hf-Ni alloy is measured at the 181Ta probe using the time-differential perturbed angular correlation (TDPAC) method, in the temperature range 78-675 K. The obtained value of 8.6 (3) T at room temperature is in good agreement with the previously reported measurements for similar Hf concentrations in Ni. X-ray powder diffraction (XRPD) experiments confirmed that small atomic concentrations of Hf atoms (<1 at.%) mainly substitute on Ni lattice sites in the fcc crystal lattice without forming any intermetallic phase. In addition, ab-initio calculation using all-electron augmented plane waves plus local orbitals (APW+lo) formalism is performed and the obtained result for the hyperfine magnetic field at Ta site is in accordance with the measurement.

  4. Angular correlations in radiative cascades following resonant electron capture by highly charged ions

    SciTech Connect

    Matula, O.; Surzhykov, A.; Fritzsche, S.; Currell, F. J.

    2011-11-15

    We investigate the angular correlations between the photons emitted in the dielectronic recombination (DR) of initially hydrogenlike heavy ions. The theoretical analysis is performed based on a density-matrix approach and Dirac's relativistic theory. Special emphasis has been placed upon the effects of the higher-order, nondipole terms in the expansion of the electron-photon interaction. To illustrate these effects, we present and discuss detailed calculations for K-LL DR of initially hydrogenlike xenon, gold, and uranium. These computations show that the angular correlations are significantly affected by interference between the leading electric-dipole (E1) and the magnetic-quadrupole (M2) transitions.

  5. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum.

    PubMed

    Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S

    2009-12-31

    A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information. PMID:19642631

  6. Correlation of angular and lateral distributions of electrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz

    2016-08-01

    The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.

  7. A new all-digital time differential {gamma}-{gamma} angular correlation spectrometer

    SciTech Connect

    Nagl, Matthias; Vetter, Ulrich; Uhrmacher, Michael; Hofsaess, Hans

    2010-07-15

    A new digital time differential perturbed angular correlation spectrometer, designed to measure the energy of and coincidence time between correlated detector signals, here correlated {gamma} photons, is presented. The system overcomes limitations of earlier digital approaches and features improved performance and handling. By consequently separating the data recording and evaluation, it permits the simultaneous measurement of decays with several {gamma}-ray cascades at once and avoids the necessity of premeasurement configuration. Tests showed that the spectrometer reaches a time resolution of 460 ps [using a {sup 60}Co sample and Lu{sub 1.8}Y{sub 0.2}SiO{sub 5}:Ce (LYSO) scintillators, otherwise better than 100 ps], an energy resolution that is equivalent to the limit of the used scintillation material, and a processing capability of more than 200 000 {gamma} quanta per detector and second. Other possible applications of the presented methods include nuclear spectroscopy, positron emission tomography, time of flight studies, lidar, and radar.

  8. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    NASA Astrophysics Data System (ADS)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-01

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  9. Effects of angular correlations on particle-particle propagation in infinite nuclear matter

    NASA Astrophysics Data System (ADS)

    Romero-Barrientos, J.; Arellano, H. F.

    2016-05-01

    The effect of angular correlations on self-consistent solutions for single-particle (sp) potentials in infinite nuclear matter is investigated. To this end we treat explicitly the angular dependence of the particle-particle (pp) propagator in Brueckner-Hartree-Fock (BHF) equation for the g matrix. It is observed that the exact angular dependence of the pp propagator yields highly fluctuating structures, posing stringent difficulties in the actual search of self-consistent solutions for the sp energy. A perturbative approach is presented to evaluate the effect of the angular correlations in the self-consistent solutions. Solutions at Fermi momenta kF in the range 1.20 - 1.75 fm-1 are reported using Argonne v 18 nucleon- nucleon potential. Although the sp potentials are sensitive to the treatment of the angular behaviour of the propagator, such sensitivity appears at momenta well above the Fermi surface. As a result, the saturation properties of symmetric nuclear matter differ marginally from those calculated using angle-averaged energy denominators in pp propagators.

  10. Measurements on B-hadron angular correlations at 7 TeV with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Sala, Leonardo; CMS Collaboration

    2012-09-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons produced in LHC proton-proton collisions at √s = 7 TeV is presented, probing for the first time the small angular separation region. The B hadrons are identified by the presence of secondary vertices from their decays and their kinematics reconstructed combining the decay vertex with the primary interaction vertex. The results are compared with predictions based on perturbative QCD calculations at leading and next-to-leading order.

  11. The impact of angular separation on the performance of biplane correlation imaging for lung nodule detection

    NASA Astrophysics Data System (ADS)

    Nasab, Nariman Majdi; Samei, Ehsan

    2006-03-01

    In this paper, we evaluate the performance of biplane correlation imaging (BCI) using a set of off-angle projections acquired from an anthropomorphic chest phantom. BCI reduces the effect of anatomical noise, which would otherwise impact the detection subtle lesions in planar images. BCI also minimizes the number of false positives (FPs) when used in conjunction with computer aided diagnosis (CAD) applied to a set of coronal chest x-ray projections by eliminating non-correlated nodule candidates. In BCI, two digital images of the chest are acquired within a short time interval from two slightly different posterior projections. The image data are then incorporated into the CAD algorithm in which nodules are detected by examining the geometrical correlation of the detected signals in the two views, thus largely "canceling" the impact of anatomical noise. Seventy-one low exposure posterior projections were acquired of an anthropomorphic chest phantom containing tissue equivalent lesions with small angular separations (0.32 degree) over a range of 20 degrees, [-10°, +10°], along the vertical axis. The data were analyzed to determine the accuracy of the technique as a function of angular separation. The results indicated that the best performance was obtained when the angular separation of the projection pair was greater than 6 degrees. Within the range of optimum angular separation, the number of FPs per image, FPpI, was ~1.1 with average sensitivity around 75% (supported by a grant from the NIH R01CA109074).

  12. Calibration method for angular measurement of moiré patterns

    NASA Astrophysics Data System (ADS)

    He, Fan; Bai, Jian; Wang, Kaiwei; Hou, Xiyun; Yao, Jiang

    2014-09-01

    In this paper, a high-accuracy calibration method for angular measurement of deformed and curved Moiré patterns, based on template matching algorithm, is presented. We report a feasible and accurate method, based on Talbot interferometry and Moiré deflectometry, to measure long focal-length lenses. Theoretical analysis indicates that the precision of this method is mainly influenced by the angle of Moiré patterns. However, it's difficult to obtain high-accuracy angle of Moiré patterns, since the Moiré patterns derived from experiment are constantly deformed or curved. We demonstrate a method, based on template matching algorithm, to calibrate deformed and curved Moiré patterns, thus their angle can be calculated fast and accurately in sub-pixel domain. Numerical analysis and simulation prove that the method mentioned above demonstrates high precision and stability, and experiment results show that the accuracy of the long focal lengths measurement is improved obviously.

  13. Stability of erythrocyte ghosts: a gamma-ray perturbed angular correlation study.

    PubMed Central

    Kruse, C A; Tin, G W; Baldeschwieler, J D

    1983-01-01

    The structural integrity of erythrocyte ghosts made by the preswell and slow-dialysis techniques has been studied in vitro by use of gamma-ray perturbed angular correlation (PAC) techniques and also by standard in vitro leakage methods employing sequestered labeled markers. Complexes of 111In3+ and nitrilotriacetate were encapsulated in ghosts made from human, rabbit, rat, and mouse erythrocytes, and their leakage was monitored by both methods. In addition, 125I-labeled bovine serum albumin was encapsulated, and ghost integrity was monitored by conventional leakage measurements. With the PAC technique the percentage of material released from human ghosts was determined quantitatively, and the results were equivalent to those obtained by the conventional method. In addition, at various times after intravenous injection, tissue distribution of the ghosts in the mouse was studied. The percent injected dose per gram of tissue of the labeled surface proteins of erythrocyte ghosts in circulation approximated that of the entrapped labeled albumin. This suggests that the ghost membrane and contents are strongly associated in vivo. Large 125I-labeled bovine serum albumin molecules and small 111In3+-nitrilotriacetate complexes were delivered in high quantitites to the lung initially, and to the liver and spleen. Because erythrocyte ghosts have the ability to entrap a wide range of substances and deliver them to specific organs, ghosts may be preferable to other drug carriers or drug therapy for treatment of certain disorders. PMID:6572379

  14. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    SciTech Connect

    Lyakin, D V; Ryabukho, V P

    2013-10-31

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  15. Off-axis angular spectrum method with variable sampling interval

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hae; Byun, Chun-Won; Oh, Himchan; Pi, Jae-Eun; Choi, Ji-Hun; Kim, Gi Heon; Lee, Myung-Lae; Ryu, Hojun; Hwang, Chi-Sun

    2015-08-01

    We proposed a novel off-axis angular spectrum method (ASM) for simulating free space wave propagation with a large shifted destination plane. The off-axis numerical simulation took wave propagation between a parallel source and a destination plane, but a destination plane was shifted from a source plane. The shifted angular spectrum method was proposed for diffraction simulation with a shifted destination plane and satisfied the Nyquist condition for sampling by limiting a bandwidth of a propagation field to avoid an aliasing error due to under sampling. However, the effective sampling number of the shifted ASM decreased when the shifted distance of the destination plane was large which caused a numerical error in the diffraction simulation. To compensate for the decrease of an effective sampling number for the large shifted destination plane, we used a variable sampling interval in a Fourier space to maintain the same effective sampling number independent of the shifted distance of the destination plane. As a result, our proposed off-axis ASM with a variable sampling interval can produce simulation results with high accuracy for nearly every shifted distance of a destination plane when an off-axis angle is less than 75°. We compared the performances of the off-axis ASM using the Chirp Z transform and non-uniform FFT for implementing a variable spatial frequency in a Fourier space.

  16. Optimal method for exoplanet detection by angular differential imaging.

    PubMed

    Mugnier, Laurent M; Cornia, Alberto; Sauvage, Jean-François; Rousset, Gérard; Fusco, Thierry; Védrenne, Nicolas

    2009-06-01

    We propose a novel method for the efficient direct detection of exoplanets from the ground using angular differential imaging. The method combines images appropriately, then uses the combined images jointly in a maximum-likelihood framework to estimate the position and intensity of potential planets orbiting the observed star. It takes into account the mixture of photon and detector noises and a positivity constraint on the planet's intensity. A reasonable detection criterion is also proposed based on the computation of the noise propagation from the images to the estimated intensity of the potential planet. The implementation of this method is tested on simulated data that take into account static aberrations before and after the coronagraph, residual turbulence after adaptive optics correction, and noise. PMID:19488172

  17. Correlations among angular wave component amplitudes in elastic multiple-scattering random media.

    PubMed

    Hoover, Brian G; Deslauriers, Louis; Grannell, Shawn M; Ahmed, Rizwan E; Dilworth, David S; Athey, Brian D; Leith, Emmett N

    2002-02-01

    The propagation of scalar waves through random media that provide multiple elastic scattering is considered by derivation of an expression for the angular correlation of the scattered wave amplitudes. Coherent wave transmission is shown to occur through a mechanism similar to that responsible for coherent backscattering. While the properties of the scattered wave are generally consistent with radiative-transfer theory for sufficiently small incident and scattering angles, coherent transmission provides corrections to radiative-transfer results at larger angles. The theoretical angular correlation curves are fit, by specifying the probability densities of two random variables that correspond to material parameters, to measured data of laser light scattering from various polymer microsphere suspensions. PMID:11863685

  18. Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions.

    PubMed

    Sun, Peng; Yuan, C-P; Yuan, Feng

    2014-12-01

    We derive all order soft gluon resummation in dijet azimuthal angular correlation in hadronic collisions at the next-to-leading logarithmic level. The relevant coefficients for the Sudakov resummation factor, the soft and hard factors, are calculated. The theory predictions agree well with the experimental data from D0 Collaboration at the Tevatron. This provides a benchmark calculation for the transverse momentum dependent QCD resummation for jet productions in hadron collisions. PMID:25526118

  19. LACK OF ANGULAR CORRELATION AND ODD-PARITY PREFERENCE IN COSMIC MICROWAVE BACKGROUND DATA

    SciTech Connect

    Kim, Jaiseung; Naselsky, Pavel

    2011-10-01

    We have investigated the angular correlation in the recent cosmic microwave background data. In addition to the known large-angle correlation anomaly, we find the lack of correlation at small angles with high statistical significance. We have investigated various non-cosmological contamination as well as the Wilkinson Microwave Anisotropy Probe (WMAP) team's simulated data. However, we have not found a definite cause. In the angular power spectrum of WMAP data, there exists anomalous odd-parity preference at low multipoles. Noting the equivalence between the power spectrum and the correlation, we have investigated the association between the lack of large-angle correlation and the odd-parity preference. From our investigation, we find that the odd-parity preference at low multipoles is, in fact, a phenomenological origin of the lack of large-angle correlation. Further investigation is required to find out whether the origin of the anomaly is cosmological or due to unaccounted systematics. The data from the Planck surveyor, which has systematics distinct from WMAP, will greatly help us to resolve its origin.

  20. Angular momenta correlation in kinematically constrained reactions. II. Application to the B + OH BO + H system

    NASA Astrophysics Data System (ADS)

    Alberti, Margarita; Gimenez, Xavier; Aguilar, Antonio; Gonzalez Urena, Angel

    Extensive quasi-classical trajectory (QCT) calculations have been carried out to study the disposal of both rotational and orbital angular momentum in the B + OH BO + H reaction. The potential energy surface (PES) of this reaction shows two minima associated with the HOB and HBO configurations. In addition, two distinct PESs were used each having a different geometrical structure of the HOB intermediate: bent for surface 1 and linear for surface 2. For the title reaction the product angular momentum disposal shows significant deviations from the kinematic limit expected for a heavy + heavy-light (HH L) reaction. The analysis of the product angular momenta distribution clearly indicates a correlation with the topology of the PES used. It was found that while the insertion mechanism associated with PES1 (HOB bent intermediate) favours a significant disposal into product rotational and orbital momenta, little disposal into both momenta is obtained for reactive trajectories occurring through the collinear HOB intermediate of PES2, for which BO is highly stretched. A simple modification of the conventional kinematic expressions, aimed at incorporating the effect of the dynamics into the angular momenta transfer, is proposed and tested. Modified expressions give results strongly consistent with those obtained from QCT calculations.

  1. Perturbed angular correlation experiments on the pressure-induced structural modification of bovine serum albumin.

    PubMed

    Ceolín, M

    2000-09-11

    The hydrodynamic behaviour of the bovine serum albumin (BSA) was studied by means of the Perturbed Angular Correlation (PAC) technique as a function of the hydrostatic pressure (up to 4.1 kbar) applied to the sample. The results have clearly shown that at moderated pressures (around 1.5 kbar) the BSA molecule suffers structural modifications which produces an increase of the molecular volume and the rotational correlation time of the molecule. About the reversibility of the process, our results indicate that the changes are fully irreversible. Our experiments are the first devoted to the study of the high-pressure behaviour of biological molecules using the PAC technique. PMID:10989128

  2. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon.

    PubMed

    Leach, Jonathan; Courtial, Johannes; Skeldon, Kenneth; Barnett, Stephen M; Franke-Arnold, Sonja; Padgett, Miles J

    2004-01-01

    We propose interferometric methods capable of measuring either the total angular momentum, or simultaneously measuring the spin and orbital angular momentum of single photons. This development enables the measurement of any angular momentum eigenstate of a single photon. The work allows the investigation of single-photon two-qubit entangled states and has implications for high density information transfer. PMID:14753990

  3. Angular correlations in the two-photon decay of heliumlike heavy ions

    SciTech Connect

    Surzhykov, A.; Fratini, F.; Volotka, A.; Santos, J. P.; Indelicato, P.; Plunien, G.; Stoehlker, Th.; Fritzsche, S.

    2010-04-15

    The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory and Dirac's relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e., how the angular correlation function depends on the shell structure of the ions in their initial and final states). Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s {sup 1}S{sub 0}, 1s2s {sup 3}S{sub 1}, and 1s2p {sup 3}P{sub 0} states of helium-like Xe{sup 52+}, Au{sup 77+}, and U{sup 90+} ions.

  4. Hyperspherical explicitly correlated Gaussian approach for four-body systems with finite angular momentum

    NASA Astrophysics Data System (ADS)

    Rakshit, D.; Blume, D.

    2012-06-01

    It has been predicted that four-body systems with angular momentum L=1 and parity π=+1 exhibit four-body resonances [1,2] and Efimov physics [3]. To treat these phenomena in the hyperspherical framework, we extend the work of von Stecher and Greene [4] to finite angular momenta. In particular, we employ explicitly correlated Gaussian basis functions with global vectors to solve the hyperangular Schr"odinger equation for four-body systems with L^π=1^+ and 1^- symmetry. We apply the approach to four-fermion systems with unequal masses.[4pt] [1] K. M. Daily and D. Blume, Phys. Rev. Lett. 105, 170403 (2010).[0pt] [2] S. Gandolfi and J. Carlson, arXiv: 1006.5186v1.[0pt] [3] Y. Castin, C. Mora and L. Pricoupenko, Phys. Rev. Lett. 105, 223201 (2010).[0pt] [4] J. von Stecher and C. H. Greene, Phys. Rev. A. 80, 022504 (2009).

  5. Methods for measuring and transporting angular momentum in general relativity

    NASA Astrophysics Data System (ADS)

    Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin

    2016-03-01

    For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.

  6. High angular momentum states of lithium atom, studied with symmetry-projected explicitly correlated Gaussian lobe functions

    SciTech Connect

    Strasburger, Krzysztof

    2014-07-28

    Method of construction of wave functions approximating eigenfunctions of the L{sup ^2} operator is proposed for high angular momentum states of few-electron atoms. Basis functions are explicitly correlated Gaussian lobes, projected onto irreducible representations of finite point groups. Variational calculations have been carried out for the lowest states of lithium atom, with quantum number L in the range from 1 to 8. Nonrelativistic energies accurate to several dozens of nanohartree have been obtained. For 2{sup 2}P, 3{sup 2}D, and 4{sup 2}F states they agree well with the reference results. Transition frequencies have been computed and compared with available experimental data.

  7. Angular Correlations Between Fragment Spin and Prompt Neutron Evaporation in Spontaneous Fission of 252Cf: CORA-Demon Experiment

    SciTech Connect

    Prokhorova, E.; Goennenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttge, L.; Dorvaux, O.; Wollersheim, H.-J.

    2007-05-22

    A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.

  8. Angular Correlations Between Fragment Spin and Prompt Neutron Evaporation in Spontaneous Fission of 252Cf: CORA-Demon Experiment

    NASA Astrophysics Data System (ADS)

    Prokhorova, E.; Gönnenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttgé, L.; Dorvaux, O.; Wollersheim, H.-J.

    2007-05-01

    A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.

  9. Thermalization of positronium atoms studied with time-resolved angular correlation of annihilation radiation

    NASA Astrophysics Data System (ADS)

    Takada, S.; Iwata, T.; Kawashima, K.; Saito, H.; Nagashima, Y.; Hyodo, T.

    2000-06-01

    Time dependence of the kinetic energy of positronium atoms in the free space between the grains of a pressed tablet (1 g/cm 3) of ultrafine silica powder (Cab-O-Sil EH-5) has been measured with time-resolved angular correlation of annihilation radiation (ACAR) apparatus. The apparatus has a momentum resolution of 1.29×10 -3 mc in full width at half maximum and a time resolution of 2.7 ns in full width at half maximum. It is found that the energy of positronium falls below 0.1e V in ˜10 ns after the formation.

  10. Perturbed angular correlation study of radiation-induced defects in Rh metal

    NASA Astrophysics Data System (ADS)

    Chawda, M.; Patel, N.; Sebastian, K. C.; Somayajulu, D. R. S.; Sarkar, M.; Singh, R. P.; Murlithar, S.; Awasthi, D. K.

