Angular resolution of the Pierre Auger Observatory
Bonifazi, C.
2005-08-01
We studied the angular resolution of the Pierre Auger Detector using data collected from January 2004 to May 2005. The detector consists of two independent components, the fluorescence detector and the surface detector. Hybrid events, observed simultaneously by both components, have smaller reconstruction uncertainties than the events observed with only one component. The hybrid resolution is extracted from artificial showers generated by laser shots, while the surface detector angular accuracy is then determined from the comparison of the hybrid geometrical fit with the one obtained from the surface detector alone. We used adjacent surface detector stations to cross check our methods. The angular reconstruction accuracy of the surface detector events is given as a function of station multiplicity.
Complex angular momentum approximation to hard-core scattering
NASA Technical Reports Server (NTRS)
Nussenzveig, H. M.; Wiscombe, W. J.
1991-01-01
The complex angular momentum (CAM) approximation for nonrelativistic quantum scattering by a hard sphere - a union of the recently developed CAM uniform approximation with a semiclassical WKB-like approximation valid at large angles - is shown to be remarkably accurate over the complete range of scattering angles and down to size parameters (circumference to de Broglie wavelength ratios) of order unity. The best approximations previously derivable (Fock-type) cannot reach large scattering angles where semiclassical approximations are useful; even at angles where Fock-type approximations are valid, they are typically two or more orders of magnitude less accurate than CAM. The crucial new feature responsible for the high accuracy of the CAM approximation is the treatment of large-angle diffraction associated with (1) tunneling near the edge of the scatterer, and (2) anomalous reflection.
Angular resolution in acousto-optic image filtering
NASA Astrophysics Data System (ADS)
Epikhin, V. M.
2015-08-01
Diffraction divergences of acoustic and optical beams are considered as effects determining the minimum angular size of an image element in acousto-optic filtering of object images. Simple formulas for determining this angular size in the diffraction plane and a perpendicular plane have been obtained in relation to the parameters of an acousto-optic filter. The calculated and experimental data are found to be in good agreement. Analysis of the results obtained indicates that the angular resolution can be increased, the quality of spectral images can be improved, and filters with specified asymmetry of the angular resolution can be designed. Analytical conditions for the existence of a group of acousto-optic filters with symmetric angular resolution, which is important for practical applications, are found; these filters are characterized by equal angular resolutions in two mutually perpendicular planes.
Angular resolution studies of the CYGNUS array using the shadows of the sun and moon
Shoup, A.L.
1993-01-01
Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70[sub [minus]0.06][sup [plus]0.07] degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a [approximately]25% improvement in the resolution. The systematic pointing error of the array is less than 0.4[degree].
Angular resolution studies of the CYGNUS array using the shadows of the sun and moon
Shoup, A.L.; The CYGNUS Collaboration
1993-05-01
Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70{sub {minus}0.06}{sup {plus}0.07} degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a {approximately}25% improvement in the resolution. The systematic pointing error of the array is less than 0.4{degree}.
Binary Cepheids From High-Angular Resolution
NASA Astrophysics Data System (ADS)
Gallenne, A.; Mérand, A.; Kervella, P.
2015-12-01
Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations
SHARPI: Solar High Angular Resolution Photometric Imager
NASA Technical Reports Server (NTRS)
Rabin, D.; Davila, J.; Content, D.; Keski-Kuha, R.; Oegerle, William (Technical Monitor)
2002-01-01
Observing the lower solar atmosphere with enough linear resolution (< 100 km) to study individual magnetic flux tubes and other features on scales comparable to the photon mean free path has proven to be a challenging and elusive goal. Space-borne instruments based on conventional heavy optics turned out to be too expensive, and adaptive optics on the ground made slow progress for many years. Nevertheless, the scientific case for high-resolution imaging and magnetography has only become more compelling over the last ten years. Today, ground-based adaptive optics is a promising approach for small fields of view at visible wavelengths. Space experiments will need to employ lightweight optics and low cost platforms. The Sunrise balloon experiment is one example. We describe a concept for a sounding rocket experiment that will achieve 0.1-arcsecond imaging using a lightweight, ultraprecise 55-cm mirror in the far ultraviolet (160 nm continuum, Lyman alpha, and possibly C IV 155 nm). The f/1.2 parabolic primary mirror is entering the final stages of production. The mirror is a ULE honeycomb design with front and back face sheets. The front sheet will be figured to 6.3 nm rms with microroughness 1 nm or better. For the initial proof of concept, we describe a no-frills, high-cadence imager aboard a Black Brant sounding rocket. Development of lightweight UV/EUV optics at Goddard Space Flight Center has been supported by the Internal Research and Development program.
Angular resolution obtained with a LaBr3-based rotational modulator
NASA Astrophysics Data System (ADS)
Budden, Brent S.; Case, Gary L.; Cherry, Michael L.
2009-08-01
A Rotational Modulator (RM) gamma ray imager, consisting of a single grid of lead slats rotating above an array of detectors with diameter equal to the slat spacing, has the capability of providing angular resolution significantly better than the geometric resolution (i.e., the ratio of detector diameter to mask/detector separation). The sensitivity, weight, and angular resolution are comparable to that of a coded aperture device, but with significantly less complexity. As the grid rotates, the transmission from a source is modulated on each detector between 0 and 100%. The count profile is cross-correlated with precalculated modulation profiles to produce an approximate source image. Deconvolution of this image with the known imager response can accurately resolve point sources and complex emissions. The appropriate deconvolution technique can achieve angular resolution better than the basic geometrical resolution of the instrument. A prototype RM developed at Louisiana State University features high sensitivity and energy resolution, functional angular resolution of 15, and a simple readout system. The detector array consists of 19 1.5 Ã— 1 thick cerium-doped lanthanum bromide (LaBr3:Ce) crystals. LaBr3 produces significantly more light than other common scintillators, offering < 3% FWHM energy resolution at 662 keV. A grid spaced ~1.2 m from the detection plane with slat width 1.5 offers a 13.8Â° field of view. We present our reconstruction technique, deconvolution algorithms, and simulated and experimental imaging results.
Research on the Three Angular Resolution of Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Yang, R.; Hua, X.; Liu, J.; Wu, H.
2012-07-01
Terrestrial laser scanning technology has been applied more and more widely in the field of Surveying and mapping. Although requirements of the accuracy for different laser scanner survey may differ considerably, spatial resolution is an important aspect, which can be divided into range and angular components. The latter is a focus of this paper and is governed primarily by scanning interval, laser beam width and angle quantisation. An ultimate goal of this research is to derive the relationship and simplified formula between scanning interval and the angular quantisation when the EIFOV(Effective Instantaneous Field of View) is equal to the scanning interval; the relationship and simplified formula of scanning interval and the angular quantisation when the EIFOV is equal to the laser beam width, and the relationship and simplified formula of the theoretical minimum EIFOV and the angular quantisation. Firstly, this paper introduces the EIFOV model and the AMTF(Average Modulation Transfer Function) model. Secondly, the dimensionless AMTF and EIFOV generic model are proposed. Thirdly, the above relathionships are deduced?which are ellipse or hyperbola, and the three simplified formulas are proposed. The simplified formulas have direct significance on the angular resolution's calculation and the scanning interval setting.
Higher signal harmonics, LISA's angular resolution, and dark energy
Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Broeck, Chris van den; Sinha, Siddhartha
2007-11-15
It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.
Very High Angular Resolution Diffractive-Refractive Telescopes
NASA Astrophysics Data System (ADS)
Gorenstein, P.
2003-03-01
Larger versions of diffractive and refractive X-ray devices currently in use at synchrotron facilities for X-ray microscopy are potentially an entire new class of X-ray optics for astronomy. These elements can be configured as either high angular resolution telescopes for imaging, or high throughput concentrators for X-ray timing and moderate resolution spectroscopy with cryogenic or solid state detectors. They are theoretically capable of providing very high angular resolution on a level than can either complement or be an alternative to X-ray interferometry for imaging a black hole during the Beyond Einstein era. They also themselves can be configured for X-ray interferometry. As they are normal incidence devices, which operate in transmission, compared to grazing incidence telescopes they are extremely lightweight per unit area and the surface smoothness is much less critical. However, two major impediments must be overcome before devices composed of diffractive-refractive elements can be applied. They are chromatic aberration and like X-ray interferometry the need to accommodate extremely long focal lengths and separations between components with precision formation flying between multiple spacecraft. The latter requires the development of new technology for mission operations. We describe methods for dealing with chromatic aberration including a technique described by Leon Van Speybroeck.
High-energy resolution, high-angular acceptance crystal monochromator
Toellner, T.S.; Mooney, T.; Alp, E.E. ); Shastri, S. . Dept. of Applied Physics)
1992-06-01
The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with [mu]eV[minus]neV resolution in the hard x-ray regime.
High-energy resolution, high-angular acceptance crystal monochromator
Toellner, T.S.; Mooney, T.; Alp, E.E.; Shastri, S.
1992-06-01
The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with {mu}eV{minus}neV resolution in the hard x-ray regime.
The Evershed Effect with 0.2 arcsec Angular Resolution
NASA Astrophysics Data System (ADS)
Márquez, I.; Bonet, J. A.; Sánchez Almeida, J.; Domínguez Cerdeña, I.
2006-12-01
We present a preliminary analysis of penumbral spectra observed with unprecedented angular resolution (0.2 arcsec) using the new Swedish 1-m Solar Telescope. The use of a non-magnetic line allows us to measure Doppler shifts without magnetic contamination. The observed Doppler shifts depend on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved even with our resolution. We find a correlation between upflows and bright filaments. This association is not specific of the outer penumbra but it also occurs in the inner penumbra. The existence of such correlation was originally reported by tet{m1 BS69}, and it is suggestive of energy transport by convection in penumbrae.
The Evershed Effect Observed with 0.2" Angular Resolution
NASA Astrophysics Data System (ADS)
Sánchez Almeida, J.; Márquez, I.; Bonet, J. A.; Domínguez Cerdeña, I.
2007-04-01
We present an analysis of the Evershed effect observed with a resolution of 0.2". Using the new Swedish 1 m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the nonmagnetic line Fe I ?7090.4 allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved, even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km s-1 coexist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures and between downflows and dark structures. This association is not specific to the outer penumbra, but it also occurs in the inner penumbra. The existence of such a correlation was originally reported in 1969 by Beckers and Schröter, and it is suggestive of energy transport by convection in penumbrae.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Jokipii, J. R.
1975-01-01
The Markov approximation to the propagation of waves in an extended, irregular medium is discussed in an astrophysical context. A new derivation is presented which is simple and which shows that the assumption of Gaussian statistics used by previous authors is irrelevant. We discuss the relevance of the approximation and show that it may apply in many situations of interest, including interstellar scintillations of pulsar signals. The approximation does not require the assumption of weak scattering or Gaussian correlation functions. The Markov equation for the angular spectrum is particularly simple, and solutions are discussed for typical turbulence spectra. It is found that the equation for the angular spectrum is very nearly that used by previous authors, and the present discussion shows that these results are much more general than previously thought. A possible observational test for distinguishing between Gaussian and power-law interstellar density spectra is discussed.
New detector perspectives for high angular resolution astronomy
NASA Astrophysics Data System (ADS)
Feautrier, Philippe
2001-05-01
Some new types of detector have just appear in the last decade pushing the limits in term of very low light level detection. High Angular Resolution astronomy usually uses 2 types of detectors: "conventional" detectors and photon counting detectors. Among the photon counting detectors, a very promising solution could be Superconducting Tunnel Junctions (STJ) detectors. They are able to count optical photons from the UV (200 nm) to the near infrared (2000 nm), with a good quantum efficiency (about 70%), a good temporal response (about 10 kHz/detector) and an energy resolution that does not exist in semiconductor-based devices. STJ first applications could be: fringe sensor for interferometry, or a visible and near-IR wavefront sensor. A radically new CCD development by Marconi Applied Technologies, available very soon, has enabled substantial internal gain within the CCD before the signal reaches the output amplifier. With reasonably high gain, sub-electron readout noise levels are achieved even at MHz pixel rates. This technology may have the conjugate advantages of the CCD's and of the photon counting detectors. Among the conventional detectors, I will present a recent CCD application: the wavefront sensor for the NAOS adaptive optic system for the VLT (ESO). New type of CMOS visible detectors are also fabricated by the Rockwell Science Center. The "multiple readouts" technique used by the IR CMOS detectors can be used in the visible and may decrease the readout noise down to about 1 e-, but the frame rate also decreases.
Shower disc sampling and the angular resolution of gamma-ray shower detectors
NASA Technical Reports Server (NTRS)
Lambert, A.; Lloyd-Evans, J.
1985-01-01
As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.
Apparent diffusion profile estimation from high angular resolution diffusion images
NASA Astrophysics Data System (ADS)
Descoteaux, Maxime; Angelino, Elaine; Fitzgibbons, Shaun; Deriche, Rachid
2006-03-01
High angular resolution diffusion imaging (HARDI) has recently been of great interest to characterize non-Gaussian diffusion process. In the white matter of the brain, this occurs when fiber bundles cross, kiss or diverge within the same voxel. One of the important goal is to better describe the apparent diffusion process in these multiple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). In this paper, we design the appropriate mathematical tools to describe noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimate a smoother and closer diffusivity profile to the true diffusivities without noise. We exploit properties of the spherical harmonics to define a smoothing term based on the Laplace-Beltrami for functions defined on the unit sphere. An additional contribution of the paper is the derivation of the general transformation taking the spherical harmonics coefficients to the high order tensor independent elements. This allows the careful study of the state of the art high order anisotropy measures computed from either spherical harmonics or tensor coefficients. We analyze their ability to characterize the underlying diffusion process. We are able to recover voxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the approach on diffusion profiles from synthetic data and from a biological rat phantom.
Yuan, T.-T.; Kewley, L. J.; Rich, J.
2013-04-20
With the rapid progress in metallicity gradient studies at high redshift, it is imperative that we thoroughly understand the systematics in these measurements. This work investigates how the [N II]/H{alpha}-ratio-based metallicity gradients change with angular resolution, signal to noise (S/N), and annular binning parameters. Two approaches are used: (1) we downgrade the high angular resolution integral-field data of a gravitationally lensed galaxy and re-derive the metallicity gradients at different angular resolution; (2) we simulate high-redshift integral field spectroscopy observations under different angular resolution and S/N conditions using a local galaxy with a known gradient. We find that the measured metallicity gradient changes systematically with angular resolution and annular binning. Seeing-limited observations produce significantly flatter gradients than higher angular resolution observations. There is a critical angular resolution limit beyond which the measured metallicity gradient is substantially different to the intrinsic gradient. This critical angular resolution depends on the intrinsic gradient of the galaxy and is {<=}0.''02 for our simulated galaxy. We show that seeing-limited high-redshift metallicity gradients are likely to be strongly affected by resolution-driven gradient flattening. Annular binning with a small number of annuli produces a more flattened gradient than the intrinsic gradient due to weak line smearing. For three-annulus bins, a minimum S/N of {approx}5 on the [N II] line is required for the faintest annulus to constrain the gradients with meaningful errors.
Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging
Rathi, Yogesh; Dolui, Sudipto
2013-01-01
Despite the relative recency of its inception, the theory of compressive sampling (aka compressed sensing) (CS) has already revolutionized multiple areas of applied sciences, a particularly important instance of which is medical imaging. Specifically, the theory has provided a different perspective on the important problem of optimal sampling in magnetic resonance imaging (MRI), with an ever-increasing body of works reporting stable and accurate reconstruction of MRI scans from the number of spectral measurements which would have been deemed unacceptably small as recently as five years ago. In this paper, the theory of CS is employed to palliate the problem of long acquisition times, which is known to be a major impediment to the clinical application of high angular resolution diffusion imaging (HARDI). Specifically, we demonstrate that a substantial reduction in data acquisition times is possible through minimization of the number of diffusion encoding gradients required for reliable reconstruction of HARDI scans. The success of such a minimization is primarily due to the availability of spherical ridgelet transformation, which excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even more accurate is a combination of the sparsity constraints in the diffusion domain with additional constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the present paper describes an original way to combine the diffusion-and spatial-domain constraints to achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in terms of reconstruction accuracy. Finally, details are provided on an efficient numerical scheme which can be used to solve the aforementioned reconstruction problem by means of standard and readily available estimation tools. The paper is concluded with experimental results which support the practical value of the proposed reconstruction methodology. PMID:21536524
Cepheids at high angular resolution: circumstellar envelope and pulsation
NASA Astrophysics Data System (ADS)
Gallenne, Alexandre
2011-12-01
In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.
High angular resolution observations of CS in the Orion nebula
Goldsmith, P.F.; Langer, W.D.; Schloerb, F.P.; Scoville, N.Z.
1980-09-01
The core of the Orion molecular cloud has been observed in the emission lines of CS, J=3..-->..2 (146.8 GHz) and J=2..-->..1 (97.98 GHz), using the 14m FCRAO telescope which has angular resolutions of 33'' and 55'' at these frequencies. The morphology indicated by these new data, combined with previous observations, is an extremely narrow (<10'') ridge extending 9' N--S as well as a central condensation at the position of the Kleinmann-Low nebula. Within the central condensation our J=3..-->..2 observations at a spacing of 15'' show no evidence of significant clumping on the scale of our beam despite the high sensitivity of this transition to changes in H/sub 2/ density. From the CS lines, we estimate a mean molecular density of 2 x 10/sup 5/ cm/sup -3/ averaged over the inner 1' corresponding to a source radius of 2 x 10/sup 17/ cm. Combining this with analogous determinations based upon /sup 13/CO, H/sub 2/CO, and NH/sub 3/, we find for displacement along an E-W axis the empirical law n/sub H2/proportionalr/sup -2/ for rapprox. =10/sup 17/ to 2 x 10/sup 18/ cm. This radial distribution is similar to that previously derived from long-wavelength dust emission (lambda=0.3--1 mm) over the more limited range rapprox. =10/sup 17/ to 5 x 10/sup 17/ cm.
Trade-off between angular and spatial resolutions in in vivo fiber tractography.
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland
2016-04-01
Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0mm were comparable, while the lowest resolution (2.5mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution. PMID:26774615
Evolution of the angular momentum of protogalaxies from tidal torques: Zel'dovich approximation
NASA Astrophysics Data System (ADS)
Catelan, Paolo; Theuns, Tom
1996-09-01
The growth of the angular momentum L of protogalaxies induced by tidal torques is reconsidered. We adopt White's formalism and study the evolution of L in Lagrangian coordinates; the motion of the fluid elements is described by the Zel'dovich approximation. We obtain a general expression for the ensemble expectation value of the square of L in terms of the first and second invariant of the inertia tensor of the Lagrangian volume Lambda enclosing the collapsing mass of the proto-object. We then specialize the formalism to the particular case in which Lambda is centred on a peak of the smoothed Gaussian density field and approximated by an isodensity ellipsoid. The result is the appropriate analytical estimate for the rms angular momentum of peaks to be compared against simulations that make use of the Hoffman-Ribak algorithm to set up a constrained density field that contains a peak with given shape. Extending the work of Heavens & Peacock, we calculate the joint probability distribution function for several spin parameters and peak mass M using the distribution of peak shapes, for different initial power spectra. The probability distribution for the rms final angular momentum
An angularly refineable phase space finite element method with approximate sweeping procedure
Kophazi, J.; Lathouwers, D.
2013-07-01
An angularly refineable phase space finite element method is proposed to solve the neutron transport equation. The method combines the advantages of two recently published schemes. The angular domain is discretized into small patches and patch-wise discontinuous angular basis functions are restricted to these patches, i.e. there is no overlap between basis functions corresponding to different patches. This approach yields block diagonal Jacobians with small block size and retains the possibility for S{sub n}-like approximate sweeping of the spatially discontinuous elements in order to provide efficient preconditioners for the solution procedure. On the other hand, the preservation of the full FEM framework (as opposed to collocation into a high-order S{sub n} scheme) retains the possibility of the Galerkin interpolated connection between phase space elements at arbitrary levels of discretization. Since the basis vectors are not orthonormal, a generalization of the Riemann procedure is introduced to separate the incoming and outgoing contributions in case of unstructured meshes. However, due to the properties of the angular discretization, the Riemann procedure can be avoided at a large fraction of the faces and this fraction rapidly increases as the level of refinement increases, contributing to the computational efficiency. In this paper the properties of the discretization scheme are studied with uniform refinement using an iterative solver based on the S{sub 2} sweep order of the spatial elements. The fourth order convergence of the scalar flux is shown as anticipated from earlier schemes and the rapidly decreasing fraction of required Riemann faces is illustrated. (authors)
Approximate angular distribution and spectra for geomagnetically trapped protons in low-earth orbit
NASA Technical Reports Server (NTRS)
Watts, J. W.; Parnell, T. A.; Heckman, H. H.
1989-01-01
The highly anisotropic nature of the radiation in the low-earth orbit has been ignored for most spacecraft shielding calculations made to date because the standard environmental models describe the omnidirectional flux only, because the varying attitude of the spacecraft in the environment is assumed to average out the effect and because of the added complexity of the calculation. The Space Station is planned to be stabilized with respect to the velocity vector and local vertical. Thus it will pass through the South Atlantic Anomaly where most of the radiation flux is encountered in much the same attitude on each pass. Any calculation including a complex shielding geometry should thus consider the angular distributuon of the incident radiation. An approximate trapped proton angular distribution is presented which includes both the 'pan caked' distribution relative to the magnetic field direction and the east-west effect which is energy dependent. This distribution is then used with a planar shielding geometry to obtain an estimate of the effect of the anisotropy on radiation dose rates in spacecraft.
Approximate matching of digital point sets using a novel angular tree.
Bhowmick, Partha; Bhattacharya, Bhargab
2009-05-01
Matching and analysis of patterns or shapes in the digital plane are of utmost importance in various problems of computer vision and pattern recognition. A digital point set is such a pattern that corresponds to an object in the digital plane. Although there exist several data structures that can be employed for Approximate Point Set Pattern Matching (APSPM) in the real domain, they require substantial modification to support algorithms in the digital domain. To bridge this gap, a novel data structure called "angular tree" is proposed, targeting an efficient and error-controllable circular range query in the digital plane. The farthest pair of points may be used as the starting correspondence between the pattern set and the background set. Several classical discrete structures and methodologies of computational geometry, as well as some topological features of circles/discs in digital geometry, have been used in tandem, for successful realization of the proposed APSPM algorithm in the digital plane. The APSPM algorithm based on the angular tree has been implemented and tested on various point sets and the reported results demonstrate the efficiency and versatility of the new data structure for supporting APSPM algorithms. PMID:19299854
Approximate angular distribution and spectra for geomagnetically trapped protons in low-Earth orbit
Watts, J.W.; Parnell, T.A. ); Heckman, H.H. )
1989-05-15
The highly anisotropic nature of the radiation in the low-Earth orbit has been ignored for most spacecraft shielding calculations made to date because the standard environmental models describe the omnidirectional flux only, because the varying attitude of the spacecraft in the environment is assumed to average out the effect and because of the added complexity of the calculation. The Space Station is planned to be stabilized with respect to the velocity vector and local vertical. Thus it will pass through the South Atlantic Anomaly where most of the radiation flux is encountered in much the same attitude on each pass. Any calculation including a complex shielding geometry should thus consider the angular distribution of the incident radiation. An approximate trapped proton angular distribution is presented which includes both the pan caked'' distribution relative to the magnetic field direction and the east-west effect which is energy dependent. This distribution is then used with a planar shielding geometry to obtain an estimate of the effect of the anisotropy on radiation dose rates in spacecraft.
Monte-Carlo studies of the angular resolution of a future Cherenkov gamma-ray telescope
Funk, S.; Hinton, J. A.
2008-12-24
The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of this observational technique, providing high sensitivity and an angular resolution of {approx}0.1 deg. per event above an energy threshold of {approx}100 GeV. Planned future arrays of IACTs such as AGIS or CTA are aiming at significantly improving the angular resolution. Preliminary results have shown that values down to {approx}1' might be achievable. Here we present the results of Monte-Carlo simulations that aim to exploring the limits of angular resolution for next generation IACTs and investigate how the resolution can be optimised by changes to array and telescope parameters such as the number of pixel in the camera, the field of view of the camera, the angular pixel size, the mirror size, and also the telescope separation.
Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu
2013-05-10
We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and existing lower resolution single-dish observations.
High energy resolution, high angular acceptance crystal monochromator
Alp, E.E.; Mooney, T.M.; Toellner, T.
1996-06-04
A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.
High energy resolution, high angular acceptance crystal monochromator
Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)
1996-06-04
A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.
NASA Astrophysics Data System (ADS)
Pesaresi, M.; Ferguson, W.; Fulcher, J.; Hall, G.; Raymond, M.; Ryan, M.; Zorba, O.
2011-04-01
A charged particle telescope has been constructed for data taking at high rates in a CERN 400 GeV/c proton beam line. It utilises ten planes of silicon microstrip sensors, arranged as five pairs each measuring two orthogonal coordinates, with an active area of 3.8 × 3.8 cm2. The objective was to provide excellent angular and spatial resolution for measuring the trajectories of incident and outgoing particles. The apparatus has a long baseline, of approximately 10 m in each arm, and achieves an angular resolution in the incoming arm of 2.8 ?rad and a total angular resolution on the difference of the two arms of 5.2 ?rad, with performance limited by multiple scattering in the sensor layers. The sensors are instrumented by a system based on the CMS Tracker electronic readout chain, including analogue signal readout for optimal spatial resolution. The system profits from modified CMS software and hardware to provide a data acquisition capable of peak trigger rates of at least 7 kHz. We describe the sensor readout, electronic hardware and software, together with the measured performance of the telescope during studies of crystal channeling for the UA9 collaboration. Measurements of a previously unobserved periodic movement of the beam are also presented and the significance of such an effect for precise studies such as for channeling is discussed.
Low Power Compact Radio Galaxies at High Angular Resolution
Giroletti, Marcello; Giovannini, G.; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro
2005-06-30
We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.
Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection
NASA Astrophysics Data System (ADS)
Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo
2013-06-01
Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1-9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ˜3-4°. An angular resolution of ˜3-4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate.
A measurement of the angular resolution of air showers using the muonic component at ground level
Goodman, M.C.; Ellsworth, G.B.; Bofill, J.; Bogert, D.; Freudenreich, H.; Goodman, J.A.; Busza, W.; Eldridge, T.; Abolins, M.; Gupta, S.C.
1987-01-01
The angular resolution of cosmic ray air showers is found to be 13.4 mr using single tracks and as good as 2 to 4 mr from all of the tracks for selected events by using the muonic component of air showers and a fine grained calorimeter. The sample of events was 8776 events triggered by an air shower array in which 3 to 76 muons were reconstructed. There was very little dependence of the single track angular resolution on either the number of muons or the shower angle.
High-angular-resolution NIR astronomy with large arrays (SHARP I and SHARP II)
NASA Astrophysics Data System (ADS)
Hofmann, Reiner; Brandl, Bernhard; Eckart, Andreas; Eisenhauer, Frank; Tacconi-Garman, Lowell E.