    2006-06-01

    Radiation-induced defects are studied in cubic rhodium metal, using the local probe technique 'Time differential perturbed angular correlation (TDPAC) at liquid N-2 temperature. Isochronal annealing was done at 300, 1073 and 1473 K temperatures. The irradiated sample showed two quadrupole interaction frequencies at 1150 and 93 MHz. The low frequency disappeared at room-temperature annealing, which was assigned to In trapped at a vacancy, whereas the higher frequency remained up to high temperatures and was attributed to In trapped at Rh-C complexes in the Rh matrix.

  11. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  12. Normalization of the Matter Power Spectrum via Higher Order Angular Correlations of Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Brunner, Robert J.; Myers, Adam D.

    2008-08-01

    We present a novel technique with which to measure σ8. It relies on measuring the dependence of the second-order bias of a density field on σ8, using two separate techniques. Each technique employs area-averaged angular correlation functions (bar omegaN), one relying on the shape of bar omega2, the other relying on the amplitude of s3 (s3 = bar omega3/bar omega22). We confirm the validity of this method by testing it on a mock catalog drawn from Millennium Simulation data and finding a value of σ8 - σtrue8 = - 0.002 +/- 0.062. We create a catalog of photometrically selected LRGs from SDSS DR5 and separate it into three distinct data sets by photometric redshift, with median redshifts of 0.47, 0.53, and 0.61. Measurements of c2 and σ8 are made for each data set, with the assumption of a flat geometry and WMAP3 best-fit priors on Ωm, h, and Γ. We find, with increasing redshift, that c2 = 0.09 +/- 0.04, 0.09 +/- 0.05, and 0.09 +/- 0.03, and σ8 = 0.78 +/- 0.08, 0.80 +/- 0.09, and 0.80 +/- 0.09. We combine these three consistent σ8 measurements to produce σ8 = 0.79 +/- 0.05. Allowing the parameters Ωm, h, and Γ to vary within their WMAP3 1 σ error, we find that the best-fit value of σ8 does not change by more than 8%, and we are thus confident that our measurement is accurate to within 10%. We anticipate that future surveys, such as Pan-STARRS, DES, and LSST, will be able to employ this method in order to measure σ8 to great precision, and this will serve as an important check, complementarily, on the values determined via more established methods.

  13. A Precision Measurement of Neutron Beta Decay Angular Correlations with Polarized Pulsed Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Seo, Pil-Neyo

    2004-05-01

    The abBA collaboration is developing an experiment to measure the neutron beta decay angular correlations, a, b, B, A, to 0.1the very high pulsed cold neutron intensities in a new nuclear physics beam line that is under construction at SNS. The design of the experiment is based on three important technical advances: the pulsed cold neutron beam, a polarized ^3He neutron spin filter, and large-area thin-dead layer silicon detectors. Both electrons and protons resulting from the decay will be guided in the spectrometer by electric and magnetic fields and then detected in coincidence with two 2π large-segmented silicon detectors. Measuring the correlations in the same apparatus provides a redundant measurement of λ=G_A/G_V. I will describe the experiment and report the status of the development.

  14. Angular correlation between photoelectrons and auger electrons from K-shell ionization of neon.

    PubMed

    Landers, A L; Robicheaux, F; Jahnke, T; Schöffler, M; Osipov, T; Titze, J; Lee, S Y; Adaniya, H; Hertlein, M; Ranitovic, P; Bocharova, I; Akoury, D; Bhandary, A; Weber, Th; Prior, M H; Cocke, C L; Dörner, R; Belkacem, A

    2009-06-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process. PMID:19658860

  15. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    SciTech Connect

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-06-05

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  16. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    SciTech Connect

    2010-09-21

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT’s of 1-3GeV/c, 2.0< |??|<4.8 and ?f˜0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  17. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    ScienceCinema

    None

    2011-10-06

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT?s of 1-3GeV/c, 2.0< |??|<4.8 and ?f?0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  18. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  19. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  20. Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field

    NASA Astrophysics Data System (ADS)

    Elyiv, A.; Clerc, N.; Plionis, M.; Surdej, J.; Pierre, M.; Basilakos, S.; Chiappetti, L.; Gandhi, P.; Gosset, E.; Melnyk, O.; Pacaud, F.

    2012-01-01

    Aims: Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. Methods: We measure the two-point angular correlation function of 5700 and 2500 X-ray point-like sources over the 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. Results: We have found significant angular correlations with the power-law parameters γ = 1.81 ± 0.02, θ0 = 1.3'' ± 0.2'' for the soft, and γ = 2.00 ± 0.04, θ0 = 7.3'' ± 1.0'' for the hard bands. The amplitude of the correlation function w(θ) is higher in the hard than in the soft band for fx ≲ 10-14 erg s-1 cm-2 and lower above this flux limit. We confirm that the clustering strength θ0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial correlation function, but only for the soft band. In the hard band, it remains almost constant with r0 ≃ 10h-1 Mpc, irrespective of the flux limit. Our analysis of AGN subsamples with different hardness ratios shows that the sources with a hard-spectrum are more clustered than soft-spectrum ones. This result may be a hint that the two main types of AGN populate different environments. Finally, we find that our clustering results correspond to an X-ray selected AGN bias factor of 2.5 for the soft band sources (at a median bar{z} ≃ 1.1) and 3.3 for the hard band sources (at a median bar{z} ≃ 1), which translates into a host dark matter halo mass of 1013h-1M⊙ and 1013.7h-1M⊙ for the soft and hard bands, respectively. This paper is dedicated to the memory of Olivier Garcet who has initiated the present work just before his sudden death.

  1. /sup 12/C(/sup 6/Li,d)/sup 16/O. -->. cap alpha. +/sup 12/C reaction mechanism by means of angular correlation measurements

    SciTech Connect

    Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Saunier, N.

    1980-06-01

    The particle-particle angular correlation method is applied to the reaction /sup 12/C(/sup 6/Li,d)/sup 16/O ..-->.. ..cap alpha..+/sup 12/C. Deuterons were detected at theta/sup lab//sub d/=10/sup 0/. Information on the reaction mechanism is obtained by analyzing the shape and the angular shift of the experimental data. A dominant direct transfer mechanism is found for the primary reaction. The ratios GAMMA..cap alpha../sub 0//GAMMA and the ..cap alpha..-reduced widths ..gamma cap alpha../sub 0/ are deduced.

  2. Magnetic interaction in NdScGe: a local investigation by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, S. N.; Dhar, S. K.

    2004-02-01

    The magnetic and electric hyperfine interactions for the 111Cd probe nucleus in the equi-atomic ferromagnetic compound NdScGe (T_{\\mathrm {c}}\\sim 200 K) have been investigated by the time differential perturbed angular correlation (TDPAC) technique. The Cd probe occupying the Sc site experiences a large magnetic hyperfine field with saturation value Bhf(0) = -8.5 T. By comparing the results with the hyperfine field data in Nd metal and estimates made with the RKKY interaction, we find an indication for sizeable spin polarization of the conduction electrons in NdScGe. In addition, we find evidence of lattice softening near the Curie temperature reflected by an abrupt decrease in the quadrupole interaction frequency ngrQ(T).

  3. The muon capture in {sup 16}O: the angular and polarization correlations

    SciTech Connect

    Karpeshin, F. F.; Isakov, V. I.

    2012-02-15

    Longitudinal polarization of the daughter nuclei {sup 16}N which arises in Micro-Sign {sup -} capture on {sup 16}O as a function of the recoil angle, together with the angular distribution and the alignment of the recoil nucleus are calculated. The neutrinos born escape mainly along the muon spin. The polarization is found to vary from zero (recoil momentum counter to the muon spin direction) up to 50% (along the muon spin direction). The results can be applied to the experimental tests of T conservation, to the analysis of the projects of constructing the powerful mono-energetic neutrino sources, to the experimental study of the pseudo-scalar form factor and the K-electron capture, and to other spin-polarization correlation experiments.

  4. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus

    NASA Technical Reports Server (NTRS)

    Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2001-01-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.

  5. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus.

    PubMed

    Bassett, J P; Taube, J S

    2001-08-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal. PMID:11466446

  6. Local structure reconstruction in hydrogenated amorphous silicon from angular correlation and synchrotron diffraction studies

    NASA Astrophysics Data System (ADS)

    Britton, D. T.; Minani, E.; Knoesen, D.; Schut, H.; Eijt, S. W. H.; Furlan, F.; Giles, C.; Härting, M.

    2006-02-01

    Hydrogenated amorphous silicon (a-Si:H) is a widely used thin film semiconductor material which is still incompletely understood. It is generally assumed to form a continuous random network, with a high concentration of coordination defects (dangling bonds), which are hydrogen terminated. Neither the exact nature of these sites nor the degree of medium range order has been fully determined. In this paper, we present the first results for the local structure, from a combined study using angular correlation of positron annihilation radiation (ACAR) and synchrotron radiation diffraction. Reciprocal space information is obtained directly, for the mesoscale structure and the local defect structure, from the orientation dependent diffraction and 2D-ACAR patterns, respectively. Furthermore, inversion of both patterns yields a comparison of real space information through maps of the silicon-silicon pair correlation function and the electron-positron autocorrelation function B2 γ( r). From this information, it is possible to identify the dominant structural defect as a vacancy-size dangling bond cluster, around which the network strain is fully relaxed.

  7. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    NASA Technical Reports Server (NTRS)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; Amblard, A.; Auld, R.; Baes, M.; Bonfield, D.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D.; Dariush, A.; deZotti, G.; Dye, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  8. Modified shifted angular spectrum method for numerical propagation at reduced spatial sampling rates.

    PubMed

    Ritter, André

    2014-10-20

    The shifted angular spectrum method allows a reduction of the number of samples required for numerical off-axis propagation of scalar wave fields. In this work, a modification of the shifted angular spectrum method is presented. It allows a further reduction of the spatial sampling rate for certain wave fields. We calculate the benefit of this method for spherical waves. Additionally, a working implementation is presented showing the example of a spherical wave propagating through a circular aperture. PMID:25401659

  9. Speeding up local correlation methods

    NASA Astrophysics Data System (ADS)

    Kats, Daniel

    2014-12-01

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  10. Speeding up local correlation methods

    SciTech Connect

    Kats, Daniel

    2014-12-28

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  11. A Simple Method to Measure the Angular Speed of a Spinning Object

    ERIC Educational Resources Information Center

    Misra, Raj M.

    2008-01-01

    The angular speed of a spinning object is commonly measured using a stroboscope or a mechanically or optically coupled tachometer. We present here an alternate, simple, and instructive method to measure it using a microphone and a computer.

  12. Angular correlations in emission of prescission neutrons from {sup 235}U fission induced by slow polarized neutrons

    SciTech Connect

    Danilyan, G. V.; Wilpert, T.; Granz, P.; Krakhotin, V. A.; Mezei, F.; Novitsky, V. V.; Pavlov, V. S.; Russina, M. V.; Shatalov, P. B.

    2008-12-15

    A new approach to searching for and studying scission neutrons, which is based on the analysis of specific angular correlations in nuclear fission induced by polarized neutrons, is described and used to evaluate the fraction of scission neutrons in the total number of prompt neutrons of {sup 235}U fission emitted perpendicularly to the fission axis.

  13. Tunable angular-dependent magnetoresistance correlations in magnetic films and their implications for spin Hall magnetoresistance analysis

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Zhang, Y.; Gu, L.; Cai, J. W.; Sun, L.

    2016-02-01

    Angular-dependent magnetoresistance (MR) is considered to be intrinsic to spintronic materials, represented by the classical anisotropic MR (AMR) phenomenon and the recently emerged spin Hall MR (SMR). So far, isotropic AMR, AMR with geometric size effect and interfacial effect, and SMR have been treated separately to explain distinct MR correlations observed in various systems. Current study shows all four types of MR correlations can be reproduced in Fe thin films depending on the film thickness, texture, interface, and morphology. Results suggest previous explanations of the thin-film MR correlations are incomplete and it is inappropriate to use a specific MR angular-dependent correlation as the sole criterion in determining the origin of AMR or ascertaining the exclusive existence of SMR.

  14. Inconsistent [ital K]-[ital L] x-ray angular correlations in uranium

    SciTech Connect

    Papp, T.; Maxwell, J.A.; Teesdale, W.J.; Campbell, J.L. )

    1993-01-01

    Angular correlations between [ital K][alpha][sub 1] x rays and subsequent [ital L][sub 3] x-ray transitions were measured using a [sup 233]Pa radionuclide source and high-resolution x-ray detectors. The results provide separately the values of [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 1]) and [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 2]) as opposed to the compound quantity [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha]). For the [ital Ll] and [ital L][alpha][sub 2] transitions, the [ital A][sub 22] values agreed closely with those based upon theoretical (Hartree-Fock) [ital E]1 and [ital M]2 transition rates. For the less intense [ital L][beta][sub 6] and [ital L][beta][sub 2,15] transitions, agreement was also observed, although within larger uncertainties. In contrast, the value of [ital A][sub 22]([ital K][alpha][sub 1-][ital L][alpha][sub 1]) was 0.085[plus minus]0.007, which is somewhat larger than the predicted value of 0.073. Possible causes for this discrepancy are explored.

  15. Time differential perturbed angular correlation (TDPAC) studies of the 133Ba ion uptake in bone crystals.

    PubMed

    Rimbert, J N; Kellershohn, C; Dumas, F; Hubert, C

    1981-03-01

    TDPAC measurements of the 356-81 keV gamma-ray cascade resulting from electron capture decay of 133Ba have been performed at room temperature on BaCl2 (aqueous solution and polycrystalline powder), and on samples where the 133Ba nucleus is bound to bone powder, and also to synthesised hydroxylapatite, all after absorption in vitro. As expected, the angular correlation is not perturbed in the solution. However, in the polycrystalline chloride the time dependence of the anisotropy of the cascade of 133Cs nuclide indicates that the decaying nucleus undergoes electric interactions due to different electric field gradients acting at the site of the nucleus. In 133Ba-bone powder the results show a static quadrupolar interaction differing with the absorption contact time during sample preparation, indicating that depth of 133Ba ion fixation in the bone crystal is dependent on this contact time. These results seem to be confirmed by the TDPAC measurements performed on 133Ba-hydroxylapatite samples where the contact times for absorption of active-ion 133Ba and hydroxylapatite in suspension were very different. PMID:7220599

  16. Perturbed angular correlation study of the ion exchange of indium into silicalite zeolites

    NASA Astrophysics Data System (ADS)

    Ramallo-López, J. M.; Requejo, F. G.; Rentería, M.; Bibiloni, A. G.; Miró, E. E.

    1999-09-01

    Two indium-containing silicalite zeolites (In/H ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500ºC in air before and after reduction reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites.

  17. Measurement and analysis of quadruple ({alpha}{gamma}{gamma}) angular correlations for high spin states of {sup 24}Mg.

    SciTech Connect

    Wiedenhover, I.; Wuosmaa, A. H.; Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Amro, H.; Caggiano, J.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Siem, S.; Sonzogni, A.; Bhattacharyya, P.; Devlin, M.; Sarantites, D. G.; Sobotka, L. G.

    2000-10-30

    The high-lying, {alpha}-decaying states in {sup 24}Mg have been studied by measuring the complete decay path of {alpha} and {gamma} emissions using five segmented Silicon detectors in conjunction with GAMMASPHERE. The authors analyzed the ({alpha}{gamma}) triple angular correlations and, for the first time, ({alpha}{gamma}{gamma}) quadruple correlations. The data analysis is based on a new Fourier transformation technique. The power of the technique is demonstrated.

  18. Correlation method of electrocardiogram analysis

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Timochko, Katerina B.

    2002-02-01

    The electrocardiograph method is the informational source for functional heart state characteristics. The electrocardiogram parameters are the integrated map of many component characteristics of the heart system and depend on disturbance requirements of each device. In the research work the attempt of making the skeleton diagram of perturbation of the heart system is made by the characteristic description of its basic components and connections between them through transition functions, which are written down by the differential equations of the first and second order with the purpose to build-up and analyze electrocardiogram. Noting the vector character of perturbation and the various position of heart in each organism, we offer own coordinate system connected with heart. The comparative analysis of electrocardiogram was conducted with the usage of correlation method.

  19. Di-Hadron Angular Correlation Dependence on Leading Hadron Identity in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kauder, Kolja

    A unique state of matter is created in ultra-relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), the Quark Gluon Plasma (QGP). It displays the properties of a near-perfect liquid of quarks and gluons (partons) interacting collectively via the strong force. Properties of this medium can be explored using high-energy probes created in the form of back-to-back pairs (jets) in hard scatterings. A distinct feature of the QGP is jet quenching, which describes the large energy loss of such probes observed in measurements of hadron distributions in head-on heavy ion collisions. A more differential measurement of jet quenching is achieved using di-hadron correlations, where relative angular distributions are studied with respect to a leading (high energy) "trigger" hadron. Two striking features found in di-hadron correlations are the emergence of a long-range plateau on the near-side (at small relative azimuth), the so-called "ridge", and a broadening and deformation of the away-side, back to back with the trigger. Using 200 GeV central gold-gold and minimum bias deuteron-gold collision data collected by the STAR detector at RHIC, a systematic study of the dependence of di-hadron correlation structures on the identity of the trigger particle is carried out in this work by statistically separating pion from non-pion (i.e. proton and kaon) triggers, offering new insights into the hadronization mechanisms in the QGP. The jet-like yield at small relative angles is found enhanced for leading pions in Au+Au data with respect to the d+Au reference, while leading non-pions (protons and kaons) do not elicit such an enhancement. These findings are discussed within the context of quark recombination. At large angles, the correlated yield is significantly higher for leading non-pions than pions. Parameters extracted from two-dimensional model fits are used to test consistency with the constituent quark scaling assumptions

  20. The odontoid process invagination in normal subjects, Chiari malformation and Basilar invagination patients: Pathophysiologic correlations with angular craniometry

    PubMed Central

    Ferreira, Jânio A.; Botelho, Ricardo V.

    2015-01-01

    Background: Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain's line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. Methods: We evaluated the CLV in a sample of CVJM, BI, CM patients and a control group of normal subjects and correlated their data with craniocervical angular craniometry. Results: A total of 97 subjects were studied: 32 normal subjects, 41 CM patients, 9 basilar invagination type 1 (BI1) patients, and 15 basilar invagination type 2 (BI2) patients. The mean CLV violation in the groups were: The control group, 0.16 ± 0.45 cm; the CM group, 0.32 ± 0.48 cm; the BI1 group, 1.35 ± 0.5 cm; and the BI2 group, 1.98 ± 0.18 cm. There was strong correlation between CLV and Boogard's angle (R = 0.82, P = 0.000) and the clivus canal angle (R = 0.7, P = 0.000). Conclusions: CM's CLV is discrete and similar to the normal subjects. BI1 and BI2 presented with at least of 0.95 cm CLV and these violations were strongly correlated with a primary cranial angulation (clivus horizontalization) and an acute clivus canal angle (a secondary craniocervical angle). PMID:26229733

  1. An angular multigrid method for computing mono-energetic particle beams in Flatland

    SciTech Connect

    Boergers, Christoph MacLachlan, Scott

    2010-04-20

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation-six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  2. Initial measurements of the angular velocity of walking humans using an active millimeter-wave correlation interferometer

    NASA Astrophysics Data System (ADS)

    Zilevu, Kojo S.; Kammerman, Kelly L.; Nanzer, Jeffrey A.

    2013-05-01

    The design of a 29.5 GHz experimental active interferometer for the measurement of the angular velocity of moving humans is presented in this paper, as well as initial measurements of walking humans. Measurement of the angular motion of moving objects is a desirable function in remote security sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques however the process involves either continuous tracking with narrow beamwidth or angle-of arrival estimation algorithms. Recently, the authors presented a new method of measuring the angular velocity of moving objects using interferometry. The method measures the angular velocity of an object without tracking or complex processing. The frequency shift imparted on the signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. The experimental system consists of a transmitter and two separate receivers with two widely spaced antennas. The received signals in each of the two channels are downconverted and digitized, and post-processed offline. Initial results of a walking person passing through the interferometer beam pattern are presented, which verify the expected operation of the receiver derived from the initial theory.