1995-06-01
SHARP I and SHARP II are near infrared cameras for high-angular-resolution imaging. Both cameras are built around a 256 X 256 pixel NICMOS 3 HgCdTe array from Rockwell which is sensitive in the 1 - 2.5 micrometers range. With a 0.05'/pixel scale, they can produce diffraction limited K-band images at 4-m-class telescopes. For a 256 X 256 array, this pixel scale results in a field of view of 12.8' X 12.8' which is well suited for the observation of galactic and extragalactic near-infrared sources. Photometric and low resolution spectroscopic capabilities are added by photometric band filters (J, H, K), narrow band filters ((lambda) /(Delta) (lambda) approximately equals 100) for selected spectral lines, and a CVF ((lambda) /(Delta) (lambda) approximately equals 70). A cold shutter permits short exposure times down to about 10 ms. The data acquisition electronics permanently accepts the maximum frame rate of 8 Hz which is defined by the detector time constants (data rate 1 Mbyte/s). SHARP I has been especially designed for speckle observations at ESO's 3.5 m New Technology Telescope and is in operation since 1991. SHARP II is used at ESO's 3.6 m telescope together with the adaptive optics system COME-ON + since 1993. A new version of SHARP II is presently under test, which incorporates exchangeable camera optics for observations with scales of 0.035, 0.05, and 0.1'/pixel. The first scale extends diffraction limited observations down to the J-band, while the last one provides a larger field of view. To demonstrate the power of the cameras, images of the galactic center obtained with SHARP I, and images of the R136 region in 30 Doradus observed with SHARP II are presented.
HARDI: A high angular resolution deployable interferometer for space
NASA Technical Reports Server (NTRS)
Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd
1992-01-01
We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.
Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu
2015-01-01
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardsonâ€“Lucy algorithm. PMID:25806871
GeV gamma-ray astronomy telescopes with high angular resolution
NASA Technical Reports Server (NTRS)
Mcbreen, B.
1985-01-01
Gamma-ray telescopes flown on satellites have poor angular resolution with typical point source error circles of a few square degrees. It is shown that a major improvement in angular resolution for the detection of gamma-rays in the GeV region can be obtained with a single crystal as converter. The electron produced by a gamma ray incident at a small angle to a major crystal axis or plane is captured into channeling and radiates gamma rays. The channeling radiation and the electron-positron pair can be detected and yield point source locations with a precision of 5 arcseconds at 10 GeV. This is an improvement of three orders of magnitude on the angular precision of telescopes sensitive to gamma-rays above 50 MeV flown on Satellites.
Chiral resolution of spin angular momentum in linearly polarized and unpolarized light
NASA Astrophysics Data System (ADS)
Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.
2015-11-01
Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.
Chiral resolution of spin angular momentum in linearly polarized and unpolarized light
HernÃ¡ndez, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.
2015-01-01
Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284
Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.
Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G
2015-01-01
Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284
NASA Technical Reports Server (NTRS)
Tauber, Jan A.; Tielens, A. G. G. M.; Meixner, Margaret; Foldsmith, Paul F.
1994-01-01
We present observations of the molecular component of the Orion Bar, a prototypical Photodissociation Region (PDR) illuminated by the Trapezium cluster. The high angular resolution (6 sec-10 sec) that we have achieved by combining single-dish and interferometric observations has allowed us to examine in detail the spatial and kinematic morphology of this region and to estimate the physical characteristics of the molecular gas it contains. Our observations indicate that this PDR can be essentially described as a homogeneously distributed slab of moderately dense material (approximately 5 x 10(exp 4)/cu cm), in which are embedded a small number of dense (greater than 10(exp 6)/cu cm) clumps. The latter play little or no role in determining the thickness and kinetic temperature structure of this PDR. This observational picture is largely supported by PDR model calculations for this region, which we describe in detail in this work. We also find our model predictions of the intensities of a variety of atomic and molecular lines to be in good general agreement with a number of previous observations.
High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt
2012-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours.
On the Angular Resolution of the AGILE Gamma-Ray Imaging Detector
NASA Astrophysics Data System (ADS)
Sabatini, S.; Donnarumma, I.; Tavani, M.; Trois, A.; Bulgarelli, A.; Argan, A.; Barbiellini, G.; Cattaneo, P. W.; Chen, A.; Del Monte, E.; Fioretti, V.; Gianotti, F.; Giuliani, A.; Longo, F.; Lucarelli, F.; Morselli, A.; Pittori, C.; Verrecchia, F.; Caraveo, P.
2015-08-01
We present a study of the angular resolution of the AGILE gamma-ray imaging detector (GRID) that has been operational in space since 2007 April. The AGILE instrument is made of an array of 12 planes that are each equipped with a tungsten converter and silicon microstrip detectors, and is sensitive in the energy range 50 MeV-10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploit an analog readout system with dedicated electronics coupled with silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its {E}-2 energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ˜ 4^\\circ at 100 MeV; ˜ 0\\buildrel{\\circ}\\over{.} 8 at 1 GeV; ˜ 0\\buildrel{\\circ}\\over{.} 9 integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, characterized by a flat response up to 30^\\circ off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE/GRID and Fermi/LAT (Large Area Telescope), is interesting in view of future gamma-ray missions, which are currently under study. The two instruments exploit different detector configurations that affect the angular resolution: the former is optimized in the readout and track reconstruction, especially in the low-energy band, the latter is optimized in terms of converter thickness and power consumption. We show that despite these differences, the angular resolution of both instruments is very similar, between 100 MeV and a few GeV.
NASA Technical Reports Server (NTRS)
Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.
2015-01-01
We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.
Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps
Germain, L.; Kratsch, D.; Salib, M.; Gey, N.
2014-12-15
A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: â€¢ ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. â€¢ Unlike classical methods, ALGrId works even beyond the relative angular resolution. â€¢ If the orientation noise peaks at 0.7Â°, ALGrid detects 0.4Â°-boundaries correctly. â€¢ In the same example, the classical algorithm identifies 1.1Â°-boundaries only.
Development of a High Angular Resolution Diffusion Imaging Human Brain Template
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-01-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528
NASA Astrophysics Data System (ADS)
Wu, L.; Hasekamp, O.; van Diedenhoven, B.; Cairns, B.
2015-03-01
We investigated the importance of spectral range and angular resolution for aerosol retrieval from multi-angle photo-polarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over continental US. Aerosol retrievals performed from RSP measurements show good agreement with ground based AERONET measurements for AOT, SSA, and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOT, SSA and coarse mode microphysical properties. On the other hand, retrieval accuracies on aerosol properties do not improve significantly if more than 10 viewing angles are used in the retrieval.
Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost
NASA Astrophysics Data System (ADS)
Zhang, William
2014-08-01
Every conceivable future x-ray astronomical mission would require x-ray optics. These optics must meet the three-fold requirements of angular resolution, effective area, and cost.In this poster we will present the rationale, technical approach, and status of an x-ray optics technology development program that has been underway at Goddard Space Flight Center and Marshall Space Flight Center.
Method for improving the angular resolution of a neutron scatter camera
Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.
2012-12-25
An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.
Preliminary Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS)
NASA Astrophysics Data System (ADS)
Groff, Tyler D.; Peters, M.; Kasdin, N. J.; McElwain, M. W.; Galvin, M.; Carr, M.; Knapp, G. R.; Janson, M.; Brandt, T.; Lupton, R.; Gunn, J. E.; Guyon, O.; Martinache, F.; Hayashi, M.; Takato, N.
2013-01-01
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built at Princeton University for the Subaru telescope. It is designed to disperse a 1.75x1.75 arcsecond field of view onto a Teledyne H2RG detector. The instrument will be located behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which will provide a coronagraphic image with adequate strehl to achieve high detection contrast levels down to angular separations of 80 milliarcseconds in H band. CHARIS is designed specifically to image and spectrally characterize exoplanets and disks under two observation modes; The low resolution, R15 mode, will disperse Y+J+H+K (0.9-2.5 microns) bands across the detector and the high resolution, R80, mode will allow us to take detailed spectra of the target in Y, J, H, or K band. Since we seek very close companions, we cannot rely on angular differential imaging to detect the planet in the presence of residual quasi-static speckles. CHARIS is thus being designed to interface directly with SCExAO to modulate and correct such speckles to detect companions up to five orders of magnitude dimmer than the parent star. The IFS is based on a lenslet design with pinholes to mitigate diffractive crosstalk between spectra. We present the preliminary design of the instrument and detail design tradeoffs and challenges associated with such a spectrograph. First light is expected to be by the end of 2015.
High angular resolution observations of star-forming regions with BETTII and SOFIA
NASA Astrophysics Data System (ADS)
Rizzo, Maxime; Rinehart, Stephen; Mundy, Lee G.; Benford, Dominic J.; Dhabal, Arnab; Fixsen, Dale J.; Leisawitz, David; Maher, Stephen F.; Mentzell, Eric; Silverberg, Robert F.; Staguhn, Johannes; Veach, Todd; Cardiff BETTII Team
2016-01-01
High angular resolution observations in the far-infrared are important to understand the star formation process in embedded star clusters where extinction is large and stars form in close proximity. The material taking part in the star forming process is heated by the young stars and emits primarily in the far-IR; hence observations of the far-IR dust emission yields vital information about the gravitational potential, the mass and energy distribution, and core/star formation process. Previous observatories, such as Herschel, Spitzer and WISE lack the angular resolution required to study these dense star forming cores and are further limited by saturation in bright cores.The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is pioneering the path to sub-arcsecond resolution at far-IR wavelengths. This thesis talk discusses the instrumental challenges in building BETTII, as well as results from our SOFIA survey to illustrate the potential of higher-angular resolution observations. The 8m-long two element interferometer is being tested at NASA GSFC and is scheduled for first flight in fall 2016. BETTII will provide 0.5 to 1 arcsecond spatial resolution and spectral resolving power of 10 to 100 between 30 and 90 microns, where most of the dust continuum emission peaks in local star forming regions. It will achieve spatially-resolved spectroscopy of bright, dense cores with unprecedented high definition. This talk focuses on the main challenges and solutions associated with building BETTII: thermal stability, attitude/pointing control, and path length stabilization. In each of these areas we look at the trade-off between design, control, and knowledge in order to achieve the best-possible instrumental capability and sensitivity.As a first step towards resolving cluster cores, we surveyed 10 nearby star-forming clusters with SOFIA FORCAST at 11, 19, 31 and 37 microns. The FORCAST instrument has the highest angular resolution currently available in the far-IR. We use it to gain new insights in these important regions of stellar birth by now unambiguously matching the far-IR fluxes to their shorter wavelengths counterparts, and improve our understanding of clustered sources using SED modeling.
High Angular Resolution X-Ray Astronomy with Diffractive-Refractive Elements
NASA Astrophysics Data System (ADS)
Gorenstein, P.
No future grazing incidence X-ray telescope is likely to have an angular resolution that is signficantly superior to the Chandra X-Ray Observatory s Better angular resolution requires a new technology I describe an X-ray imaging system that has the potential to do based upon diffractive-refractive optics that transmit rather than reflect X-rays These optics are much less sensitive to figure errors and surface roughness the factors that limit the resolution of grazing incidence optics The elements are a Fresnel zone plate and a refractive lens that are configured such that chromatic aberration is corrected over a finite energy band width The simplest form consists of the two elements in direct contact providing a bandwidth of about 10 where chromatic aberration is less than 100 microarcseconds A more complex system where the two elements are widely separated can provide an angular resolution of a few microarcseconds over a smaller bandwidth The major disadvantage of this system is the need for extremely long focal lengths about 10 000 km for the simpler system where two elements are in direct contact and larger for the separated optics systems The technology that would enable formation flying between optics and detector over such vast distances does not exist at present However there is no inherent reason why it cannot be developed While the field of view is quite large intrinsically the very long focal length means that it is limited in practice by the size of the detector On the positive side the optics should not
High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions
NASA Technical Reports Server (NTRS)
Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; McClelland, R. S.; ODell, S. L.; Saha, T. T.; Sharpe, M. V.
2011-01-01
X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.
Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost
NASA Astrophysics Data System (ADS)
Zhang, William
2013-01-01
Since its beginning 50 years ago, X-ray astronomy has advanced by leaps and bounds, culminating in its current golden age in which three major observatories—Chandra, XMM-Newton, and Suzaku—are operating simultaneously and addressing some of the most important astronomical and astrophysical problems of our time. Building upon this success, the recent Decadal Survey of Astronomy and Astrophysics has defined objectives for x-ray astronomy whose realization requires both new optics and new detector technologies. The development of these technologies has been identified as one of the highest priorities for funding to enable future x-ray missions. X-ray optics technology based on precision glass slumping is on the verge of revolutionizing x-ray telescope making. It has shown that extremely thin (< 0.4mm) and lightweight (areal density < 1 kg/m2) true Wolter-I mirror segments with angular resolutions better than 7 arc-seconds can be fabricated consistently, efficiently, and inexpensively. In comparison with those of XMM-Newton, these mirror segments represent a factor of 10 reduction in mass while achieving slightly better angular resolution. In comparison with those of Suzaku, they represent a factor of 20 improvement in angular resolution while maintaining the same mass areal density. These advances have been demonstrated with x-ray images from aligned and bonded mirror segments. In short, this technology is approaching TRL-5 for making the mirror assemblies required for a 10 arc-second observatory. In this poster we will present the latest x-ray and environment test results obtained with technology development modules which are substantially similar to flight modules in the way they constructed and tested.
Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost
NASA Astrophysics Data System (ADS)
Zhang, William; NGXO
2014-01-01
X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the dour missions currently in operations: Chandra, XMM-Newton, Suzaku, and NuSTAR. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly.
Small-Pixel TES Microcalorimeters for High Angular Resolution Solar Physics
NASA Astrophysics Data System (ADS)
Deiker, Steven; Stern, R.; Rausch, A.; Shing, L.; Young, B.; Tomada, A.; Cherry, M.; Hilton, G.; Vale, L.; Irwin, K.; Ullom, J.
2009-05-01
Transition Edge Sensor (TES) microcalorimeters have produced excellent time and energy resolution as pixelated arrays of single-photon X-ray detectors. They have produced better than 2 eV energy resolution at 6 keV with photon arrival times recorded to < 10 ns. Because of thermal limitations, X-ray TES pixels are typically at least 100 microns on a side, and often much larger. This pixel size is well-matched to the large (20 m) focal length X-ray optics required for the low photon flux observations typical of X-ray astronomy missions such as, e.g., the International X-ray Observatory. Solar physics missions, not lacking for photons, generally employ small ( 2 m) focal length mirrors for their X-ray observations, to conserve weight and expense. Attempting to use standard sized TES detectors on such missions would result in 10 arcsecond or worse angular resolution. Given the size of the features most observers are interested in studying, this is a rather large drawback for a TES-based mission to overcome. Recent work at LMSAL, in collaboration with NIST, Stanford University and Santa Clara University, has pursued two complementary paths to solving this problem. One involves the production of very narrow position sensitive strip absorbers with TES readout. The other is the use of a novel TES material allowing much higher heat capacity, and thus smaller pixel size. Both techniques can allow for pixel sizes of 10-20 microns, which would allow 1-2 arcsec angular resolution. Arrays of these pixels would allow images of solar features with simultaneously high resolution in energy, time and angle. Results and future plans for these projects will be discussed.
Cohen-Adad, J.; Descoteaux, M.; Wald, L.L.
2011-01-01
Purpose To develop a bootstrap method to assess the quality of High Angular Resolution Diffusion Imaging (HARDI) data using Q-Ball imaging (QBI) reconstruction. Materials and Methods HARDI data were re-shuffled using regular bootstrap with jackknife sampling. For each bootstrap dataset, the diffusion orientation distribution function (ODF) was estimated voxel-wise using QBI reconstruction based on spherical harmonics functions. The reproducibility of the ODF was assessed using the Jensen-Shannon divergence (JSD) and the angular confidence interval was derived for the first and the second ODF maxima. The sensitivity of the bootstrap method was evaluated on a human subject by adding synthetic noise to the data, by acquiring a map of image signal-to-noise ratio (SNR) and by varying the echo time and the b-value. Results The JSD was directly linked to the image SNR. The impact of echo times and b-values was reflected by both the JSD and the angular confidence interval, proving the usefulness of the bootstrap method to evaluate specific features of HARDI data. Conclusion The bootstrap method can effectively assess the quality of HARDI data and can be used to evaluate new hardware and pulse sequences, perform multi-fiber probabilistic tractography, and provide reliability metrics to support clinical studies. PMID:21509879
X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy
NASA Technical Reports Server (NTRS)
Skinner, G. K.; Krismanic, John F.
2009-01-01
Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.
High-resolution fibre-optic sensor for angular displacement measurements
NASA Astrophysics Data System (ADS)
Khiat, A.; Lamarque, F.; Prelle, C.; Bencheikh, N.; Dupont, E.
2010-02-01
The design of a fibre-optic sensor able to measure high-precision angular displacements is presented. The sensor has a small size which allows easy integration in miniature mechanical systems. Two configurations are designed: lens-free configuration and GRIN micro-lens configuration for which the micro-lens is fixed on the tip of the probe. The experimental results obtained by the angular displacement sensor based on the lens-free configuration are compared with the simulation results based on the modelling of the system and a good agreement is found. Then, a long-range measurement technique is described. In the 'lens-free and long-range configuration', the limit of resolution is measured (2 × 10-3°) or calculated (4.8 × 10-4°) over a range of [-23.4°, +23.4°]. In the 'GRIN lens and long-range configuration', the best limit of resolution is decreased to 2.2 × 10-4° but over a smaller range of [-14.5°, +14.5°]. Finally, the sensor in its 'lens-free configuration' design is integrated into a miniature electromagnetic actuator to determine its stroke by a comparison of the output signal obtained between this unknown-stroke actuator and a rotating stage for which the stroke was precisely known.
The performance of thin shell adaptive optics for high angular resolution x-ray telescopes
NASA Astrophysics Data System (ADS)
Feldman, Charlotte; Willingale, Richard; Atkins, Carolyn; Brooks, David; Button, Tim; Doel, Peter; James, Ady; Meggs, Carl; Rodriguez-Sanmartin, Daniel; Smith, Andy; Theobald, Craig; Willis, Graham
2010-09-01
The Smart X-ray Optics project is a UK based consortium of five institutions investigating active/adaptive X-ray optics for both large and small scale applications. The large scale application is aimed towards future X-ray telescopes for X-ray astronomy. The work presented here includes the modelling and the testing of the new large scale prototype thin shell optic which incorporates piezoelectric devices to enable the surface to be actively deformed aiming to achieve an angular resolution better than that currently available (e.g. Chandra 0.5"). As the shell is thin, a high degree of nesting is possible such that very large collecting areas can be provided in combination with the high angular resolution. The results from the testing campaign for this prototype in the X-ray beam line at the University of Leicester will be presented. The effect of the actuated piezoelectric devices on the detected image and software development for control of the system are discussed. Improvement of the Full width Half Maximum of the focus spot of up to 25% was seen but as yet this has not been completed in a controlled way. The surface figure achieved with a given set of voltages is stable, but an apparent interaction or coupling between the piezoelectric devices was detected and is still unexplained.
NASA Astrophysics Data System (ADS)
Schindelegger, Michael; BÃ¶hm, Johannes; Salstein, David; Schuh, Harald
2011-07-01
Due to the temporal resolution of available numerical weather analyses, the effect of the atmosphere on Earth rotation at daily and sub-daily periods is usually investigated using 6-hourly atmospheric angular momentum (AAM) functions. During the period of CONT08, however, atmospheric analysis data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) also on an hourly basis. In this paper, we, therefore, determine two sets of AAM functions from ECMWF dataâ€”one for CONT08 with hourly resolution and one for the year 2008 with 6-hourly resolution. The comparisons of the AAM functions to high-resolution Earth rotation parameters (ERP) from VLBI and GPS observations are carried out in the frequency domain. Special attention is paid to the preparation of the high-resolution data sets for the geodetic purposes, as there are jump discontinuities at 12 h intervals. Hence, the hourly AAM functions need to be concatenated. The revised functions yield much smaller amplitudes than their 6-hourly counterparts, as can be seen from the equatorial and the axial frequency spectra of atmospheric excitation in Earth rotation. This decrease of spectral power in the hourly AAM functions is found to be associated with a strong counteraction of pressure and wind terms, which originates from atmospheric circulation on short time scales. The results are compared to previous findings published by BrzeziÅ„ski and Petrov (IERS Tech Note 28:53-60, 2000) based on the data from the U.S. National Centers for Environmental Prediction (NCEP).
Acceptance and Angular Resolution of an Infill Array for the Pierre Auger Surface Detector
Medina, C.; Gomez Berisso, M.; Allekotte, I.; Etchegoyen, A.; Supanitsky, D.; Medina-Tanco, G.
2007-02-12
The Pierre Auger Observatory has been designed to study the highest-energy cosmic rays in nature (E {>=} 1019 eV). The determination of their arrival direction, energy and composition is performed by the analysis of the atmospheric showers they produce. The Auger Surface Array will consist of 1600 water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km. In this paper we show how adding a ''small'' area of surface detectors at half the above mentioned spacing would make it possible to lower the detection threshold by one order of magnitude, thus allowing the Observatory to reach lower energies where the cross-over from galactic to extragalactic sources is expected. We also analyze the angular resolution that can be attained with such an infill array.
HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES
Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G. E-mail: olmi@arcetri.astro.i
2010-06-01
We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 {mu}m. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH{sub 3}(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T {sub k} < 16 K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within {approx}1 km s{sup -1}. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.
Light scattering microscopy with angular resolution and its possible application to apoptosis.
Richter, V; Voit, F; Kienle, A; Schneckenburger, H
2015-01-01
An inverted microscope has been modified for light scattering experiments with high angular resolution in combination with transmission, wide-field fluorescence or laser scanning microscopy. Supported by simulations of Mie scattering, this method permits detection of morphological changes of 3T3 fibroblasts on apoptosis and formation of spherically shaped cells of about 20 ?m diameter, in agreement with visual observation. Smaller sub-structures (e.g. cell nuclei) as well as cell clusters may possibly contribute to the scattering behaviour. Results of 2-dimensional cell cultures are confirmed by 3-dimensional multicellular spheroids of 3T3 fibroblasts and HeLa 2E8 cervix carcinoma cells, where in most cases no morphological changes are discernable. This offers some advantage of light scattering microscopy for label-free detection of apoptosis and may represent a first step towards label-free in vivo diagnostics. PMID:25228462
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.â€³01 and 1.â€³0 and brighter than â–³m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.
NASA Technical Reports Server (NTRS)
Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; Carlotti, Alexis; Brandt, Timothy; Janson, Markus; Guyon, Olivier; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa
2012-01-01
Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.
NASA Astrophysics Data System (ADS)
Zakharov, A.; De Paolis, F.; Ingrosso, G.; Nucita, A.
In 2007 the RADIOASTRON space telescope will be launched and it will be a generalization of VLBI technique using the space -- ground base This interferometer will have the extraordinary angular resolution namely 10 -5 as - 10 -6 as at 1 3 and 6 cm wavelenghts We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole We propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages glories and to evaluate the black hole spin as a function of the position angle of a distant observer A similar approach which uses the characteristic properties of gravitational retro-lensing images can be followed to measure the charge of a Reissner-Nordstr o m black hole or magnetic monopole of black hole Indeed in spite of the fact that their formation might be problematic charged black holes are objects of intensive investigations From a theoretical point of view it is well-known that a black hole is described by only three parameters namely its mass M angular momentum J and charge Q Therefore it would be important to have a method for measuring all these parameters preferably by independent model of any In this paper we propose a procedure to measure the black hole charge by using the size of the retro-lensing images that can be revealed by future astrometrical missions A discussion of the Kerr-Newmann black hole case is also offered
PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei
NASA Astrophysics Data System (ADS)
Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian
2012-07-01
We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle University of Thessaloniki in Greece for giving the dinner talk on the most astounding ancient Antikythera mechanism. We would also like to thank Victor Gomer and the staff of the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef where the conference took place. Last but not least we would like to thank all unnamed helpers, without whom the organisation of this conference would not have been possible. Financial support for this conference was granted by the Deutsche Forschungsgemeinschaft (DFG) Sonderforschungsbereich project number SFB 956. We also acknowledge support from the European Community Framework Programme 7, Advanced Radio Astronomy in Europe, grant agreement no. 227290. Christof Iserlohe, Vladimir Karas, Melanie Krips, Andreas Eckart, Silke Britzen and Sebastian Fischer The Editors Conference photograph Conference Group Photo, 1 September 2011 The PDF also contains additional photographs from the conference and the Contents of the Proceedings.
Tang, Shanzhi; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049 ; Wang, Zhao; Gao, Jianmin; Guo, Junjie
2014-04-15
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ?}. Experiment has proved its feasibility and practicability.
Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.
Hénault, François
2010-03-01
Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils. PMID:20208933
High Angular Resolution [Fe II] ?1.644 ?m Spectroscopy of YSOs with Subaru Telescope
NASA Astrophysics Data System (ADS)
Pyo, Tae-Soo; Hayashi, Masahiko; Naoto, Kobayashi; Terada, Hiroshi; Tokunaga, Alan T.
2005-06-01
We present results of the velocity-resolved spectroscopy of the [Fe II] ?1.644 ?m emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.16'' ˜ 0.5'' arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.1'' = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 kms) and the low velocity component (LVC: 50 - 150 kms), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 ? spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.
Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering
Wright, Margaret J.; Thompson, Paul M.; Vidal, RenÃ©
2015-01-01
We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748
Segmentation of high angular resolution diffusion MRI using sparse riemannian manifold clustering.
Çetingül, H Ertan; Wright, Margaret J; Thompson, Paul M; Vidal, René
2014-02-01
We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to model diffusion and cast the ODF segmentation problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and to the concentration parameters, and show its superior performance compared to alternative methods when analyzing complex fiber configurations. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers and white matter fiber tracts of clinical importance. PMID:24108748
PREFACE: The Universe under the Microscope: Astrophysics at High Angular Resolution
NASA Astrophysics Data System (ADS)
Schödel, Rainer
2009-01-01
High angular resolution techniques at infrared and centimeter to millimeter wavelengths have become of ever increasing importance for astrophysical research in the past decade. They have led to important breakthroughs, like the direct imaging of protoplanetary discs and of the first exoplanets, the measurement of stellar orbits around the black hole at the center of the Milky Way, or the detection of sub-parsec-scale jets in low luminosity AGN. With adaptive optics in a mature state, infrared/optical astronomy is pushing toward extreme adaptive optics, extremely large telescopes, and infrared/optical interferometry with large aperture telescopes. At longer wavelengths, large arrays start to conquer the sub-millimeter window, with the mid-term goal of global VLBI at sub-millimeter wavelengths. These new techniques will have enormous impact on the field because they will enable us to address issues such as directly measuring the properties of exoplanets, imaging the surfaces of stars, examining stellar dynamics in extremely dense cluster cores, disentangling the processes at the bottom of black hole accretion flows in the jet launching region, or testing general relativity in the strong gravity regime near the event horizon of supermassive black holes. The conference The Universe under the Microscope: Astrophysics at High Angular Resolution, held at the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef, Germany, on 12-25 April 2008, aimed at an interdisciplinary approach by bringing together astrophysicists from the three great branches of the field, instrumentation, observation, and theory, to discuss the current state of research and the possibilities offered by the next-generation instruments. Editors of the proceedings Rainer Schödel Instituto de Astrofísica de Andalucía -CSIC, Granada, Spain Andreas Eckart I. Physikalisches Institut der Universität zu Köln, Köln, Germany Susanne Pfalzner I. Physikalisches Institut der Universität zu Köln, Köln, Germany Eduardo Ros Max-Planck-Institut für extraterrestrische Physik, Bonn, Germany Scientific organizing committee Dennis Downes Institut de Radio Astronomie Millimétrique, France Wolfgang Duschl University of Kiel, Germany Andrea Ghez University of California, Los Angeles, USA Vladimir Karas Academy of Sciences, Czech Republic Andreas Eckart University of Cologne, Germany Sera Marko University of Amsterdam, The Netherlands Susanne Pfalzner University of Cologne, Germany Sebastian Rabien Max-Planck-Institute for Extraterrestrial Physics, Germany Daniel Rouan Observatoire de Paris-Meudon, France Eduardo Ros Max-Planck-Institute for Radio Astronomy, Germany Rainer Schödel Instituto de Astrofísica de Andalucía -CSIC, Spain Zhiqiang Shen Shanghai Astronomical Observatory, China Anton Zensus Max-Planck-Institute for Radio Astronomy, Germany Local organizing committee Sebastian Fischer University of Cologne, Germany Devaky Kunneriath University of Cologne, Germany Leo Meyer University of Cologne, Germany Koraljka Muzic University of Cologne, Germany Rainer Schödel University of Cologne, Germany/IAA -CSIC, Spain Christian Straubmeier University of Cologne, Germany Mohammad Zamaninasab University of Cologne, Germany
Takahashi, Emi; Hayashi, Emiko; Schmahmann, Jeremy D.; Grant, P. Ellen
2015-01-01
High angular resolution diffusion imaging (HARDI) tractography has provided insight into major white matter pathways and cortical development in the human fetal cerebrum. Our objective in this study was to further apply HARDI tracography to the developing human cerebellum ranging in fetal and adult stages, to outline in broad strokes the 3-dimensional development of white matter and local gray matter organization in the cerebellum. We imaged intact fixed fetal cerebellum specimens at 17 gestational weeks (W), 21W, 31W, 36W, and 38W along with an adult cerebellum for comparison. At the studied earliest gestational age (17W), coherent pathways that formed the superior, middle, inferior cerebellar peduncles were already detected, but pathways between deep cerebellar nuclei and the cortex were not observed until after 38W. At 36â€“38W, we identified emerging regional specification of the middle cerebellar peduncle. In the cerebellar cortex, we observed disappearance of radial organization in the sagittal orientation during the studied developmental stages similar to our previous observations in developing cerebral cortex. In contrast, in the axial orientation, cerebellar cortical pathways emerged first sparsely (31W) and then with increased prominence at 36â€“38W with pathways detected both in the radial and tangential directions to the cortical surface. The cerebellar vermis first contained only tangential pathways to the long axes of folia (17â€“21W), but pathways parallel to the long axes of folia emerged between 21â€“31W. Our results show the potential for tractography to image developing cerebellar connectivity using HARDI tractography. PMID:24650603
SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION
Sana, H.; Lacour, S.; Gauchet, L.; Pickel, D.; Berger, J.-P.; Norris, B.; Olofsson, J.; Absil, O.; De Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.
2014-11-01
Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of Î”H < 4 and Î”H < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to Î”H = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (Î´ < 0Â°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation Ï < 8'' increases to f {sub m} = 0.91 Â± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 Â± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly discovered pairs HD 168112 and CPDâ€“47Â°2963. This lends strong support to the universality of the wind-wind collision scenario to explain the non-thermal emission from O-type stars.
NASA Astrophysics Data System (ADS)
López-Sepulcre, A.; Taquet, V.; Sánchez-Monge, Á.; Ceccarelli, C.; Dominik, C.; Kama, M.; Caux, E.; Fontani, F.; Fuente, A.; Ho, P. T. P.; Neri, R.; Shimajiri, Y.
2013-08-01
Context. Intermediate-mass stars are an important ingredient of our Galaxy and a key to understanding how high- and low-mass stars form in clusters. One of the closest known young intermediate-mass protoclusters is OMC-2 FIR 4, which is located at a distance of 420 pc in Orion. This region is one of the few where the complete 500-2000 GHz spectrum has been observed with the heterodyne spectrometer HIFI on board the Herschel satellite, and unbiased spectral surveys at 0.8, 1, 2, and 3 mm have been obtained with the JCMT and IRAM 30-m telescopes. Aims: We aim to disentangle the core multiplicity, to investigate the morphology of this region in order to study the formation of a low- and intermediate-mass protostar cluster, and to aid in interpretation of the single-dish line profiles already in our hands. Methods: We used the IRAM Plateau de Bure Interferometer to image OMC-2 FIR 4 in the 2-mm continuum emission, as well as in DCO+(2-1), DCN(2-1), C34S(3-2), and several CH3OH lines. In addition, we analysed observations of the NH3(1, 1) and (2, 2) inversion transitions that used the Very Large Array of the NRAO. The resulting maps have an angular resolution that allows us to resolve structures of 5?, which is equivalent to ~2000 AU. Results: Our observations reveal three spatially resolved sources within OMC-2 FIR 4, of one or several solar masses each, with hints of further unresolved substructure within them. Two of these sources have elongated shapes and are associated with dust continuum emission peaks, thus likely containing at least one molecular core each. One of them also displays radio continuum emission, which may be attributed to a young B3-B4 star that dominates the overall luminosity output of the region. The third identified source displays a DCO+(2-1) emission peak and weak dust continuum emission. Its higher abundance of DCO+ relative to the other two regions suggests a lower temperature, hence its possible association with either a younger low-mass protostar or a starless core. It may alternatively be part of the colder envelope of OMC-2 FIR 4. Conclusions: Our interferometric observations show the complexity of the intermediate-mass protocluster OMC-2 FIR 4, where multiple cores, chemical differentiation, and an ionised region all coexist within an area of only 10 000 AU. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by the INSU/CNRS (France), MPG (Germany), and IGN (Spain).
The X-Ray Optics for the High Angular Resolution Imager (HARI)
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.
2010-01-01
This slide presentation shows the basic parameters of the x-ray optics, the housing,a graph of the effective area vs energy, another graph showing the angular off-set vs HEW, and a series of graphs showing the detector offsets and tilts,
Possible resolution of the angular momentum paradox: Fractional charge, twist, and topology in THe-A
Stone, M.; Garg, A.; Muzikar, P.
1985-11-18
We attempt to resolve the angular momentum paradox in THe-A by connecting it to the phenomenon of charge fractionalization and by writing the current as a weighted Fermi-surface sum of fractional charges. We also give a novel interpretation of the twist term in terms of topology on the Fermi surface.
Jankowiak, Martin; Larkoski, Andrew J.; /SLAC
2012-02-17
We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.
NASA Astrophysics Data System (ADS)
Eckart, A.; Genzel, R.; Hofmann, R.; Sams, B. J.; Tacconi-Garman, L. E.
1995-05-01
We present improved 0.15 sec resolution K-band (2.2 micrometers) maps of the central 0.5 pc of the Galaxy as well as, for the first time, 0.2 sec J-band (1.25 micrometers) images, 0.2 sec K-band polarimetry, and 0.4 sec images in the 2.058 micrometer He 1 emission and 2.29 micrometers CO band head absorption features. The new K-band maps reach K magnitudes of about 16 and resolve the previously found object at the position of the radio source Sgr A*(R) into a small cluster of compact sources. With one exception, their polarizations are similar to other sources in its vicinity and thus are probably caused by antisotropic foreground dust extinction in the Galactic plane. The Sgr A*(IR) complex does not exhibit any significant flux density variations at 2.2 micrometers on timescales of minutes or years. We therefore interpret Sgr A*(IR) as a small local clustering of luminous stars (MK approximately equal to -3) near/at the position of the compact radio source. The central IRS 16 complex and the bright source IRS 13 are dominated by bright luminous He 1 stars and confirm the cluster of about a dozen He 1 stars found by Krabbe et al. (1991). There are also a dozen sources with K less than or equal to 12.5 exhibiting CO band head absorption within a radius of 10 sec of Sgr A*(IR). The drop in CO band head strength found by Sellgren et al. (1990) thus is most likely not caused by the disappearance of CO sources but by the additional presence of the bright early-type stars.
Relaxation approximations to second-order traffic flow models by high-resolution schemes
Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.
2015-03-10
A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
NASA Astrophysics Data System (ADS)
Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo
2015-10-01
A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (?,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.
NASA Astrophysics Data System (ADS)
Aptowicz, Kevin B.; Chang, Richard K.
2005-01-01
Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90Â° < Î¸ < 165Â° and 0Â° < phi < 360Â°) and with high angular resolution (1024 pixels in Î¸ and 512 pixels in phi). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(Î¸,phi), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 Î¼m). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method.
NASA Astrophysics Data System (ADS)
Baug, Tapas; Chandrasekhar, Thyagarajan
2013-11-01
A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground-based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ~40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant improvement in S/N.
Haldar, Justin P.; Leahy, Richard M.
2013-01-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603
The high angular resolution view of local X-ray selected AGN in the mid-infrared
NASA Astrophysics Data System (ADS)
Gandhi, Poshak; Asmus, D.; Hönig, S. F.; Smette, A.; Duschl, W. J.; Matsuta, K.; Ichikawa, K.; Ueda, Y.; Terashima, Y.; Gilli, R.; Comastri, A.; Vignali, C.
2012-09-01
Hard X-ray and mid-infrared observations probe the peaks in broadband spectra of active galactic nucle (AGN), sampling the bulk of their accretion energy. But bolometric emission measurements of Seyfert galaxies can be strongly biased by unresolved nuclear stellar emission. Disentangling these components using emission line proxies for the intrinsic AGN power suffers from various uncertainties. Here, we show that fundamental new insights into AGN are enabled by using high angular resolution observations of Seyferts with the largest telescopes currently available. We have imaged the 9 month Swift/BAT selected AGN sample using the VLT, Gemini and Subaru at their diffraction-limit at 12°. Collecting all high angular resolution data yields a large database of 150 AGN of all types with a point-like detected nucleus. This sample serves as a benchmark for studies on unification issues and accurate (unbiased) AGN bolometric corrections. We discuss some key results, including new inferences on the structures of Seyfert nuclei from the enlarged infrared/Xray correlation and show that the MIR to X-ray flux ratio is independent of the Eddington fraction (lEdd) over about 4 orders of magnitude down to lEdd 10^{-4} at least, which appears to be the threshold below which accretion properties change.
NASA Astrophysics Data System (ADS)
Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.
2015-09-01
The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.
NASA Astrophysics Data System (ADS)
Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.; Lloyd, James P.
2015-05-01
We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two-dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally, we demonstrate the technique with recovered images of the Î± Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.
NASA Astrophysics Data System (ADS)
Vourlidas, Angelos; Beltran, Samuel Tun; Chintzoglou, Georgios; Eisenhower, Kevin; Korendyke, Clarence; Feldman, Ronen; Moser, John; Shea, John; Johnson-Rambert, Mary; McMullin, Don; Stenborg, Guillermo; Shepler, Ed; Roberts, David
2016-03-01
Very high angular resolution ultraviolet telescope (VAULT2.0) is a Lyman-alpha (LyÎ±; 1216Ã…) spectroheliograph designed to observe the upper chromospheric region of the solar atmosphere with high spatial (<0.5â€§â€§) and temporal (8s) resolution. Besides being the brightest line in the solar spectrum, LyÎ± emission arises at the temperature interface between coronal and chromospheric plasmas and may, hence, hold important clues about the transfer of mass and energy to the solar corona. VAULT2.0 is an upgrade of the previously flown VAULT rocket and was launched successfully on September 30, 2014 from White Sands Missile Range (WSMR). The target was AR12172 midway toward the southwestern limb. We obtained 33 images at 8s cadence at arc second resolution due to hardware problems. The science campaign was a resounding success, with all space and ground-based instruments obtaining high-resolution data at the same location within the AR. We discuss the science rationale, instrument upgrades, and performance during the first flight and present some preliminary science results.
Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation.
Graf, Nora K; Friese, Daniel H; Winter, Nina O C; Hättig, Christof
2015-12-28
We report an implementation of static and frequency-dependent excited state polarizabilities for the approximate coupled cluster single and doubles model CC2 as analytic second derivatives of an excited state quasienergy Lagrangian. By including appropriate conditions for the normalization and the phase of the eigenvectors, divergent secular terms are avoided. This leads to response equations in a subspace orthogonal to the unperturbed eigenvectors. It is shown how these projected equations can be solved without storage of the double excitation part of the eigenvectors. By exploiting the resolution-of-the-identity approximation and a numerical Laplace transformation, the quadratic scaling of the main memory demands of RI-CC2 with the system size could be preserved. This enables calculations of excited state polarizabilities for large molecules, e.g., linear polyacenes up to decacene with almost 2500 basis functions on a single compute node within a few days. For a test set of molecules where measurements are available as reference data, we compare the orbital-relaxed and unrelaxed CC2 approaches with experiment to validate its accuracy. The approach can be easily extended to other response methods, in particular CIS(D?). The latter gives results which, in the orbital-relaxed case, are within a few percent of the CC2 values, while coupled cluster singles results deviate typically by about 20% from orbital-relaxed CC2 and experimental reference data. PMID:26723652
Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation
NASA Astrophysics Data System (ADS)
Graf, Nora K.; Friese, Daniel H.; Winter, Nina O. C.; Hättig, Christof
2015-12-01
We report an implementation of static and frequency-dependent excited state polarizabilities for the approximate coupled cluster single and doubles model CC2 as analytic second derivatives of an excited state quasienergy Lagrangian. By including appropriate conditions for the normalization and the phase of the eigenvectors, divergent secular terms are avoided. This leads to response equations in a subspace orthogonal to the unperturbed eigenvectors. It is shown how these projected equations can be solved without storage of the double excitation part of the eigenvectors. By exploiting the resolution-of-the-identity approximation and a numerical Laplace transformation, the quadratic scaling of the main memory demands of RI-CC2 with the system size could be preserved. This enables calculations of excited state polarizabilities for large molecules, e.g., linear polyacenes up to decacene with almost 2500 basis functions on a single compute node within a few days. For a test set of molecules where measurements are available as reference data, we compare the orbital-relaxed and unrelaxed CC2 approaches with experiment to validate its accuracy. The approach can be easily extended to other response methods, in particular CIS(D?). The latter gives results which, in the orbital-relaxed case, are within a few percent of the CC2 values, while coupled cluster singles results deviate typically by about 20% from orbital-relaxed CC2 and experimental reference data.
Angular effects and correction on medium resolution sensors for crop monitoring
Technology Transfer Automated Retrieval System (TEKTRAN)
Remote sensing imagery at medium spatial resolutions (20-60m) such as Landsat, the Advanced Wide Field Sensor (AWiFS) and the Disaster Monitoring Constellation (DMC) have been broadly used in mapping crop types and monitoring crop conditions. This paper examined the influence of viewing and illumina...
All-sky imaging at high angular resolution: An overview using lossy compression
NASA Astrophysics Data System (ADS)
Dollet, C.; Bijaoui, A.; Mignard, F.
2004-11-01
We examine a possible extension of the Gaia mission in the form of a high-spatial resolution all-sky survey in the visible based on a scanning satellite and show that the main limitation is the amount of collected data to be transmitted. We then investigate the kind of image compression that would make it possible to carry out a complete cartography at a resolution of 0.1 arcsec, which would constitute a major advance in sky mapping. The most significant information is projected into wavelet space after the subtraction of the brighter objects that are mapped independently with the instrument point spread function and transmitted separately. The study is based on a Gaia-like instrument using a rectangular pupil and one-dimensional high resolution along scan. The difference of resolution across- and along-scan is compensated by the combination of all the observations at the end of the mission in Fourier space. A gain of 2-3 mag compared with the magnitude limit of the on-board detection could be achieved with the features of the Astro Sky Mapper of the Gaia mission.
NASA Astrophysics Data System (ADS)
Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.
2013-09-01
The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).
NASA Astrophysics Data System (ADS)
Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero
2014-08-01
The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).
NASA Astrophysics Data System (ADS)
Cantin, Andre; Dubois, Jacques; Webb, Paul P.; Pomerleau, Daniel; Altman, Michael P.
1997-08-01
A miniaturized digital 1-band HARLID module using linear silicon detector arrays has been developed. These HARLID modules, which fit inside standard TO-8 packages, were designed to locate angularly a pulsed laser source within plus or minus 1 degree over a 90 degree field of view either in azimuth or elevation. The principle of operation of this new patented-module is based on the use of a Gray code ask to encode the angle of arrival of a laser beam. The electro- optical (E-O) performance of this new module has been evaluated in the laboratory. A laser warning receiver (LWR) demonstrator integrating two of these modules has been built and its E-O performance measured in the laboratory and in a field environment aboard a tank. A new 2-band HARLID module now under development will include a sandwich of Si and InGaAs detector arrays and will extend the spectral band of the HARLID from 0.4 to 1.7 micron while increasing significantly its responsivity at 1.064 micrometer. A study of its technical characteristics and limitations has been recently completed and future HARLID technology development plan established.
Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev
NASA Technical Reports Server (NTRS)
Apte, A. R.; Gopalakrishnan, N. V.; Tonwar, S. C.; Uma, V.
1985-01-01
A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV.
High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL
NASA Technical Reports Server (NTRS)
Greenhill, L. J.; Gezari, D. Y.; Danchi, W. C.; Najita, J.; Monnier, J. D.
2004-01-01
The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 (micro)m to 22 (micro)m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L(sub (center-dot)).
RadioAstron-LBA Space VLBI Survey of AGN at the Highest Angular Resolution
NASA Astrophysics Data System (ADS)
Reynolds, Cormac; Macquart, Jean-Pierre; Bignall, Hayley; Lovell, Jim; McCallum, Jamie Nigel; Edwards, Philip; Tzioumis, Anastasios; Cimo, Giuseppe; Jauncey, David; Deller, Adam; Bietenholz, Michael; Gurvits, Leonid; Garrett, Mike; Tingay, Steven; Horiuchi, Shinji; Kovalev, Yuri; Shabala, Stanislav; Sokolovsky, Kirill; Kardashev, Nikolai; Koay, Jun Yi
2014-10-01
We request 90 hours of LBA time to complete a non-imaging Space VLBI survey of the bright AGN jet cores with RadioAstron at wavelengths of 1.3, 6 and 18 cm. The main goal of this project is to study the physics of AGN cores and the properties of the ISM by observing AGNs up to the longest RadioAstron projected baseline lengths and measuring the core's geometry and brightness temperature while taking the influence of the ISM into full consideration. These observations will enable the highest resolution ever achieved in direct astronomical observations at the proposed wavelengths.
In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla
Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 ?m2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
NASA Astrophysics Data System (ADS)
Moser, D. E.
2012-12-01
Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing, solid solution effects on unit cell, dimension camera calibration and camera-sample distance, beam conditions and focussing, and general microscope operating conditions (e.g. high vacuum vs. variable pressure). An assessment of potential zircon EBSD reference materials and sample preparation protocols will be presented, along with case studies of zircon orientation microstructures from meteorites and terrestrial craters representative of different strain and thermal environments in the inner solar system.BSD lattice misorientation maps of a) crystal-plastically deformed and partly recrystallized zircon, after Rayner et al. (in prep.), and b) shock-metamorphosed lunar zircon (Darling et al., in prep.).
In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.
Alomair, Othman I; Brereton, Ian M; Smith, Maree T; Galloway, Graham J; Kurniawan, Nyoman D
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 ?m2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira
NASA Astrophysics Data System (ADS)
Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.
2016-04-01
We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.
NASA Technical Reports Server (NTRS)
Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.
2012-01-01
X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.
NASA Technical Reports Server (NTRS)
Gneses, M. I.; Berg, D. S.
1981-01-01
Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.
The Stellar Imager (SI): An Ultra-High Angular Resolution UV/Optical Observatory
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Oegerle, William R. (Technical Monitor)
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. In this paper we will describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.
NASA Astrophysics Data System (ADS)
Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K.-W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.
2012-09-01
X-ray astronomy depends upon the availability of telescopes with high resolution and large photon colleX-ray astronomy depends upon the availability of telescopes with high resolution and large photon collecting areas. As astronomical x-ray observations can only be carried out above the atmosphere, these telescopes must necessarily be lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further requires that x-ray mirrors must be geometrically thin to achieve high packing efficiency. This double requirement—lightweight and geometrically thin—poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy, and status of our program to develop x-ray optics meeting these technical challenges at modest cost. The objective of this technology program is to enable future x-ray missions—including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.ing areas. As astronomical x-ray observations can only be carried out above the atmosphere, these telescopes must necessarily be lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further requires that x-ray mirrors must be geometrically thin to achieve high packing efficiency. This double requirement—lightweight and geometrically thin—poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy, and status of our program to develop x-ray optics meeting these technical challenges at modest cost. The objective of this technology program is to enable future x-ray missions—including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.
Korngut, P. M.; Dicker, S. R.; Reese, E. D.; Devlin, M. J.; Mroczkowski, T.; Mason, B. S.; Sarazin, C. L.; Sun, M.; Sievers, J.
2011-06-10
We present resolved images of four massive clusters of galaxies through the Sunyaev-Zel'dovich effect (SZE). These measurements, made at 90 GHz with the MUSTANG receiver on the Green Bank Telescope (GBT), reveal pressure substructure to the intracluster medium (ICM) in three of the four systems. The SZE and X-ray morphology of MACS0744.8+3927 are suggestive of the presence of a weak shock outside the cluster core. By fitting the Rankine-Hugoniot density jump conditions in a complementary SZE/X-ray analysis, we asses the feasibility of this interpretation. We conclude that a weak shock with a Mach number of M= 1.2{sup +0.2}{sub -0.2} and a shock velocity of 1827{sup +267}{sub -195} km s{sup -1} adequately describes the observed phenomenology. Deeper Chandra data are needed for confirmation. In RXJ1347.5-1145, we present a new reduction of previously reported data and confirm the presence of a southeast SZE enhancement with a significance of 13.9{sigma} when smoothed to 18'' resolution. This too is likely caused by shock-heated gas produced in a recent merger. In our highest redshift system, CL1226.9+3332, we detect substructure at a peak significance of 4.6{sigma} in the form of a ridge oriented orthogonally to the vector connecting the main mass peak and a subclump revealed by weak lensing. We also conclude that the gas distribution is elongated in a southwest direction, consistent with a previously proposed merger scenario. The SZE image of the cool core cluster A1835 is, in contrast, consistent with azimuthally symmetric signal only. This pilot study demonstrates the potential of high-resolution SZE images to complement X-ray data and probe the dynamics of galaxy clusters.
NASA Astrophysics Data System (ADS)
Duffy, Patrick; Cassida, Mark E.; Brion, C. E.; Chong, D. P.
1992-02-01
A critical assessment is made of the recently proposed momentum-averaged Gaussian-weighted (MAGW) method [A.O. Bawagan and C.E. Brion, Chem. Phys. 144 (1990) 167] of incorporating angular (or momentum) resolution into quantum-mechanically calculated momentum distributions for comparison with EMS measurements. In particular, the general efficacy of the proposed, semi-emperically based Gaussian angular (? and ?) resolution functions as dimensioned in the MAGW method is tested by systematic application to high-level (essentially Hartree-Fock limit and/or configuration interaction) calculations of the momentum distributions of the outermost orbitals of a wide range of target species including Ne, Ar, Kr, Xe, H 2O, and H 2S. The folded calculations are compared with recent measurements. New highly accurate analytical mathematical procedures have been developed and confirm the adequacy of the previous Monte Carlo method for resolution folding. However, the new procedures result in substantial improvements over use of the Monte Carlo method for the graphical representation of the variation of the momentum resolution function with azimuthal angle. The respective merits of comparing folded theory and experiment as a function of nominal relative azimuthal angle (? 0) or of momentum are discussed. In the momentum representation, the question of whether it is preferable to use average or nominal momentum is further considered. Either choice is found to afford a reasonable basis for detailed comparison of folded theory and experiment. In all cases, the folded theory is found to be in good agreement with experiment when the Gaussian-weighted angular resolution functions are used, whereas less satisfactory overall agreement is obtained when the calculations are folded with earlier types of resolution-folding procedure. It is concluded that the Gaussian-weighted angular resolution functions, appropriately dimensioned, provide a satisfactory accounting for the experimental angular (or momentum) resolutions effects and that they can be used with reasonable confidence in future studies for the evaluation of molecular wavefunctions.
NASA Astrophysics Data System (ADS)
Pyo, Tae-Soo; Hayashi, Masahiko; Kobayashi, Naoto; Tokunaga, Alan T.; Terada, Hiroshi; Goto, Miwa; Takami, Hideki; Takato, Naruhisa; Gässler, Wolfgang; Oya, Shin; Hayano, Yutaka; Kamata, Yukiko; Minowa, Yosuke; Usuda, Tomonori; Iye, Masanori; Yamashita, Takuya
We introduce results of the [Fe II] ?1.644 ?m spectroscopic observations toward the outflows emanating from L1551 IRS 5, DG Tau, HL Tau, and RW Aur. We resolved the region within ~±140 AU (< ±1'') from their driving sources with an angular resolution up to 0''16 achieved with the Adaptive Optics System of Subaru Telescope. We detected two distinct velocity components separated in space and velocity for all the objects. The high velocity components (HVCs) show the radial velocities |V|>250 km s-1 and is extended, while the low velocity components (LVCs) have their peak velocities of 80<|V|<150 km s-1 and is located near the driving sources. These velocities are consistent with the interpretation that the HVCs are launched from the star surface or its vicinity while the LVCs are accelerated near the inner edges of their accreting disks. We demonstrate that the [Fe II] spectroscopy at high spatial and velocity resolutions is a powerful tool to study the outflow mechanisms from YSOs with large extinctions.
NASA Astrophysics Data System (ADS)
Pyo, Tae-Soo; Hayashi, Masahiko; Kobayashi, Naoto; Tokunaga, Alan T.; Terada, Hiroshi; Goto, Miwa; Takami, Hideki; Takato, Naruhisa; Gässler, Wolfgang; Oya, Shin; Hayano, Yutaka; Kamata, Yukiko; Minowa, Yosuke; Usuda, Tomonori; Iye, Masanori; Yamashita, Takuya
2005-01-01
We introduce results of the [Fe II] ?1.644 ?m spectroscopic observations toward the outflows emanating from L1551 IRS 5, DG Tau, HL Tau, and RW Aur. We resolved the region within ~±140 AU (< ±1??) from their driving sources with an angular resolution up to 0''16 achieved with the Adaptive Optics System of Subaru Telescope. We detected two distinct velocity components separated in space and velocity for all the objects. The high velocity components (HVCs) show the radial velocities |V|>250 km s-1 and is extended, while the low velocity components (LVCs) have their peak velocities of 80<|V|<150 km s-1 and is located near the driving sources. These velocities are consistent with the interpretation that the HVCs are launched from the star surface or its vicinity while the LVCs are accelerated near the inner edges of their accreting disks. We demonstrate that the [Fe II] spectroscopy at high spatial and velocity resolutions is a powerful tool to study the outflow mechanisms from YSOs with large extinctions.