  3. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-08-15

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  4. Discrete ordinates methods in xy geometry with spatially varying angular discretization

    SciTech Connect

    Bal, G.; Warin, X.

    1997-10-01

    The efficiency of a new quadrature rule adapted to the numerical resolution of a neutron transport problem in xy geometry is presented based on the use of the discrete ordinates method for the angular variable. The purpose of introducing this quadrature rule is to couple two different angular discretizations used on two nonoverlapping subdomains, which is useful for performing local refinement. This coupling and some numerical results of source problems are presented.

  5. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms.

    PubMed

    Jäger, Markus; Iwig, Kornelius; Butz, Tilman

    2011-06-01

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a (60)Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr(3)(Ce) scintillators and 254 ps with BaF(2) scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a (44)Ti in rutile source and a positron lifetime measurement using (22)Na. The maximum possible data rate of the spectrometer is 1.1 × 10(6) γ quanta per detector and second. PMID:21721728

  6. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms

    SciTech Connect

    Jaeger, Markus; Butz, Tilman; Iwig, Kornelius

    2011-06-15

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the {gamma}-{gamma} correlation diagrams. Tests were performed which showed that the time resolution using a {sup 60}Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr{sub 3}(Ce) scintillators and 254 ps with BaF{sub 2} scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a {sup 44}Ti in rutile source and a positron lifetime measurement using {sup 22}Na. The maximum possible data rate of the spectrometer is 1.1 x 10{sup 6} {gamma} quanta per detector and second.

  7. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms

    NASA Astrophysics Data System (ADS)

    Jäger, Markus; Iwig, Kornelius; Butz, Tilman

    2011-06-01

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a 60Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr3(Ce) scintillators and 254 ps with BaF2 scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a 44Ti in rutile source and a positron lifetime measurement using 22Na. The maximum possible data rate of the spectrometer is 1.1 × 106 γ quanta per detector and second.

  8. Atomic jump frequencies in intermetallic compounds studied using perturbed angular correlation of gamma rays

    NASA Astrophysics Data System (ADS)

    Newhouse, Randal Leslie

    Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.

  9. Studies of point-defect interactions in solids using perturbed angular correlations

    SciTech Connect

    Schuhmann, R.B.

    1988-01-01

    Vacancy defect production and migration in {sup 111}In doped Au, Pt and Ni following plastic deformation are studied via {sup 111}Cd perturbed {gamma}-{gamma} angular correlations (TDPAC). In all three metals, deformation produces the same defect species as are seen following irradiation. In Au, a particular In-vacancy complex which is probably a trapped divacancy exists in two distinct configurations. Thermal conversion from one configuration to the other occurs near 200K. In Pt, an In-vacancy complex exhibits a strongly temperature dependent electric field gradient, indicating the presence of local resonant modes. In Ni, a relaxed In-trivacancy complex forms via simple, single-step trapping of a migrating trivacancy. Once formed, the In-trivacancy complex in Ni can trap up to four guest H or D atoms. These are bound to the complex with an energy of {approximately}0.5 eV, irrespective of isotopic mass. By monitoring the damping of the TDPAC precession not associated with a bound defect, the author observed release of untrapped interstitial H from the lattice. These experiments give a consistent, microscopic picture of H diffusion and release from Ni. The use of BaF{sub 2} scintillators allows for an eightfold improvement in TDPAC time resolution. This makes possible experiments in systems previously inaccessible due to large precessional frequencies. The author demonstrates the utility of BaF{sub 2} in several examples, including {sup 100}RhNi, {sup 99}TcFe, {sup 101}RuFe, {sup 100}RhCo and {sup 100}RhFe, systems which had not been studied previously due to time resolution limitation. The Larmor frequency for {sup 100}RhFe, 5565 Mrad/s, is the highest frequency ever measured via TDPAC.

  10. Professional tennis players' serve: correlation between segmental angular momentums and ball velocity.

    PubMed

    Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit

    2013-03-01

    The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI. PMID:23724603

  11. A Method for Creating Thermal and Angular Momentum Fluxes in Nonperiodic Simulations.

    PubMed

    Stocker, Kelsey M; Gezelter, J Daniel

    2014-05-13

    We present a new reverse nonequilibrium molecular dynamics method that can be used with nonperiodic simulation cells. This method applies thermal and/or angular momentum fluxes between two arbitrary regions of the simulation and is capable of creating stable temperature and angular velocity gradients while conserving total energy and angular momentum. One particularly useful application is the exchange of kinetic energy between two concentric spherical regions, which can be used to generate thermal transport between nanoparticles and the solvent that surrounds them. The rotational couple to the solvent (a measure of interfacial friction) is also available via this method. As tests of the new method, we have computed the thermal conductivities of gold nanoparticles and water clusters, the interfacial thermal conductivity (G) of a solvated gold nanoparticle, and the interfacial friction of a variety of solvated gold nanostructures. PMID:26580518

  12. a Decision Level Fusion Method for Object Recognition Using Multi-Angular Imagery

    NASA Astrophysics Data System (ADS)

    Tabib Mahmoudi, F.; Samadzadegan, F.; Reinartz, P.

    2013-09-01

    Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of analysis and developing a context aware system may improve object recognition results in these situations. In this paper, the capability of multi-angular satellite imagery is used in order to solve object recognition difficulties in complex urban areas based on decision level fusion of Object Based Image Analysis (OBIA). The proposed methodology has two main stages. In the first stage, object based image analysis is performed independently on each of the multi-angular images. Then, in the second stage, the initial classified regions of each individual multi-angular image are fused through a decision level fusion based on the definition of scene context. Evaluation of the capabilities of the proposed methodology is performed on multi-angular WorldView-2 satellite imagery over Rio de Janeiro (Brazil).The obtained results represent several advantages of multi-angular imagery with respect to a single shot dataset. Together with the capabilities of the proposed decision level fusion method, most of the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa values are improved.

  13. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  14. Limb Angular Deformity Correction Using Dyna-ATC: Surgical Technique, Calculation Method, and Clinical Outcome

    PubMed Central

    Park, Hoon; Kim, Hyun Woo; Park, Hui-Wan

    2011-01-01

    Purpose Dyna-ATC is a unilateral external fixator with angulator, lengthener, and translator, which allows for angular correction and compensation of the secondary displacement during angular correction. The purpose of this study is to introduce surgical technique and calculation methods and to evaluate the clinical outcome of angular deformity correction using Dyna-ATC. Materials and Methods The amounts of secondary displacement were calculated with the distances between axis of correction of angulation, Center of Rotational Angulation, and osteotomy and the amount of angular deformity. The rate of angular correction was determined to distract the corticotomy at 1 mm/day. Clinical and radiographic evaluation was performed on 13 patients who underwent deformity correction using Dyna-ATC. There were 8 proximal tibia vara, 1 tibia valga, 2 varus and 4 valgus deformities on distal femur. One patient underwent pelvic support femoral reconstruction. Concomitant lengthening was combined in all femur cases. Mean age at surgery was 17.5 years (7 to 64). Results All but one achieved bony healing and normal alignment with the index procedure. Mean mechanical axis deviation improved from 31.9 mm to 3.0 mm. The average amount of angular correction was 11.0° on tibiae and 10.0° on femora. The average length gain on femora was 6.4 cm, and the healing index averaged to 1.1 mo/cm. One patient underwent quadricepsplasty and one patient had three augmentation surgeries due to poor new bone formation. Conclusion We believe that Dyna-ATC is a useful alternative to bulky ring fixators for selective patients with angular deformity less than 30 degrees in the coronal plane around the knee joint. PMID:21786448

  15. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  16. Angular correlations of projectilelike and fission fragments in the reaction [sup 16]O+[sup 238]U at 110 MeV

    SciTech Connect

    Pagano, A.; Aiello, S.; De Filippo, E.; Lanzano, G.; Lo Nigro, S.; Milone, C. ); Mermaz, M.C. )

    1994-08-01

    In-plane and out-of-plane angular correlations of fission fragments detected in coincidence with projectilelike residues produced in the nuclear collisions [sup 16]O+[sup 238]U at 110 MeV have been investigated. The data present the essential features of a targetlike sequential fission process. A quantitative description of the experimental angular anisotropies requires the storage in the fissioning nucleus of a mean angular momentum in agreement with a dominant mass transfer mechanism.

  17. Estimating the angular power spectrum of z > 2 BOSS QSOs using the MASTER method

    NASA Astrophysics Data System (ADS)

    Maldonado, Felipe; Huffenberger, Kevin; Rotti, Aditya

    2016-01-01

    We implement the MASTER method for angular power spectrum estimation and apply it to z > 2 quasars selected by the SDSS-III BOSS survey. Quasars are filtered for completeness and bad spectra, and include ~100,000 QSOs in the CORE sample and ~75,000 in the non-uniform BONUS sample. We estimate the angular power spectrum in redshift shells to constrain the matter power spectrum and quasar properties. In the future, we will jointly analyze overlapping Cosmic Microwave Background lensing maps from the Atacama Cosmology Telescope to place further constraints.

  18. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm. PMID:27587137

  19. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  20. Problems with the Method of Correlated Vectors

    ERIC Educational Resources Information Center

    Ashton, M.C.; Lee, K.

    2005-01-01

    The method of correlated vectors has been used widely to identify variables that are associated with general intelligence (g). Briefly, this method involves finding the correlation between the vector of intelligence subtests' g-loadings and the vector of those subtests' correlations with the variable in question. We describe two major problems…

  1. Wavefront propagation in turbulence: an unified approach to the derivation of angular correlation functions.

    PubMed

    Molodij, Guillaume

    2011-08-01

    A general expression of the spatial correlation functions of quantities related to the phase fluctuations of a wave that have propagated through the atmospheric turbulence are derived. A generalization of the method to integrand containing the product of an arbitrary number of hypergeometric functions is presented. The formalism is able to give the coefficients of phase-expansion functions orthogonal over an arbitrary circularly symmetric weighting function for an isotropic turbulence spectrum, as well as to describe the effect of the finite outer and inner scales of the turbulence and to describe the spherical propagation or to derive the effects of the analytical operators acting on the phase such as the derivatives of any order. The derivation of the generalized integrals with multiparameters is based on the Mellin transforms integration method. PMID:21811336

  2. Is v3 necessary or even informative in describing angular correlation data from RHIC and the LHC?

    NASA Astrophysics Data System (ADS)

    Ray, Lanny; Trainor, Thomas; Prindle, Duncan

    2013-10-01

    One of the more interesting observations from the heavy-ion program at RHIC and now at the LHC are long-range correlations on relative pseudorapidity at small azimuth opening angles. In 2010 Alver and Roland suggested that this so-called same-side ridge could be explained in terms of higher-order, azimuth cosine distributions generated by event-wise energy density fluctuations in the initial-state plus hydrodynamic flow. Applications of third- and higher-order harmonics in analysis of angular correlations from heavy-ion collisions have become ubiquitous in the literature. However, we question the introduction of ``higher harmonics'' to the 2D data description. Extending previous work we examine the necessity and utility of v3. We find that the net effect of v3 is to accommodate minor non-Gaussian structure in the same-side 2D peak for pt-integral correlations from RHIC. A single Gaussian hypothesis for those data is not falsified within statistics. Model ambiguities and instabilities resulting from v3 are discussed and resolved. Lastly, we demonstrate that the 0-1% angular correlation data for 2.76 TeV Pb-Pb collisions from ATLAS do not require a v3 component. Supported in part by the U.S. Dept. of Energy.

  3. Interpolation Method for Calculation of Computed Tomography Dose from Angular Varying Tube Current

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Gao, Yiming; Xu, X. George

    2014-06-01

    The scope and magnitude of radiation dose from computed tomography (CT) examination has led to increased scrutiny and focus on accurate dose tracking. The use of tube current modulation (TCM) results complicates dose tracking by generating unique scans that are specific to the patient. Three methods of estimating the radiation dose from a CT examination that uses TCM are compared: using the average current for an entire scan, using the average current for each slice in the scan, and using an estimation of the angular variation of the dose contribution. To determine the impact of TCM on the radiation dose received, a set of angular weighting functions for each tissue of the body are derived by fitting a function to the relative dose contributions tabulated for the four principle exposure projections. This weighting function is applied to the angular tube current function to determine the organ dose contributions from a single rotation. Since the angular tube current function is not typically known, a method for estimating that function is also presented. The organ doses calculated using these three methods are compared to simulations that explicitly include the estimated TCM function.

  4. Full-sky formulae for weak lensing power spectra from total angular momentum method

    SciTech Connect

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya E-mail: namikawa@yukawa.kyoto-u.ac.jp

    2013-08-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra.

  5. Angular correlation of annihilation radiation associated with vacancy defects in electron-irradiated 6H-SiC

    SciTech Connect

    Kawasuso, A.; Chiba, T.; Higuchi, T.

    2005-05-15

    Electron-positron momentum distributions associated with vacancy defects in 6H-SiC after irradiation with 2-MeV electrons and annealing at 1000 deg. C have been studied using angular correlation of annihilation radiation measurements. It was confirmed that the above vacancy defects have dangling bonds along the c axis and the rotational symmetry around it. The first-principles calculation suggested that the vacancy defects are attributable to either carbon-vacancy-carbon-antisite complexes or silicon-vacancy-nitrogen pairs, while isolated carbon vacancies, silicon vacancies, and nearest neighbor divacancies are ruled out.

  6. Realistic description of rotational bands in rare earth nuclei by the angular-momentum-projected multicranked configuration-mixing method

    NASA Astrophysics Data System (ADS)

    Shimada, Mitsuhiro; Tagami, Shingo; Shimizu, Yoshifumi R.

    2016-04-01

    Recently we proposed a reliable method to describe the rotational band in a fully microscopic manner. The method has recourse to the configuration mixing of several cranked mean-field wave functions after the angular-momentum projection. By applying the method with the Gogny D1S force as an effective interaction, we investigate the moments of inertia of the ground state rotational bands in a number of selected nuclei in the rare earth region. As another application we try to describe, for the first time, the two-neutron aligned band in 164Er, which crosses the ground state band and becomes the yrast states at higher spins. Fairly good overall agreements with the experimental data are achieved; for nuclei, where the pairing correlations are properly described, the agreements are excellent. This confirms that the previously proposed method is really useful for the study of the nuclear rotational motion.

  7. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-01

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062

  8. Feasibility study on an angular velocity-based damage detection method using gyroscopes

    NASA Astrophysics Data System (ADS)

    Sung, S. H.; Lee, J. H.; Park, J. W.; Koo, K. Y.; Jung, H. J.

    2014-07-01

    This paper proposes an angular velocity-based damage detection method using gyroscopes and investigates its feasibility. This study basically intends to enhance the performance of the existing modal flexibility-based methods by replacing accelerations measured from accelerometers with angular velocities measured from gyroscopes. In order to verify the superiority of a gyroscope in damage detection, numerical studies were performed by changing optional parameters such as damage location, severity, and measurement noise. From parametric studies, it was shown that the damage detection results using gyroscopes are more sensitive to damage and more robust to noise generated from the curvature estimation than those using accelerometers. Experimental validations were also carried out to investigate the feasibility of a gyroscope in damage detection. From the results, it was shown that the gyroscope-based damage detection method can successfully identify damage location. In conclusion, it was numerically and experimentally verified that a new damage detection approach using gyroscopes could improve damage detection ability significantly.

  9. Angular spectrum method with compact space-bandwidth: generalization and full-field accuracy.

    PubMed

    Kozacki, Tomasz; Falaggis, Konstantinos

    2016-07-01

    A recent Letter [Opt. Lett.40, 3420 (2015)OPLEDP0146-959210.1364/OL.40.003420] reported a modified angular spectrum method that uses a sampling scheme based on a compact space-bandwidth product representation. That technique is useful for focusing and defocusing propagation cases and is generalized here for the case of propagation between two defocus planes. The proposed method employs paraxial spherical phase factors and modified propagation kernels to reduce the size of the numerical space-bandwidth product needed for wave field calculations. A Wigner distribution analysis is carried out in order to ensure high accuracy of the calculations in the entire computational domain. This is achieved by analyzing the evolution of the generalized space-bandwidth product when passing through the propagation algorithm for various space-frequency constraints. The results allow the derivations of sampling criteria, and, despite this, also show that a small amount of space/frequency zero padding significantly extends the capability of the recently reported modified angular spectrum method. Simulations validate the high accuracy of that method and verify a computational and memory gain of more than two orders of magnitude when comparing this technique with the conventional angular spectrum method. PMID:27409185

  10. Wide-window angular spectrum method for optical field propagation through ABCD systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanyang; Guo, Jin; Liu, Lisheng; Wang, Tingfeng; Shao, Junfeng

    2014-10-01

    The wide-window angular spectrum (WWAS) method is proposed to simulate field propagation through paraxial optical systems, mainly based on the Collins formula and the scaled Fourier transform (SFT). The application of the SFT algorithm makes the sampling processes in the input space, output space and spatial-frequency domains completely independent, and as a result, we can choose a larger calculation window size for simulating long-distance propagation without increasing the calculation burden. The sampling criteria are derived analytically and used in the numerical simulations to present the correctness and effectiveness of the WWAS algorithm. The advantages of the algorithm are shown by making a comparison with other angular spectrum methods for the free-space propagation case.

  11. Proximal distributions from angular correlations: A measure of the onset of coarse-graining

    PubMed Central

    Dyer, Kippi M.; Pettitt, B. Montgomery

    2013-01-01

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered. PMID:24320368

  12. Proximal distributions from angular correlations: A measure of the onset of coarse-graining

    NASA Astrophysics Data System (ADS)

    Dyer, Kippi M.; Pettitt, B. Montgomery

    2013-12-01

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered.

  13. Angular dependence in proton-proton correlation functions in central 40Ca + 40Ca and 48Ca + 48Ca reactions

    NASA Astrophysics Data System (ADS)

    Henzl, V.; Kilburn, M. A.; Chajęcki, Z.; Henzlova, D.; Lynch, W. G.; Brown, D.; Chbihi, A.; Coupland, D. D. S.; Danielewicz, P.; Desouza, R. T.; Famiano, M.; Herlitzius, C.; Hudan, S.; Lee, Jenny; Lukyanov, S.; Rogers, A. M.; Sanetullaev, A.; Sobotka, L. G.; Sun, Z. Y.; Tsang, M. B.; Vander Molen, A.; Verde, G.; Wallace, M. S.; Youngs, M.

    2012-01-01

    The angular dependence of proton-proton correlation functions is studied in central 40Ca+40Ca and 48Ca+48Ca nuclear reactions at E/A=80 MeV. Measurements were performed with the High Resolution Array (HiRA) complemented by the 4π Array at the National Superconducting Cyclotron Laboratory. A striking angular dependence in the laboratory frame is found within proton-proton correlation functions for both systems that greatly exceeds the measured and expected isospin dependent difference between the neutron-rich and neutron-deficient systems. Sources measured at backward angles reflect the participant zone of the reaction, while much larger sources observed at forward angles reflect the expanding, fragmenting, and evaporating projectile remnants. The decrease of the size of the source with increasing momentum is observed at backward angles while a weaker trend in the opposite direction is observed at forward angles. The results are compared to the theoretical calculations using the Boltzmann-Uehling-Uhlenbeck (BUU) transport model.

  14. Multipolarity of the 2-→1- , ground-state transition in 210Bi via multivariable angular correlation analysis

    NASA Astrophysics Data System (ADS)

    Cieplicka-Oryńczak, N.; Szpak, B.; Leoni, S.; Fornal, B.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.

    2016-07-01

    The multipolarity of the main transition leading to the ground state in 210Bi was investigated using the angular correlations of γ rays. The analyzed γ -coincidence data were obtained from the 209Bi(n ,γ )210Bi experiment performed at Institut Laue-Langevin Grenoble at the PF1B cold-neutron facility. The EXILL (EXOGAM at the ILL) multidetector array, consisting of 16 high-purity germanium detectors, was used to detect γ transitions. The mixing ratio of the 320-keV γ ray was defined by minimizing a multivariable χΣ2 function constructed from the coefficients of angular correlation functions for seven pairs of strong transitions in 210Bi. As a result, the almost pure M 1 multipolarity of the 320-keV γ ray was obtained, with an E 2 admixture of less than 0.6% only (95% confidence limit). Based on this multipolarity the neutron-capture cross section leading to the ground state in 210Bi, that decays in turn to radiotoxic 210Po, was determined to be within the limits 21.3(9) and 21.5(9) mb. This result is important for nuclear reactor applications.

  15. Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Valle Wemans, A. Do; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Fokitis, M.; Martin, T. Fonseca; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Jiménez, Y. Hernandez; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koneke, K.; Konig, A. C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Sterzo, F. Lo; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Verge, L. Miralles; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjornmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Herrera, C. Mora; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjolin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Volpini, G.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Ohsugi, T.

    2012-05-01

    We present a measurement of two-particle angular correlations in proton- proton collisions at √{s} = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T > 100 MeV and pseudorapidity | η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models.

  16. Angular Cross-correlation of Spitzer IRAC and Herschel Spire Sources

    NASA Astrophysics Data System (ADS)

    Mitchell-Wynne, Ketron; Cooray, A.; Wang, L.; HerMES Consortium

    2011-01-01

    The Spitzer Deep Wide-Field Survey (SDWFS) and the Herschel Multi-tiered Extragalactic Survey (HerMES) each provide deep and wide coverage, centered on the Bootes field, at infrared and sub-millimeter wavelengths. The SDWFS covers approximately 8.5 square degrees with sensitivities of galaxies out to z 3. From the public SDWFS source catalog, we remove stars and contaminants by concentration, using selection methods based on IRAC and optical colors; optical photometry is provided by the NOAO Deep Wide-Field Survey. Photometric redshifts of detected IRAC sources are then determined using the 1.6 micron spectral feature (or 'bump'). We classify three different kinds of bumps, (bump 1- bump 3), with redshifts ranging approximately from 0-1.3, 1.3-2, and 2-3 respectively. The number of bump 1 sources in the SDWFS catalogs were found to be in excess of 25,000 at the 5 sigma detection limit of the 3.6 micron channel of the IRAC instrument. Bump 2 and bump 3 source identification yielded similar, but slightly fewer counts. We also extract a separate catalog of 2500 or so dust-obscured galaxies (DOGs) at z 2 using 24 micron and r-band fluxes. As part of HerMES observations with SPIRE, the Bootes field contain more than 15,000 clearly detected SPIRE sources at 250 microns, In this paper we report on the cross correlation function of these bump sources with the source catalogs from three bands of the SPIRE instrument onboard Herschel. The aim is to broadly reconstruct the redshift distribution of SPIRE sources using redshift distributions of bump and DOGs in the bootes field and the relative clustering strengths.

  17. A study of angular momentum loss in binaries using the free Lagrange method

    NASA Technical Reports Server (NTRS)

    Rajasekhar, A. M.

    1994-01-01

    The evolution of a binary star system depends greatly on the angular momentum losses in the system brought about by gravitational radiation and mass outflow (e.g., evaporating winds and magnetic braking) from the secondary component of the binary. Using a three-dimensional hydrodynamic fluid code based on the free Lagrange method, we study the loss of specific angular momentum from a binary system due to an evaporative wind from the companion of a millisecond pulsar. We consider binaries of different mass ratios and winds of different initial velocities and in particular attempt to model the system PSR 1957+20. We are in the process of incorporating the effect of the radiation force from the pulsar and the magnetic field of the companion on the mass outflow. The latter effect would also enable us to study magnetic braking in cataclysmic variables and low-mass X-ray binaries.

  18. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  19. Gamma Ray Emission Tomography and Angular Correlation Measurements to Study the Distribution and Binding Site of Selenium.

    NASA Astrophysics Data System (ADS)

    Dahni, Anwar

    Available from UMI in association with The British Library. The distribution of ^ {75}Se in tissue equivalent materials was investigated employing Gamma ray Emission Topography with a rectilinear scanner utilizing NaI(Tl) and BGO detectors. The reconstructed images, using Filtered Back Projection and Iterative techniques were presented in 2D colour and 3D representations. Using a lead collimator of aperture 1.5 x 20 mm and 70 length, the distribution of selenium with variation of volume and concentration was examined and clearly seen. Several corrections such as background, scattering, attenuation compensation and X-ray characteristic suppression, were performed to improve the quality of the images which was evaluated in terms of the fidelity factor. The possibility of quantifying an image was considered with regard to spatial resolution and least detectable concentration. The spatial resolution was measured using two small vials containing the same concentration of selenium, the value obtained was the same as the width of the collimator aperture. The value of the least detectable concentration of selenium however, was difficult to find, due to the many ambiguous factors involved. The binding site of selenium which is based on quadrupole interaction with the surrounding electric field, was investigated employing Perturbed Angular Correlation (PAC) experiments using NaI(Tl) and BaF_2 detectors. Using NaI(Tl) detectors, it was difficult to observe the perturbation, due to the poor time resolution. The BaF_2 detector according to the literature has a shorter light emission decay time constant (0.6 ns), suggested that a better time resolution than that found with the NaI(Tl) detectors could be obtained. A Perturbed Angular Correlation experiment employing BaF _2 detectors and a fast-slow coincidence system was set up. The time differential PAC of selenium in solution showed an unperturbed angular correlation pattern. The main problem is the very short half life of the

  20. Minijet deformation and charge-independent angular correlations on momentum subspace (η,ϕ) in Au-Au collisions at sNN=130 GeV

    NASA Astrophysics Data System (ADS)

    Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Bezverkhny, B. I.; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, C. O.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, H. A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reid, J. G.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; H. G., Ritter; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2006-06-01

    Measurements of two-particle correlations on angular difference variables η1-η2 (pseudorapidity) and ϕ1-ϕ2 (azimuth) are presented for all primary charged hadrons with transverse momentum 0.15≤pt≤2 GeV/c and |η|≤1.3 from Au-Au collisions at sNN=130 GeV. Large-amplitude correlations are observed over a broad range in relative angles where distinct structures appear on the same-side and away-side (i.e., relative azimuth less than π/2 or greater than π/2). The principal correlation structures include that associated with elliptic flow plus a strong, same-side peak. It is hypothesized that the latter results from correlated hadrons associated with semi-hard parton scattering in the early stage of the heavy-ion collision which produces a jet-like correlation peak at small relative angles. The width of the jet-like peak on η1-η2 increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. The new methods of jet analysis introduced here provide access to scattered partons at low transverse momentum well below the kinematic range where perturbative quantum chromodynamics and standard fragmentation models are applicable.

  1. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  2. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method

    PubMed Central

    Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun

    2014-01-01

    This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. PMID:25201996

  3. A method for increasing the accuracy of a system for determining the angular position of an object

    NASA Astrophysics Data System (ADS)

    Kotov, P. A.

    An induction method is developed for determining the angular position of the platform of a gimballess gyrostabilizer. Results of the physical modeling of a gyrostabilizer with an induction orientation system indicate that the method proposed here makes it possible to determine the parameters and the operating algorithm of the platform orientation system for an arbitrary angular position of the object. The method also provides a way to formulate the requirements for the elements and modules of a stabilized platform.

  4. Angular correlations in beauty production at the Tevatron at sqrt(s) = 1.96 TeV

    SciTech Connect

    Wijngaarden, Daniel A

    2005-06-01

    Measurements of the b quark production cross section at the Tevatron and at Hera in the final decades of the 20th century have consistently yielded higher values than predicted by Next-to-Leading Order (NLO) QCD. This discrepancy has led to a large efforts by theorists to improve theoretical calculations of the cross sections and simulations of b quark production. As a result, the difference between theory and experiment has been much reduced. New measurements are needed to test the developments in the calculations and in event simulation. In this thesis, a measurement of angular correlations between b jets produced in the same event is presented. The angular separation between two b jets is directly sensitive to higher order contributions. In addition, the measurement does not depend strongly on fragmentation models or on the experimental luminosity and efficiency, which lead to a large uncertainty in measurements of the inclusive cross section. At the Tevatron, b{bar b} quark pairs are predominantly produced through the strong interaction. In leading order QCD, the b quarks are produced back to back in phase space. Next-to-leading order contributions involving a third particle in the final state allow production of b pairs that are very close together in phase space. The Leading Order and NLO contributions can be separated into three different processes: flavour creation, gluon splitting and flavour excitation. While the separation based on Feynman diagrams is ambiguous and the three processes are not each separately gauge invariant in NLO QCD, the distinction can be made explicitly in terms of event generators using LO matrix elements. Direct production of a b{bar b} quark pair in the hard scatter interaction is known as flavour creation. The quarks emerge nearly back to back in azimuth. In gluon splitting processes, a gluon is produced in the hard scatter interaction. The gluon subsequently splits into a b{bar b} quark pair. The quarks are very close in phase

  5. A Perturbed-Angular-Correlation Study of Hyperfine Interactions at 181Ta in α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Pasquevich, A. F.; Junqueira, A. C.; Carbonari, A. W.; Saxena, R. N.

    2004-11-01

    The hyperfine interactions at 181Ta ions on Fe3+ sites in α-Fe2O3 (hematite) were studied in the temperature range 11 1100 K by means of the perturbed angular correlation (PAC) technique. The 181Hf(β-)181Ta probe nuclei were introduced chemically into the sample during the preparation. The hyperfine interaction measurements allow to observe the magnetic phase transition and to characterize the supertransferred hyperfine magnetic field Bhf and the electric field gradient (EFG) at the impurity sites. The angles between Bhf and the principal axes of the EFG were determined. The Morin transition was also observed. The results are compared with those of similar experiments carried out using 111Cd probe.

  6. Perturbed Angular Correlation of the stretched cascade in the decay of 180mHf using a digital spectrometer

    NASA Astrophysics Data System (ADS)

    Jäger, Markus; Butz, Tilman

    2012-05-01

    We report on the measurement of the nuclear quadrupole interaction (NQI) at Hf sites using the nuclear probe 180mHf in HfF4·HF·2H2O at 300 K by exploiting all possible start quanta in the stretched cascade with a digital Time Differential Perturbed Angular Correlation (TDPAC) spectrometer. With conventional spectrometers, multiple prompt start signals would paralyze the router. The gain in coincidence rate is about a factor of 5 compared to a conventional spectrometer using a single start only. With multiple starts 180mHf is a promising new isomeric nuclear probe in TDPAC experiments. As an additional feature we implemented the possibility to measure up to four cascades simultaneously in order to save data collection time or to measure isobaric contaminations like 111mCd and 111In.

  7. Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, P.; Guin, R.; Das, S. K.

    2012-09-01

    The thermal behavior of hafnium dioxide fiber has been investigated with the aid of time differential perturbed angular correlation (TDPAC) technique along with XRD and SEM measurements. This study has proved a good thermal stability of the fibrous material up to 1173 K and the fiber loses its crystallinity to a meager extent at 1673 K. No phase transition has been observed up to 1673 K in this fiber. TDPAC parameters for the HfO2 fiber annealed at 1173 K are ωQ=124.6 (3) Mrad/s and η=0.36 (1). These values remain unaltered for the HfO2 fiber annealed even at 1673 K. Electronic structure calculations based on the density functional theory (DFT) for HfO2 doped with tantalum impurity have been performed and the calculated EFG parameters are in reasonable agreement with the experimental values.

  8. Dynamical evolution, hadronization and angular de-correlation of heavy flavor in a hot and dense QCD medium

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2014-12-01

    We study heavy flavor evolution and hadronization in relativistic heavy-ion collisions. The in-medium evolution of heavy quarks is described using our modified Langevin framework that incorporates both collisional and radiative energy loss mechanisms. The subsequent hadronization process for heavy quarks is calculated with a fragmentation plus recombination model. We find significant contribution from gluon radiation to heavy quark energy loss at high pT; the recombination mechanism can greatly enhance the D meson production at medium pT. Our calculation provides a good description of the D meson nuclear modification at the LHC. In addition, we explore the angular correlation functions of heavy flavor pairs which may provide us a potential candidate for distinguishing different energy loss mechanisms of heavy quarks inside the QGP.

  9. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method

    SciTech Connect

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji

    2014-01-15

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup −7} rad /√( Hz ) at the signal frequency of 2 mHz, which contributes a 0.4 ppm uncertainty to the G value.

  10. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  11. A weak magnetism observed in SnO2 doped with Fe by means of Perturbed Gamma-Gamma Angular Correlation and Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramos, J. M.; Carbonari, A. W.; Martucci, T.; Costa, M. S.; Cabrera-Pasca, G. A.; Macedo, M. A. V.; Saxena, R. N.

    Nano-structured samples of SnO2 doped with Fe prepared by the sol-gel method were studied by the Perturbed Gamma-Gamma Angular Correlation (PAC) Spectroscopy using 111In (111Cd) probe nuclei as well as by 57Fe Mšssbauer spectroscopy. The samples were prepared from very pure metallic Sn and Fe. Carrier-free 111In nuclei were introduced during the sol-gel process of sample preparation for PAC measurements. The PAC measurements were carried out after annealing the samples at different temperatures and the results show a combined electric quadrupole and magnetic dipole interaction for probe nuclei that do not occupy the regular Sn sites. The hyperfine parameters revealed weak magnetic interactions.

  12. Cross correlation method application to prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalova, O. V.; Zeynalov, Sh.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    Do The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying cross correlation method and digital signal processing algorithms. A new mathematical approach for neutron/gamma pulse shape separation was developed and implemented for prompt fission neutron (PFN) time-of-flight measurement. The main goal was development of automated data analysis algorithms and procedures for data analysis with minimum human intervention. Experimental data was taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to well work of C. Budtz-Jorgensen and H.-H. Knitter [1]. About 2*107 fission events were registered with 2*105 neutron/gamma detection in coincidence with fission fragments. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer.

  13. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  14. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔ,φΔ)

    DOE PAGESBeta

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that themore » glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  15. Three Methods Of Guided Growth For Pediatric Lower Extremity Angular Deformity Correction

    PubMed Central

    Hosseinzadeh, Pooya; Ross, David R.; Walker, Janet L; Talwalkar, Vishwas R; Iwinski, Henry J; Milbrandt, Todd A

    2016-01-01

    Background Different methods of guided growth are used for correction of angular deformity in growing children. The differences between these different methods are not well described in the literature. Methods A retrospective review was undertaken comparing the effectiveness and complication rates of titanium staples, titanium eight-plates, and the stainless steel Pedi-plate at a tertiary pediatric hospital after IRB approval. Results 77 patients were included in the analysis. Average follow up was 18 months after implantation (range 7-22). Stainless steel implants showed significantly lower complication rate compared to the other groups with significantly faster rate of deformity correction when compared to titanium staples. Conclusion Our data can be used to guide implant choices for guided growth. PMID:27528848

  16. D0 results on three-jet production, multijet cross-section ratios, and minimum bias angular correlations

    SciTech Connect

    Sawyer, Lee; /Louisiana Tech. U.

    2010-01-01

    We report the measurement of the cross-section for three-jet production and the ratio of inclusive three-jet to two-jet cross-sections, as well as a study of angular correlations in minimum bias events, based on data taken with the D0 experiment at the Fermilab Tevatron proton-antiproton collider. The differential inclusive three-jet cross section as a function of the invariant three-jetmass (M{sub 3jet}) is measured in p{bar p} collisions at {radical}s = 1.96 TeV using a data set corresponding to an integrated luminosity of 0.7 fb{sup -1}. The measurement is performed in three rapidity regions (|y| < 0.8, |y| < 1.6 and |y| < 2.4) and in three regions of the third (ordered in p{sub T}) jet transverse momenta (p{sub T3} > 40 GeV, p{sub T3} > 70 GeV, p{sub T3} > 100 GeV) for events with leading jet transverse momentum larger than 150 GeV and well separated jets. NLO QCD calculations are found to be in a reasonable agreement with the measured cross sections. Based on the same data set, we present the first measurement of ratios of multi-jet cross sections in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The ratio of inclusive trijet and dijet cross sections, R{sub 3/2}, has been measured as a function of the transverse jet momenta. The data are compared to QCD model predictions in different approximations. Finally, we present a new way to describe minimum bias events based on angular distributions in {approx}5 million minimum bias p{bar p} collisions collected between April 2002 and February 2006 with the D0 detector. We demonstrate that the distribution of {Delta}{phi} in the detector transverse plane between the leading track and all other tracks is a robust observable that can be used for tuning of multiple color interaction models. Pseudorapidity correlations of the {Delta}{phi} distributions are also studied.

  17. Evaluation of angular quadrature and spatial differencing schemes for discrete ordinates method in rectangular furnaces

    SciTech Connect

    Selcuk, N.; Kayakol, N.

    1996-11-01

    Effects of order of approximation (S{sub 2} and S{sub 4}), angular quadrature (S{sub n} and S{sub n}{prime}) and spatial differencing (diamond and variable-weight) schemes, on the predictive accuracy of discrete ordinates method were investigated by predicting the distributions of radiative flux density and source term of a rectangular enclosure problem and comparing the results with exact solutions produced previously. The enclosure problem is based on data reported earlier on a large-scale experimental furnace with steep temperature gradients. It is a black-walled enclosure containing an absorbing-emitting medium of constant properties. Comparisons show that better agreement is obtained in radiative energy source terms than in flux densities and that the order of approximation plays a more significant role than angular quadrature and spatial differencing schemes in the accuracy of predicted radiative flux densities and radiative energy source terms. Only slight improvements are obtained when S{sub n} and variable-weight differencing schemes are employed.

  18. Improved methods of performing coherent optical correlation

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.

  19. Low temperature structural modification in Rb2ZrF6: Investigations by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dey, S. K.; Dey, C. C.; Saha, S.

    2016-06-01

    Temperature dependent perturbed angular correlation (PAC) measurements in crystalline compounds Rb2ZrF6 and Cs2HfF6 have been performed in the temperature range 298-753 K. In Rb2ZrF6, four discrete quadrupole interaction frequencies have been observed at room temperature which correspond to four minor structural modifications. From previous measurements, on the other hand, two structural modifications of this compound were known. A displacive phase transition, probably, occurs at low temperature due to rotation of the ZrF62- octahedron and produces different structural modifications. From present measurements in Rb2ZrF6, two quadrupole interaction frequencies [ωQ=26.1(3) Mrad/s, η=0.55(2), δ=5(1)% and ωQ=148.7(3) Mrad/s, η=0.538(5), δ=1.2%] have been found at room temperature which were not found from previous studies. In Cs2HfF6, these new structural modifications have not been observed.

  20. Study of the equilibrium vacancy ensemble in aluminum using 1D- and 2D-angular correlation of annihilation radiation

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.

    1985-03-12

    One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.

  1. Oxidation of Hafnium and Diffusion of Hafnium Atoms in Hexagonal Close-Packed Hafnium; Microscopic Investigations by Perturbed Angular Correlations

    NASA Astrophysics Data System (ADS)

    Dey, Chandi C.

    2012-11-01

    Time-differential perturbed angular correlation (TDPAC) studies in hafnium metal (~5%Zr) have been carried out at different temperatures. It is found that hafnium metal on heating at 873 K continuously for two days in air, transforms partially and abruptly to HfO2 while no component of oxide has been observed for heating up to 773 K and during initial heating at 873 K for 1 day. This result is strikingly different to that expected from the Arrhenius theory. Also, a strong nuclear relaxation effect has been observed at 873 K due to rapid fluctuation of hafnium atoms in hexagonal closepacked (hcp) hafnium. At this temperature, ~ 5% probe nuclei experience static perturbation due to monoclinic HfO2, ~ 50% experience fluctuating interaction, and ~ 5% produce static defect configuration of hcp hafnium. With lowering of temperature, defect configurations of hafnium increase at the cost of fluctuating interaction. An almost total fluctuating interaction observed in hcp hafnium at a temperature much lower than its melting point is another interesting phenomenon.