Perez, Laura M.; Carpenter, John M.; Isella, Andrea; Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.; Zauderer, B. Ashley; Bolatto, Alberto D.; Teuben, Peter J.; Bock, Douglas C.; Carlstrom, John; Culverhouse, Thomas L.; Marrone, Daniel P.; Joy, Marshall; Kwon, Woojin; Plambeck, Richard L.; Wright, Melvyn C. H.
2010-11-20
We present 0.''15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M{sub sun}, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability.
Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea
2015-01-01
Summary In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD.
Probe diagnostics of electron distributions in plasma with spatial and angular resolution
Demidov, V. I.; Kudryavtsev, A. A.
2014-09-15
This paper discusses the spatial resolution that is required to study inhomogeneous, low-temperature plasmas and is based on a review of low-temperature plasma electron kinetics and methods for probe measurements of electron energy distribution functions (EEDFs). It is stated that EEDFs can be extracted from probe measurements by applying an appropriate probe theory. The Druyvesteyn formula is most commonly used for this extraction and has been used in numerous publications, but more general theory can be used for a wider range of gas pressures. It is demonstrated that the Druyvesteyn formula can be obtained from the general theory as a limiting case. This paper justifies the application of wall probes in plasma studies of an energetic part of EEDFs. This justification is made for an idealized probe. We briefly review the methods for studying anisotropic plasmas and their usefulness in plasma research. It is demonstrated that to determine anisotropic electron energy distribution functions, a planar, one-sided probe is most convenient.
High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL
greenhill, l
2004-06-25
The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 {micro}m to 22 {micro}m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L{sub {center_dot}}. Although source I is believed to be more luminous, they do not detect an infrared counterpart even at the longest wavelengths. However, they resolve the closeby infrared source, IRc2, into an arc of knots {approx} 10{sup 3} AU long at all wavelengths. Although the physical relation of source I to IRc2 remains ambiguous, they suggest these sources mark a high density core (10{sup 7}-10{sup 8} pc{sup -3} over {approx} 10{sup 3} AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. The authors suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.
Guazzoni, P.; Zetta, L.; Covello, A.; Gargano, A.; Bayman, B. F.; Faestermann, T.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Jaskola, M.
2008-12-15
Cross-section angular distributions of 38 (p, t) transitions to final states of {sup 118}Sn up to an excitation energy of 3.597 MeV have been measured in a high-resolution experiment at an incident proton energy of 21 MeV. A distorted-wave Born approximation (DWBA) analysis of the 38 experimental differential cross sections, carried out by using conventional Woods-Saxon potentials, allowed us either 18 confirmations of previous spin and parity values or new assignments of spin and parity to 14 states of {sup 118}Sn. A shell-model calculation has been performed by using a realistic two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential. The doubly-magic nucleus {sup 132}Sn is assumed as a closed core, with 14 valence neutron holes occupying the five levels of the 50-82 shell. Within this model space the calculations are performed by employing the seniority scheme including states with seniority up to 4. The energy spectrum of {sup 118}Sn has been calculated and compared with the experimental one. The theoretical two-neutron spectroscopic amplitudes are used in the microscopic DWBA calculations of some cross-section angular distributions.
Who is eating the outflow? High-angular resolution study of an intermediate-mass protostar in L1206
NASA Astrophysics Data System (ADS)
BeltrÃ¡n, M. T.; Girart, J. M.; Estalella, R.
2006-10-01
Context: .Up to now only a few intermediate-mass molecular outflows have been studied with enough high-angular resolution. Aims: .The aim of this work is to study in detail the intermediate-mass YSO IRAS 22272+6358A, which is embedded in L1206, and its molecular outflow, to investigate the interaction of the outflow with the dense protostellar material and to compare their properties with those of lower mass counterparts. Methods: .We carried out OVRO observations of the 2.7 mm continuum emission, CO (J=1â†’0), C18O(J=1â†’0), and HC3N (J=12â†’11) to map the core of L1206 with high-angular resolution and to derive the properties of the dust emission, the molecular outflow, and the dense protostellar envelope. Results: .The 2.7 mm continuum emission has been resolved into four sources, labeled OVRO 1, 2, 3, and 4. The intermediate-mass Class 0/I object OVRO 2, with a mass traced by the dust emission of 14.2 MâŠ™, is the source associated with IRAS 22272+6358A. The CO (J=1â†’0) observations have revealed a very collimated outflow driven by OVRO 2, at a PA â‰ƒ 140Â°, that has a very weak southeastern red lobe and a much stronger northwestern blue lobe. Photodissociation toward the red lobe produced by the ionization front coming from the bright-rimmed diffuse Hii region could be responsible for the morphology of the outflow. The spatial correlation between the outflow and the elongated dense protostellar material traced by HC3N (J=12â†’11) suggests an interaction between the molecular outflow and the protostellar envelope. Shocks produced by the molecular outflow, and possibly by the shock front preceding the ionization front, could account for the southern enhancement of HC3N. The properties of the intermediate-mass protostar OVRO 2 and the molecular outflow are consistent with those of lower mass counterparts. The C18O abundance relative to molecular hydrogen estimated toward OVRO 2 is 3Ã—10-8, a value ~6 to 13 times lower than typical abundances estimated toward molecular clouds. The most plausible explanation for such a difference is CO depletion toward OVRO 2.
NASA Astrophysics Data System (ADS)
Adam, R.; Comis, B.; Bartalucci, I.; Adane, A.; Ade, P.; AndrÃ©, P.; Arnaud, M.; Beelen, A.; Belier, B.; BenoÃ®t, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; DÃ©sert, F.-X.; Doyle, S.; Goupy, J.; Hasnoun, B.; Hermelo, I.; Kramer, C.; Lagache, G.; Leclercq, S.; MacÃas-PÃ©rez, J.-F.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; RevÃ©ret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2016-02-01
The prototype of the NIKA2 camera, NIKA, is a dual-band instrument operating at the IRAM 30-m telescope, which can observe the sky simultaneously at 150 and 260 GHz. One of the main goals of NIKA (and NIKA2) is to measure the pressure distribution in galaxy clusters at high angular resolution using the thermal Sunyaev-Zel'dovich (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at intermediate and high redshifts. However, an important fraction of clusters host sub-millimeter and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on <20 arcsec angular resolution observations at 150 and 260 GHz of the cluster MACS J1423.8+2404, which hosts both radio and sub-millimeter point sources. We examine the morphological distribution of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the spectral energy distribution (SED) of the sub-millimeter point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and sub-millimeter sources on the reconstructed pressureprofile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACS J1423.8+2404 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy. This work is part of a pilot study aiming at optimizing tSZ observations with the future NIKA2 camera.
NASA Astrophysics Data System (ADS)
ALMA Partnership; Brogan, C. L.; Pérez, L. M.; Hunter, T. R.; Dent, W. R. F.; Hales, A. S.; Hills, R. E.; Corder, S.; Fomalont, E. B.; Vlahakis, C.; Asaki, Y.; Barkats, D.; Hirota, A.; Hodge, J. A.; Impellizzeri, C. M. V.; Kneissl, R.; Liuzzo, E.; Lucas, R.; Marcelino, N.; Matsushita, S.; Nakanishi, K.; Phillips, N.; Richards, A. M. S.; Toledo, I.; Aladro, R.; Broguiere, D.; Cortes, J. R.; Cortes, P. C.; Espada, D.; Galarza, F.; Garcia-Appadoo, D.; Guzman-Ramirez, L.; Humphreys, E. M.; Jung, T.; Kameno, S.; Laing, R. A.; Leon, S.; Marconi, G.; Mignano, A.; Nikolic, B.; Nyman, L.-A.; Radiszcz, M.; Remijan, A.; Rodón, J. A.; Sawada, T.; Takahashi, S.; Tilanus, R. P. J.; Vila Vilaro, B.; Watson, L. C.; Wiklind, T.; Akiyama, E.; Chapillon, E.; de Gregorio-Monsalvo, I.; Di Francesco, J.; Gueth, F.; Kawamura, A.; Lee, C.-F.; Nguyen Luong, Q.; Mangum, J.; Pietu, V.; Sanhueza, P.; Saigo, K.; Takakuwa, S.; Ubach, C.; van Kempen, T.; Wootten, A.; Castro-Carrizo, A.; Francke, H.; Gallardo, J.; Garcia, J.; Gonzalez, S.; Hill, T.; Kaminski, T.; Kurono, Y.; Liu, H.-Y.; Lopez, C.; Morales, F.; Plarre, K.; Schieven, G.; Testi, L.; Videla, L.; Villard, E.; Andreani, P.; Hibbard, J. E.; Tatematsu, K.
2015-07-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.? 075 (10 AU) to 0.? 025 (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analog HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46\\buildrel{\\circ}\\over{.} 72+/- 0\\buildrel{\\circ}\\over{.} 05) and position angle (+138\\buildrel{\\circ}\\over{.} 02+/- 0\\buildrel{\\circ}\\over{.} 07). We obtain a high-fidelity image of the 1.0 mm spectral index (?), which ranges from ? ˜ 2.0 in the optically thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km s-1 consistent with Keplerian motion around a ˜1.3 {M}? star, although complicated by absorption at low blueshifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkH?358 at 2.9 mm. .
NASA Technical Reports Server (NTRS)
Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.; Reynolds, C.; Sambruna, R.; Streitmatter, R.; Windt, D.
2008-01-01
MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.
Goh, Alvina; Lenglet, Christophe; Thompson, Paul M; Vidal, René
2011-06-01
High angular resolution diffusion imaging (HARDI) has become an important technique for imaging complex oriented structures in the brain and other anatomical tissues. This has motivated the recent development of several methods for computing the orientation probability density function (PDF) at each voxel. However, much less work has been done on developing techniques for filtering, interpolation, averaging and principal geodesic analysis of orientation PDF fields. In this paper, we present a Riemannian framework for performing such operations. The proposed framework does not require that the orientation PDFs be represented by any fixed parameterization, such as a mixture of von Mises-Fisher distributions or a spherical harmonic expansion. Instead, we use a nonparametric representation of the orientation PDF. We exploit the fact that under the square-root re-parameterization, the space of orientation PDFs forms a Riemannian manifold: the positive orthant of the unit Hilbert sphere. We show that various orientation PDF processing operations, such as filtering, interpolation, averaging and principal geodesic analysis, may be posed as optimization problems on the Hilbert sphere, and can be solved using Riemannian gradient descent. We illustrate these concepts with numerous experiments on synthetic, phantom and real datasets. We show their application to studying left/right brain asymmetries. PMID:21292013
NASA Astrophysics Data System (ADS)
Civitani, M. M.; Citterio, O.; Ghigo, M.; Mattaini, E.; Pareschi, G.; Parodi, G.
2013-09-01
One of the most difficult requests to be accomplished from the technological point of view for next generation x-ray telescopes is to combine high angular resolution and effective area. A significant increase of effective area can be reached with high precision but at the same time thin (2-3 mm thickness for mirror diameters of 30-110 cm) glass mirror shells. In the last few years the Brera Observatory has lead a development program for realizing this kind of monolithic thin glass shell. The fused silica has been chosen as shell substrate due to its thermal and mechanical properties. To bring the mirror shells to the needed accuracy, we have adopted a deterministic direct polishing method (already used for past missions as Einstein, Rosat, Chandra) to ten time thinner shells. The technological challenge has been solved using a temporary stiffening structure that allows the handling and the machining of so thin glass shells. The results obtained with a prototype shell at an intermediate stage of its development (17'' HEW measured in full illumination mode with x-ray) indicate that the working concept is feasible and can be further exploited using the very large Ion Beam Facility available in our labs for the final high accuracy figuring of the thin shells. In this paper we present the required tolerances for the shell realization, the shells production chain flow and the ion beam facility up grading. Forecast on figuring time and expected performances of the figuring will also be given on the basis on the metrological data collected during past shell development.
Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation
NASA Technical Reports Server (NTRS)
Liandrat, J.; Tchamitchian, PH.
1990-01-01
The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Alakoz, A. V.; Kovalev, Y. Y.; Popov, M. V.; Sobolev, A. M.; Sokolovsky, K. V.
2015-12-01
The paper presents the main results of the implementation of the Radioastron Early Science Program. Interferometric responses (fringes) were obtained for all types of studied radio sources (quasars, pulsars and cosmic masers) and in all ranges of wavelengths (from meter to centimeter range) with large spaceground baselines. Such measurements have provided a record angular resolution, in some cases reaching several tens of microseconds of arc. This brings unique scientific results concerning the nature of the processes occurring in the vicinity of the supermassive black holes, the structure of the interstellar plasma inhomogeneities and dynamics of compact objects in star-forming regions.
NASA Astrophysics Data System (ADS)
Ganyushin, Dmitry; Gilka, Natalie; Taylor, Peter R.; Marian, Christel M.; Neese, Frank
2010-04-01
In this work, the resolution of the identity (RI) approximation is developed for the calculation of the electron-electron spin-spin coupling (SSC) interaction that is a central component of the zero-field splitting (ZFS) term in the effective spin Hamiltonian. The approximated integrals are then used in large-scale multireference configuration interaction treatments of the SSC interaction. The SSC contribution to the ZFS is treated using the Breit-Pauli spin-spin Hamiltonian in conjunction with first-order perturbation theory. Test calculations on a set of diatomic molecules reveal that the error of the RI approximation does not exceed 0.01 cm-1 even if standard auxiliary basis sets are used. This error of less than 1% is considered to be negligible compared to the presently achievable accuracy of the SSC calculations relative to experimental data. The present development allows the correlated ab initio calculation of ZFS parameters of larger systems such as linear polyenes and linear polyacenes. The basis set convergence of the calculated ZFS values was investigated, and the effect of electronic correlation on the calculated ZFS parameters is discussed.
NASA Astrophysics Data System (ADS)
Huang, Changyu; Huang, Yong-Chang; Zhou, Bao-Hua
2015-09-01
We investigate the inner structure of a general S U (2 ) [naturally including S O (3 )] symmetry systemâ€”the fermion-gauge field interaction systemâ€”and achieve naturally a set of gauge-invariant spin and orbital angular momentum operators of fermion and gauge fields by Noether's theorem in general field theory. Some new relations concerning non-Abelian field strengths are discovered, e.g., the covariant transverse condition, covariant parallel condition (i.e., non-Abelian divergence, non-Abelian curl), and simplified S U (2 ) Coulomb theorem. And we show that the condition that Chen et al. obtained to construct their gauge-invariant angular momentum operators is a result of some fundamental equations in the general field theory. The results obtained in this paper present a new perspective for looking at the overall structure of the gauge field, and provide a new viewpoint to the final resolution of the nucleon spin crisis in the general field theory. Especially, the achieved theory in this paper can calculate the strong interactions with isospin symmetry and solves the serious problem without gauge-invariant angular momenta in strong interaction systems with isospin symmetry, and then the achieved predictions in the calculations can be exactly measured by particle physics experiments due to their gauge invariant properties.
NASA Astrophysics Data System (ADS)
Katouda, Michio; Nagase, Shigeru
2010-11-01
Efficient periodic boundary condition (PBC) calculations by the second-order Møller-Plesset perturbation (MP2) method based on crystal orbital formalism are developed by introducing the resolution-of-identity (RI) approximation of four-center two-electron repulsion integrals (ERIs). The formulation and implementation of the PBC RI-MP2 method are presented. In this method, the mixed auxiliary basis functions of the combination of Poisson and Gaussian type functions are used to circumvent the slow convergence of the lattice sum of the long-range ERIs. Test calculations of one-dimensional periodic trans-polyacetylene show that the PBC RI-MP2 method greatly reduces the computational times as well as memory and disk sizes, without the loss of accuracy, compared to the conventional PBC MP2 method.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.
1979-01-01
A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.
Beyond the Born-Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+
NASA Astrophysics Data System (ADS)
Fárník, Michal; Davis, Scott; Kostin, Maxim A.; Polyansky, Oleg L.; Tennyson, Jonathan; Nesbitt, David J.
2002-04-01
Transitions to overtone 2?2 and 2?3, and combination ?2+?3 vibrations in jet-cooled H2D+ and D2H+ molecular ions have been measured for the first time by high-resolution IR spectroscopy. The source of these ions is a pulsed slit jet supersonic discharge, which allows for efficient generation, rotational cooling, and high frequency (100 KHz) concentration modulation for detection via sensitive lock-in detection methods. Isotopic substitution and high-resolution overtone spectroscopy in this fundamental molecular ion permit a systematic, first principles investigation of Born-Oppenheimer "breakdown" effects due to large amplitude vibrational motion as well as provide rigorous tests of approximate theoretical methods beyond the Born-Oppenheimer level. The observed overtone transitions are in remarkably good agreement (<0.1 cm-1) with non-Born-Oppenheimer ab initio theoretical predictions, with small but systematic deviations for 2?2, ?2+?3, and 2?3 excited states indicating directions for further improvement in such treatments. Spectroscopic assignment and analysis of the isotopomeric transitions reveals strong Coriolis mixing between near resonant 2?3 and ?2+?3 vibrations in D2H+. Population-independent line intensity ratios for transitions from common lower states indicate excellent overall agreement with theoretical predictions for D2H+, but with statistically significant discrepancies noted for H2D+. Finally, H2D+ versus D2H+ isotopomer populations are analyzed as a function of D2/H2 mixing ratio and can be well described by steady state kinetics in the slit discharge expansion.
Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Rajalingam, M. E-mail: kathir@iiap.res.in E-mail: rajalingam@iiap.res.in
2012-01-10
We carried out radio observations of the solar corona in the frequency range 109-50 MHz during the annular eclipse of 2010 January 15 from the Gauribidanur Observatory, located about 100 km north of Bangalore in India. The radio emission in the above frequency range originates typically in the radial distance range Almost-Equal-To 1.2-1.5 R{sub Sun} in the 'undisturbed' solar atmosphere. Our analysis indicates that (1) the angular size of the smallest observable radio source (associated with a coronal mass ejection in the present case) is Almost-Equal-To 1' {+-} 0.'3, (2) the source size does not vary with radial distance, (3) the peak brightness temperature of the source corresponding to the above size at a typical frequency like 77 MHz is Almost-Equal-To 3 Multiplication-Sign 10{sup 9} K, and (4) the coronal magnetic field near the source region is Almost-Equal-To 70 mG.
Implications of a High Angular Resolution Image of the Sunyaev-Zel'Dovich Effect in RXJ1347-1145
NASA Technical Reports Server (NTRS)
Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M.; Cotton, W. D.; Koch, P. M.; Molnar, S. M.; Sievers, J.; Aguirre, J. E.; Benford, D.; Staguhn, J. G.; Moseley, H.; Irwin, K. D.; Ade, P.
2010-01-01
The most X-ray luminous cluster known, RXJ1347-1145 (z = 0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich effect (SZE) at 90 GHz (lambda = 33 mm) in RXJ1347-1145 at 10" resolution with the 64 pixel MUSTANG bolometer array on the Green Bank Telescope, confirming a previously reported strong, localized enhancement of the SZE 20" to the southeast of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (>20keV) gas caused by an ongoing major (low mass ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core approx. 1.6x higher than just to the west. This is the highest resolution image of the SZE made to date.
IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV-ZEL'DOVICH EFFECT IN RXJ1347-1145
Mason, B. S.; Cotton, W. D.; Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aguirre, J. E.; Koch, P. M.; Molnar, S. M.; Sievers, J.; Benford, D.; Staguhn, J. G.; Moseley, H.; Irwin, K. D.; Ade, P.
2010-06-10
The most X-ray luminous cluster known, RXJ1347-1145 (z = 0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich effect (SZE) at 90 GHz ({lambda} = 3.3 mm) in RXJ1347-1145 at 10'' resolution with the 64 pixel MUSTANG bolometer array on the Green Bank Telescope, confirming a previously reported strong, localized enhancement of the SZE 20'' to the southeast of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (>20 keV) gas caused by an ongoing major (low mass ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core {approx}1.6x higher than just to the west. This is the highest resolution image of the SZE made to date.
NASA Technical Reports Server (NTRS)
Anderson, Todd; Herbst, Eric; De Lucia, Frank C.
1992-01-01
The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.
Kuhnt, Daniela; Bauer, Miriam H. A.; Sommer, Jens; Merhof, Dorit; Nimsky, Christopher
2013-01-01
Objective Up to now, fiber tractography in the clinical routine is mostly based on diffusion tensor imaging (DTI). However, there are known drawbacks in the resolution of crossing or kissing fibers and in the vicinity of a tumor or edema. These restrictions can be overcome by tractography based on High Angular Resolution Diffusion Imaging (HARDI) which in turn requires larger numbers of gradients resulting in longer acquisition times. Using compressed sensing (CS) techniques, HARDI signals can be obtained by using less non-collinear diffusion gradients, thus enabling the use of HARDI-based fiber tractography in the clinical routine. Methods Eight patients with gliomas in the temporal lobe, in proximity to the optic radiation (OR), underwent 3T MRI including a diffusion-weighted dataset with 30 gradient directions. Fiber tractography of the OR using a deterministic streamline algorithm based on DTI was compared to tractography based on reconstructed diffusion signals using HARDI+CS. Results HARDI+CS based tractography displayed the OR more conclusively compared to the DTI-based results in all eight cases. In particular, the potential of HARDI+CS-based tractography was observed for cases of high grade gliomas with significant peritumoral edema, larger tumor size or closer proximity of tumor and reconstructed fiber tract. Conclusions Overcoming the problem of long acquisition times, HARDI+CS seems to be a promising basis for fiber tractography of the OR in regions of disturbed diffusion, areas of high interest in glioma surgery. PMID:23923036
NASA Astrophysics Data System (ADS)
Guazzoni, P.; Zetta, L.; Covello, A.; Gargano, A.; Bayman, B. F.; Faestermann, T.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Jaskola, M.
2011-04-01
The Sn118,124(p,t)Sn116,122 reactions have been investigated in high-resolution experiments at incident proton energies of 24.6 and 25 MeV, respectively. Angular distributions for 55 transitions to levels of Sn116 and 63 transitions to levels of Sn122, up to excitation energies of ~3.850 and ~4.000 MeV, respectively, have been measured. The spin and parity identification was carried out by means of a distorted-wave Born approximation (DWBA) analysis, performed by using conventional Woods-Saxon potentials. A shell-model study of Sn116 and Sn122 nuclei was performed using a realistic two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential. The doubly magic nucleus Sn132 was assumed as a closed core, with the 16 and 10 valence neutron holes occupying the five levels of the 50-82 shell. The energy spectra have been calculated and compared with the experimental ones, and the theoretical two-nucleon spectroscopic amplitudes, evaluated in a truncated seniority space, have been used in the microscopic DWBA calculation of some cross-section angular distributions of both reactions.
Guazzoni, P.; Zetta, L.; Bayman, B. F.; Faestermann, T.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Jaskola, M.; Covello, A.; Gargano, A.
2011-04-15
The {sup 118,124}Sn(p,t){sup 116,122}Sn reactions have been investigated in high-resolution experiments at incident proton energies of 24.6 and 25 MeV, respectively. Angular distributions for 55 transitions to levels of {sup 116}Sn and 63 transitions to levels of {sup 122}Sn, up to excitation energies of {approx}3.850 and {approx}4.000 MeV, respectively, have been measured. The spin and parity identification was carried out by means of a distorted-wave Born approximation (DWBA) analysis, performed by using conventional Woods-Saxon potentials. A shell-model study of {sup 116}Sn and {sup 122}Sn nuclei was performed using a realistic two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential. The doubly magic nucleus {sup 132}Sn was assumed as a closed core, with the 16 and 10 valence neutron holes occupying the five levels of the 50-82 shell. The energy spectra have been calculated and compared with the experimental ones, and the theoretical two-nucleon spectroscopic amplitudes, evaluated in a truncated seniority space, have been used in the microscopic DWBA calculation of some cross-section angular distributions of both reactions.
... of angular cheilitis is usually undertaken with topical antifungals such as nystatin, clotrimazole, or econazole. Combinations of a topical antifungal and a topical steroid – such as Mycostatin® and ...
NASA Technical Reports Server (NTRS)
Young, David T.
1991-01-01
This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.
NASA Astrophysics Data System (ADS)
Torrelles, J. M.; Anglada, G.; Rodriguez, L. F.; Canto, L. F.; Barral, J. F.
1987-05-01
The authors have mapped the CO outflows associated with HL/XZ Tau and V645 Cygni with an angular resolution of 30arcsec. The blueshifted CO component associated with HL/XZ Tau appears to be located closer to XZ Tau than to HL Tau. This result together with theoretical considerations make doubtful the correctness of the previous indentification of HL Tau as the source of energy of the high velocity gas. This molecular outflow can also be created by a third heavily obscured star, or by a deflection of the large scale redshifted flow associated with L 1551-IRS 5. The authors resolved the apparent isotropic outflow associated with V645 Cygni into a bipolar outflow. The axis of the bipolar outflow at a scale of 15arcsec is oriented in the N-S direction, while at a scale of 1arcmin is oriented in the NW-SE direction. This change in direction can be explained by the existence of collimation processes working on different size scales, as it is suggested by the observed morphology of the ambient molecular cloud.
Caballero-Nieves, S. M.; Gies, D. R.; Jao, W.-C. E-mail: gies@chara.gsu.edu; and others
2014-02-01
We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the fine guidance sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitude difference Î”V < 4 down to separations as small as 0.''01. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 to 20,000 yr. When combined with the known short-period spectroscopic binaries, the results support the hypothesis that the binary fraction among massive stars is >60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; Simpson, A. D. (Technical Monitor)
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
Radiofrequency encoded angular-resolved light scattering
NASA Astrophysics Data System (ADS)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.; Adam, Jost; Jalali, Bahram
2015-03-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity of cells at rates of more than 10 000/s. However, by examining the entire angular light scattering spectrum, it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations, making them incompatible with other state-of-the-art flow cytometers. Here, we introduce a method for performing complete angular scattering spectrum measurements at high throughput combining techniques from the field of scattering flow-cytometry and radiofrequency communications. Termed Radiofrequency Encoded Angular-resolved Light Scattering, this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof-of-principle experiment, we use this technique to perform scattering measurements over a range of 30° from a tapered optical fiber at a scan rate of 250 kHz.