  2. PAC (perturbed angular correlation) analysis of defect motion by Blume's stochastic model for I = 5/2 electric quadrupole interactions

    SciTech Connect

    Evenson, W.E. . Dept. of Physics and Astronomy); Gardner, J.A.; Wang, Ruiping . Dept. of Physics); Su, Han-Tzong ); McKale, A.G. )

    1990-01-01

    Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed-time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case of I = (5/2) electric quadrupole interactions. We report detailed analysis for a family of simple models: XYZ + Z'' models, in which the symmetry axis of an axial efg is allowed to fluctuate among orientations along x, y, and z axes, and a static axial efg oriented along the z axis is added to the fluctuating efgs. When the static efg is zero, this model is termed the XYZ'' model. Approximate forms are given for G{sub 2}(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models are given for zirconia and ceria ceramics. 14 refs.

  3. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    PubMed Central

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  4. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.

    PubMed

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  5. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143

  6. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    SciTech Connect

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka

    2014-04-15

    values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage.

  7. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  8. Method and apparatus for optically monitoring the angular position of a rotating mirror

    NASA Technical Reports Server (NTRS)

    Lansing, J. C., Jr.; Cline, R. W. (Inventor)

    1974-01-01

    An optical system monitors the angular position of a rotating scanning mirror to indicate the effective start and end of each scan. At a certain angular position, a ray of energy transmitted to the mirror is reflected a plurality of times between the reflectors associated with the optical system and the line on the mirror parallel to the axis, and then to a detector to sense that angular position. A single optical system may be arranged to sense a plurality of different angular positions for each revolution of the mirror.

  9. New method to measure the angular antispring effect in a Fabry-Perot cavity with remote excitation using radiation pressure

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-03-01

    In experiments with Fabry-Perot cavities consisting of suspended mirrors, an angular antispring effect on the mirror of the cavity is caused by radiation pressure from resonant light in the cavity. A new method was invented to measure the effect precisely with remote excitation on the mirror using the radiation pressure. This method was found to be available for the suspended 23 mg mirror and improved the measurement accuracy by a factor of two, compared with the previous method. This result leads to stable control systems to eliminate the angular instability of the mirror caused by the effect.

  10. Measurement of $B\\bar{B}$ Angular Correlations based on Secondary Vertex Reconstruction at $\\sqrt{s}=7$ TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.

  11. Temperature dependence of electric field gradient in LaCoO3 perovskite investigated by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Junqueira, Astrogildo C.; Carbonari, Artur W.; Saxena, Rajendra N.; Mestnik-Filho, José; Dogra, Rakesh

    2005-11-01

    The time differential perturbed angular correlation (TDPAC) technique was used to study the temperature dependence of electric field gradient (EFG) in LaCoO3 perovskite using {}^{111}\\mathrm {In}\\rightarrow {}^{111}\\mathrm {Cd} and {}^{181}\\mathrm {Hf} \\rightarrow {}^{181}\\mathrm {Ta} nuclear probes. The radioactive parent nuclei 111In and 181Hf were introduced into the oxide lattice through a chemical process during sample preparation and were found to occupy only the Co sites in LaCoO3. The PAC measurements with 111Cd and 181Ta probes were made in the temperature range of 4.2-1146 K and 4.2-1004 K, respectively. No long-range magnetic order was observed up to 4.2 K. The EFGs at 111Cd and 181Ta show very similar temperature dependences. They increase slowly between 4.2 and about 77 K and then decrease almost linearly with increasing temperature until about 500-600 K, where a broad peak-like structure is observed, followed by linear decrease at still higher temperatures. These discontinuities at about 77 K and 500-600 K have been interpreted as thermally activated spin state transitions from the low-spin (t2g6eg0) ground state configuration to the intermediate-spin (t2g5eg1) state and from the intermediate-spin to the high-spin (t2g4eg2) state of the Co3+ ion, confirming previous observation in other recent studies. An indication of a Jahn-Teller distortion, which stabilizes the intermediate-spin state with orbital ordering, is also pointed out.

  12. Time-average-based Methods for Multi-angular Scale Analysis of Cosmic-Ray Data

    NASA Astrophysics Data System (ADS)

    Iuppa, R.; Di Sciascio, G.

    2013-04-01

    Over the past decade, a number of experiments dealt with the problem of measuring the arrival direction distribution of cosmic rays, looking for information on the propagation mechanisms and the identification of their sources. Any deviation from the isotropy may be regarded to as a signature of unforeseen or unknown phenomena, mostly if well localized in the sky and occurring at low rigidity. It induced experimenters to search for excesses down to angular scales as narrow as 10°, disclosing the issue of properly filtering contributions from wider structures. A solution commonly envisaged was based on time-average methods to determine the reference value of cosmic-ray flux. Such techniques are nearly insensitive to signals wider than the time window in use, thus allowing us to focus the analysis on medium- and small-scale signals. Nonetheless, the signal often cannot be excluded in the calculation of the reference value, which induces systematic errors. The use of time-average methods recently revealed important discoveries about the medium-scale cosmic-ray anisotropy, present both in the northern and southern hemispheres. It is known that the excess (or deficit) is observed as less intense than in reality and that fake deficit zones are rendered around true excesses because of the absolute lack of knowledge a priori of which signal is true and which is not. This work is an attempt to critically review the use of time-average-based methods for observing extended features in the cosmic-ray arrival distribution pattern.

  13. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  14. Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP)

    SciTech Connect

    Reihanian, M.; Ebrahimi, R.; Moshksar, M.M.; Terada, D.; Tsuji, N.

    2008-09-15

    Commercial purity Al was severely deformed by equal channel angular pressing (ECAP) up to eight passes using route B{sub C}. The deformation microstructure was characterized quantitatively by electron-backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The microstructural homogeneity was investigated by EBSD at various locations from center to surface of the samples on a longitudinal section parallel to the pressing direction. Structural parameters including mean boundary spacing, boundary misorientation angle and fraction of high angle grain boundaries were measured and characterized through the section of the ECAP samples. EBSD scans revealed a homogeneous ultrafine grained microstructure after 8 passes. The analysis showed that the fraction of high angle grain boundaries was more than 70% at most locations of the sample section. Also, an average boundary spacing of 380 nm was obtained by the linear intercept method. TEM analysis was used for more detailed characterization of the microstructure, such as low angle boundaries with misorientation angles smaller than 2 deg. Using the structural parameters-flow stress relationship, the flow stress was estimated based on the EBSD and TEM/Kikuchi-line analyses and compared with measured values.

  15. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  16. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering.

    PubMed

    Takahashi, Kayori; Kato, Haruhisa; Kinugasa, Shinichi

    2011-01-01

    A standard method for nanoparticle sizing based on the angular dependence of dynamic light scattering was developed. The dependences of the diffusion coefficients for aqueous suspensions of polystyrene latex on the concentration and scattering angle were accurately measured by using a high-resolution dynamic light-scattering instrument. Precise measurements of the short-time correlation function at seven scattering angles and five concentrations were made for suspensions of polystyrene latex particles with diameters from 30 to 100 nm. The apparent diffusion coefficients obtained at various angles and concentrations showed properties characteristic of polystyrene latex particles with electrostatic interactions. A simulation was used to calculate a dynamic structure factor representing the long-range interactions between particles. Extrapolations to infinite dilution and to low angles gave accurate particle sizes by eliminating the effects of long-range interactions. The resulting particle sizes were consistent with those measured by using a differential mobility analyzer and those obtained by pulsed-field gradient nuclear magnetic resonance measurements. PMID:21747185

  17. Polarization Imaging over Sea Surface - A Method for Measurements of Stokes Components Angular Distribution

    NASA Astrophysics Data System (ADS)

    Freda, W.; Piskozub, J.; Toczek, H.

    2015-12-01

    This article describes a method for determining the angular distribution of light polarization over a roughened surface of the sea. Our method relies on measurements of the Stokes vector elements using a polarization imaging camera that operates using the Division of Focal Plane (DoFP) method. It uses special monochrome CCD array in which the neighbouring cells, instead of recording different colours (red green and blue), are equipped with micropolarizers of four directions (0, 45, 90 and 135 degrees). We combined the camera with a fish-eye lens of Field of View (FoV) > 180 deg. Such a large FoV allowed us to crop out the fragment of the frame along the circular horizon, showing a view covering all directions of the hemisphere. Because of complicated optical design of the fish-eye lens (light refraction on surfaces of parts of the lens) connected to the sensor we checked the accuracy of the measurement system. A method to determine the accuracy of measured polarization is based on comparison of the experimentally obtained rotation matrix with its theoretical form. Such a comparison showed that the maximum error of Stokes vector elements depended on zenith angle and reached as much as 24% for light coming from just above the horizon, but decreased rapidly with decreasing zenith angle to the value of 12% for the angles 10° off the edge of FoV. Moreover we present the preliminary results prepared over rough sea surface. These results include total intensity of light, Degree of Linear Polarization (DoLP) and their standard deviations. The results have been averaged over one thousand frames of a movie. These results indicate that the maximum polarization is observed near the reflection of the sun, and the signal coming from below the surface may be observed at zenith angles far from the vertical direction.

  18. Angular velocity: a new method to improve prediction of ventricular fibrillation duration.

    PubMed

    Sherman, Lawrence D; Flagg, Aron; Callaway, Clifton W; Menegazzi, James J; Hsieh, Margaret

    2004-01-01

    Ventricular fibrillation (VF) is a leading cause of sudden death. Electrical defibrillation is the primary modality of treatment, but evidence is accumulating that its use in the late stage of VF prior to providing ventilation, chest compressions and the administration of appropriate medication is detrimental. In VF of <5 min duration a 'shock first' strategy is effective. In VF of 5> min duration a 'perfuse first' approach is more effective. Because of the difficulty in determining the duration of VF in the clinical setting we have sought to develop method which analyze 5 s intervals of VF waveform and quickly provide an estimate of duration. Such methods would be useful in directing clinical interventions. Using methods of nonlinear dynamics and fractal geometry we have previously derived a quantitative measure of VF duration, namely the scaling exponent (ScE). In this study we report on a novel method also based on nonlinear dynamics, the angular velocity (AV). By constructing a flat, circular disk-shaped structure in a three-dimensional phase space and measuring the velocity of rotation of the position vector over time, a statistic is developed which rises from 58 rad/s at 1 min to 79 rad/s at 4 min and then decreases in a linear manner to 32 rad/s at 12.5 min. Using ScE and AV probability density estimated, VF of <5 min duration can be identified with 90% sensitivity on the basis of a single 5 s recording of the waveform. The combination of ScE and AV can be used in developing strategies for the treatment of VF during the different clinical phases of VF. PMID:15002486

  19. Spectral and angular responses of microbolometer IR FPA: a characterization method using a FTIR

    NASA Astrophysics Data System (ADS)

    Touvignon, Aurélie; Durand, Alain; Romanens, Fabien; Favreau, Julien; Gravrand, Olivier; Tisse, Christel-Loïc.

    2014-05-01

    In order to evaluate the impact of technological evolutions on the spectral responsivity of microbolometer FPAs (Focal Plane Arrays) as well as to find out a way to estimate the mechanical stability of microbolometric pixel membranes, ULIS is proposing a new method to measuring the spectral response of the detector array over a large region (area of pixels) simultaneously. This is done by tweaking the standard protocol of a commercial FTIR (Fourier Transform InfraRed) spectrometer where the IR detector is replaced by the array to be measured. All the calculations (i.e. interferogram processing) are taken care of externally. We use this new set up to measure the angular spectral response of the detector array and to analyse the relationship between spectral response and mechanical behaviour of the pixel. Firstly the setup of this measurement is presented and some preliminary technical issues are outlined. Then we focus on the results obtained from the measurements on 17μm pitch pixels over a wide range of angles of incidence (from normal to 45° incidence). Finally, we share some theoretical insights on both those results and the inherent limitations of this protocol using a simple optical cavity model.

  20. Optical method to differentiate tequilas based on angular modulation surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Martínez-López, G.; Luna-Moreno, D.; Monzón-Hernández, D.; Valdivia-Hernández, R.

    2011-06-01

    We report the use of the prism-based surface plasmon resonance (SPR) technique to differentiate between three types of tequilas white or silver, aged, and extra-aged. We used the angular interrogation method in which the structure is based on prism fabricated with BK7 glass coated with a gold layer as the SPR active layer. Our study was centered in the analysis of the resonant angle of the SPR generated by the three types of tequilas produced by the three major tequila-producing firms. We observed that each tequila sample produced a well-differentiated SPR curve. We found that resonant angle of the SPR curve produced by silver tequilas is larger than that produced by the aged and extra-aged tequilas of the same producer firm. We found that the position of the SPR curve is not exclusively determined by the alcohol contents; we believe that there are other parameters derived from the aging process that should be considered. The refractive index of the tequilas used in this study was estimated using the measured resonant angle.

  1. Method for Sorting Photon Orbital Angular Momentum States by Pattern Decomposition

    NASA Astrophysics Data System (ADS)

    Lumbres, Jennifer; van Buren, David; Terebey, Susan

    2014-03-01

    In addition to the photon spin responsible for the two polarization states, photons possess an orbital angular momentum (OAM) with values that are signed integer multiples of h-bar and travel in a helical shape. We present a table-top spectroscopy experiment to generate, manipulate, and measure OAM states of photons from a laser. We create multiple beams with different OAM content using computer generated fork holograms implemented in 35mm film slides. After overlapping the beams into one combined beam, we use multipoint interferometer apertures to interrogate this beam and generate interference patterns on an imaging detector. Since the different OAM states are orthogonal, these patterns sum. A decomposition of the summed pattern is performed using a simple sorting algorithm which retrieves the intensities of each of the original OAM beams. We show several examples of OAM content retrieval via our method. This research seeks to perform OAM spectroscopy of natural light sources such as direct and scattered sunlight. This work is funded by the United States National Institutes of Health (grant no. GM61331).

  2. TIME-AVERAGE-BASED METHODS FOR MULTI-ANGULAR SCALE ANALYSIS OF COSMIC-RAY DATA

    SciTech Connect

    Iuppa, R.; Di Sciascio, G. E-mail: giuseppe.disciascio@roma2.infn.it

    2013-04-01

    Over the past decade, a number of experiments dealt with the problem of measuring the arrival direction distribution of cosmic rays, looking for information on the propagation mechanisms and the identification of their sources. Any deviation from the isotropy may be regarded to as a signature of unforeseen or unknown phenomena, mostly if well localized in the sky and occurring at low rigidity. It induced experimenters to search for excesses down to angular scales as narrow as 10 Degree-Sign , disclosing the issue of properly filtering contributions from wider structures. A solution commonly envisaged was based on time-average methods to determine the reference value of cosmic-ray flux. Such techniques are nearly insensitive to signals wider than the time window in use, thus allowing us to focus the analysis on medium- and small-scale signals. Nonetheless, the signal often cannot be excluded in the calculation of the reference value, which induces systematic errors. The use of time-average methods recently revealed important discoveries about the medium-scale cosmic-ray anisotropy, present both in the northern and southern hemispheres. It is known that the excess (or deficit) is observed as less intense than in reality and that fake deficit zones are rendered around true excesses because of the absolute lack of knowledge a priori of which signal is true and which is not. This work is an attempt to critically review the use of time-average-based methods for observing extended features in the cosmic-ray arrival distribution pattern.

  3. Methods and systems for determining angular orientation of a drill string

    DOEpatents

    Cobern, Martin E.

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  4. A method of evaluating quantitative magnetospheric field models by an angular parameter alpha

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1979-01-01

    The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.

  5. A Method to Determine Angular Orientation of a Projectile Using a Polarization Scanning Reference Source

    NASA Astrophysics Data System (ADS)

    Kankipati, Venkata Varun

    This thesis presents a method to determine the angular orientation of a projectile in flight, by mechanically scanning a linearly polarized, microwave reference source. In particular, the research focuses on real time measurement of the roll angle. A 10 GHz, linearly polarized electromagnetic wave is radiated toward the projectile by means of a 10 dB horn antenna. The projectile is equipped with a backward facing 10 dB horn antenna, which has orientation, namely roll angle, sensitivity. The response of the received signal follows a cosine law, producing a maximum when the receiver orientation is aligned with the transmitting polarization. As expected, the peak response shifts in response to the roll-angle, however, unambiguous recovery of the angle requires synchronization with the polarization orientation of the source. This has been achieved through the use of a unique transmitter power sequence, which includes a start-of-scan and end-of-scan time stamp. Based on the above concept, a complete system comprising a polarization scanning reference source, the receiving antenna mounted on a vehicle, and pertinent electronic components, has been tested for both line of sight and non-line of sight applications. The transmitter antenna, mounted on a computer controlled stepper motor allowed source polarization to be scanned from -90° to 90° in 0.3 seconds. The receiving antenna continuously samples the received electromagnetic background at the source frequency and uses a RF detector and a data acquisition system to record the subsequent time-varying voltage signal, which is processed to recover the roll-angle. Measurements in an anechoic chamber were used to confirm the efficacy of the system and field trials, using a transmitter power of 2 W, were successfully demonstrated over a distance of 0.15 miles. The distance limit can be extended by increasing the transmitter power, receiver sensitivity and increase source frequency.

  6. Determination of Sea Ice Thickness from Angular and Frequency Correlation Functions and by Genetic Algorithm: A Theoretical Study of New Instrument Technology

    NASA Astrophysics Data System (ADS)

    Hussein, Z. A.; Kuga, Y.; Ishimaru, A.; Jaruwatanadilok, S.; McDonald, K. C.; Holt, B.; Pak, K.; Jordan, R.; Perovich, D.; Sturm, M.

    2004-12-01

    Thickness and extent of Arctic sea ice play a critical role in Earth's climate and ocean circulation. An accurate measurement of these parameters on synoptic scales at regular intervals would enable characterization of this important component for the understanding of ocean circulation and global heat balance. Currently, IceSAT (laser altimeter) and EnviSAT (radar altimeter) and the upcoming CryoSAT (radar altimeter) measurement systems provide estimates of the sea ice freeboard, i.e. that portion of the ice that is above the sea level. The sea ice thickness and changes in thickness are inferred from these measurements. In this paper, we develop the theoretical basis for application of radar interferometry in the VHF band to the direct estimation of sea ice thickness. We employ angular and frequency correlation functions (ACF/FCF) of the electromagnetic wave scattered from sea-ice, using small perturbation and Kirchhoff rough surface scattering and Rayleigh volume scattering models. The medium is modeled as multi-layered stratification consisting of snow, sea ice (including spherical particles of air bubbles and brine inclusions), and sea water. Each surface interface is modeled as a rough surface with a Gaussian roughness spectrum. To characterize the ACF/FCF, the correlation between two waves with different frequencies, incidence and observation angles, is employed, forming a combined spatial- and frequency-domain interferometer. This technique exploits the difference in the correlation properties (phase matching conditions) of surface and volume scattering. The surface correlation function exhibits a strong correlation along a "memory line." The volume scattering shows a strong correlation at specific points - "memory dots." The effect of volume scattering can be suppressed by choosing appropriate combinations of frequencies and angles. The phase of the surface correlation function depends on the scattering geometry (location of the antennas), and provides

  7. Reference-free method for forming a three-dimensional image and determining the angular velocity of a remote object

    NASA Astrophysics Data System (ADS)

    Mandrosov, V. I.

    2012-07-01

    We propose a reference-free method for forming a threedimensional image and for determining the angular velocity of a remote nonplanar object. The method is based on probing an object by laser radiation with a coherence length that is smaller or larger than the size of the object and on the use of a screen with radial holes in the centres of which photodetectors are located, the screen being mounted in the region of the flat image of the object. A threedimensional image of the object is constructed using the visibility of the interference fringes formed behind the screen due to radiation beams scattered by the object which pass through various pairs of holes (one of the holes is fixed). The three components of the angular velocity vector of the object are determined by the power spectrum of the electric signal produced during the movement of interference fringes on a photodetector mounted behind the screen.