NASA Astrophysics Data System (ADS)
Tremou, Evangelia
2011-04-01
The current thesis is divided into two projects. The first part deals with studies on active galaxies hosting an Active Galactic Nucleus (AGN). Specifically, an optical spectroscopic study of a nearby (z < 0.06) volume - limited sample of Low - Luminosity Quasi - Stellar Objects (LLQSOs) has been carried out. The sample has been drawn from the Hamburg/ESO QSO survey (HES), which has a well-defined flux limit of B_j < 17.3. The aim of the present project is to characterize the excitation degree of the sample, distinguish between possible star forming and Seyfert activity and to investigate the spectral characteristics of the sample. The spectroscopic data were analyzed and emission lines were fitted using a routine, which employs Levenberg - Marquardt least square minimization. The same analysis was also applied for some additional archival data from the 6 Degree Field Galaxy Survey (6dFGS). The objects of the LLQSOs sample are classified according to the classical optical diagnostic diagrams, based on optical emission lines close in wavelength, avoiding almost any impact of reddening. The diagrams provide a diagnosis of the ionizing source within a galaxy, hence activity between Hii, LINERs (Low Ionization Nuclear Emission-line Region), and Seyfert galaxies can be clearly distinguished. The classification of all members of the LLQSOs sample is shown in chapter 3. The broadness of the emission lines, cases with double components and the electron density are also analyzed. The comparison of the diagnostic diagrams between the two data sets (HES and 6DFGS) results in different classifications of most of the sources. This is due to the different spectroscopic techniques applied in the two data sets during the observations, and is sketched in chapter 4. Several galaxies at a variety of cosmological distances, with elliptical and circular morphologies, were simulated. In these simulations, different instruments (different spectroscopic techniques, i.e. slit, fiber) were applied to the galaxies, in order to ! study the instrumental effect (aperture effect). The impact of the aperture effect in local and high redshift universe is discussed in detail. The second project of the thesis focuses on the construction of an image beam combiner for the Large Binocular Telescope (LBT). The LINC - NIRVANA instrument will be operating in the near - infrared (1 - 2.4 ?m) and will provide a high angular resolution (~9 mas at 1.25 ?m) over a wide field of view (~100 arcsec at 1.25 ?m). A fundamental component of the instrument, the Fringe and Flexure Tracking System (FFTS) is responsible to ensure a complete and time-stable wavefront correction at the position of the science detector. This will allow for long integration times at interferometric angular resolutions. A historical overview and our current achievements are also discussed in chapter 5. Laboratory tests of specific parts of the FFTS are presented in chapter 6. Especially, the subparts of the Detector Positioning Unit (DPU), which has to be moved with respect to an altitude - azimuth mounting under vacuum conditions, are characterized. The tilting of the instrument as a function of elevation results in a flexure of the system that has to be corrected by an algorithm.
Tang, Ya-Wen; Ho, Paul T. P.; Koch, Patrick M.; Rao, Ramprasad
2010-07-10
We present observational results of the thermal dust continuum emission and its linear polarization in one of the nearest massive star-forming sites Orion BN/KL in Orion Molecular Cloud-1. The observations were carried out with the Submillimeter Array. With an angular resolution of 1'' ({approx}2 mpc; 480 AU), we have detected and resolved the densest cores near the BN/KL region. At a wavelength of {approx}870 {mu}m, the polarized dust emission can be used to trace the structure of the magnetic field in this star-forming core. The dust continuum appears to arise from a V-shaped region, with a cavity nearly coincident with the center of the explosive outflows observed on larger scales. The position angles (P.A.s) of the observed polarization vary significantly by a total of about 90{sup 0} but smoothly, i.e., curl-like, across the dust ridges. Such a polarization pattern can be explained with dust grains being magnetically aligned instead of mechanically with outflows, since the latter mechanism would cause the P.A.s to be parallel to the direction of the outflow, i.e., radial-like. The magnetic field projected in the plane of sky is therefore derived by rotating the P.A.s of the polarization by 90{sup 0}. We find an azimuthally symmetric structure in the overall magnetic field morphology, with the field directions pointing toward 2.''5 west to the center of the explosive outflows. We also find a preferred symmetry plane at a P.A. of 36{sup 0}, which is perpendicular to the mean magnetic field direction (120{sup 0}) of the 0.5 pc dust ridge. Two possible interpretations of the origin of the observed magnetic field structure are discussed.
NASA Astrophysics Data System (ADS)
MartÃnez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; HernÃ¡n-Caballero, A.; GonzÃ¡lez-MartÃn, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; DÃaz-Santos, T.; Elitzur, M.; Esquej, P.; GarcÃa-Bernete, I.; Imanishi, M.; Levenson, N. A.; RodrÃguez Espinosa, J. M.
2015-12-01
We present an analysis of the nuclear infrared (IR, 1.6-18 Î¼m) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3-0.5 arcsec) imaging using the Si-2 filter (Î»C = 8.7 Î¼m) and 7.5-13 Î¼m spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 Î¼m silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol Ëœ 1.9 Ã— 1045 erg s-1 that is in good agreement with other estimates in the literature.
Friese, Daniel H; HÃ¤ttig, Christof; KoÎ²mann, JÃ¶rg
2013-03-12
An implementation of analytic second derivatives for the approximate coupled cluster singles and doubles model CC2 and for second-order MÃ¸ller-Plesset perturbation theory (MP2) will be presented. The RI approximation for the two-electron repulsion integrals is used to reduce memory demands, operation count, and I/O requirements. During the calculation, the storage of [Formula: see text] quantities (where [Formula: see text] is a measure for the system size) can completely be avoided. It is shown that with the MP2 method and an appropriate scaling of the harmonic frequencies, especially C-F stretch frequencies are reproduced much better in comparison to experiments than with the B3LYP density functional. Similar advantages are observed for molecules with strong, internal van der Waals interactions. Spin scaling offers additional improvements in these cases. The implementation has been tested for molecules with up to 81 atoms and 684 basis functions. PMID:26587609
ERIC Educational Resources Information Center
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
ERIC Educational Resources Information Center
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm inâ€¦
Fluidic angular velocity sensor
NASA Technical Reports Server (NTRS)
Berdahl, C. M. (inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
NASA Astrophysics Data System (ADS)
Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Angelakis, E.; Hodgson, J.; Nestoras, I.; Myserlis, I.; Zensus, J. A.; Sievers, A.; Ciprini, S.
2016-02-01
Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106, which showed a rapid and strong Î³-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign that also covered the radio, optical, UV, and X-ray bands, indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: We explore the phenomenology and physical conditions within the ultra-relativistic jet of the Î³-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We used ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employed single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 shows a compact core-jet morphology and fast superluminal motion with apparent speeds in the range 5-22 c. Estimating Doppler factors along the jet yields values of between ~7 up to ~50. This Doppler factor gradient implies an accelerating jet. The viewing angle towards the source differs between the inner and outer jet, with the former at Î¸ ~ 3Â° and the latter at Î¸ ~ 1Â°, after the jet bends towards the observer beyond 1 mas. The de-projected opening angle of the ultra-fast magnetically dominated jet is found to be (3.8 Â± 0.5)Â°. A single jet component can be associated with the pronounced flare both at high energies and in radio bands. Finally, the Î³-ray emission region is localized at â‰¤ 5.9 pc away from the jet base. Images as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A60
Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission
NASA Astrophysics Data System (ADS)
Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.
2011-09-01
The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.
NASA Astrophysics Data System (ADS)
Yokogawa, Sozo; Kitamura, Yoshimi; Momose, Munetake; Kawabe, Ryohei
2003-09-01
High angular resolution and sensitive aperture synthesis observations of CS (J=2-1) and CS (J=3-2) emissions toward L1551 NE, the second brightest protostar in the Taurus molecular cloud, made with the Nobeyama Millimeter Array are presented. L1551 NE is categorized as a Class 0 object deeply embedded in the redshifted outflow lobe of L1551 IRS 5. Previous studies of the L1551 NE region in CS emission revealed the presence of shell-like components open toward L1551 IRS 5, which seem to trace low-velocity shocks in the swept-up shell driven by the outflow from L1551 IRS 5. In this study, significant CS emission around L1551 NE was detected at the eastern tip of the swept-up shell from Vlsr=5.3 to 10.1 km s-1, and the total mass of the dense gas is estimated to be 0.14+/-0.02 Msolar. In addition, the following new structures were successfully revealed: a compact disklike component with a size of ~1000 AU just at L1551 NE, an arc-shaped structure around L1551 NE, open toward L1551 NE, with a size of ~5000 AU, i.e., a bow shock, and a distinct velocity gradient of the dense gas, i.e., deceleration along the outflow axis of L1551 IRS 5. These features suggest that the CS emission traces the postshocked region where the dense gas associated with L1551 NE and the swept-up shell of the outflow from L1551 IRS 5 interact. Since the age of L1551 NE is comparable to the timescale of the interaction, it is plausible that the formation of L1551 NE was induced by the outflow impact. The compact structure of L1551 NE with a tiny envelope was also revealed, suggesting that the outer envelope of L1551 NE has been blown off by the outflow from L1551 IRS 5. Based on observations made at the Nobeyama Radio Observatory (NRO), which is a branch of the National Astronomical Observatory, an interuniversity research institute operated by the Ministry of Education, Science, Sports, Culture, and Technology.
NASA Astrophysics Data System (ADS)
BeÅŸbinar, Beril; Alatan, A. A.
2015-10-01
This paper proposes a novel inshore ship detection method that is based on the approximation of harbour area with piecewise linear line segments. The method heavily depends on a very fine sea-land segmentation, which is realized in two steps in this work. First, an initial mask is generated by thresholding the normalized difference water index (NDWI) using the zero-level of available global elevation data. In the second step, border of the segmentation result is further enhanced via graph-cut algorithm since spectral characteristics of sea close to sea-land border may differ from the ones of deep parts of the sea. The resultant borderline is used for finding line segments that are assumed to represent the man-made harbours. After being merged and eliminated properly, these line segments are used to extract harbour area so that the remaining connected components of the binary mask can be tested for being ship according to their shapes. Test results show that the proposed method is capable of detecting different kinds of ships in a variety of sea states.
NASA Astrophysics Data System (ADS)
Katouda, Michio; Nagase, Shigeru
An efficient parallel algorithm is developed for second-order Møller-Plesset perturbation theory with the resolution-of-identity approximation of two-electron repulsion integrals (RI-MP2) to perform MP2 energy calculations of large molecules on distributed memory processors. Benchmark calculations are carried out for taxol (C47H51NO14), valinomycin (C54H90N6O18), and two-layer nanographene sheets (C96H24)2, which show the high parallel efficiency of the developed algorithm.
Plasmons with orbital angular momentum
Mendonca, J. T.; Ali, S.; Thide, B.
2009-11-15
Electron plasma waves carrying orbital angular momentum are investigated in an unmagnetized collisionless plasma composed of inertial electrons and static ions. For this purpose, the usual plasmon dispersion relation is employed to derive an approximate paraxial equation. The latter is analyzed with a Gaussian beam solution. For a finite angular momentum associated with the plasmon, Laguerre-Gaussian (LG) solutions are employed for solving the electrostatic potential problem which gives approximate solution and is valid for plasmon beams in the paraxial approximation. The LG potential determines the electric field components and energy flux of plasmons with finite angular momentum. Numerical illustrations show that the radial and angular mode numbers strongly modify the profiles of the LG potential.
NASA Astrophysics Data System (ADS)
Shakur, Asif; Sinatra, Taylor
2013-12-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.
Burr, T.; Hoover, A.; Croft, S.; Rabin, M.
2015-01-15
High purity germanium (HPGe) currently provides the highest readily available resolution gamma detection for a broad range of radiation measurements, but microcalorimetry is a developing option that has considerably higher resolution even than HPGe. Superior microcalorimetry resolution offers the potential to better distinguish closely spaced X-rays and gamma-rays, a common challenge for the low energy spectral region near 100 keV from special nuclear materials, and the higher signal-to-background ratio also confers an advantage in detection limit. As microcalorimetry continues to develop, it is timely to assess the impact of uncertainties in detector and item response functions and in basic nuclear data, such as branching ratios and half-lives, used to interpret spectra in terms of the contributory radioactive isotopes. We illustrate that a new inference option known as approximate Bayesian computation (ABC) is effective and convenient both for isotopic inference and for uncertainty quantification for microcalorimetry. The ABC approach opens a pathway to new and more powerful implementations for practical applications than currently available.
NASA Astrophysics Data System (ADS)
Burr, T.; Hoover, A.; Croft, S.; Rabin, M.
2015-01-01
High purity germanium (HPGe) currently provides the highest readily available resolution gamma detection for a broad range of radiation measurements, but microcalorimetry is a developing option that has considerably higher resolution even than HPGe. Superior microcalorimetry resolution offers the potential to better distinguish closely spaced X-rays and gamma-rays, a common challenge for the low energy spectral region near 100 keV from special nuclear materials, and the higher signal-to-background ratio also confers an advantage in detection limit. As microcalorimetry continues to develop, it is timely to assess the impact of uncertainties in detector and item response functions and in basic nuclear data, such as branching ratios and half-lives, used to interpret spectra in terms of the contributory radioactive isotopes. We illustrate that a new inference option known as approximate Bayesian computation (ABC) is effective and convenient both for isotopic inference and for uncertainty quantification for microcalorimetry. The ABC approach opens a pathway to new and more powerful implementations for practical applications than currently available.
NASA Astrophysics Data System (ADS)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schmidt, Andreas S.; Schulze, Felix; Steinborn, Lisa K.
2015-10-01
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.
NASA Astrophysics Data System (ADS)
Wang, Shaobo; Bernard, Denis; Bruel, Philippe; Frotin, Mickael; Geerebaert, Yannick; Giebels, Berrie; Gros, Philippe; Horan, Deirdre; Louzir, Marc; Poilleux, Patrick; Semeniouk, Igor; AttiÃ©, David; Calvet, Denis; Colas, Paul; Delbart, Alain; Sizun, Patrick; GÃ¶tz, Diego; Amano, Sho; Kotaka, Takuya; Hashimoto, Satoshi; Minamiyama, Yasuhito; Takemoto, Akinori; Yamaguchi, Masashi; Miyamoto, Shuji; DatÃ©, Schin; Ohkuma, Haruo
2015-11-01
A time projection chamber (TPC) can be used to measure the polarization of gamma rays with excellent angular precision and sensitivity in the MeV-GeV energy range through the conversion of photons to e+eâ€‘ pairs. The Hermetic ARgon POlarimeter (HARPO) prototype was built to demonstrate this concept. It was recently tested in the polarized photon beam at the NewSUBARU facility in Japan. We present this data-taking run, which demonstrated the excellent performance of the HARPO TPC.
2015-01-01
An efficient new molecular orbital (MO) basis algorithm is reported implementing the pair atomic resolution of the identity approximation (PARI) to evaluate the exact exchange contribution (K) to self-consistent field methods, such as hybrid and range-separated hybrid density functionals. The PARI approximation, in which atomic orbital (AO) basis function pairs are expanded using auxiliary basis functions centered only on their two respective atoms, was recently investigated by Merlot et al. [J. Comput. Chem.2013, 34, 1486]. Our algorithm is significantly faster than quartic scaling RI-K, with an asymptotic exchange speedup for hybrid functionals of (1 + X/N), where N and X are the AO and auxiliary basis dimensions. The asymptotic speedup is 2 + 2X/N for range separated hybrids such as CAM-B3LYP, ?B97X-D, and ?B97X-V which include short- and long-range exact exchange. The observed speedup for exchange in ?B97X-V for a C68 graphene fragment in the cc-pVTZ basis is 3.4 relative to RI-K. Like conventional RI-K, our method greatly outperforms conventional integral evaluation in large basis sets; a speedup of 19 is obtained in the cc-pVQZ basis on a C54 graphene fragment. Negligible loss of accuracy relative to exact integral evaluation is demonstrated on databases of bonded and nonbonded interactions. We also demonstrate both analytically and numerically that the PARI-K approximation is variationally stable. PMID:25691831
NASA Astrophysics Data System (ADS)
Sacuto, S.; Aringer, B.; Hron, J.; Nowotny, W.; Paladini, C.; Verhoelst, T.; Höfner, S.
2011-01-01
Context. We study the circumstellar environment of the carbon-rich star R Sculptoris using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI focal instruments VINCI and MIDI, respectively. Aims: These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Methods: We first compare the spectro-interferometric measurements of the star at different epochs to detect the dynamic signatures of the circumstellar structures at different spatial and spectral scales. We then interpret these data using a self-consistent dynamic model atmosphere to discuss the dynamic picture deduced from the observations. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort is first applied to determining these parameters. Results: Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 ?m. The model agrees well with the time-dependent flux data at 8.5 ?m, whereas it is too faint at 11.3 and 12.5 ?m. The VINCI visibility measurements are reproduced well, meaning that the extension of the model is suitable in the K-band. In the mid-infrared, the model has the proper extension to reveal molecular structures of C2H2 and HCN located above the stellar photosphere. However, the windless model used is not able to reproduce the more extended and dense dusty environment. Conclusions: Among the different explanations for the discrepancy between the model and the measurements, the strong nonequilibrium process of dust formation is one of the most probable. The transition from windless atmospheres to models with considerable mass-loss rates occurs in a very narrow range of stellar parameters, especially for the effective temperature, the C/O ratio, and the pulsation amplitude. A denser sampling of such critical regions of the parameter space with additional models might lead to a better representation of the extended structures of low mass-loss carbon stars like R Sculptoris. The complete dynamic coupling of gas and dust and the approximation of grain opacities with the small-particle limit in the dynamic calculation could also contribute to the difference between the model and the data. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 60.A-9220, 074.D-0601, 077.D-0294 (French Guaranteed Time Observation), 078.D-0112 (Belgian Guaranteed Time Observation), and 078.D-0122 (French Guaranteed Time Observation).
Lundin, C; Heidenblad, M; Strombeck, B; Borg, A; Hovland, R; Heim, S; Johansson, B
2007-01-01
The dic(7;9)(p11 approximately 13;p11 approximately 13) is a recurrent chromosomal abnormality in acute lymphoblastic leukemia (ALL), mainly of B-lineage. Although more than 20 dic(7;9)-positive ALLs have been reported to date, the molecular genetic consequences of this aberration are unknown. We performed tiling resolution (32K) genome-wide array-based comparative genomic hybridization (array CGH) analysis of three cases with dic(7;9) in order to characterize the breakpoints on 7p and 9p. The analysis showed a clustering of breakpoints within 9p13.1 in all three cases and within 7p11.2 in two cases; the array CGH revealed two different breakpoints - 7p12.1 and 7p14.1 - in the remaining case. Based on these findings the abnormality should hence be designated dic(7;9)(p11.2 approximately 12.1;p13.1). Locus-specific fluorescence in situhybridization analysis of one of the cases narrowed down the 7p11.2 breakpoint to a <500-kb segment in this sub-band, a region containing three known genes. Unfortunately, lack of material precluded further molecular genetic studies, and it thus remains unknown whether the pathogenetically important outcome of the dic(7;9) is formation of a chimeric gene or loss of 7p and/or 9p material. PMID:17901695
Massardi, M.; Ekers, R. D.; Ellis, S. C.; Maughan, B.
2010-07-20
X-ray observations of galaxy clusters at high redshift (z {approx_gt} 0.5) indicate that they are more morphologically complex and less virialized than those at low redshift. We present the first subarcminute resolution synthesis observations at 18 GHz of the Sunyaev-Zel'dovich (SZ) effect for Cl J0152-1357 using the Australia Telescope Compact Array. Cl J0152-1357 is a massive cluster at redshift z = 0.83 and has a complex structure including several merging subclumps which have been studied at optical, X-ray, and radio wavelengths. Our high-resolution observations indicate a clear displacement of the maximum SZ effect from the peak of X-ray emission for the most massive subclump. This result shows that the cluster gas within the cluster substructures is not virialized in Cl J0152-1357, and we suggest that it is still recovering from a recent merger event. A similar offset of the SZ effect has recently been seen in the 'bullet cluster' and in RX J1347-1145. This non-equilibrium situation implies that high-resolution observations are necessary to investigate galaxy cluster evolution and to extract cosmological constraints from a comparison of the SZ effect and X-ray signals.
NASA Astrophysics Data System (ADS)
Carrasco-González, Carlos; Rodríguez, Luis F.; Anglada, Guillem; Curiel, Salvador
2009-03-01
We present new 7 mm and archive 1.3 cm high angular resolution observations of the HL/XZ Tau region made with the Very Large Array. At 7 mm, the emission from HL Tau seems to arise in a clumpy disk with radius of the order of 25 AU. The 1.3 cm emission from XZ Tau shows the emission from a binary system with 0farcs3 (42 AU) separation, known from previous optical/IR observations. However, at 7 mm, the southern radio component resolves into a binary with 0farcs09 (13 AU) separation, suggesting that XZ Tau is actually a triple star system. We suggest that the remarkable ejection of gas from the XZ Tau system observed with the Hubble Space Telescope may be related to a periastron passage of this newly discovered close binary system.
NASA Astrophysics Data System (ADS)
Exposito, J.; Gratadour, D.; ClÃ©net, Y.; Rouan, D.
2011-09-01
Context. Active galactic nuclei (AGNs) are very luminous galaxies from the ultraviolet (UV) to the far infrared (FIR). To study regions near the core, which are dominated by dust, IR is the perfect spectral range because of the lower optical depth of the dust. However, these galaxies are usually distant, and the structures near the core are faint compared to the central source. High resolution and high contrast are mandatory to study the inner structures of AGNs and better understand the interaction between the central core and its surroundings. Aims: Our goal is to propose an explanation for the coronal lines in our spectra of NGC 1068 at a far distance (few tens of parsec) from the central source inside wave-like structures that we call nodules. Methods: NGC 1068 was observed with NaCo at ESO/VLT, using long-slit spectroscopy at 2.2 Î¼m and 3.5 Î¼m. Reduced spectra were compared to the output of Cloudy, using various ionizing continua: the continuum of the central source, young stars, and radiative shocks caused by the jet. Results: For the first time, thanks to the resolution provided by NaCo, near-IR coronal emission can be precisely associated to structures observable in the IR broad-band images. We found that coronal lines observed in the nodules cannot be caused by photoionization by the central source but are instead caused by a local jet-induced ionizing continuum. In addition, studying the Brackett-Î³ line (BrÎ³) and CO 2-0 band head, we deduced a star density within the four nodules (~800 000 stars) compatible with super star cluster (hereafter SSC) models. Based on observations collected at the ESO/Paranal YEPUN telescope, Proposals 70.B-0307(A), 75.B-0661(A).
NASA Technical Reports Server (NTRS)
Danchi, William
2010-01-01
Over the past twenty years the U. C. Berkeley Infrared Spatial Interferometer has observed a number of Long Period Variable stars in the mid-infrared, obtaining information on the spatial distribution of dust around these stars with resolutions of the order of a few tens of milliarcseconds. The ISI is a heterodyne interferometer operating mostly at 11.15 microns, initially with two telescopes. In the last decade, it has been taking data regularly with three telescopes, thus obtaining visibility data on three baselines and also a closure phase. Over the course of the years, the ISI has been able to measure the physical properties of the dust shells surrounding these stars, in particular the inner radii of the dust shells, as well as the temperature and density distribution. For some stars, the ISI has also made precision measurements of their diameters in the mid-infrared. Closure phase measurements have revealed asymmetries in the dust distributions around many stars. Most surprisingly the ISI data has shown evidence for substantial changes in the amount of dust on time scales of 5-10 years, rather than being directly correlated with the stellar pulsation periods, which are of the order of one year. We discuss past results and new results from the ISI that highlight the dynamic environment around these stars.
NASA Astrophysics Data System (ADS)
Young, Alexander H.; Mroczkowski, Tony; Romero, Charles; Sayers, Jack; Balestra, Italo; Clarke, Tracy E.; Czakon, Nicole; Devlin, Mark; Dicker, Simon R.; Ferrari, Chiara; Girardi, Marisa; Golwala, Sunil; Intema, Huib; Korngut, Phillip M.; Mason, Brian S.; Mercurio, Amata; Nonino, Mario; Reese, Erik D.; Rosati, Piero; Sarazin, Craig; Umetsu, Keiichi
2015-08-01
We present high resolution (9?) imaging of the Sunyaev-Zel’dovich Effect (SZE) toward two massive galaxy clusters, MACS J0647.7+7015 (z = 0.591) and MACS J1206.2-0847 (z = 0.439). We compare these 90 GHz measurements, taken with the Multiplexed Squid/TES Array at Ninety Gigahertz (MUSTANG ) receiver on the Green Bank Telescope, with generalized Navarro-Frenk-White (gNFW) models derived from Bolocam 140 GHz SZE data as well as maps of the thermal gas derived from Chandra X-ray observations. We adopt a serial-fitting approach, in which gNFW models are first fit to the Bolocam data and then compared to the MUSTANG data to determine an overall best-fit model. For MACS J0647.7+7015, we find a gNFW profile with core slope parameter ? = 0.9 fits the MUSTANG image with {? }{red}2=1.005 and probability to exceed (PTE) = 0.34. For MACS J1206.2-0847, we find ? =0.7, {? }{red}2=0.993, and PTE = 0.70. In addition, we find a significant (>3?) residual SZE feature in MACS J1206.2-0847 coincident with a group of galaxies identified in Very Large Telescope data and filamentary structure found in a weak-lensing mass reconstruction. We suggest the detected sub-structure may be the SZE decrement from a low mass foreground group or an infalling group. Giant Metrewave Radio Telescope measurements at 610 MHz reveal diffuse extended radio emission to the west, which we posit is either an active galactic nucleus-driven radio lobe, a bubble expanding away from disturbed gas associated with the SZE signal, or a bubble detached and perhaps re-accelerated by sloshing within the cluster. Using the spectroscopic redshifts available, we find evidence for a foreground (z = 0.423) or infalling group, coincident with the residual SZE feature.
Low Angular Momentum in Clumpy, Turbulent Disk Galaxies
NASA Astrophysics Data System (ADS)
Obreschkow, Danail; Glazebrook, Karl; Bassett, Robert; Fisher, David B.; Abraham, Roberto G.; Wisnioski, Emily; Green, Andrew W.; McGregor, Peter J.; Damjanov, Ivana; Popping, Attila; JÃ¸rgensen, Inger
2015-12-01
We measure the stellar specific angular momentum {j}s={J}s/{M}s in four nearby (z â‰ˆ 0.1) disk galaxies that have stellar masses {M}s near the break {M}s* of the galaxy mass function but look like typical star-forming disks at z â‰ˆ 2 in terms of their low stability (Q â‰ˆ 1), clumpiness, high ionized gas dispersion (40-50 {km} {{{s}}}-1), high molecular gas fraction (20%-30%), and rapid star formation (Ëœ 20{M}âŠ™ {{yr}}-1). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have Ëœ 3 times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low {j}s values of our targets are similar to those expected in the {M}s* population at higher z from the approximate theoretical scaling {j}s\\propto {(1+z)}-1/2 at fixed {M}s. This suggests that a change in angular momentum, driven by cosmic expansion, is the main cause for the remarkable difference between clumpy {M}s* disks at high z (which likely evolve into early-type galaxies) and mass-matched local spirals.
The oceanic contribution to the Earth's seasonal angular momentum budget
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Marcus, S. L.; Johns, C. M.; Hide, R.; Thompson, S. R.
1993-01-01
Seasonal variations in the speed of the Earth's rotation manifest themselves as fluctuations in the length of the day (LOD) with an amplitude of about 1000 microseconds. We know from previous work that at least 95% of these variations can be accounted for in terms of angular momentum exchanged between the atmosphere and the solid Earth. Here we examine the respective contributions of the Antarctic Circumpolar Current (ACC) and the global oceans to the Earth's seasonal angular momentum budget, using in situ data from the Drake Passage and results from both the oceanic regional model (Fine Resolution Antarctic Model -- FRAM) of Webb et al. (1991) and the global ocanic model of Maier-Reimer et al. (1993) as analyzed by Brosche et al. (1990). The estimated annual contribution of the ACC (2-4 microsec) is much smaller than the total variation in the oceanic models or the existing LOD-AAM residual (both approximately 15-20 microsec). The estimated semi-annual ACC contribution (3-8 microsec) is offset by counter-current further north in both oceanic models, which exhibit larger semi-annual variations in planetary angular momentum. Further refinements in the Earth's seasonal angular momentum budget, therefore, will require the full (planetary plus relative) contribution of the global oceans in addition to that of the ACC.