  8. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  9. Time-differential perturbed angular correlation study of the electric field gradient in Ti2Rh MoSi2-type compound

    NASA Astrophysics Data System (ADS)

    Wodniecki, P.; Kulińska, A.; Wodniecka, B.

    The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q =336(1) MHz→V zz =5.9×1017 V cm-2, η=0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2)×10-5 K-1. The results are compared with those for other isostructural compounds.

  10. Time-differential perturbed angular correlation study of the electric field gradient in Ti2Rh MoSi2-type compound

    NASA Astrophysics Data System (ADS)

    Wodniecki, P.; Kulińska, A.; Wodniecka, B.

    2007-06-01

    The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q = 336(1) MHz→V zz =5.9 × 1017 V cm - 2, η = 0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2) × 10 - 5 K - 1. The results are compared with those for other isostructural compounds.

  11. Angular correlations between heavy and light fragments in the reaction sup 32 S+ sup 26 Mg at E sub lab =163. 5 MeV

    SciTech Connect

    Cavallaro, S. ); Prete, G. ); Viesti, G. )

    1990-04-01

    Angular correlation measurements between heavy residues ({ital Z}{sub {ital R}}=23--13) and light fragments ({ital Z}{sub {ital L}}=2--10) have been performed for the reaction {sup 32}S+{sup 26}Mg at {ital E}{sub lab}=163.5 MeV. The binary nature of the mechanisms competing with fusion-evaporation is evidenced. Linear momentum analysis and velocity plots indicate contributions of binary reactions also for those elements that are generally believed to be produced by fusion-evaporation mechanisms.

  12. Measurement of Long-Range Near-Side Two-Particle Angular Correlations in pp Collisions at sqrt[s]=13  TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K

    2016-04-29

    Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270  nb^{-1}. The correlations are studied over a broad range of pseudorapidity (|η|<2.4) and over the full azimuth (ϕ) as a function of charged particle multiplicity and transverse momentum (p_{T}). In high-multiplicity events, a long-range (|Δη|>2.0), near-side (Δϕ≈0) structure emerges in the two-particle Δη-Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0correlation strength similar to that found in earlier pp data at sqrt[s]=7  TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities N_{ch}∼180, a region so far unexplored in pp collisions. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies. PMID:27176516

  13. Measurement of Long-Range Near-Side Two-Particle Angular Correlations in p p Collisions at √{s }=13 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.

    2016-04-01

    Results on two-particle angular correlations for charged particles produced in p p collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb-1 . The correlations are studied over a broad range of pseudorapidity (|η | <2.4 ) and over the full azimuth (ϕ ) as a function of charged particle multiplicity and transverse momentum (pT ). In high-multiplicity events, a long-range (|Δ η | >2.0 ), near-side (Δ ϕ ≈0 ) structure emerges in the two-particle Δ η -Δ ϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 correlation strength similar to that found in earlier p p data at √{s }=7 TeV . The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities Nch˜180 , a region so far unexplored in p p collisions. The observed long-range correlations are compared to those seen in p p , p Pb , and PbPb collisions at lower collision energies.

  14. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  15. Measurement of long-range near-side two-particle angular correlations in pp collisions at $\\sqrt{s}$ = 13 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-10-13

    Our results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb-1. The correlations are studied over a broad range of pseudorapidity (|η| < 2.4) and over the full azimuth (Φ) as a function of charged particle multiplicity and transverse momentum (pT). In high-multiplicity events, a long-range (|Δη| > 2.0), near-side (ΔΦ≈ 0) structure emerges in the two-particle Dh–Df correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < pT < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity. The overall correlation strength at √s = 13 TeV is similar to that found in earlier pp data at √s = 7 TeV, but is measured up to much higher multiplicity values. We observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.

  16. Detailed angular correlation analysis with 4{pi} spectrometers: Spin determinations and multipolarity mixing measurements in {sup 128}Ba

    SciTech Connect

    Wiedenhoever, I.; Vogel, O.; Klein, H.; Dewald, A.; von Brentano, P.; Gableske, J.; Nicolay, N.; Gelberg, A.; Wiedenhoever, I.; Janssens, R.V.; Carpenter, M.P.; Kruecken, R.; Petkov, P.; Gizon, A.; Gizon, J.; Bazzacco, D.; Rossi Alvarez, C.; Pavan, P.; de Angelis, G.; Lunardi, S.; Napoli, D.R.; Frauendorf, S.; Doenau, F.

    1998-08-01

    We analyze for the first time the full {gamma}{gamma} directional correlations from oriented states (DCO) in an experiment performed with the GASP detector array. Our analysis is based on a transformation of the directional information into expansion coefficients of an orthogonal basis. With this method, which we call SpeeDCO (spectral expansion of DCO), the complete DCO information is concentrated in 12 {gamma}{gamma} coincidence spectra. The analysis is applicable to all detector arrays which uniformly cover the solid angle. We show that the complete DCO information can be used for a reliable and unique determination of spins and multipolarity mixing ratios in weakly populated bands. We were able to establish the spins and the positive parity of the {Delta}I=1 {open_quotes}M1 band{close_quotes} in {sup 128}Ba and multipolarity mixing ratios of nine M1/E2 in-band transitions were derived as well. The measured values are in good agreement with those expected for a high-K rotational band. thinsp thinsp thinsp {copyright} {ital 1998} {ital The American Physical Society}

  17. Ergodicity test of the eddy correlation method

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, Y.; Yu, Y.; Lü, S.

    2014-07-01

    The turbulent flux observation in the near-surface layer is a scientific issue which researchers in the fields of atmospheric science, ecology, geography science, etc. are commonly interested in. For eddy correlation measurement in the atmospheric surface layer, the ergodicity of turbulence is a basic assumption of the Monin-Obukhov (M-O) similarity theory, which is confined to steady turbulent flow and homogenous surface; this conflicts with turbulent flow under the conditions of complex terrain and unsteady, long observational period, which the study of modern turbulent flux tends to focus on. In this paper, two sets of data from the Nagqu Station of Plateau Climate and Environment (NaPlaCE) and the cooperative atmosphere-surface exchange study 1999 (CASE99) were used to analyze and verify the ergodicity of turbulence measured by the eddy covariance system. Through verification by observational data, the vortex of atmospheric turbulence, which is smaller than the scale of the atmospheric boundary layer (i.e., its spatial scale is less than 1000 m and temporal scale is shorter than 10 min) can effectively meet the conditions of the average ergodic theorem, and belong to a wide sense stationary random processes. Meanwhile, the vortex, of which the spatial scale is larger than the scale of the boundary layer, cannot meet the conditions of the average ergodic theorem, and thus it involves non-ergodic stationary random processes. Therefore, if the finite time average is used to substitute for the ensemble average to calculate the average random variable of the atmospheric turbulence, then the stationary random process of the vortex, of which spatial scale was less than 1000 m and thus below the scale of the boundary layer, was possibly captured. However, the non-ergodic random process of the vortex, of which the spatial scale was larger than that of the boundary layer, could not be completely captured. Consequently, when the finite time average was used to substitute

  18. Effects of momentum conservation and flow on angular correlations observed in experiments at the BNL Relativistic Heavy Ion Collider

    SciTech Connect

    Pratt, Scott; Schlichting, Soeren; Gavin, Sean

    2011-08-15

    Correlations of azimuthal angles observed at the Relativistic Heavy Ion Collider have gained great attention due to the prospect of identifying fluctuations of parity-odd regions in the field sector of QCD. Whereas the observable of interest related to parity fluctuations involves subtracting opposite-sign from same-sign correlations, the STAR collaboration reported the same-sign and opposite-sign correlations separately. It is shown here how momentum conservation combined with collective elliptic flow contributes significantly to this class of correlations, although not to the difference between the opposite- and same-sign observables. The effects are modeled with a crude simulation of a pion gas. Although the simulation reproduces the scale of the correlation, the centrality dependence is found to be sufficiently different in character to suggest additional considerations beyond those present in the pion gas simulation presented here.

  19. A novel method for full position and angular orientation measurement of moving objects

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.

    2015-05-01

    Angular orientation of an object such as a projectile, relative to the earth or another object such as a mobile platform continues to be an ongoing topic of interest for guidance and/or steering. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable on-board solution for many applications, particularly for gun-fired munitions. We present a viable solution, which combines open-aperture sensors with custom designed radiation patterns and one or more amplitude modulated polarization scanning reference sources. Subsequently, the sensor system presents a new approach to angle measurements, with several key advantages over traditional cross-polarization based rotation sensors. Primarily, angular information is coded into a complex spatiotemporal pattern, which is insensitive to power fluctuations caused by environmental factors, while making the angle measurement independent of distance from the referencing source. Triangulation, using multiple sources, may be also used for onboard position measurement. Both measurements are independent of GPS localization; are direct and relative to the established local referencing system; and not subject to drift and/or error accumulation. Results of laboratory tests as well as field tests are presented.

  20. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    NASA Astrophysics Data System (ADS)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  1. Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central d+Au Collisions at sqrt[s_{NN}]=200 GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2015-05-15

    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.7<η<-3.1, Au-going direction). An enhanced near-side angular correlation across |Δη|>2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at sqrt[s_{NN}]=5.02 TeV. The magnitude of the mass ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions. PMID:26024164

  2. Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d+Au collisions at sNN=200 GeV

    DOE PAGESBeta

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta’ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; et al

    2015-05-12

    In this study, we present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and aluminum bias p+p collisions at √sNN = 200 GeV. The charged hadron is measured at midrapidity lηl < 0.35, and the energy us measured at large rapidity (–3.7 < η < –3.1, Au-going direction). An enhanced near-side angular correlation across lΔηl > 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v₂ for inclusive charged hadrons at midrapidity up to pT = 4.5 GeV/c. We alsomore » present the measurement of v₂ for identified π± and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at √sNN = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.« less

  3. The XMM-Newton survey of the ELAIS-S1 field. I. Number counts, angular correlation function and X-ray spectral properties

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Fiore, F.; D'Elia, V.; Pillitteri, I.; Feruglio, C.; Grazian, A.; Brusa, M.; Ciliegi, P.; Comastri, A.; Gruppioni, C.; Mignoli, M.; Vignali, C.; Zamorani, G.; La Franca, F.; Sacchi, N.; Franceschini, A.; Berta, S.; Buttery, H.; Dias, J. E.

    2006-10-01

    Aims.The formation and evolution of cosmic structures can be probed by studying the evolution of the luminosity function of the Active Galactic Nuclei (AGNs), galaxies and clusters of galaxies and of the clustering of the X-ray active Universe, compared to the IR-UV active Universe. Methods: .To this purpose, we have surveyed with XMM-Newton the central ~0.6 deg2 region of the ELAIS-S1 field down to flux limits of ~5.5 × 10-16 erg~cm-2~s-1 (0.5-2 keV, soft band, S), ~2 × 10-15 erg~cm-2~s-1 (2-10 keV, hard band, H), and ~4 × 10-15 erg~cm-2~s-1 (5-10 keV, ultra hard band, HH). We present here the analysis of the XMM-Newton observations, the number counts in different energy bands and the clustering properties of the X-ray sources. Results: .We detect a total of 478 sources, 395 and 205 of which detected in the S and H bands respectively. We identified 7 clearly extended sources and estimated their redshift through X-ray spectral fits with thermal models. In four cases the redshift is consistent with z=0.4, so we may have detected a large scale structure formed by groups and clusters of galaxies through their hot intra-cluster gas emission. We have computed the angular correlation function of the sources in the S and H bands finding best fit correlation angles θ_0=5.2 ± 3.8 arcsec and θ_0=12.8 ± 7.8 arcsec in the two bands respectively. The correlation angle of H band sources is therefore formally ~2.5 times that of the S band sources, although the difference is at only ~1σ confidence level. A rough estimate of the present-day correlation length r0 can be obtained inverting the Limber equation and assuming an appropriate redshift distribution dN/dz. The results range between 12.8 and 9.8 h-1 Mpc in the S band and between 17.9 and 13.4 h-1 Mpc in the H band, with 30-40% statistical errors, assuming either smooth redshift distributions or redshift distributions with spikes accounting for the presence of significant structure at z=0.4. The relative density of the

  4. A Precision Measurement of Neutron {beta}-Decay Angular Correlations with Pulsed Cold Neutrons -- The abBA Experiment

    SciTech Connect

    Seo, P.-N.; Bowman, J.D.; O'Donnell, J.M.; Mitchell, G.S.; Penttilae, S.I.; Wilburn, W.S.; Calarco, J.R.; Hersman, F.W.; Chupp, T.E.; Cianciolo, T.V.; Rykaczewski, K.P.; Young, G.R.; Desai, D.; Grzywacz, R.K.; Souza, R.T. de; Snow, W.M.; Frlez, E.; Pocanic, D.; Gentile, T.; Greene, G.L.

    2005-05-24

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2{pi} solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter {lambda}=gA/gV, providing a test of the standard electroweak interaction.

  5. A Precision Measurement of Neutron β-Decay Angular Correlations with Pulsed Cold Neutrons — The abBA Experiment

    NASA Astrophysics Data System (ADS)

    Seo, P.-N.; Bowman, J. D.; Calarco, J. R.; Chupp, T. E.; Cianciolo, T. V.; Desai, D.; De Souza, R. T.; O'Donnell, J. M.; Frlež, E.; Gentile, T.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Hersman, F. W.; Jones, G. L.; Mitchell, G. S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Snow, W. M.; Wilburn, W. S.; Young, G. R.

    2005-05-01

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2π solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter λ=gA/gV, providing a test of the standard electroweak interaction.

  6. High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement.

    PubMed

    Zhang, Xiaodong; Jiang, Lili; Zeng, Zhen; Fang, Fengzhou; Liu, Xianlei

    2015-10-19

    Micro v-groove has found wide applications in optical areas as one of the most important structures. However, its performance is significantly affected by its angular geometry accuracy. The diamond cutting has been commonly used as the fabrication method of micro v-groove, but it is still difficult to guarantee the cutting tool angle, which is limited by the measurement accuracy in the manufacture and mounting of the diamond tool. A cutting tool alignment method based on the on-machine measurement is proposed to improve the fabricated quality of the v-groove angle. An on-machine probe is employed to scan the v-groove geometrical deviation precisely. The system errors model, data processing algorithm and tool alignment methods are analyzed in details. Experimental results show that the measurement standard deviation within 0.01° can be achieved. Retro-reflection mirrors are fabricated and measured finally by the proposed method for verification. PMID:26480443

  7. Radiative corrections to the Dalitz plot of charged and neutral baryon semileptonic decays with angular correlation between polarized emitted baryons and charged lepton

    SciTech Connect

    Manriquez, J. J. Torres; Martinez, A.; Neri, M.; Garcia, A.

    2008-07-02

    Because of the near future work of the NA48 experimental group, we have calculated the radiative corrections (RC) to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. This work covers the two cases, charged and neutral decaying baryons, and it is restricted to the so called three body region of the Dalitz plot. Also it is specialized at the c.m. frame of the emitted baryon. We consider terms up to ({alpha}/ product )(q/M{sub 1}){sup 0}, where q is the momentum transfer and M{sub 1} is the mass of the decaying baryon, and neglect terms of the order ({alpha}/ product )(q/M{sub 1}){sup n}, n = 1,2,.... The analytical expressions displayed are ready to obtain numerical results, suitable for a model-independent experimental analysis.

  8. Radiative corrections to the three-body region of the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons

    SciTech Connect

    Neri, M.; Martinez, A.; Torres, J. J.; Flores-Mendieta, Ruben; Garcia, A.

    2008-09-01

    We have calculated the radiative corrections to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. This work covers both charged and neutral decaying baryons and is restricted to the so-called three-body region of the Dalitz plot. Also it is specialized at the center-of-mass frame of the emitted baryon. We have considered terms up to order ({alpha}/{pi})(q/M{sub 1}){sup 0}, where q is the momentum transfer and M{sub 1} is the mass of the decaying baryon, and neglected terms of order ({alpha}/{pi})(q/M{sub 1}){sup n} for n{>=}1. The expressions displayed are ready to obtain numerical results, suitable for model-independent experimental analyses.

  9. Dynamic lattice distortions in Sr2RuO4: microscopic studies by perturbed angular correlation spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mishra, S. N.; Rots, M.; Cottenier, S.

    2010-09-01

    Applying time differential perturbed angular correlation (TDPAC) spectroscopy and ab initio calculations, we have investigated possible lattice instabilities in Sr2RuO4 by studying the electric quadrupole interaction of a 111Cd probe at the Ru site. We find evidence for a dynamic lattice distortion, revealed from the observations of: (i) a rapidly fluctuating electric-field gradient (EFG) tensor showing non-Arrhenius relaxation, (ii) an anomalous temperature dependence of the quadrupole interaction frequency, and (iii) a monotonic increase of the EFG asymmetry (η) below 300 K. We argue that the observed dynamic lattice distortion is caused by strong spin fluctuations associated with the inherent magnetic instability in Sr2RuO4.

  10. Dynamic lattice distortions in Sr2RuO4: microscopic studies by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N; Rots, M; Cottenier, S

    2010-09-29

    Applying time differential perturbed angular correlation (TDPAC) spectroscopy and ab initio calculations, we have investigated possible lattice instabilities in Sr(2)RuO(4) by studying the electric quadrupole interaction of a (111)Cd probe at the Ru site. We find evidence for a dynamic lattice distortion, revealed from the observations of: (i) a rapidly fluctuating electric-field gradient (EFG) tensor showing non-Arrhenius relaxation, (ii) an anomalous temperature dependence of the quadrupole interaction frequency, and (iii) a monotonic increase of the EFG asymmetry (η) below 300 K. We argue that the observed dynamic lattice distortion is caused by strong spin fluctuations associated with the inherent magnetic instability in Sr(2)RuO(4). PMID:21386555

  11. Complex Method for Angular-Spectral Analysis of Volume Phase Diffraction Gratings Recorded in Photopolymers

    NASA Astrophysics Data System (ADS)

    Vojtíšek, P.; Květoň, M.; Richter, I.

    2016-02-01

    Photopolymer recording materials are nowadays widely used for recording of diffraction gratings and other diffraction elements. For obtaining the best performance of these diffraction gratings for desired applications, it is important to assess these gratings from many different perspectives. In this contribution, we present an experimental and characterization approach to an analysis of diffraction gratings recorded into photopolymer materials. This approach is able to provide a complex and very illustrative description of these gratings response and, with accordance to the theory, information about some important grating parameters, such as a spatial period, slant angle, etc., as well. This approach is based on the measurement of a grating response for a wide range of angles and wavelengths and then on the construction and subsequent analysis of maps in the angular-spectral plane. It is shown that the measurements are in a good agreement with the theoretical predictions based on either approximate (Kogelniks coupled wave theory) or rigorous (RCWA) techniques and that this approach provides complex and detailed characterization of the grating response which can be used for additional optimization or decision of applicability of measured sample gratings.