High-angular resolution observations of methanol in the infrared dark cloud core G11.11-0.12P1
NASA Astrophysics Data System (ADS)
Gómez, L.; Wyrowski, F.; Pillai, T.; Leurini, S.; Menten, K. M.
2011-05-01
Recent studies suggest that infrared dark clouds (IRDCs) have the potential of harboring the earliest stages of massive star formation and indeed evidence for this is found toward distinct regions within them. We present a study with the Plateau de Bure Interferometer of a core in the archetypal filamentary IRDC G11.11-0.12 of a few arcsecond resolution to determine its physical and chemical structures. The data consist of continuum and line observations covering the C34S 2 ? 1 line and the methanol 2k ? 1k vt = 0 lines at 3 mm and the methanol 5k ? 4k vt = 0 lines at 1 mm. Our observations show extended emission in the continuum at 1 and 3 mm. The methanol 2k ? 1kvt = 0 emission has three maxima extending over a 1 pc scale (when merged with single-dish short-spacing observations); one of the maxima is spatially coincident with the continuum emission. The fitting results show an enhanced methanol fractional abundance (~3 × 10-8) at the central peak with respect to the other two peaks, where it decreases by about an order of magnitude (~4-6 × 10-9). Evidence of extended 4.5 ?m emission, "wings" in the CH3OH 2k ? 1k spectra, and CH3OH abundance enhancements point to the presence of an outflow in the east-west direction. In addition, we find a gradient of ~4 km s-1 in the same direction, which we interpret as being produced by an outflow(s)-cloud interaction. Based on observations carried out with the IRAM Plateau de Bure Interferometer and the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Fits images associated with the 1 mm and 3 mm continuum maps of Fig. 1 and the integrated intensity maps of Figs. 3-5, and 9 can be queried from the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/529/A161
DOE R&D Accomplishments Database
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Phonons with orbital angular momentum
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Angular Acceleration without Torque?
ERIC Educational Resources Information Center
Kaufman, Richard D.
2012-01-01
Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.
Angular Momentum Acquisition in Galaxy Halos
NASA Astrophysics Data System (ADS)
Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.
2013-05-01
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by ? ~ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks." We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
Doughty, Benjamin; Haber, Louis H.; Hackett, Christina; Leone, Stephen R.
2011-03-07
Photoelectron angular distributions (PADs) are obtained for a pair of 4s{sup 1}4p{sup 6}6p{sup 1} (a singlet and a triplet) autoionizing states in atomic krypton. A high-order harmonic pulse is used to excite the pair of states and a time-delayed 801 nm ionization pulse probes the PADs to the final 4s{sup 1}4p{sup 6} continuum with femtosecond time resolution. The ejected electrons are detected with velocity map imaging to retrieve the time-resolved photoelectron spectrum and PADs. The PAD for the triplet state is inherently separable by virtue of its longer autoionization lifetime. Measuring the total signal over time allows for the PADs to be extracted for both the singlet state and the triplet state. Anisotropy parameters for the triplet state are measured to be {beta}{sub 2}= 0.55 {+-} 0.17 and {beta}{sub 4}=-0.01 {+-} 0.10, while the singlet state yields {beta}{sub 2}= 2.19 {+-} 0.18 and {beta}{sub 4}= 1.84 {+-} 0.14. For the singlet state, the ratio of radial transition dipole matrix elements, X, of outgoing S to D partial waves and total phase shift difference between these waves, {Delta}, are determined to be X= 0.56 {+-} 0.08 and {Delta}= 2.19 {+-} 0.11 rad. The continuum quantum defect difference between the S and D electron partial waves is determined to be -0.15 {+-} 0.03 for the singlet state. Based on previous analyses, the triplet state is expected to have anisotropy parameters independent of electron kinetic energy and equal to {beta}{sub 2}= 5/7 and {beta}{sub 4}=-12/7. Deviations from the predicted values are thought to be a result of state mixing by spin-orbit and configuration interactions in the intermediate and final states; theoretical calculations are required to quantify these effects.
NASA Technical Reports Server (NTRS)
Liebe, Wolfgang
1944-01-01
In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
Angular velocity discrimination
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
Dirac Green function for angular projection potentials.
Zeller, Rudolf
2015-11-25
The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired. PMID:26523824
Dirac Green function for angular projection potentials
NASA Astrophysics Data System (ADS)
Zeller, Rudolf
2015-11-01
The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.
The Angular Momentum Dichotomy
NASA Astrophysics Data System (ADS)
Teklu, Adelheid; Remus, Rhea-Silvia; Dolag, Klaus; Burkert, Andreas
2015-02-01
In the context of the formation of spiral galaxies the evolution and distribution of the angular momentum of dark matter halos have been discussed for more than 20 years, especially the idea that the specific angular momentum of the halo can be estimated from the specific angular momentum of its disk (e.g. Fall & Efstathiou (1980), Fall (1983) and Mo et al. (1998)). We use a new set of hydrodynamic cosmological simulations called Magneticum Pathfinder which allow us to split the galaxies into spheroidal and disk galaxies via the circularity parameter ?, as commonly used (e.g. Scannapieco et al. (2008)). Here, we focus on the dimensionless spin parameter ? = J |E|1/2 / (G M5/2) (Peebles 1969, 1971), which is a measure of the rotation of the total halo and can be fitted by a lognormal distribution, e.g. Mo et al. (1998). The spin parameter allows one to compare the relative angular momentum of halos across different masses and different times. Fig. 1 reveals a dichotomy in the distribution of ? at all redshifts when the galaxies are split into spheroids (dashed) and disk galaxies (dash-dotted). The disk galaxies preferentially live in halos with slightly larger spin parameter compared to spheroidal galaxies. Thus, we see that the ? of the whole halo reflects the morphology of its central galaxy. For more details and a larger study of the angular momentum properties of disk and spheroidal galaxies, see Teklu et al. (in prep.).
Approximate resolution of hard numbering problems
Bailleux, O.; Chabrier, J.J.
1996-12-31
We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.
Ruda, Mitchell C. (Tucson, AZ); Greynolds, Alan W. (Tucson, AZ); Stuhlinger, Tilman W. (Tucson, AZ)
2009-07-14
One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.
Product angular distributions in dissociative recombination
NASA Astrophysics Data System (ADS)
Guberman, Steven L.
2004-05-01
The dependence of the dissociative recombination cross section upon the angle between the incoming electron beam and the ion internuclear axis is determined for diatomic molecules. Product angular distributions are derived for the component partial waves of the Coulomb wave function. In agreement with earlier results for dissociative attachment, it is shown that in the slow rotation approximation, if electron capture is dominated by a single partial wave, the product angular distribution is given by the square of the absolute value of the partial wave spherical harmonic describing the incoming electron.
Yu, D.P.; Ren, G.; Zhang, Z.
1996-10-01
Structural defects were analyzed by means of high-resolution electron microscopy (HREM) in a crystalline (2/1, 5/3)-type Fibonacci approximant of an Al-Pd-Mn alloy system. A kind of stacking fault is observed with a projected displacement vector R parallel to the [{minus}3 0 29] direction; its amplitude {vert_bar}R{vert_bar} = 2a sin 18 deg = 1.19 nm, and its habit plane lies in the (1 0 1) plane. Two kinds of domain boundaries have been found and the domains are related by a 180 deg rotation around the c-axis plus a displacement along the [3 0 {minus}29] or the [{minus}3 0 {minus}29] direction in a plane perpendicular to the b-axis. The domain boundary planes are the {l_brace}1 0 1{r_brace} planes.
Creating High-Harmonic Beams with Controlled Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T. J.; Frumker, E.; Boyd, Robert W.; Corkum, P. B.
2014-10-01
A beam with an angular-dependant phase ? =?? about the beam axis carries an orbital angular momentum of ?? per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |?|=1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.
Creating high-harmonic beams with controlled orbital angular momentum.
Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B
2014-10-10
A beam with an angular-dependant phase ? = ?? about the beam axis carries an orbital angular momentum of ?? per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |?| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale. PMID:25375710
ERIC Educational Resources Information Center
Parker, G. W.
1978-01-01
Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)
Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi
2015-12-01
Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz. PMID:26724001
NASA Astrophysics Data System (ADS)
Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi
2015-12-01
Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz1/2 and 0.5 nrad/Hz1/2 at 1 Hz.
Angular correlations and high energy evolution
Kovner, Alex; Lublinsky, Michael
2011-11-01
We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.
Miniaturized photoelectric angular sensor with simplified design
NASA Astrophysics Data System (ADS)
Dumbravescu, Niculae; Schiaua, Silviu
1999-09-01
In building the movable elements of robots, peripheral devices and measuring apparata, increasing the resolution of the angular sensor systems, based on incremental rotary encoders, is essential, together with decreasing the complexity, dimensions and weight. Especially when the angular sensor is integrated in a measuring system, belonging to a programmed light airplane for surveillance, the key issue is to reduce both dimensions and weight. This can be done using a simplified design, which consists in the following solutions: replacement of the fragile Cr on glass substrate, 1.5 mm thick (normally used for the fabrication of incremental disks), with light Cr on polycarbonate substrate, with only 0.15 mm thick; the absence of collimating optics (based on microlenses, used in IR emitter-photocell receiver assembly), as a result of the good coupling efficiency (due to the possible approaching of these elements at minimum 0.45 mm); the shrinkage of the disk's diameters to only 14 mm; the use of surface mounting devices and the related surface mounting technology, enabling to reduce dimensions and weight. The maximum number of slits on a 14 mm diameter dividing disk, usually obtained in a Cr on polycarbonate version, being approx. 1000, no problem occurs in our case, for 360 slits. The requested angular resolution (only 0.5 degrees for the light airplane), using the whole classical '4x digital multiplication' is not necessary, but a lower one of only 2x, resulting in a simplified electronics. The proposed design permitted, that an original arrangement, for building a small size, lightweight, heavy-duty incremental transducer based angular sensor system, to be obtained, useful not only in avionics, but also in robotics, or other special applications. Besides, extending the number of fixed gratings (masks) allows, that many primary signals to be derived, and a further increase in resolution of even 6 angular minutes to be obtained from the initial 360 slits.
NASA Astrophysics Data System (ADS)
Louck, James
Angular momentum theory is presented from the viewpoint of the group SU(1) of unimodular unitary matrices of order two. This is the basic quantum mechanical rotation group for implementing the consequences of rotational symmetry into isolated complex physical systems, and gives the structure of the angular momentum multiplets of such systems. This entails the study of representation functions of SU(2), the Lie algebra of SU(2) and copies thereof, and the associated Wigner-Clebsch-Gordan coefficients, Racah coefficients, and 1n-j coefficients, with an almost boundless set of inter-relations, and presentations of the associated conceptual framework. The relationship to the rotation group in physical 3-space is given in detail. Formulas are often given in a compendium format with brief introductions on their physical and mathematical content. A special effort is made to inter-relate the material to the special functions of mathematics and to the combinatorial foundations of the subject.
NASA Astrophysics Data System (ADS)
Swanson, Molly; Tegmark, Max; Hamilton, Andrew; Hill, Colin
2012-02-01
Mangle is a suite of software designed to deal accurately and efficiently with complex angular masks, such as occur typically in galaxy surveys. Mangle performs the following tasks: converts masks between many handy formats (including HEALPix),rapidly finds the polygons containing a given point on the sphere,rapidly decomposes a set of polygons into disjoint parts,expands masks in spherical harmonics,generates random points with weights given by the mask, and implements computations for correlation function analysis.To mangle, a mask is an arbitrary union of arbitrarily weighted angular regions bounded by arbitrary numbers of edges. The restrictions on the mask are only (1) that each edge must be part of some circle on the sphere (but not necessarily a great circle), and (2) that the weight within each subregion of the mask must be constant. Mangle is complementary to and integrated with the HEALPix package; mangle works with vector graphics whereas HEALPix works with pixels.
NASA Astrophysics Data System (ADS)
Wormer, Paul E. S.; Paldus, Josef
Starting from the simplest possible building blocks--a ket, a bra, a time-reversed ket, and a time-reversed bra--a diagrammatic formalism is developed for angular momentum coupling problems. The formalism comprises Clebsch-Gordan coefficients as well as 3jm-symbols. The idea of constructing invariants (internal lines) by contracting contragredient pairs of quantities is emphasized throughout. The Clebsch-Gordan series, and its extension to the coupling of more than two angular momenta, is introduced algebraically and diagrammatically. Recoupling between bases obtained in different coupling schemes is introduced and the connection between recoupling coefficients and irreducible 3nj-symbols is derived diagrammatically. The well-known diagrammatic rules due to Jucys and co-workers are derived by group theoretical means and simple rules for their practical exploitation are presented.
Quantum Heuristics of Angular Momentum
ERIC Educational Resources Information Center
Levy-Leblond, Jean-Marc
1976-01-01
Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)
Sokolovski, D.; Msezane, A.Z.
2004-09-01
A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.
Angular distributions in multifragmentation
Stoenner, R.W.; Klobuchar, R.L.; Haustein, P.E.; Virtes, G.J.; Cumming, J.B.; Loveland, W.
2006-04-15
Angular distributions are reported for {sup 37}Ar and {sup 127}Xe from 381-GeV {sup 28}Si+Au interactions and for products between {sup 24}Na and {sup 149}Gd from 28-GeV {sup 1}H+Au. Sideward peaking and forward deficits for multifragmentation products are significantly enhanced for heavy ions compared with protons. Projectile kinetic energy does not appear to be a satisfactory scaling variable. The data are discussed in terms of a kinetic-focusing model in which sideward peaking is due to transverse motion of the excited product from the initial projectile-target interaction.
ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS
Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A.
2013-05-20
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
Mesoscopic reflectance angular domain spectroscopic imaging.
Zhang, Yan; Vasefi, Fartash; Ng, Eldon; Chamson-Reig, Astrid; Kaminska, Bozena; Carson, Jeffrey J L
2014-01-01
The advancement of angular domain imaging in mesoscopic reflectance multispectral imaging is reported. The key component is an angular filter array that performs the angular filtration of the back-scattered photons and generates image contrast due to the variances in tissue optical properties. The proposed modality enables multispectral imaging of subsurface features for samples too thick for transillumination angular domain spectroscopic imaging (ADSI) approaches. The validation was carried out with tissue-mimicking phantoms with multiple absorptive features embedded below the surface. Multispectral images in the range of 666 to 888 nm clearly revealed the location of the features with the background scattering levels up to 20 cm?¹. The shape of the features was recoverable at depths of up to three to four times the transport mean free path. The spatial resolution was <1 mm and the field-of-view was larger than 2.5 cm x 30. cm. Furthermore, the attenuation spectra of measured absorptive features were successfully extracted. Target detectability and imaging quality with different background scattering levels, target depths, and illumination focal depths were discussed, as well as the capability of ADSI in reflectance optical mesoscopic imaging and its potential applications. PMID:25023414
Improving the resolution of chopper spectrometers at pulsed neutron sources
Carpenter, J.M. ); Mildner, D.F.R. . Center for Analytical Chemistry)
1990-01-01
We examine the relationships between intensity and resolution in pulsed-source chopper spectrometers, including the effects of Soller collimation, narrower rotor slits and higher rotor speeds. The basis is a simplified description of a spectrometer, approximately optimizing the rotor pulse and lighthouse effects. the analysis includes a new treatment of the angular distribution transmitted through a system consisting of a coarse collimator and a Soller collimator. The results encourage the prospect for a reasonably easily accomplished, higher resolution, optional configuration of the pulsed source chopper spectrometers at IPNS. 6 refs., 5 figs.
Angular magnetoresistance in semiconducting undoped amorphous carbon thin films
Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong
2015-05-07
Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2???40?K. The maximum magnitude of angular MR was in the range of 9.5%???1.5% in 2???40?K. The origin of this angular MR was also discussed.
NASA Astrophysics Data System (ADS)
Wang, Guangjun; Wang, Huaying; Wang, Dayong; Xie, Jianjun; Zhao, Jie
2007-12-01
A simple holographic high-resolution imaging system without pre-magnification, which is based on off-axis lensless Fourier transform configuration, has been developed. Experimental investigations are performed on USAF resolution test target. The method based on angular spectrum theory for reconstructing lensless Fourier hologram is given. The reconstructed results of the same hologram at different reconstructing distances are presented for what is to our knowledge the first time. Approximate diffraction limited lateral resolution is achieved. The results show that the angular spectrum method has several advantages over more commonly used Fresnel transform method. Lossless reconstruction can be achieved for any numerical aperture holograms as long as the wave field is calculated at a special reconstructing distance, which is determined by the light wavelength and the chip size and the pixel size of the CCD sensor. This is very important for reconstructing an extremely large numerical aperture hologram. Frequency-domain spectrum filtering can be applied conveniently to remove the disturbance of zero-order. The reconstructed image wave field is accurate so long as the sampling theorem is not violated. The experimental results also demonstrate that for a high quality hologram, special image processing is unnecessary to obtain a high quality image.
Ultra high resolution soft x-ray tomography
Haddad, W.S.; Trebes, J.E.; Goodman, D.M.
1995-07-19
Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by {approximately}5{mu}m. A series of nine 2-D images of the object were recorded at angles between {minus}50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of {approximately}1000 {Angstrom} was observed. Artifacts in the reconstruction limited the overall depth resolution to {approximately}6000 {Angstrom}, however some features were clearly reconstructed with a depth resolution of {approximately}1000 {Angstrom}. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to {approximately}1200 {Angstrom} overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.
Estimating energy-momentum and angular momentum near null infinity
Helfer, Adam D.
2010-04-15
The energy-momentum and angular momentum contained in a spacelike two-surface of spherical topology are estimated by joining the two-surface to null infinity via an approximate no-incoming-radiation condition. The result is a set of gauge-invariant formulas for energy-momentum and angular momentum which should be applicable to much numerical work; it also gives estimates of the finite-size effects.
Angular momentum evolution for galaxies
NASA Astrophysics Data System (ADS)
Pedrosa, S. E.; Tissera, P. B.
2015-08-01
Using cosmological hydrodinamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation (Mo, Mao White model), but also the spheroidal one, with a gap due to its lost of angular momentum. We also found that the galaxy size can plot in one general relation, despite the morphological type,, in agreement with recent findings.
Precompound nucleon angular distributions in the continuum
Blann, M.; Scobel, W.; Plechaty, E.
1985-08-01
Angular distributions for nucleon induced reactions (incident energies 14 to 90 MeV) leading to precompound nucleon emission in the continuum (emitted particle energies 9-70 MeV) are calculated based on nucleon-nucleon scattering kinematics for an incident nucleon on a Fermi gas. Analytic expressions due to Kikuchi and Kawai are used for the single scattering kernel. The geometry dependent hybrid model is used to generate the differential cross sections for first, second, etc. order scattering, these weightings being used to fold the single scattering kernel. Results are found to reproduce all experimental angular distributions quite well at angles in the 20/sup 0/ to 90/sup 0/ range. Ad-hoc modifications to approximate quantal effects and Coulomb deflections are explored, but the results do not seem to offer a consistent means of reproducing back angle yields, and give generally poorer results at very forward angles.
Resolution in Electromagnetic Prospecting
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.
2014-12-01
Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Macroscopic fluorescent lifetime imaging in turbid media using angular filter arrays.
Najiminaini, M; Vasefi, F; Kaminska, B; Chapman, G H; Carson, J J L
2009-01-01
We describe an optical imaging methodology applicable to the detection of a fluorescent agent below the surface of turbid media with lifetime property extraction. The method exploits the collimation detection capabilities of an angular filter array to form a projection image of a fluorophore embedded within the tissue-mimicking phantom. A femto-second pulsed laser was used to illuminate the tissue and excite the fluorophore within the medium. Fluorescent emission passing through the angular filter array was detected by an ultra fast gate intensified CCD camera. The array accepted photons with trajectories within 0.5 degree of the axis of each micro-tunnel and rejected most of the scattered fluorescent light exiting the tissue. The performance of the angular filter array did not depend on coherence or wavelength of the laser illumination. It was observed that resulted images had sub-millimeter resolution within 5 mm deep into the turbid media and can have a large field of view (approximately 2 cm x 2 cm). PMID:19965042
NASA Astrophysics Data System (ADS)
Takahashi, M.; Cave, J. P.; Eland, J. H. D.
2000-03-01
A new apparatus has been developed to detect and measure angular correlations between energy-selected photoelectrons and coincident mass-analyzed fragment ions from photoionization at selected wavelengths. It achieves velocity imaging for electrons and ions simultaneously and has high collection efficiency for both particles, with moderate mass and energy resolution. Angular and energy correlations between the two particles are measured, as are the angular distributions of each particle independently relative to the light polarization direction. Fixed-molecule electron angular distributions are deduced in cases of pure axial recoil. Examples of angular distributions from photoionization of diatomic molecules are reported.
NASA Astrophysics Data System (ADS)
Xue, Jingfeng; Zhang, Dazhi; Li, Xinliang; Zhao, Weiqian
2014-09-01
In order to improve the dynamic evaluating capabilities of the inertial devices and realize the traceability in angular vibration, the angular vibration calibration devices are developed and it is very important to measure the angular vibration accurately for calibration devices. In this paper, a new diffraction grating heterodyne laser interferometer method was introduced for high-frequency and micro-amplitude angular-vibration measurement, which uses a differential and symmetrical optical-path arrangement. The proposed method has the advantages of high-precision, high anti-interference and convenient debugging, and could achieve the angular measurement resolution within 0.02?.
NASA Astrophysics Data System (ADS)
Bai, Y. Z.; Fang, L.; Luo, J.; Yin, H.; Zhou, Z. B.
2015-09-01
The torsion pendulum is widely employed in gravitational experiments as a weak force sensitive instrument, and its resolution is limited by the thermal noise of the pendulum and detection noise of angular deflection. Different kinds of angular deflection transducers are proposed and realized to improve its resolution. A torsion pendulum combined with an electrostatic spring is proposed here in order to improve the measurement sensitivity of angular deflection. Noise analysis and demonstration experiments show that the electrostatic torsion pendulum can relax the requirement of angular deflection detection, which is useful for gravitational experiments with much higher precision requirements.
NASA Astrophysics Data System (ADS)
Choquet, É.; Kervella, P.; Le Bouquin, J.-B.; Mérand, A.; Berger, J.-P.; Haubois, X.; Perrin, G.; Petrucci, P.-O.; Lazareff, B.; Pott, J.-U.
2014-01-01
Context. Recent improvements in the sensitivity and spectral resolution of X-ray observations have led to a better understanding of the properties of matter in the near vicinity of high-mass X-ray binaries (HMXB) hosting a supergiant star and a compact object. However, the geometry and physical properties of their environments on larger scales (up to a few stellar radii) are currently only predicted by simulations but have never been directly observed. Aims: We aim to explore the environment of Vela X-1 at a few stellar radii (R?) of the supergiant using spatially resolved observations in the near-infrared, and to study its dynamical evolution along the nine-day orbital period of the system. Methods: We observed Vela X-1 in 2010 and 2012 using near-infrared long baseline interferometry at the Very Large Telescope Interferometer (VLTI), respectively with the AMBER instrument in the K band (medium spectral resolution), and the PIONIER instrument in the H band (low spectral resolution). The PIONIER observations span one orbital period to monitor possible evolutions in the geometry of the system. Results: We resolved a structure of 8 ± 3 R? from the AMBER K-band observations, and 2.0-1.2+0.7R* from the PIONIER H-band data. From the closure phase observable, we found that the circumstellar environment of Vela X-1 is symmetrical in the near-infrared. We observed comparable interferometric measurements between the continuum and the spectral lines in the K band, meaning that both emissions originate from the same forming region. From the monitoring of the system over one period in the H band in 2012, we found the signal to be constant with the orbital phase within the error bars. Conclusions: We propose three possible scenarios for this discrepancy between the two measurements: 1) there is a strong temperature gradient in the supergiant wind, leading to a hot component that is much more compact than the cool part of the wind observed in the K band; 2) we observed a diffuse shell in 2010, possibly triggered by an off-state in the accretion rate of the neutron star that was dissolved in the interstellar medium in 2012 during our second observations; or 3) the structure observed in the H band was the stellar photosphere instead of the supergiant wind. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile. Programs 085.D-0029(A) and 088.D-0185(A).
2013-01-01
There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized. PMID:22547530
Switching mechanism senses angular acceleration
NASA Technical Reports Server (NTRS)
1966-01-01
Switching mechanism actuates an electrical circuit when a predetermined angular acceleration and displacement are reached. A rotor in the mechanism overcomes the restraint of a magnetic detent when the case in which the detent is mounted reaches the predetermined angular acceleration.
Intrinsic Angular Momentum of Light.
ERIC Educational Resources Information Center
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
NASA Technical Reports Server (NTRS)
Garmire, G. P.
1974-01-01
The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.
Equal-channel angular extrusion of beryllium
NASA Astrophysics Data System (ADS)
Field, R. D.; Hartwig, K. T.; Necker, C. T.; Bingert, J. F.; Agnew, S. R.
2002-03-01
The equal-channel angular extrusion (ECAE) technique has been applied to a powder metallurgy (P/M) source Be alloy. Extrusions have been successfully completed on Ni-canned billets of Be at approximately 425°C. No cracking was observed in the billets, and significant grain refinement was achieved. In this article, microstructural features and dislocation structures are discussed for a singlepass extrusion, including evidence of
Angular momentum transport in protostellar discs
NASA Astrophysics Data System (ADS)
Salmeron, Raquel; Königl, Arieh; Wardle, Mark
2007-02-01
Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive `strong field' solutions in which the angular momentum transport is purely vertical and `weak field' solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyse `intermediate field strength' solutions in which both modes of transport operate at the same radial location; we conclude, however, that significant spatial overlap of these two mechanisms is unlikely to occur in practice. To further advance this study, we have developed a general scheme that incorporates also the Hall and Ohm conductivity regimes in discs with a realistic ionization structure.
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
NASA Astrophysics Data System (ADS)
Malik, Mehul; Murugkar, Sangeeta; Leach, Jonathan; Boyd, Robert W.
2012-12-01
We implement an interferometric method using two angular slits to measure the orbital-angular-momentum (OAM) mode spectrum of a field with partial angular coherence. As the angular separation of the slits changes, an interference pattern for a particular OAM mode is obtained. The visibility of this interference pattern as a function of angular separation is equivalent to the angular correlation function of the field. By Fourier transforming the angular correlation function obtained from the double-angular-slit interference, we are able to calculate the OAM spectrum of the partially coherent field. This method has potential application for characterizing the OAM spectrum in high-dimensional quantum information protocols.
Electromagnetically induced angular Talbot effect
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Yang, Guojian
2015-12-01
The discrete angular spectrum (angular Talbot effect) of a periodic grating illuminated by a suitable spherical wave front has been observed recently (Azaña and Chatellus 2104 Phys. Rev. Lett. 112 213902). In this paper we study the possibility of such a phenomenon being realized with a medium that has no macroperiodic structure itself. Tunable electromagnetically induced grating (EIG) could be such a kind of medium. We obtain an EIG based on the periodically modulated strong susceptibility due to the third-order nonlinear effect generated in a double ?-type four-level atomic system, and show the angular Talbot effect of an amplitude EIG, as well as a hybrid EIG, as the condition of the discrete phase-modulation shift of the illumination light front is satisfied. EIG parameters are tunable and the EIG-based angular Talbot effect may have the same potential applications as its periodic grating counterpart has.