  12. Comparison of linear and angular measurements using two-dimensional conventional methods and three-dimensional cone beam CT images reconstructed from a volumetric rendering program in vivo

    PubMed Central

    Oz, U; Orhan, K; Abe, N

    2011-01-01

    Objective The aim of this study was to compare the linear and angular measurements made on two-dimensional (2D) conventional cephalometric images and three-dimensional (3D) cone beam CT (CBCT) generated cephalograms derived from a 3D volumetric rendering program. Methods Pre-treatment cephalometric digital radiographs of 11 patients and their corresponding CBCT images were randomly selected. The digital cephalometric radiographs were traced using Vista Dent OC (GAC International, Inc Bohemia, NY) and by hand. CBCT and Maxilim® (Medicim, Sint-Niklass, Belgium) software were used to generate cephalograms from the CBCT data set that were then linked to the 3D hard-tissue surface representations. In total, 16 cephalometric landmarks were identified and 18 widely used measurements (11 linear and 7 angular) were performed by 2 independent observers. Intraobserver reliability was assessed by calculating intraclass correlation coefficients (ICC), interobserver reliability was assessed with Student t-test and analysis of variance (ANOVA). Mann–Whitney U-tests and Kruskal–Wallis H tests were also used to compare the three methods (P < 0.05). Results The results demonstrated no statistically significant difference between interobserver analyses for CBCT-generated cephalograms (P < 0.05), except for Gonion-Menton (Go-Me) and Condylion-Gnathion (Co-Gn). Intraobserver examinations showed low ICCs, which was an indication of poor reproducibility for Go-Me and Sella-Nasion (S-N) in CBCT-generated cephalograms and poor reproducibility for Articulare-Gonion (Ar-Go) in the 2D hand tracing method (P < 0.05). No statistical significance was found for Vista Dent OC measurements (P > 0.05). Conclusions Measurements from in vivo CBCT-generated cephalograms from Maxilim® software were found to be similar to conventional images. Thus, owing to higher radiation exposure, CBCT examinations should only be used when the inherent 3D information could improve the outcome of treatment. PMID

  13. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  14. Frequency Split Elimination Method for a Solid-State Vibratory Angular Rate Gyro with an Imperfect Axisymmetric-Shell Resonator

    PubMed Central

    Lin, Zhen; Fu, Mengyin; Deng, Zhihong; Liu, Ning; Liu, Hong

    2015-01-01

    The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and two antinodes. The difference leads to the loss of gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the resonator based on an axisymmetric multi-curved surface shell structure is investigated and an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved surface shell resonators are too complex to be modeled, this paper proposes a simplified model by focusing on a common property of the axisymmetric shell. The resonator with stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. Rayleigh's energy method is used in the theoretical analysis. Finite element modeling is used to demonstrate the effectiveness of the elimination approach. In real cases, a resonator's frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical analysis are discussed and steps to be taken when the deviation between assumptions and the real situation is large are figured out. The resonator has good performance after processing. The elimination approach can be applied to any kind of solid-state vibratory gyro resonators with an axisymmetric shell structure. PMID:25648707

  15. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data

    PubMed Central

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L.; Dronskowski, Richard

    2015-01-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages. PMID:26664340

  16. A new 'Implicit correlation' method for cross-correlation sampling in MCNPX-PoliMi

    SciTech Connect

    Marcath, M. J.; Larsen, E. W.; Clarke, S. D.; Pozzi, S. A.

    2013-07-01

    Monte Carlo particle transport codes used to accurately model detector response are traditionally run in fully analog mode. Analog simulations of cross-correlation measurements with these codes are extremely time-consuming because the probability of correlated detection is extremely small, approximately equal to the product of the probabilities of a single detection in each detector. The new 'implicit correlation' method described here increases the number of correlation event scores thereby reducing variance and required computation times. The cost of the implicit correlation method is comparable to the cost of simulating single event detection for the lowest absolute detector efficiency in the problem. This method is especially useful in the nuclear non-proliferation and safeguards fields for simulating correlation measurements of shielded special nuclear material. The new method was implemented in MCNPX-PoliMi for neutron-neutron cross-correlations with a Cf-252 spontaneous fission source measured by two detectors of variable stand-offs. The method demonstrated good agreement with analog simulation results for multiple measurement geometries. Small differences between non-analog and analog cross-correlation distributions are attributed to known features of the specific problem simulated that will not be present in practical applications. (authors)

  17. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...

  18. Long-range angular correlations of π, K and p in p-Pb collisions at √{sNN}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; D Erasmo, G.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.

    2013-10-01

    Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab|<0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2p, is observed to be smaller than that for pions, v2π, up to about pT=2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2p is found to be smaller at low pT and larger at higher pT than v2π, with a crossing occurring at about 2 GeV/c. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.

  19. Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at sNN=62 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Beavis, D. R.; Behera, N. K.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Daugherity, M. S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Estienne, M.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Joseph, J.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Lukashov, E. V.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nayak, T. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pei, H.; Peitzmann, T.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schaub, J.; Schmah, A. M.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, J. B.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.

    2012-12-01

    We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity η and azimuth ϕ for charged particles from Au-Au collisions at sNN=62 and 200 GeV with transverse momentum pt≥0.15 GeV/c, |η|≤1, and 2π in azimuth. Observed correlations include a same-side (relative azimuth <π/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the η width of the same-side 2D peak also increases rapidly (η elongation), and the ϕ width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in hijing, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here.

  20. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments. PMID:21361436

  1. Harmonic decomposition of two particle angular correlations in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Aamodt, K.; Abelev, B.; Abrahantes Quintana, A.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biolcati, E.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Book, J.; Borel, H.; Borissov, A.; Bortolin, C.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Erasmo, G. D.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, A.; Dash, S.; de, S.; de Azevedo Moregula, A.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Del Castillo Sanchez, E.; Delagrange, H.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; di Bari, D.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Dietel, T.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Huber, S.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacobs, P. M.; Jancurová, L.; Jangal, S.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jung, W.; Jusko, A.; Kalcher, S.; Kaliňák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. J.; Kim, D. W.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, S. H.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; La Rocca, P.; Ladrón de Guevara, P.; Lakomov, I.; Lara, C.; Lardeux, A.; Larsen, D. T.; Lazzeroni, C.; Le Bornec, Y.; Lea, R.; Lechman, M.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Michalon, A.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, A. K.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Müller, H.; Muhuri, S.; Munhoz, M. G.; Musa, L.; Musso, A.; Nagle, J. L.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Otterlund, I.; Otwinowski, J.; Øvrebekk, G.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Serci, S.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Søgaard, C.; Soltz, R.; Son, H.; Song, J.; Song, M.; Soos, C.; Soramel, F.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Thomas, J. H.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Tosello, F.; Traczyk, T.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A. J.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; van Leeuwen, M.; Vande Vyvre, P.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernekohl, D. C.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wan, R.; Wang, D.; Wang, M.; Wang, Y.; Wang, Y.; Watanabe, K.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Alice Collaboration

    2012-02-01

    Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at √{sNN} = 2.76 TeV for transverse momenta 0.25 < pTt,a < 15 GeV / c, where pTt >pTa. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval | η | < 1.0. Distributions in relative azimuth Δϕ ≡ϕt -ϕa are analyzed for | Δη | ≡ |ηt -ηa | > 0.8, and are referred to as "long-range correlations". Fourier components VnΔ ≡ < cos (nΔϕ) > are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy VnΔ (pTt ,pTa) is fully described in terms of single-particle anisotropies vn (pT) as VnΔ (pTt ,pTa) =vn (pTt)vn (pTa). This expectation is tested for 1 ⩽ n ⩽ 5 by applying a global fit of all VnΔ (pTt ,pTa) to obtain the best values vn { GF } (pT). It is found that for 2 ⩽ n ⩽ 5, the fit agrees well with data up to pTa ˜ 3- 4 GeV / c, with a trend of increasing deviation as pTt and pTa are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full 0.25

  2. Projection potentials and angular momentum convergence of total energies in the full-potential Korringa-Kohn-Rostoker method.

    PubMed

    Zeller, Rudolf

    2013-03-13

    Although the full-potential Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd's formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. PMID:23396831

  3. Correlation theory-based signal processing method for CMF signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-lin; Tu, Ya-qing

    2016-06-01

    Signal processing precision of Coriolis mass flowmeter (CMF) signals affects measurement accuracy of Coriolis mass flowmeters directly. To improve the measurement accuracy of CMFs, a correlation theory-based signal processing method for CMF signals is proposed, which is comprised of the correlation theory-based frequency estimation method and phase difference estimation method. Theoretical analysis shows that the proposed method eliminates the effect of non-integral period sampling signals on frequency and phase difference estimation. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of frequency and phase difference estimation and has better estimation performance than the adaptive notch filter, discrete Fourier transform and autocorrelation methods in terms of frequency estimation and the data extension-based correlation, Hilbert transform, quadrature delay estimator and discrete Fourier transform methods in terms of phase difference estimation, which contributes to improving the measurement accuracy of Coriolis mass flowmeters.

  4. A data processing method for determining instantaneous angular speed and acceleration of crankshaft in an aircraft engine-propeller system using a magnetic encoder

    NASA Astrophysics Data System (ADS)

    Yu, S. D.; Zhang, X.

    2010-05-01

    This paper presents a method for determining the instantaneous angular speed and instantaneous angular acceleration of the crankshaft in a reciprocating engine and propeller dynamical system from electrical pulse signals generated by a magnetic encoder. The method is based on accurate determination of the measured global mean angular speed and precise values of times when leading edges of individual magnetic teeth pass through the magnetic sensor. Under a steady-state operating condition, a discrete deviation time vs. shaft rotational angle series of uniform interval is obtained and used for accurate determination of the crankshaft speed and acceleration. The proposed method for identifying sub- and super-harmonic oscillations in the instantaneous angular speeds and accelerations is new and efficient. Experiments were carried out on a three-cylinder four-stroke Saito 450R model aircraft engine and a Solo propeller in connection with a 64-teeth Admotec KL2202 magnetic encoder and an HS-4 data acquisition system. Comparisons with an independent data processing scheme indicate that the proposed method yields noise-free instantaneous angular speeds and is superior to the finite difference based methods commonly used in the literature.

  5. Method for high-accuracy multiplicity-correlation measurements

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, K.; Søgaard, C.

    2016-04-01

    Multiplicity-correlation measurements provide insight into the dynamics of high-energy collisions. Models describing these collisions need these correlation measurements to tune the strengths of the underlying QCD processes which influence all observables. Detectors, however, often possess limited coverage or reduced efficiency that influence correlation measurements in obscure ways. In this paper, the effects of nonuniform detection acceptance and efficiency on the measurement of multiplicity correlations between two distinct detector regions (termed forward-backward correlations) are derived. An analysis method with such effects built in is developed and subsequently verified using different event generators. The resulting method accounts for acceptance and efficiency in a model-independent manner with high accuracy, thereby shedding light on the relative contributions of the underlying processes to particle production.

  6. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  7. Angular Cheilitis

    MedlinePlus

    ... the mouth. Overview Angular cheilitis (perlèche) is a chronic inflammatory condition of the corners of the mouth. Usually associated with a fungal ( Candidal ) or bacterial ( Staphylococcal ) infection, those ... people of all ages. Chronic pooling of saliva encourages fungal and bacterial growth, ...

  8. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  9. The source-sample stage of the new two-dimensional angular correlation of annihilation radiation spectrometer at Technische Universität München

    NASA Astrophysics Data System (ADS)

    Ceeh, Hubert; Weber, Josef Andreas; Leitner, Michael; Böni, Peter; Hugenschmidt, Christoph

    2013-04-01

    Angular correlation of annihilation radiation (ACAR) is a well established technique for the investigation of the electronic structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. For this reason, the focus of this work is put on the discussion of a newly developed source-sample stage of the new 2D-ACAR spectrometer at Technische Universität München which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot diameter is dFWHM = 5.4 mm, with a high efficiency over the whole energy spectrum of the 22Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline α-quartz, which serves as a model system for the determination of the total resolution. A value of (1.53 × 1.64) mrad2 FWHM was achieved at room temperature.

  10. The source-sample stage of the new two-dimensional angular correlation of annihilation radiation spectrometer at Technische Universitaet Muenchen

    SciTech Connect

    Ceeh, Hubert; Weber, Josef Andreas; Boeni, Peter; Leitner, Michael; Hugenschmidt, Christoph

    2013-04-15

    Angular correlation of annihilation radiation (ACAR) is a well established technique for the investigation of the electronic structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. For this reason, the focus of this work is put on the discussion of a newly developed source-sample stage of the new 2D-ACAR spectrometer at Technische Universitaet Muenchen which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot diameter is d{sub FWHM}= 5.4 mm, with a high efficiency over the whole energy spectrum of the {sup 22}Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline {alpha}-quartz, which serves as a model system for the determination of the total resolution. A value of (1.53 Multiplication-Sign 1.64) mrad{sup 2} FWHM was achieved at room temperature.

  11. Oxygen ordering in the high-Tc superconductor HgBa2CaCu2O6+δ as revealed by perturbed angular correlation

    NASA Astrophysics Data System (ADS)

    Mendonça, T. M.; Correia, J. G.; Haas, H.; Odier, P.; Tavares, P. B.; da Silva, M. R.; Lopes, A. M. L.; Pereira, A. M.; Gonçalves, J. N.; Amaral, J. S.; Darie, C.; Araujo, J. P.

    2011-09-01

    Lattice sites and collective ordering of oxygen atoms in HgBa2CaCu2O6+δ were studied using the perturbed angular correlation (PAC) technique at ISOLDE/CERN. The electric field gradients (EFG) at 199mHg nuclei have been measured as functions of oxygen doping on the Hg planes, above and below Tc. In comparison with the results obtained for oxygen and fluorine doping in Hg-1201, the analysis shows a different oxygen ordering exhibited by Hg-1212. Moreover, for all studied cases, the experimental results show that at a local scale there is non uniform oxygen distribution. A series of ab initio EFG calculations allowed to infer that at low concentrations, regions without oxygen coexist with regions where O2δ dumbbell molecules are located at the center of the Hg mesh. On the other side, at high concentrations, O2δ dumbbell molecules coexist with single Oδ atoms occupying the center of the Hg mesh. The present results suggest that oxygen sits on the Hg planes in the form of a molecule and not as a single atom.

  12. Magnetic behavior of La-doped Fe{sub 3}O{sub 4} studied by perturbed angular correlation spectroscopy with {sup 111}Cd and {sup 140}Ce

    SciTech Connect

    Matos, I. T. Bosch-Santos, B.; Cabrera-Pasca, G. A.; Carbonari, A. W.

    2015-05-07

    In this paper, the local magnetic properties of La-doped Fe{sub 3}O{sub 4} (5% and 10%) bulk and Nanoparticles (NPs) samples were studied by measuring hyperfine interactions in a wide range of temperature from 10 to 900 K with perturbed γ-γ angular correlation spectroscopy using {sup 111}In({sup 111}Cd) and {sup 140}La({sup 140}Ce) as probe nuclei. Results for the temperature dependence of the magnetic hyperfine field (B{sub hf}) for bulk and NP samples, pure and doped with La show that its behavior follows a second order Brillouin-like transition from which the Curie temperature (T{sub C}) was determined (T{sub C} ∼ 855 K). Results also show two different regions in NP samples: the core where a minor fraction of probe nuclei with well defined magnetic dipole frequency was observed and the shell where a major fraction with broad distributed electric quadrupolar frequency (surface effect in NP) was observed. The Verwey transition T{sub V} ∼ 120 K, due the order disorder phase, was also observed in all samples. The results are discussed in terms of the magnetic exchange interaction between Fe{sup 2+} and Fe{sup 3+} ions in the two regions of NP.

  13. Magnetic behavior of La-doped Fe3O4 studied by perturbed angular correlation spectroscopy with 111Cd and 140Ce

    NASA Astrophysics Data System (ADS)

    Matos, I. T.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Carbonari, A. W.

    2015-05-01

    In this paper, the local magnetic properties of La-doped Fe3O4 (5% and 10%) bulk and Nanoparticles (NPs) samples were studied by measuring hyperfine interactions in a wide range of temperature from 10 to 900 K with perturbed γ-γ angular correlation spectroscopy using 111In(111Cd) and 140La(140Ce) as probe nuclei. Results for the temperature dependence of the magnetic hyperfine field (Bhf) for bulk and NP samples, pure and doped with La show that its behavior follows a second order Brillouin-like transition from which the Curie temperature (TC) was determined (TC ˜ 855 K). Results also show two different regions in NP samples: the core where a minor fraction of probe nuclei with well defined magnetic dipole frequency was observed and the shell where a major fraction with broad distributed electric quadrupolar frequency (surface effect in NP) was observed. The Verwey transition TV ˜ 120 K, due the order disorder phase, was also observed in all samples. The results are discussed in terms of the magnetic exchange interaction between Fe2+ and Fe3+ ions in the two regions of NP.

  14. Studies of interaction between He and elements with mass number 140 in Fe by time-differential perturbed-angular-correlation measurements

    NASA Astrophysics Data System (ADS)

    Ohkubo, Yoshitaka; Taniguchi, Akihiro; Xu, Qiu; Tanigaki, Minoru; Sato, Koichi

    2014-08-01

    Room-temperature time-differential perturbed-angular-correlation (TDPAC) spectra of 140Ce arising through 140Ba-140La from 140Cs in He-doped Fe, unannealed and annealed in vacuum at various temperatures, were obtained in order to examine whether Ce (or rather, La and Ba) and He form complexes having a definite geometrical structure in Fe, as suggested by first-principles density-functional theory calculations. No clear signal of such complexes was observed in the TDPAC spectra. However, the TDPAC spectra indicate that Ce and He form complexes having a variety of geometrical structures. Comparison with reported TDPAC results on 111Cd arising from 111In in He-doped stainless steel shows that the parent atoms (La and Ba) of 140Ce trap He atoms more efficiently than In atoms do, indicating stronger bonding of He to the former atoms, while different from the present case, 111Cd (In)-He complexes form a unique geometrical structure.

  15. Electric field gradients at 181Ta probe in ZrNi: Results from perturbed angular correlation and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dey, C. C.; Das, Rakesh; Srivastava, S. K.

    2015-07-01

    Results of temperature dependent perturbed angular correlation (PAC) measurements in the equiatomic ZrNi alloy have been reported for the first time using 181Hf probe. At room temperature, values of quadrupole frequency and asymmetry parameter for the major component (~80%) are found to be ωQ=26.8(4) Mrad/s, and η=0.413(7). The resulting electric field gradient comes out to be Vzz=2.99 ×1017 V/cm2 and this corresponds to the probe nuclei occupying the regular substitutional Zr sites. In ZrNi system, no magnetic interaction is observed down to 77 K indicating absence of any magnetism in this material. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies on an inactive but similarly prepared sample confirm the dominant presence of the orthorhombic ZrNi phase in the sample. A complementary density functional theory (DFT) calculation results in Vzz=-2.35×1017 V/cm2, η=0.46 at the 181Ta probe impurity site and zero magnetic moment on each atomic site, in close agreement with the experimental results. Furthermore, it is found that electric field gradient for the regular component follows a T3/2 temperature dependence between 77 and 353 K, beyond which it varies linearly with temperature.

  16. Challenging claims of ‘elliptic flow’ by comparing azimuth quadrupole and jet-related angular correlations from Au-Au collisions at \\sqrt{{{s}_{NN}}} = 62 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Kettler, David T.; Prindle, Duncan J.; Ray, R. L.

    2015-02-01

    Background: A component of azimuth correlations from high-energy heavy ion collisions varying as cos (2φ ) and denoted by symbol v2 is conventionally interpreted to represent ‘elliptic flow,’ a hydrodynamic manifestation of the initial-state A-A overlap geometry. Several numerical methods are used to estimate v2, resulting in various combinations of ‘flow’ and ‘nonflow’ that reveal systematic biases in the v2 estimates. QCD jets contribute strongly to azimuth correlations and specifically to the cos (2φ ) component. Purpose: We question the extent of jet-related (‘nonflow’) bias in and hydrodynamic ‘flow’ interpretations of v2 measurements. Method: We introduce two-dimensional model fits to angular correlation data that distinguish accurately between jet-related correlation components and a nonjet (NJ) azimuth quadrupole that might represent ‘elliptic flow’ if that were relevant. We compare measured jet-related and ‘flow’-related data systematics and determine the jet-related contribution to v2 measurements. Results: Jet structure does introduce substantial bias to conventional v2 measurements, making interpretation difficult. The NJ quadrupole exhibits very simple systematics on centrality and collision energy—the two variables factorize. Within a Au-Au centrality interval where jets show no indication of rescattering or medium effects the NJ quadrupole amplitude rises to 60% of its maximum value. Conclusions: Disagreements between NJ quadrupole systematics and hydro theory expectations, the large quadrupole amplitudes observed in more-peripheral Au-Au collisions and a significant nonzero value in N-N ≈ p-p collisions strongly suggest that the NJ quadrupole does not arise from a hydrodynamic flow mechanism.

  17. Bringing the cross-correlation method up to date

    NASA Technical Reports Server (NTRS)

    Statler, Thomas

    1995-01-01

    The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.

  18. Pair correlations in classical crystals: The shortest-graph method

    NASA Astrophysics Data System (ADS)

    Yurchenko, Stanislav O.; Kryuchkov, Nikita P.; Ivlev, Alexei V.

    2015-07-01

    The shortest-graph method is applied to calculate the pair correlation functions of crystals. The method is based on the representation of individual correlation peaks by the Gaussian functions, summed along the shortest graph connecting the two given points. The analytical expressions for the Gaussian parameters are derived for two- and three-dimensional crystals. The obtained results are compared with the pair correlation functions deduced from the molecular dynamics simulations of Yukawa, inverse-power law, Weeks-Chandler-Andersen, and Lennard-Jones crystals. By calculating the Helmholtz free energy, it is shown that the method is particularly accurate for soft interparticle interactions and for low temperatures, i.e., when the anharmonicity effects are insignificant. The accuracy of the method is further demonstrated by deriving the solid-solid transition line for Yukawa crystals, and the compressibility for inverse-power law crystals.

  19. The examinations of microorganisms by correlation optics method

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.

    2004-06-01

    In report described methods of correlation optics, which are based on the analysis of intensity changes of quasielastic light scattering by micro-organisms and allow the type of correlation function to obtain information about the size of dispersive particles. The principle of new optical method of verification is described. In this method the gauging of intensity of an indirect illumination is carried out by static spectroscopy and processing of observed data by a method of correlation spectroscopy. The given mode of gauging allows measuring allocation of micro-organisms in size interval of 0.1 - 10.0 microns. In the report results of examinations of cultures Pseudomonas aeruginosa, Escherichia coli, Micrococcus lutteus, Lamprocystis and Triocapsa bacteriachlorofil are considered.

  20. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  1. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔΔ)

    SciTech Connect

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.

  2. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg

    2015-01-01

    In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341

  3. Distance correlation methods for discovering associations in large astrophysical databases

    SciTech Connect

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P. E-mail: mrichards@astro.psu.edu

    2014-01-20

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  4. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  5. Harmonic decomposition of two particle angular correlations in Pb Pb collisions at s_NN = 2.76 TeV

    SciTech Connect

    Aamodt, K.; Awes, Terry C; Read, Kenneth F; Silvermyr, David O; ALICE, Collaboration

    2012-01-01

    Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at {radical}s{sub NN} = 2.76 TeV for transverse momenta 0.25 < p{sub T}{sup t,a} < 15 GeV/c, where p{sub T}{sup t} > p{sub T}{sup a}. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval |{eta}| < 1.0. Distributions in relative azimuth {Delta}{phi}{triple_bond}{phi}t-{phi}a are analyzed for |{Delta}{eta}|{triple_bond}|{eta}t-{eta}a| > 0.8, and are referred to as 'long-range correlations'. Fourier components Vn{Delta} {triple_bond} are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy V{sub n{Delta}}(p{sub T}{sup t},p{sub T}{sup a}) is fully described in terms of single-particle anisotropies vn(pT) as V{sub n{Delta}}(p{sub T}{sup t},p{sub T}{sup a}) = v{sub n}(p{sub T}{sup t})v{sub n}(p{sub T}{sup a}). This expectation is tested for 1 {le} n {le} 5 by applying a global fit of all V{sub n{Delta}}(p{sub T}{sup t},p{sub T}{sup a}) to obtain the best values vn{l_brace}GF{r_brace}(p{sub T}). It is found that for 2 {le} n {le} 5, the fit agrees well with data up to p{sub T}{sup a} {approx} 3-4 GeV/c, with a trend of increasing deviation as p{sub T}{sup t} and p{sub T}{sup a} are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full 0.25 < pT < 15 GeV/c range using a single vn(pT) curve; such a description is however approximately possible for 2 {le} n {le} 5 when p{sub T}{sup a} < 4 GeV/c. For the n = 1 harmonic, however, a single v{sub 1}(pT) curve is not obtained even within the reduced range p{sub T}{sup a} < 4 GeV/c.

  6. Methods for jet studies with three-particle correlations

    SciTech Connect

    Pruneau, Claude A.

    2006-12-15

    We present a method based on three-particle azimuthal correlation cumulants for studying jet interactions with the medium produced in heavy ion collisions (at RHIC) where jets cannot be reconstructed on an event-by-event basis with conventional jet-finding algorithms. The method is specifically designed to distinguish a range of jet interaction mechanisms such as Mach cone emission, gluon Cerenkov emission, jet scattering, and jet broadening. We describe how anisotropic flow contributions of second order (e.g., v{sub 2}{sup 2}) are suppressed in three-particle azimuthal correlation cumulants, and discuss specific model representations of dijets, away-side scattering, and Mach cone emission.

  7. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    PubMed Central

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2007-01-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for

  8. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    NASA Astrophysics Data System (ADS)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  9. Nonlocal exchange correlation in screened-exchange densityfunctional methods

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D.; Louie,Steven G.

    2007-04-22

    We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.

  10. Hyperfine interaction measurements in LaCrO3 and LaFeO3 perovskites using perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dogra, R.; Junqueira, A. C.; Saxena, R. N.; Carbonari, A. W.; Mestnik-Filho, J.; Moralles, M.

    2001-06-01

    The perturbed angular correlation (PAC) technique was used to study the hyperfine interactions in the antiferromagnetic and paramagnetic regions of the distorted perovskites LaCrO3 and LaFeO3. The dilute 111In-->111Cd nuclear probes were introduced into the samples through a chemical process. The present measurements cover the temperature ranges from 15 to 848 K for LaCrO3 and 77 to 1324 K for LaFeO3. Two distinct electric-quadrupole interactions were observed in each compound. The lower quadrupole frequency was assigned to the transition-metal atom site while the higher frequency was attributed to the lanthanum site in both cases. Temperature dependence of the electric-quadrupole interaction parameters indicated structural phase transitions at around 512 and 1223 K, respectively, in LaCrO3 and LaFeO3. The phase transitions were associated with the change from an orthorhombic to rhombohedral structure and characterized by a sudden increase in the electric field gradient Vzz and a decrease in the asymmetry parameter η for both sites. PAC spectra measured below the Néel temperature revealed that at 0 K the supertransferred magnetic hyperfine field on 111Cd at the Cr site in LaCrO3 (2.4 T) is much smaller than at the Fe site in LaFeO3 (19.4 T). The magnetic field on 111Cd at La sites in both compounds is of the order of 0.3 T. Additional measurements were made to determine the magnetic hyperfine field using the probe nucleus 140La-->140Ce. The result reconfirmed that a relatively weak hyperfine field is supertransferred to the probe atoms at La sites.

  11. Perturbed Angular Correlation Study of the Static and Dynamic Aspects of Cadmium and Mercury Atoms Inside and Attached to a C60 Fullerene Cage

    NASA Astrophysics Data System (ADS)

    Das, Satyendra K.; Guin, Rashmohan; Banerjee, Debasish; Johnston, Karl; Das, Parnika; Butz, Tilman; Amaral, Vitor S.; Correia, Joao G.; Barbosa, Marcelo B.

    2014-11-01

    30 keV 111mCd and 50 keV 199mHg beams from ISOLDE were used to implant on preformed targets of C60 with a thickness of 1 mg cm-2. Endofullerene compounds, viz. 111mCd@C60 and 199mHg@C60 formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151 - 245 keV cascade of 111mCd and the 374 - 158 keV cascade of 199mHg on a six LaBr3(Ce) detector system coupled with digital electronics. The results for 111mCd@C60 indicate a single static component (27%) and a fast relaxing component (73%), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C60 are wQ=8.21(36) Mrad s-1 and η = 0.41(9), respectively. The fast relaxation constant is 0.0031(4) ns-1. Similarly, mercury atoms also exhibit a single static and a fast component. The static site has a quadrupole frequency wQ=283.0(12.4) Mrad s-1 and η =0 with a fraction of 30%. The fast relaxation constant is 0.045(8) ns-1 with a fraction of 70%, very similar to that of cadmium.

  12. Capturing correlations in chaotic diffusion by approximation methods.

    PubMed

    Knight, Georgie; Klages, Rainer

    2011-10-01

    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available. PMID:22181115

  13. Insights on why graphic correlation (Shaw's method) works.

    USGS Publications Warehouse

    Edwards, L.E.

    1984-01-01

    In 1964 A.B.Shaw presented a method of correlating fossilferous sedimentary rocks based on interpretation of graphic plots of first- and last-occurrences of taxa. Because there is no way to determine the true total ranges of fossil taxa, it is instructive to test the accuracy of the method using hypothetical datasets. The dataset used here consists of 16 taxa in six sections with differing known rates of rock accumulation. In all graphs, a single straight-line correlation was a reasonable interpretation. The resulting ranges after the first and third rounds of compositing reproduce the 'true' ranges but with small errors. Slight errors in the positioning of individual correlation lines are more likely to lengthen ranges artificially than to shorten them. Shaw's method works well because, whereas actually sampled ranges will be shorter than true ranges, errors in correlation will be likely to extend some ranges. This or any exercise using simulated data is useful only if the hypothetical situation resembles real geologic situations and if insights derived from the hypothetical dataset provide insights into real situations. The method is only as good as the available data. -Author

  14. An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation

    SciTech Connect

    Bachmayr, Markus

    2010-09-30

    A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.

  15. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  16. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    G, A., Major; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  17. Interpolation method for pair correlations in classical crystals.

    PubMed

    Yurchenko, Stanislav O; Kryuchkov, Nikita P; Ivlev, Alexei V

    2016-06-15

    Effects of anharmonicity on the pair correlation function of classical crystals are studied. The recently proposed shortest-graph approach using the Gaussian representation of the individual correlation peaks (the peak width is determined by the length of the shortest graph connecting a given pair of particles) is further improved, to account for anharmonic corrections due to finite temperatures and hard-sphere-like interactions. Two major effects are identified, leading to a modification of the correlation peaks at large or short distances: (i) the peaks at large distances, well described by Gaussians, should be calculated from the finite-temperature phonon spectra; (ii) at short distances, the correlation peaks deviate significantly from the Gaussian form due to the lattice discreteness. We propose the analytical interpolation method, based on the shortest-graph approach, which includes both effects. By employing the molecular dynamics simulations, the accuracy of the method is verified for three- and two-dimensional crystals with the Yukawa, inverse-power-law, and pseudo-hard-sphere pair interactions. The capabilities of the method are demonstrated by calculating the phase diagram of a three-dimensional Yukawa system. PMID:27157408

  18. Interpolation method for pair correlations in classical crystals

    NASA Astrophysics Data System (ADS)

    Yurchenko, Stanislav O.; Kryuchkov, Nikita P.; Ivlev, Alexei V.

    2016-06-01

    Effects of anharmonicity on the pair correlation function of classical crystals are studied. The recently proposed shortest-graph approach using the Gaussian representation of the individual correlation peaks (the peak width is determined by the length of the shortest graph connecting a given pair of particles) is further improved, to account for anharmonic corrections due to finite temperatures and hard-sphere-like interactions. Two major effects are identified, leading to a modification of the correlation peaks at large or short distances: (i) the peaks at large distances, well described by Gaussians, should be calculated from the finite-temperature phonon spectra; (ii) at short distances, the correlation peaks deviate significantly from the Gaussian form due to the lattice discreteness. We propose the analytical interpolation method, based on the shortest-graph approach, which includes both effects. By employing the molecular dynamics simulations, the accuracy of the method is verified for three- and two-dimensional crystals with the Yukawa, inverse-power-law, and pseudo-hard-sphere pair interactions. The capabilities of the method are demonstrated by calculating the phase diagram of a three-dimensional Yukawa system.

  19. A robust correlation method to detect heterogeneous heart valve symptoms

    NASA Astrophysics Data System (ADS)

    Suboh, Mohd Zubir; Mansor, Muhammad Naufal; Junoh, Ahmad Kadri; Daud, Wan Suhana Wan; Muhamad, Wan Zuki Azman Wan; Idris, Azrini

    2015-05-01

    Heart valve disease affects a large number of patients. During the past decade, major advances have occurred in diagnostic techniques of heart valve disease. In this paper, we present an alternative method in classifying heart valve disease using correlation analysis and neural network classifier based on heart sound signal. The heart sound signals used in this study were taken from heart sound manipulator software. First, the signal was converted into frequency domain. Then, power spectrum of the sample is determined and cross-correlated with a reference sample (also in power spectrum form) to get different pattern of correlation plot. Seven different heart sounds of normal and other abnormal sounds from heart valve disease were classified into their classes. The result shows that 98.70% of the samples had been correctly classified by the system.

  20. [Streptokinase: correlation between different methods of biological evaluation].

    PubMed

    Oliva, L M; Guagliardo, M V; Albertengo, M E

    1998-06-01

    A study was carried out to establish an appropriate method for streptokinase (SK) potency determination (biological assay) in order to fulfil the main function of the Instituto Nacional de Medicamentos respecting products marketed in Argentina. The potency of different commercial samples of SK was determined against the International Standard, and three internationally accepted methods were used for this purpose: fibrin plate, clot lysis and chromogenic method. The analysis of results suggests that the fibrin plate method is the least precise and reproducible. The clot lysis and chromogenic methods demonstrated great precision and reproducibility, giving a correlation coefficient of 0.99. It is concluded that both of these methods are best suited to determine potency of SK commercial products. PMID:9741232

  1. Radiative corrections to the three-body region of the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons: The initial-baryon rest frame case

    SciTech Connect

    Juarez-Leon, C.; Martinez, A.; Neri, M.; Torres, J. J.; Flores-Mendieta, Ruben; Garcia, A.

    2009-03-01

    We complement the results for the radiative corrections to the s-circumflex{sub 2}{center_dot}l-circumflex angular correlation of baryon semileptonic decays of Neri et al.[Phys. Rev. D 78, 054018 (2008)] with the final results in the rest frame of the decaying baryon. In addition, we present an analytical result which was not possible to obtain in Neri et al.'s work.

  2. Cathodic protection design using the regression and correlation method

    SciTech Connect

    Niembro, A.M.; Ortiz, E.L.G.

    1997-09-01

    A computerized statistical method which calculates the current demand requirement based on potential measurements for cathodic protection systems is introduced. The method uses the regression and correlation analysis of statistical measurements of current and potentials of the piping network. This approach involves four steps: field potential measurements, statistical determination of the current required to achieve full protection, installation of more cathodic protection capacity with distributed anodes around the plant and examination of the protection potentials. The procedure is described and recommendations for the improvement of the existing and new cathodic protection systems are given.

  3. Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.

    PubMed

    Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei

    2016-06-01

    Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different

  4. Application of the Graphic Correlation method to Pliocene marine sequences

    USGS Publications Warehouse

    Dowsett, H.J.

    1989-01-01

    Biostratigraphy - the use of paleontological evidence to establish relative chronologies, forms the cornerstone of many sedimentary geological investigations. Several different approaches to biochronology are available. Traditional interval zones, defined on lowest and/or highest occurrences of selected taxa, are used to place bodies of rock in a relative chronological framework. Fossil datum levels, which are more numerous than zones, are often used as chronohorizons for correlation purposs. The Graphic Correlation method, like interval zonations, synthesizes information from a number of different taxa but does not assume synchrony of any one taxon. A magnetobiostratigraphic model for deep-sea Pliocene sequences has been constructed by graphic correlation of Deep Sea Drilling project cores from the North Atlantic (606), Caribbean Sea (502), South Atlantic (516), Tasman Sea (590), Equatorial Pacific (573) and North Pacific (577). All cores are hydraulic piston cores which contain abundant planktonic foraminifers, calcareous nannofossils and which record many of the magnetic reversals expected in the Pliocene. The model is based on internally consistent paleontologic data gathered by the author. This study demonstrates the advantages of graphic correlation over conventional biostratigraphic procedures. Accurate inter-regional correlations can be made between core sites without resorting to multiple microfossil zonations and without invoking synchrony of fossil events. Important results of this study are: (1) many Pliocene planktonic foraminifer and calcareous nannofossil events are diachronous by more than 0.20 m.y., (2) Globorotalia truncatulinoides first occurs in the Southwest Pacific Ocean, approximately 0.50 m.y. earlier than previously reported, (3) a previously undetected hiatus of short duration (0.38 m.y.) exists just above the Cochiti subchron at DSDP 577A. ?? 1989.

  5. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  6. Waveform correlation methods for identifying populations of calibration events

    SciTech Connect

    Harris, D.B.

    1997-07-01

    An approach for systematically screening large volumes of continuous data for repetitive events identified as mining explosions on basis of temporal and amplitude population characteristics. The method extends event clustering through waveform correlation with a new source-region-specific detector. The new signal subspace detector generalizes the matched filter and can be used to increase the number of events associated with a given cluster, thereby increasing the reliability of diagnostic cluster population characteristics. The method can be applied to obtain bootstrap ground truth explosion waveforms for testing discriminants, where actual ground truth is absent. The same events, if associated with to a particular mine, may help calibrate velocity models. The method may also assist earthquake hazard risk assessment by providing what amounts to blasting logs for identified mines. The cluster event lists can be reconciled against earthquake catalogs to screen explosions, otherwise hard to identify from the catalogs.

  7. a Task-Oriented Disaster Information Correlation Method

    NASA Astrophysics Data System (ADS)

    Linyao, Q.; Zhiqiang, D.; Qing, Z.

    2015-07-01

    With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, case data, simulated data, and disaster products. However, the efficiency of current data management and service systems has become increasingly difficult due to the task variety and heterogeneous data. For emergency task-oriented applications, the data searches primarily rely on artificial experience based on simple metadata indices, the high time consumption and low accuracy of which cannot satisfy the speed and veracity requirements for disaster products. In this paper, a task-oriented correlation method is proposed for efficient disaster data management and intelligent service with the objectives of 1) putting forward disaster task ontology and data ontology to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple data sources on the basis of uniform description in 1), and 3) linking task-related data automatically and calculating the correlation between each data set and a certain task. The method goes beyond traditional static management of disaster data and establishes a basis for intelligent retrieval and active dissemination of disaster information. The case study presented in this paper illustrates the use of the method on an example flood emergency relief task.

  8. A Perturbation Expansion Method to Study Highly Correlated Spins

    SciTech Connect

    Anda, E. V.; Chiappe, G.; Busser, Carlos A; Davidovich, M. A.; Martins, G. B.; Heidrich-Meisner, F.; Dagotto, Elbio R

    2009-01-01

    This paper proposes a new numerical algorithm to study dynamical spin dependent properties of local highly correlated structures. The method consists in diagonalizing a finite cluster containing the many-body terms of the Hamil- tonian and embedding it into the rest of the system, the Em- bedding Cluster Approximation (ECA), combined with Wil- son s ideas of logarithmic discretization of the representa- tion of the Hamiltonian, the Logarithm Discretization Em- bedded Cluster Approximation (LDECA). The physics as- sociated to a dot and a side-coupled double dot connected to leads are discussed in detail.

  9. Galaxy Velocity Dispersions Using a Cross-Correlation Method: Erratum

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina; Faber, S. M.; Gonzalez, J. Jesus; Stoughton, Roland; Burstein, David

    1991-07-01

    In the paper "Galaxy Velocity Dispersions Using a Cross-Correlation Method" by Cristina Dalle Ore, S. M. Faber, J. Jesus Gonzalez, Roland Stoughton, and David Burstein (ApJ, 366,38 [1991]), the following corrections should be made: 1. The full name of the third author is J. Jesus Gonzalez. 2. The last line of equation (3) should read: [(t x t)*v|d], instead of [(t x t) * v|]. 3. Line 7 of the second paragraph on page 40 should read "...matches the observed FWHM of t x g. Equation (3) is more..."

  10. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    SciTech Connect

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.