Angular momentum in subbarrier fusion
DiGregorio, D.E.; Lesko, K.T.; Harmon, B.A.; Norman, E.B.; Pouliot, J.; Sur, B.; Chan, Y.D.; Stokstad, R.G.
1990-05-01
We have measured the ratio of the isomer to ground-state yields of {sup 137}Ce produced in the fusion reactions {sup 128}Te({sup 12}C,3n), {sup 133}Cs({sup 7}Li,3n), {sup 136}Ba({sup 3}He,2n), {sup 136}Ba({sup 4}He,3n), and {sup 137}Ba({sup 3}He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and {gamma}-ray emission. We deduce the average angular momentum, {lt}J{gt}, from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of {lt}J{gt} exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the {gamma}-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the {gamma}-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs.
Detection and recognition of angular frequency patterns.
Wilson, Hugh R; Propp, Roni
2015-05-01
Previous research has extensively explored visual encoding of smoothly curved, closed contours described by sinusoidal variation of pattern radius as a function of polar angle (RF patterns). Although the contours of many biologically significant objects are curved, we also confront shapes with a more jagged and angular appearance. To study these, we introduce here a novel class of visual stimuli that deform smoothly from a circle to an equilateral polygon with N sides (AF patterns). Threshold measurements reveal that both AF and RF patterns can be discriminated from circles at the same deformation amplitude, approximately 18.0arcsec, which is in the hyperacuity range. Thresholds were slightly higher for patterns with 3.0 cycles than for those with 5.0 cycles. Discrimination between AF and RF patterns was 75% correct at an amplitude that was approximately 3.0 times the threshold amplitude, which implies that AF and RF patterns activate different neural populations. Experiments with jittered patterns in which the contour was broken into several pieces and shifted inward or outward had much less effect on AF patterns than on RF patterns. Similarly, thresholds for single angles of AF patterns showed no significant difference from thresholds for the entire AF pattern. Taken together, these results imply that the visual system incorporates angles explicitly in the representation of closed object contours, but it suggests that angular contours are represented more locally than are curved contours. PMID:25782363
Axial-conductances angular filter investigation
NASA Astrophysics Data System (ADS)
Hannan, P. W.; Pedersen, J. F.
1984-04-01
This report describes the concept, analysis, design, construction, and tests of an angular filter using an axial-conductance medium. The filter provides rejection that increases with incidence angle in the E plane. It is essentially invisible at broadside incidence, does not have critical tolerances on dimensions or materials, and operates over a wide frequency band. Analysis of an ideal homogeneous axial-conductance medium shows that the optimum value for the axial loss tangent is unity. With this value, the homogeneous medium provides approximately 8 dB of absorptive rejection per wavelength of filter thickness at a 45 E-plane incidence angle. Analysis of a practical inhomogeneous axial-conductance medium shows that some loss is introduced at broadside incidence, and that two types of waves can exist in the medium when only one wave is incident at an oblique angle. When the practical medium has dimensions that are properly chosen, its broadside loss can be negligible, and its rejection versus incidence angle can approximate that of the ideal medium. Tests of inhomogeneous samples in simulator wave guide confirm these analytical results. A screen printing method for depositing thick-film resistive ink on thin dielectric sheets has been investigated. With this method a 5x5 foot angular filter, designed for operation at 10 GHz, has been constructed containing over 70,000 axial-conductance elements.
NASA Astrophysics Data System (ADS)
Andrews, David L.; Babiker, Mohamed
2012-11-01
Preface D. L. Andrews and M. Babiker; 1. Light beams carrying orbital angular momentum J. B. Götte and S. M. Barnett; 2. Vortex transformation and vortex dynamics in optical fields G. Molina-Terriza; 3. Vector beams in free space E. J. Galvez; 4. Optical beams with orbital angular momentum in nonlinear media A. S. Desyatnikov and Y. S. Kivshar; 5. Ray optics, wave optics and quantum mechanics G. Nienhuis; 6. Quantum formulation of angle and orbital angular momentum J. B. Götte and S. M. Barnett; 7. Dynamic rotational frequency shift I. Bialynicki-Birula and Z. Bialynicka-Birula; 8. Spin-orbit interactions of light in isotropic media K. Y. Bliokh, A. Aiello and M. A. Alonso; 9. Quantum electrodynamics, angular momentum and chirality D. L. Andrews and M. Babiker; 10. Trapping of charged particles by Bessel beams I. Bialynicki-Birula, Z. Bialynicka-Birula and N. Drozd; 11. Theory of atoms in twisted light M. Babiker, D. L. Andrews and V. E. Lembessis; 12. An experimentalist's introduction to orbital angular momentum for quantum optics J. Romero, D. Giovannini, S. Franke-Arnold and M. J. Padgett; 13. Measurement of light's orbital angular momentum M. P. J. Lavery, J. Courtial and M. J. Padgett; 14. Efficient generation of optical twisters using helico-conical beams V. R. Daria, D. Palima and J. Glückstad; 15. Self similar modes of coherent diffusion with orbital angular momentum O. Firstenberg, M. Shuker, R. Pugatch and N. Davidson; 16. Dimensionality of azimuthal entanglement M. van Exter, E. Eliel and H. Woerdman; Index.
REVIEW ARTICLE: Angular selective window coatings: theory and experiments
NASA Astrophysics Data System (ADS)
Mbise, G. W.; LeBellac, D.; Niklasson, G. A.; Granqvist, C. G.
1997-08-01
This review is devoted to the angular selectivity that can be obtained in thin films prepared under conditions such that they contain inclined absorbing regions of sizes much smaller than the wavelength of visible light. The films are of considerable interest as window coatings for energy-conscious architecture and, potentially, in the automotive sector. The theoretical basis for modelling the optical properties is presented, comprising rigorous bounds on the dielectric function, effective medium theories pertinent to different microgeometries and equations for treating the optics of anisotropic thin films. Experimental data are reported for films made by oblique-angle evaporation of Cr and for reactive and non-reactive oblique-angle sputtering of Cr, Al, Ti and W. The highest angular selectivity was obtained with evaporated Cr, whereas the highest luminous transmittance, combined with some angular selectivity, was found with reactively sputtered Al. Films made from Ti showed angular selectivity mainly in the infrared, whereas films made from W could display angular selective electrochromism. Samples of several types were subjected to elaborate theoretical analysis using effective-medium theories and it was seen that theory and experiment could be reconciled using plausible parameters to specify the microstructures of the films. Thus it appears that the angular, spectral and polarization dependences of obliquely deposited films can be understood, at least approximately, in terms of conceptually simple theoretical models.
Estimates of mass and angular momentum in the oort cloud.
Marochnik, L S; Mukhin, L M; Sagdeev, R Z
1988-10-28
Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles. PMID:17815893
Factors influencing perceived angular velocity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Variations in atmospheric angular momentum
NASA Technical Reports Server (NTRS)
Rosen, R. D.; Salstein, D. A.
1981-01-01
Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.
Non-Colinearity of Angular Velocity and Angular Momentum
ERIC Educational Resources Information Center
Burr, A. F.
1974-01-01
Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)
Automated Angular Momentum Recoupling Algebra
NASA Astrophysics Data System (ADS)
Williams, H. T.; Silbar, Richard R.
1992-04-01
We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.
Lightweight and High Angular Resolution X-Ray Optics
NASA Technical Reports Server (NTRS)
Zhang, William
2008-01-01
The International X-ray Observatory (IXO) mission requires a lightweight and high throughput spectroscopic telescope. The fabrication, alignment, and integration of this mirror assembly require breakthroughs in many areas. In this paper we report on our recent progress in all these areas, including mirror fabrication, coating, metrology, alignment, mechanical characteristics, and their integration into mirror modules. In particular, we will also outline our plan for the next few of years, showing approaches that will progress toward reaching the 5' HPD requirement.
Lightweight and High Angular Resolution X-Ray Optics
NASA Technical Reports Server (NTRS)
Zhang, William W.
2009-01-01
The International X-ray Observatory (IXO) mission requires a lightweight and high throughput spectroscopic telescope. The fabrication, alignment, and integration of this mirror assembly require breakthroughs in many areas. In this paper we report on our recent progress in all these areas, including mirror fabrication, coating, metrology, alignment, mechanical characteristics, and their integration into mirror modules. In particular, we will also outline our plan for the next few of years, showing approaches that will progress toward reaching the 5" HPD requirement.
An Acousto-Optical Sensor with High Angular Resolution
Kaloshin, Gennady; Lukin, Igor
2012-01-01
The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034
"High Angular Resolution Observations of Protoplanetary Disks with Adaptive Optics"
NASA Technical Reports Server (NTRS)
Roddier, Francois
1999-01-01
Significant results were obtained and published in the literature. The first optical detection of a circumbinary disk was reported in the ApJ at millimetric wavelengths. The size and inclination of this disk were found to be consistent with millimetric observations. Evidence was found for a cavity inside the disk as theory predicts from dust clearing by the stellar companion.
High angular resolution and position determinations by infrared interferometry
NASA Technical Reports Server (NTRS)
1974-01-01
Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.
Progress toward light weight high angular resolution multilayer coated optics
Ulmer, M.P.; Graham, M.E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.
2008-11-18
We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weight Wolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality. We give a progress report on our work on all three areas. In summary, for future space missions it will be desirable for them to be affordable by reducing mass, keeping the focal length manageable, and yet having high figure quality. The avenues we have described above are straight forward paths to achieving this goal, but a great deal of work needs to be done to take us from the concept stage to a functional system.
Angular Distribution Study of the ^29Si(p,?) Reaction
NASA Astrophysics Data System (ADS)
Grossmann, C. A.; Beal, W. C.; McLean, L. K.; Mitchell, G. E.; Westerfeldt Shriner, C. R., Jr.
1998-10-01
Level statistics are frequently used as a signature for chaos in nuclei but require nearly complete level schemes. Our present efforts in this area are focused upon establishing a complete level scheme for ^30P. Recent work at the High Resolution Laboratory at the Triangle Universities Nuclear Laboratory (HRL-TUNL) has measured the branching ratios of 48 resonances in the ^29Si(p,?) reaction. The quantum numbers (J, ?, T) remain undetermined for a number of levels. To remove these ambiguities, angular distribution measurements are being performed using the KN-3000 Van de Graaff accelerator. Angular distributions of primary and secondary decays from 27 ^29Si(p,?) resonances have been measured and analyzed. Comparisons between measured angular distributions and theoretically allowed values place additional limitations on the possible spin, parity, and isospin assignments of resonance states. The present status of the level spectroscopy of ^30P will be examined and discussed.
Angular Distribution Study of the ^29Si(p,?) Reaction
NASA Astrophysics Data System (ADS)
Grossmann, C. A.; McLean, L. K.; Mitchell, G. E.; Moore, E. F.; Shriner, J. D.; Bilpuch, E. G.; Westerfeldt, C. R.; Shriner, J. F., Jr.; Powell, D. C.
1997-11-01
Level statistics are frequently used as a signature for chaos in nuclei. Our present efforts are towards establishing a complete level scheme for ^30P. Recent work at the High Resolution Laboratory at the Triangle Universities Nuclear Laboratory (HRL-TUNL) has included the study of forty-eight resonances in the ^29Si(p,?) reaction with fixed detectors. The quantum numbers (J, ?, T) remain undetermined for a number of levels. To remove these ambiguities, angular distribution measurements are being performed using the KN-3000 Van de Graaff accelerator. Angular distributions of primary and secondary decays from sixteen ^29Si(p,?) resonances have been measured. Comparisons between measured angular distributions and theoretically allowed values place additional limitations on the possible spin, parity, and isospin assignments of resonance states. Results based on these preliminary analyses will be discussed.
Nanoradian angular stabilization of x-ray optical components
Stoupin, Stanislav; Lenkszus, Frank; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvyd'ko, Yuri
2010-05-15
An x-ray free-electron laser oscillator (XFELO) has been recently proposed [K. Kim et al., Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate for the instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko, Phys. Rev. ST Accel. Beams 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high-energy-resolution x-ray monochromator ({Delta}E/E{approx_equal}4x10{sup -8}, E=23.7 keV) and a high-heat-load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.
Random angular coding for superresolved imaging.
Sylman, David; Micó, Vicente; García, Javier; Zalevsky, Zeev
2010-09-10
In this paper, we present a new approach capable of working under coherent and incoherent illumination for achieving superresolution by random coding of the object's angular information. By placing two static random masks in optically conjugate planes inside an aperture-limited imaging setup, one may obtain a transmitted image containing spatial resolution higher than the one obtained without the masks. As the most noticeable fact, the superresolution effect is obtained without imposing any restrictions either in the time domain or in the field-of-view domain but rather only in the dynamic range of the camera device. Experimental verifications for the proposed technique with incoherent illumination with a low numerical aperture (NA) lens are presented. PMID:20830175
High-order-harmonic generation driven by pulses with angular spatial chirp
NASA Astrophysics Data System (ADS)
HernÃ¡ndez-GarcÃa, Carlos; Jaron-Becker, Agnieszka; Hickstein, Daniel D.; Becker, Andreas; Durfee, Charles G.
2016-02-01
We present and analyze a technique to drive high-order harmonics by laser pulses with an angular spatial chirp. Results of our numerical simulations show that each harmonic is emitted with an angular chirp which scales inversely with the harmonic order and leads to additional control of the spatial and temporal resolution of the spectrum. In particular, the use of angular chirp leads to separation of the harmonics in two dimensions where (i) high spectral resolution can be achieved and (ii) the temporal periodicity of the harmonic pulse trains can be controlled. We show that this technique does not require carrier-envelope-phase stabilization when using few-cycle laser pulses.
Noncontact measurement of angular deflection
NASA Technical Reports Server (NTRS)
Bryant, E. L.
1978-01-01
Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.
Olympic Wrestling and Angular Momentum.
ERIC Educational Resources Information Center
Carle, Mark
1988-01-01
Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)
Global uniform semiclassical approximation for Clebsch-Gordan coefficients
NASA Astrophysics Data System (ADS)
Engel, Hamutal; Kay, Kenneth G.
2008-03-01
Semiclassical integral representations, analogous to initial value expressions for the propagator, are presented for the Clebsch-Gordan angular momentum coupling coefficients. Two forms (L and R types) of the approximation are presented. For each form, new non-Gaussian expressions, which are specifically adapted to the nature of angular momentum variables, are proposed in place of the familiar Gaussian coherent state functions. With these non-Gaussian kernels, it is found that the present treatments are capable of accuracy similar to that obtained from a uniform Airy approximation. Although the present semiclassical approximations involve only real-valued angle variables, associated with sets of angular momenta that are related by ordinary, real, classical transformations, the treatments produce accurate results not only for classically allowed choices of quantum numbers but also for very strongly classically forbidden values.
Global uniform semiclassical approximation for Clebsch-Gordan coefficients.
Engel, Hamutal; Kay, Kenneth G
2008-03-01
Semiclassical integral representations, analogous to initial value expressions for the propagator, are presented for the Clebsch-Gordan angular momentum coupling coefficients. Two forms (L and R types) of the approximation are presented. For each form, new non-Gaussian expressions, which are specifically adapted to the nature of angular momentum variables, are proposed in place of the familiar Gaussian coherent state functions. With these non-Gaussian kernels, it is found that the present treatments are capable of accuracy similar to that obtained from a uniform Airy approximation. Although the present semiclassical approximations involve only real-valued angle variables, associated with sets of angular momenta that are related by ordinary, real, classical transformations, the treatments produce accurate results not only for classically allowed choices of quantum numbers but also for very strongly classically forbidden values. PMID:18331084
The Angular Momentum of Baryons and Dark Matter Halos Revisited
NASA Technical Reports Server (NTRS)
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.
Automated and angular time-synchronized directional gamma-ray scintillation sensor
Kronenberg, S.; Brucker, G.J.
1998-12-31
The authors` previous research resulted in directional sensors for gamma rays and X rays that have a 4{pi} solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of {approximately}1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events` count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be determined. They describe this sensor design as the angular time synchronized directional sensor (ATSDS).
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Astrophysics Data System (ADS)
Tkachenko, A. I.
1983-06-01
In an earlier paper (Tkachenko, 1982), the attitude of a velocimeter trihedron with continuously varying angular velocity was determined from information on the angular motion of another trihedron whose attitude relative to the first trihedron was unknown and constant. It was assumed that the initial attitude of the velocimeter trihedron is not given and that all measurements are ideal. A similar problem is examined here assuming that the initial attitude of the velocimeter trihedron is known approximately and that measurements of its angular velocity have a small additive error. The error is a combination of a finite number of known functions and unknown coefficients, which have to be determined along with the attitude parameters of the velocimeter trihedron.
Higher order treatment on temporal derivative of angular flux for time-dependent MOC
Tsujita, K.; Endo, T.; Yamamoto, A.; Kamiyama, Y.; Kirimura, K.
2013-07-01
A new kinetic analysis method, whose angular dependence of temporal derivative for angular flux is accurately treated within practical memory requirement, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, the computational resources, i.e., the memory capacity, can be still a crucial problem for rigorous kinetic calculations using MOC. In the straightforward approach for kinetic calculation using MOC, the segment-averaged angular fluxes should be stored on the memory in order to explicitly calculate the temporal derivative of the angular flux, which would require huge memory. Thus, in the conventional kinetic calculation code using MOC, the temporal derivative of the angular flux has been approximated as angularly isotropic in order to reduce the memory requirement (isotropic assumption). However, the approximation error caused by the conventional isotropic assumption has not been thoroughly and quantitatively investigated so far and an accurate kinetic calculation method, which can quantitatively estimate the above approximation error within practical memory storage, has not been developed. The present study tries to address this issue with a newly developed approach. Effect of the approximate treatment for the temporal derivative of angular flux is evaluated through benchmark calculations. (authors)
Angular distribution of Auger electrons due to 3d-shell ionization of krypton
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.
Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.
Angular Multiplex Laser Fusion Drivers
NASA Astrophysics Data System (ADS)
Parks, Joel H.
1981-09-01
A study program has been completed which assesses the feasibility of using rare gas-halide lasers as near term inertial confinement fusion (ICF) drivers. A prime objective of this program was to provide credible, design parameter maps to establish energy levels achievable with current and near term technologies. Key program elements include laser scaling projections, modular e-beam and pulsed power technology, optical angular multiplex configurations,optical structures, multibeam pointing and alignment, gas flow and acoustics issues, and trade-off analyses. Rare gas-halide lasers, in particular the KrF* laser, can be designed to meet ICF requirements. These lasers are scalable, emit at short wavelengths (KrF* 250 nm) and, through the use of optical angular multiplexing, can produce the required high energy (~1-5 MJ) in a short pulse (~10 ns) with projected overall efficiency in the range of 5-7%.
Angular-Momentum-Compensating Servomechanism
NASA Technical Reports Server (NTRS)
Marchetto, Carl A.
1988-01-01
Servomechanism for rotating an instrumentation platform isolates supporting vehicle or stationary platform from reaction torques producedby rotations. Prevents aiming of instrument from disturbing vehicle or other instrument platforms. Rotating oppositely to instrument platform, reaction wheel, motor, and gear 1 have angular momentum equal and opposite to gear 2, output shaft, and platform. External torque reaction to rotation of platform canceled. Although spur gears appear in schematic diagram, gear train made of spline gears.
Angular distribution of medium-induced QCD cascades
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Fister, Leonard; Mehtar-Tani, Yacine
2015-08-01
We provide a complete description of the angular distribution of gluons in a medium-induced QCD cascade. We identify two components in the distribution, a soft component dominated by soft multiple scatterings, and a hard component dominated by a few hard scatterings. The typical angle that marks the boundary between these two components is determined analytically as a function of the energy of the observed gluon and the size of the medium. We construct the complete solution (beyond the diffusion approximation) in the regime where multiple branchings dominate the dynamics of the cascade in the form of a power series in the number of collisions with the medium particles. The coefficients of this expansions are related to the moments of the distribution in the diffusion approximation and are determined analytically. The angular distribution may be useful in phenomenological studies of jet shapes in heavy-ion collisions.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318
Pincus, S M
1992-05-15
A common framework of finite state approximating Markov chains is developed for discrete time deterministic and stochastic processes. Two types of approximating chains are introduced: (i) those based on stationary conditional probabilities (time averaging) and (ii) transient, based on the percentage of the Lebesgue measure of the image of cells intersecting any given cell. For general dynamical systems, stationary measures for both approximating chains converge weakly to stationary measures for the true process as partition width converges to 0. From governing equations, transient chains and resultant approximations of all n-time unit probabilities can be computed analytically, despite typically singular true-process stationary measures (no density function). Transition probabilities between cells account explicitly for correlation between successive time increments. For dynamical systems defined by uniformly convergent maps on a compact set (e.g., logistic, Henon maps), there also is weak continuity with a control parameter. Thus all moments are continuous with parameter change, across bifurcations and chaotic regimes. Approximate entropy is seen as the information-theoretic rate of entropy for approximating Markov chains and is suggested as a parameter for turbulence; a discontinuity in the Kolmogorov-Sinai entropy implies that in the physical world, some measure of coarse graining in a mixing parameter is required. PMID:11607293
NASA Astrophysics Data System (ADS)
Bonham, R. A.; Lively, M. L.
1984-03-01
The nonrelativistic first-Born-approximation matrix element for the photoionization and electron impact of a single electron from a molecule with no restriction on its shape, including retardation effects and with rotational energy resolution, is evaluated within the framework of the Born-Oppenheimer approximation. Angular distributions of ejected electrons are cylindrically symmetric about the propagation direction of the photon or electron source if the light is circularly polarized or if no attempt is made to simultaneously measure the scattered and ejected electrons in electron-impact ionization. If plane polarized light is used, retardation effects destroy the cylindrical symmetry about the light propagation direction. If the scattered electron in electron-impact ionization is detected in coincidence with the ejected electron then the angular distribution of ejected electrons shows cylindrical symmetry about the momentum-transfer direction. Use of an LCAO-MO (linear combination of atomic orbitals representation of molecular orbitals) basis for both bound and continuum one-electron orbitals leads to selection and propensity rules for rotational excitation.
Angular Momentum Decomposition for an Electron
Burkardt, Matthias; BC, Hikmat
2009-01-01
We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.
Asteroid orbit fitting with radar and angular observations
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2013-12-01
The asteroid orbit fitting problem using their radar and angular observations has been considered. The problem was solved in a standanrd way by means of minimization of weighted sum of squares of residuals. In the orbit fitting both kinds of radar observa-tions have been used: the observations of time delays and of Doppler frequency shifts. The weight for angular observations has been set the same for all of them and has been determined as inverse mean-square residual obtained in the orbit fitting using just angular observations. The weights of radar observations have been set as inverse squared errors of these observations published together with them in the Minor Planet Center electronical circulars (MPECs). For the orbit fitting some five asteroids have been taken from these circulars. The asteroids have been chosen fulfilling the requirement of more than six radar observations of them to be available. The asteroids are 1950 DA, 1999 RQ36, 2002 NY40, 2004 DC and 2005 EU2. Several orbit fittings for these aster-oids have been done: with just angular observations; with just radar observations; with both angular and radar observations. The obtained results are quite acceptable because in the last case the mean-square angular residuals are approximately equal to the same ones obtained in the fitting with just angular observations. As to radar observations mean-square residuals, the time delay residuals for three asteroids do not exceed 1 ?s, for two others ˜ 10 ?s and the Doppler shift residuals for three asteroids do not exceed 1 Hz, for two others ˜ 10 Hz. The motion equations included perturbations from 9 planets and the Moon using their ephemerides DE422. The numerical integration has been performed with Everhart 27-order method with variable step. All calculations have been exe-cuted to a 34-digit decimal precision (i.e. using 128-bit floating-point numbers). Further, the sizes of confidence ellipsoids of im-proved orbit parameters have been compared. It has been accepted that an indicator of ellipsoid size is a geometric mean of its six semi-axes. A comparison of sizes has shown that confidence ellipsoids obtained in orbit fitting with both angular and radar obser-vations are several times less than ellipsoids obtained with just angular observations.
Armand, M; Minor, L B
2001-01-01
We used the three-dimensional magnetic search-coil recording technique to study the range of active angular head movements made by squirrel monkeys. There were two goals in this study: (1) to determine the range of angular velocities and accelerations as well as the bandwidth and other frequency characteristics of active head movements and (2) to compare analyses of transients of velocity and acceleration that are studied by residual analysis, Fourier transform, and wavelet transform of the head velocity signal. The residual analysis showed that the shape and duration of the transients affected the bandwidth. During the time after the head had begun to accelerate, the frequency content of the head movement extended into the range of 6 to 12 Hz. When considering all three planes of rotation, approximately 75% of the transients had peak acceleration between 2,000 and 10,000 deg/s(2) and a peak velocity of 50 to 400 deg/s. A peak acceleration of >10,000 deg/s(2) was recorded in 10% of the transients. These findings indicate that active head movements in squirrel monkeys cover a higher range of frequencies, accelerations, and velocities than have typically been used in previous eye-movement and neuronal studies of the reflexes that control gaze. We further conclude that the choice of a method for analyzing transient, time-varying biological signals is dependent on the desired information. Residual analysis provides detailed resolution in the time domain, but estimation of the frequency content of the signal is dependent on the portions selected for analysis and the choice of filters. Fourier transform provides a representation of the power spectrum in the frequency domain but without any inherent temporal resolution. We show that the wavelet transform, a novel method as applied to the signal analysis goals of this study, is the most useful technique for relating time- and frequency-domain information during a continuous signal. PMID:11796939
Accelerated rotation with orbital angular momentum modes
NASA Astrophysics Data System (ADS)
Schulze, Christian; Roux, Filippus S.; Dudley, Angela; Rop, Ronald; Duparré, Michael; Forbes, Andrew
2015-04-01
We introduce a class of light field that angularly accelerates during propagation. We show that the acceleration (deceleration) may be controlled by adjustment of a single parameter, and tuned continuously, down to no acceleration at all. As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large accelerations over arbitrarily long distances, and can be engineered independently of the beam's spatial extent. We discuss how such angularly accelerating light fields can maintain the conservation of angular momentum through an energy exchange mechanism across the field.
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Approximate programmable quantum processors
Hillery, Mark; Ziman, Mario; Buzek, Vladimir
2006-02-15
A quantum processor is a programmable quantum circuit in which both the data and the program, which specifies the operation that is carried out on the data, are quantum states. We study the situation in which we want to use such a processor to approximate a set of unitary operators to a specified level of precision. We measure how well an operation is performed by the process fidelity between the desired operation and the operation produced by the processor. We show how to find the program for a given processor that produces the best approximation of a particular unitary operation. We also place bounds on the dimension of the program space that is necessary to approximate a set of unitary operators to a specified level of precision.
Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.
1997-01-21
A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.
Variable Distance Angular Symbology Reader
NASA Technical Reports Server (NTRS)
Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)
2006-01-01
A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.
Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Cisewski, Jessi
2015-08-01
Explicitly specifying a likelihood function is becoming increasingly difficult for many problems in astronomy. Astronomers often specify a simpler approximate likelihood - leaving out important aspects of a more realistic model. Approximate Bayesian computation (ABC) provides a framework for performing inference in cases where the likelihood is not available or intractable. I will introduce ABC and explain how it can be a useful tool for astronomers. In particular, I will focus on the eccentricity distribution for a sample of exoplanets with multiple sub-populations.
Resolution-Tunable Angle-Resolved X-ray Imaging
Hirano, Keiichi
2004-05-12
A resolution-tunable double-crystal device was successfully applied to angle-resolved x-ray imaging. The angular resolution of a Si (220) double-crystal analyzer was tuned between 0.5'' and 2.3'' through the offset angle at {lambda} = 0.0733nm. The throughput of the analyzer was higher than 90%. The angle-resolved images of a spider were recorded on nuclear emulsion plates at various angular resolutions. It was clearly observed that the quality of the angle-resolved image varies with the angular resolution of the analyzer.
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches ofâ€¦
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Controlling neutron orbital angular momentum.
Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A
2015-09-24
The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831
Controlling neutron orbital angular momentum
NASA Astrophysics Data System (ADS)
Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.
2015-09-01
The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.
Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification
Zhang, Yichao; Fan, Xiaolong Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng; Gui, Y. S.; Hu, C.-M.
2015-01-14
We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.
Adaptive Haar wavelets for the angular discretisation of spectral wave models
NASA Astrophysics Data System (ADS)
Adam, Alexandros; Buchan, Andrew G.; Piggott, Matthew D.; Pain, Christopher C.; Hill, Jon; Goffin, Mark A.
2016-01-01
A new framework for applying anisotropic angular adaptivity in spectral wave modelling is presented. The angular dimension of the action balance equation is discretised with the use of Haar wavelets, hierarchical piecewise-constant basis functions with compact support, and an adaptive methodology for anisotropically adjusting the resolution of the angular mesh is proposed. This work allows a reduction of computational effort in spectral wave modelling, through a reduction in the degrees of freedom required for a given accuracy, with an automated procedure and minimal cost.
Measuring Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Using Direct Reactions
NASA Astrophysics Data System (ADS)
Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert
2014-09-01
The surrogate method has previously been used to successfully measure (n , f) cross sections on a variety of difficult to produce actinde isotopes. These measurements have larger uncertainties at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from the 239Pu (d , pf) reaction is under development. This detector system utilizes an array of photovoltaic (solar) cells to measure the angular distribution of fission fragments with high resolution. This distribution uniquely identifies the angular momentum states populated. These are fit to expected distributions of angular momentum states to determine the contribution of each state. Protons are detected with 40 keV FWHM resolution at 16 angles in the forward and backward directions. The matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Progress in the development of this system will be presented. The surrogate method has previously been used to successfully measure (n , f) cross sections on a variety of difficult to produce actinde isotopes. These measurements have larger uncertainties at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from the 239Pu (d , pf) reaction is under development. This detector system utilizes an array of photovoltaic (solar) cells to measure the angular distribution of fission fragments with high resolution. This distribution uniquely identifies the angular momentum states populated. These are fit to expected distributions of angular momentum states to determine the contribution of each state. Protons are detected with 40 keV FWHM resolution at 16 angles in the forward and backward directions. The matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Progress in the development of this system will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: â€¢Wavelet angular discretisation used to solve transport equation. â€¢Adaptive method developed for the wavelet discretisation. â€¢Anisotropic angular resolution demonstrated through the adaptive method. â€¢Adaptive method provides improvements in computational efficiency.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment of phases in the nonlinear regime. We also report on the accuracy of particle positions and velocities produced by TZA.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Topics in Metric Approximation
NASA Astrophysics Data System (ADS)
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
NASA Astrophysics Data System (ADS)
Sukumar, N.
2005-11-01
In this paper, the construction of scattered data approximants is studied using the principle of maximum entropy. For under-determined and ill-posed problems, Jaynes's principle of maximum information-theoretic entropy is a means for least-biased statistical inference when insufficient information is available. Consider a set of distinct nodes {xi}i=1n in Rd, and a point p with coordinate x that is located within the convex hull of the set {xi}. The convex approximation of a function u(x) is written as: uh(x) = ?i=1n ?i(x)ui, where {?i}i=1n ? 0 are known as shape functions, and uh must reproduce affine functions (d = 2): ?i=1n ?i = 1, ?i=1n ?ixi = x, ?i=1n ?iyi = y. We view the shape functions as a discrete probability distribution, and the linear constraints as the expectation of a linear function. For n > 3, the problem is under-determined. To obtain a unique solution, we compute ?i by maximizing the uncertainty H(?) = - ?i=1n ?i log ?i, subject to the above three constraints. In this approach, only the nodal coordinates are used, and neither the nodal connectivity nor any user-defined parameters are required to determine ?i—the defining characteristics of a mesh-free Galerkin approximant. Numerical results for {?i}i=1n are obtained using a convex minimization algorithm, and shape function plots are presented for different nodal configurations.
Neighbourhood approximation forests.
Konukoglu, Ender; Glocker, Ben; Zikic, Darko; Criminisi, Antonio
2012-01-01
Methods that leverage neighbourhood structures in high-dimensional image spaces have recently attracted attention. These approaches extract information from a new image using its "neighbours" in the image space equipped with an application-specific distance. Finding the neighbourhood of a given image is challenging due to large dataset sizes and costly distance evaluations. Furthermore, automatic neighbourhood search for a new image is currently not possible when the distance is based on ground truth annotations. In this article we present a general and efficient solution to these problems. "neighbourhood approximation forests" (NAF) is a supervised learning algorithm that approximates the neighbourhood structure resulting from an arbitrary distance. As NAF uses only image intensities to infer neighbours it can also be applied to distances based on ground truth annotations. We demonstrate NAF in two scenarios: (i) choosing neighbours with respect to a deformation-based distance, and (ii) age prediction from brain MRI. The experiments show NAF's approximation quality, computational advantages and use in different contexts. PMID:23286116
Andonian, G.; Hemsing, E.; Xiang, D.; Musumeci, P.; Murokh, A.; Tochitsky, S.; Rosenzweig, J.B.; /UCLA
2012-05-03
High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond) with exceptional temporal resolution (hundreds of attoseconds) and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution) horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow) angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.
Angular domain fluorescence imaging for small animal research
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; Belton, Michelle; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.
2010-01-01
We describe a novel macroscopic fluorescent imaging technique called angular domain fluorescence imaging (ADFI) applicable to the detection of fluorophores embedded in biological tissues. The method exploits the collimation detection capabilities of an angular filter array (AFA). The AFA uses the principle of acceptance angle filtration to extract minimally scattered photons emitted from fluorophores deep within tissue. Our goal was to develop an ADFI system for imaging near-infrared fluorescent markers for small animal imaging. According to the experimental results, the ADFI system offered higher resolution and contrast compared to a conventional lens and lens-pinhole fluorescent detection system. Furthermore, ADFI of a hairless mouse injected with a fluorescent bone marker revealed vertebral structural and morphometric data that correlated well with data derived from volumetric x-ray computed tomography images. The results suggested that ADFI is a useful technique for submillimeter mapping of the distribution of fluorescent biomarkers in small animals.
Angular dependence of sampling MTF
NASA Astrophysics Data System (ADS)
Hadar, Ofer; Dogariu, Aristide C.; Boreman, Glenn D.
1997-09-01
Sampling MTF defined in Park, Hock, and de Luca, as an x and y sampling, can be generalized for image data not along x and y directions. For a given sampling lattice (such as in a laser printer, a scene projector, or a focal plane array), we construct a two-dimensional sampling MTF based on the distance between nearest samples in each direction. Because the intersample distance depends on direction, the sampling MTF will be best in the directions of highest spatial sampling, and poorer in the directions of sparse sampling. We compare hexagonal and rectangular lattices in terms of their equivalent spatial frequency bandwidth. We filter images as demonstration of the angular-dependent two-dimensional sampling MTF.
Liquid Angular-Momentum Compensator
NASA Technical Reports Server (NTRS)
Iskenderian, Theodore C.
1989-01-01
Report discusses use of fluid-loop reaction ring as part of system orienting spacecraft. Proposed device imparts angular rotation to spacecraft by reacting against liquid contained in loop. Pump, or pumps, provide impetus to both spacecraft and fluid. Hydraulic accumulators and valves added to control flow. Technique offers better control than attitude-control thrusters. Several advantages in applications otherwise requiring large, rigid reaction wheel: Fluid loop need occupy only peripheral circulation path; does not necessarily require motor sized for maximum torque; does not require difficult-to-make bearings specified to withstand high launch-acceleration loads, provide high stiffness, operate smoothly, and exert minimal fractional torque. Unlike reaction wheel, fluid loop not balanced dynamically.
Angular distributions of selected N2 Auger transitions
NASA Astrophysics Data System (ADS)
Zheng, Q.; Edwards, A. K.; Wood, R. M.; Mangan, M. A.
1995-11-01
The angular distribution of Auger electrons produced in the collision of 1634-eV electrons with N2 is reported. The angular distributions are measured relative to the internuclear axis of the molecule from 0Â° to 90Â° in 6Â° steps. When an Auger transition occurs to an unstable doubly ionized state the molecular ion dissociates into two N+ fragments. Because the time required for dissociation of the N2+2 ion is much less than that for rotation of the ion, the axial recoil approximation holds to first order, and detecting one of the N+ ions determines the orientation of the target molecule at the time of the projectile-molecule collision. Therefore, a coincidence experiment between the Auger electrons of appropriate energy and the N+ fragments is devised. The rotation of the N2+2 ions during the course of the dissociation process has been taken into account as a second-order approximation. As a result of this rotational effect, the predicted angular distribution function is smeared out by an amount depending on the different N2+2 final states. The data are analyzed in terms of a two-center model in which prolate spheroidal coordinates are used.
Approximation for the Rayleigh Resolution of a Circular Aperture
ERIC Educational Resources Information Center
Mungan, Carl E.
2009-01-01
Rayleigh's criterion states that a pair of point sources are barely resolved by an optical instrument when the central maximum of the diffraction pattern due to one source coincides with the first minimum of the pattern of the other source. As derived in standard introductory physics textbooks, the first minimum for a rectangular slit of width "a"…
Orbital angular momentum in phase space
Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.
2011-02-15
Research Highlights: > We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. > We present a simple and useful toolkit for the practitioner. > We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.
Photoelectron Angular Distribution in ACETYLENE/VINYLIDENE*.
NASA Astrophysics Data System (ADS)
Osipov, Timur; Cocke, Lewis; Prior, Mike; Doerner, Reinhard; Weber, Thorsten; Lothar, Schmidt; Schmidt-Böcking, Horst; Landers, Allen; Cassimi, Amine
2002-05-01
The molecular dissociation of acetylene (C_2H_2) following the photoionization of one carbon K-shell, and subsequent Auger decay, has been analyzed using a momentum imaging technique. Momenta of the photoelectron and all charged molecular fragments measured in coincidence reveal two important break up channels: CH^+ + CH^+ and C^+ + CH_2^+. The latter is the result of the dissociation of the dication of vinylidene (C-CH_2)^2+, the isomer of the acetylene dication. The photoelectron angular distribution, measured in the body-fixed frame, appears to be different for the two channels. The difference can be explained by the change of the vinylidene molecular orientation with respect to the initial photoelectron direction due to the C=C bond rotation before the dissociation process occurs. The data indicates that this bond rotates by approximately 30^o prior to the dissociation. This result can be interpreted as due primarily to the rearrangement of the hydrogen atoms during isomerization and places an upper limit on the isomerization time.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Post-Newtonian spin and angular momentum of bounded systems
NASA Astrophysics Data System (ADS)
Caporali, A.; Spyrou, N.
1981-07-01
The Newtonian expressions for (1) the orbital angular momentum of a two-body system and (2) the spin of each body, are generalized through the introduction of corresponding definitions in the post-Newtonian approximation of fully conservative theories of gravity. By means of this definition of the spin, and assuming that the bodies rotate rigidly and that the equations of motion are Hamiltonian, it is shown that the spin of each body undergoes a relativistic precession about the direction of the orbital angular momentum in fully conservative theories of gravity as a consequence of the local equations of motion for a perfect fluid. The method described is pertinent to the possibility of testing gravity theories by observing binary pulsar relativistic effects.
Measurement of polarization with the Degree Angular Scale Interferometer.
Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S
Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station. PMID:12490940
Angular Momentum Transport in Convectively Unstable Shear Flows
NASA Astrophysics Data System (ADS)
Käpylä, Petri J.; Brandenburg, Axel; Korpi, Maarit J.; Snellman, Jan E.; Narayan, Ramesh
2010-08-01
Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (?-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The ?-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.
High resolution spectroscopy of 112Sn through the 114Sn(p,t)112Sn reaction
NASA Astrophysics Data System (ADS)
Guazzoni, P.; Zetta, L.; Covello, A.; Gargano, A.; Bayman, B. F.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Faestermann, T.; Jaskóla, M.
2012-05-01
The 114Sn(p,t)112Sn reaction has been investigated in a high resolution experiment at incident proton energy of 22 MeV. Angular distributions for 28 transitions to levels of 112Sn up to the excitation energy of 3.624 MeV have been measured. The spin and parity identification has been carried out by means of a distorted-wave Born approximation (DWBA) analysis, performed by using conventional Woods-Saxon potentials. A shell-model study of 112Sn nucleus has been performed using a realistic two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential. The energy spectra have been calculated and compared with the experimental ones, while the theoretical two-nucleon spectroscopic amplitudes, evaluated in a truncated seniority space, have been used in the microscopic DWBA calculation of the cross-section angular distributions.
Fabricating High Resolution Mirrors for Hand X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Speegle, Chet O.; Ramsey, Brian D.; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)
2001-01-01
We describe the fabrication process for producing high-resolution conical mirrors for hard x-ray astronomy. When flown aboard stratospheric balloons, these high-resolution reflective mirrors focus hard x-rays (10-70 keV) emitted from cosmic sources such as supernovae, neutron stars, and quasars onto imaging focal plane detectors. Focused hard x-ray images allow scientists to determine the elemental compositions, temperatures, magnetic fields, velocities, and gravitational fields of these celestial bodies. The fabrication process involves generating super-polished mandrels, mandrel metrology, mirror shell nickel electroforming, and mirror testing. Each mandrel is a cylinder consisting of two conical segments; each segment is approximately 305-mm long. Through precision grinding these mandrels before super polishing, we have achieved 30 arc seconds, half power diameter replicated mirrors. During a May 2001 high atmosphere balloon flight, these mirrors focused high energy x-rays from three different celestial sources. However, we seek to improve the angular resolutions of future mirror shells by a factor of two. To achieve this goal, we have begun single point diamond turning the mandrels before super polishing. This has allowed greater precision tolerances on mandrel surface roughness and axial figure errors before super polishing. Surface roughnesses before polishing have been reduced from approximately 60 nm to approximately 15 nm. The peak to valley axial figure profile errors have been reduced from approximately 1.0 micrometers to approximately 0.4 micrometers. We are currently in Phase 2 of the HERO (high energy replicated optics) program which entails the production of sixteen 6-m-focal-length mirror modules, each containing a nested array of 15 mirror shells of diameters ranging from 50-mm to 94-mm. This flight is slated for the fall of 2003.
Transverse and longitudinal angular momenta of light
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.; Nori, Franco
2015-08-01
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin-direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
Angular Momentum Eigenstates for Equivalent Electrons.
ERIC Educational Resources Information Center
Tuttle, E. R.; Calvert, J. B.
1981-01-01
Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)
Orbital angular momentum in the nucleon
Garvey, Gerald T.
2010-05-15
Analysis of the measured value of the integrated d-bar-u-bar asymmetry (I{sub fas} = 0.147 +- 0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.
Angular momentum decomposition of Richardson's pairs
Dussel, G. G.; Sofia, H. M.
2008-07-15
The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed {sup 174}Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state.
Variations in atmospheric angular momentum and the length of day
NASA Technical Reports Server (NTRS)
Rosen, R. D.; Salstein, D. A.
1982-01-01
Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described.
Measurement of Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Direct Reactions
NASA Astrophysics Data System (ADS)
Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert
2015-04-01
The surrogate method has previously been used to successfully measure (n , f) cross sections of a variety of difficult to produce actinide isotopes. These measurements are inaccurate at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239 Pu(d , pf) and 239 Pu(? ,?' f) reactions has been developed. This method consists on charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the beam. An array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments with high angular resolution. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2012-DN-130-NF0001.
The angular momentum of the Oort cloud
Weissman, P.R. )
1991-01-01
An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values. 21 refs.
The angular momentum of the Oort cloud
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1991-01-01
An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.
Asymptotic Diffusion-Limit Accuracy of Sn Angular Differencing Schemes
Bailey, T S; Morel, J E; Chang, J H
2009-11-05
In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particular weighted diamond angular discretization for S{sub n}n calculations in curvilinear geometries. The weighting factors were chosen to ensure that the Galerkin diffusion approximation was preserved, which eliminated the discrete-ordinates flux dip. It was also shown that the step and diamond angular differencing schemes, which both suffer from the flux dip, do not preserve the diffusion approximation in the Galerkin sense. In this paper we re-derive the Morel and Montry weighted diamond scheme using a formal asymptotic diffusion-limit analysis. The asymptotic analysis yields more information than the Galerkin analysis and demonstrates that the step and diamond schemes do in fact formally preserve the diffusion limit to leading order, while the Morel and Montry weighted diamond scheme preserves it to first order, which is required for full consistency in this limit. Nonetheless, the fact that the step and diamond differencing schemes preserve the diffusion limit to leading order suggests that the flux dip should disappear as the diffusion limit is approached for these schemes. Computational results are presented that confirm this conjecture. We further conjecture that preserving the Galerkin diffusion approximation is equivalent to preserving the asymptotic diffusion limit to first order.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice ?c(L)op of all ?-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Approximating W projection as a separable kernel
NASA Astrophysics Data System (ADS)
Merry, Bruce
2016-02-01
W projection is a commonly used approach to allow interferometric imaging to be accelerated by fast Fourier transforms, but it can require a huge amount of storage for convolution kernels. The kernels are not separable, but we show that they can be closely approximated by separable kernels. The error scales with the fourth power of the field of view, and so is small enough to be ignored at mid- to high frequencies. We also show that hybrid imaging algorithms combining W projection with either faceting, snapshotting, or W stacking allow the error to be made arbitrarily small, making the approximation suitable even for high-resolution wide-field instruments.
Generation and detection of neutron beams with orbital angular momentum
NASA Astrophysics Data System (ADS)
Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.
2015-05-01
Orbital angular momentum (OAM) states of light, in which photons carry l? units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.
A demonstration of the conservation of the orbital angular momentum of Earth
NASA Astrophysics Data System (ADS)
Pellizza, Leonardo J.; Mayochi, Mariano G.; Ciocci Brazzano, Ligia; Pedrosa, Susana E.
2015-12-01
We describe a simple but quantitative experiment to demonstrate the conservation of angular momentum. We measure the correlation of the apparent radius and angular velocity of the Sun with respect to the stars, due to the conservation of the angular momentum of Earth in its orbit. We also determine the direction of Earth's angular momentum vector and show that it is conserved. The experiment can be performed using a small telescope and a digital camera. It is conceptually simple, allowing students to get direct physical insight from the data. The observations are performed near the resolution limit imposed by the atmosphere, and in the presence of strong competing effects. These effects necessitate a careful experimental setup and allow students to improve their skills in experimentation.
Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales
NASA Technical Reports Server (NTRS)
Houghton, Anthony; Timbie, Peter
1998-01-01
This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.
Batch-Orthogonal Locality-Sensitive Hashing for Angular Similarity.
Ji, Jianqiu; Yan, Shuicheng; Li, Jianmin; Gao, Guangyu; Tian, Qi; Zhang, Bo
2014-10-01
Sign-random-projection locality-sensitive hashing (SRP-LSH) is a widely used hashing method, which provides an unbiased estimate of pairwise angular similarity, yet may suffer from its large estimation variance. We propose in this work batch-orthogonal locality-sensitive hashing (BOLSH), as a significant improvement of SRP-LSH. Instead of independent random projections, BOLSH makes use of batch-orthogonalized random projections, i.e, we divide random projection vectors into several batches and orthogonalize the vectors in each batch respectively. These batch-orthogonalized random projections partition the data space into regular regions, and thus provide a more accurate estimator. We prove theoretically that BOLSH still provides an unbiased estimate of pairwise angular similarity, with a smaller variance for any angle in (0, ?), compared with SRP-LSH. Furthermore, we give a lower bound on the reduction of variance. The extensive experiments on real data well validate that with the same length of binary code, BOLSH may achieve significant mean squared error reduction in estimating pairwise angular similarity. Moreover, BOLSH shows the superiority in extensive approximate nearest neighbor (ANN) retrieval experiments. PMID:26352628
Angular momentum projection with quantum effects
Ren, C.; Banerjee, M.K. Department of Astronomy, University of Maryland, College Park, Maryland 20742 )
1991-04-01
We have improved a simple and rapid method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state introduced by Birse {ital et} {ital al}. We have included the contributions of quantum mesons, while in the original method only classical meson fields were included. The method has been applied to models where the mean-field approximation does not include loop terms. Hence, for reasons of consistency, contributions of quantum loops to the matrix elements have been dropped. The symmetry of the hedgehog state under grand reversal (the combined operation of time reversal and {ital e}{sup {ital i}{pi}{bold {cflx I}}}{sub 2}, where {bold {cflx I}} is the isospin operator) introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be 3/2/{l angle}{ital B}{vert bar}{ital {cflx J}}{sup 2}{vert bar}{ital B}{r angle} times the classical meson-field contributions, with {vert bar}{ital B}{r angle} being the hedgehog state. Such operators are encountered in the calculation of nucleon magnetic moments, {ital g}{sub {ital A}}(0) and {ital g}{sub {pi}{ital N}{ital N}}(0)/2{ital M}. Calculation of charge radii involves operators containing time derivatives of meson fields and requires the knowledge of wave functions of quantum mesons. Proper nonperturbative treatment, even though at the tree level, requires that these wave functions describe the motion of the mesons in the potential generated by the baryon. Fortunately, because of the neglect of the loop terms, one needs only the even-parity, grand-spin-1 states which are purely pionic. The Goldberger-Treiman relations, an exact result for the model, serves as a partial test of the method of calculation discussed here.
A new all-digital time differential ?-? angular correlation spectrometer
NASA Astrophysics Data System (ADS)
Nagl, Matthias; Vetter, Ulrich; Uhrmacher, Michael; Hofsäss, Hans
2010-07-01
A new digital time differential perturbed angular correlation spectrometer, designed to measure the energy of and coincidence time between correlated detector signals, here correlated ? photons, is presented. The system overcomes limitations of earlier digital approaches and features improved performance and handling. By consequently separating the data recording and evaluation, it permits the simultaneous measurement of decays with several ?-ray cascades at once and avoids the necessity of premeasurement configuration. Tests showed that the spectrometer reaches a time resolution of 460 ps [using a Co60 sample and Lu1.8Y0.2SiO5:Ce (LYSO) scintillators, otherwise better than 100 ps], an energy resolution that is equivalent to the limit of the used scintillation material, and a processing capability of more than 200 000 ? quanta per detector and second. Other possible applications of the presented methods include nuclear spectroscopy, positron emission tomography, time of flight studies, lidar, and radar.
Stellar Angular Diameter Relations for Microlensing Surveys
NASA Astrophysics Data System (ADS)
Adams, Arthur; Boyajian, Tabetha S.; von Braun, Kaspar
2016-01-01
Determining the physical properties of microlensing events depends on having accurate angular radii of the source star. Using long-baseline optical interferometry we are able to determine the angular sizes of nearby stars with uncertainties less than 2 percent. We present empirical estimates of angular diameters for both dwarfs/subgiants and giant stars as functions of five color indices which are relevant to planned microlensing surveys. We find in all considered colors that metallicity does not play a statistically significant role in predicting stellar size for the samples of stars considered.
Angular momentum in the Local Group
Dunn, A.; Laflamme, R.
1994-04-01
We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.
Very High Resolution Solar X-ray Imaging Using Diffractive Optics
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.
2012-01-01
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.
Monitoring Location and Angular Orientation of a Pill
NASA Technical Reports Server (NTRS)
Schipper, John F.
2012-01-01
A mobile pill transmitter system moves through, or adjacent to, one or more organs in an animal or human body, while transmitting signals from its present location and/or present angular orientation. The system also provides signals from which the present roll angle of the pill, about a selected axis, can be determined. When the location coordinates angular orientation and the roll angle of the pill are within selected ranges, an aperture on the pill container releases a selected chemical into, or onto, the body. Optionally, the pill, as it moves, provides a sequence of visually perceptible images. The times for image formation may correspond to times at which the pill transmitter system location or image satisfies one of at least four criteria. This invention provides and supplies an algorithm for exact determination of location coordinates and angular orientation coordinates for a mobile pill transmitter (PT), or other similar device that is introduced into, and moves within, a GI tract of a human or animal body. A set of as many as eight nonlinear equations has been developed and applied, relating propagation of a wireless signal between either two, three, or more transmitting antennas located on the PT, to four or more non-coplanar receiving antennas located on a signal receiver appliance worn by the user. The equations are solved exactly, without approximations or iterations, and are applied in several environments: (1) association of a visual image, transmitted by the PT at each of a second sequence of times, with a PT location and PT angular orientation at that time; (2) determination of a position within the body at which a drug or chemical substance or other treatment is to be delivered to a selected portion of the body; (3) monitoring, after delivery, of the effect(s) of administration of the treatment; and (4) determination of one or more positions within the body where provision and examination of a finer-scale image is warranted.
Gravitational waves carrying orbital angular momentum
NASA Astrophysics Data System (ADS)
Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia
2016-02-01
Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.
Angular performance measure for tighter uncertainty relations
Hradil, Z.; Rehacek, J.; Klimov, A. B.; Rigas, I.; Sanchez-Soto, L. L.
2010-01-15
The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.
Angular performance measure for tighter uncertainty relations
NASA Astrophysics Data System (ADS)
Hradil, Z.; ?ehá?ek, J.; Klimov, A. B.; Rigas, I.; Sánchez-Soto, L. L.
2010-01-01
The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.
Electron angular distributions above the dayside auroral oval
NASA Technical Reports Server (NTRS)
Craven, J. D.; Frank, L. A.
1975-01-01
An electrostatic analyzer was employed on the Ariel 4 satellite to determine pitch angle distributions of electron intensities over the dayside auroral oval. Two major precipitation zones were encountered: an equatorward zone of broad spectra with intensities of approximately 1000 electrons/(sq cm-sec-sr-eV) and a poleward zone, the polar cusp, with intensities typical of those of the magnetosheath. Angular distributions within the equatorward zone are generally isotropic outside of the atmospheric backscatter cone. The precipitation mechanism appears to be pitch angle scattering near the distant magnetic equator. In contrast, pitch angle distributions within the polar cusp are often found to be strongly field aligned with intensities within the atmospheric loss cone greater by factors of approximately 10 than the mirroring intensities. These distributions are qualititatively similar to those for the inverted V precipitation events at later local times, and probably share a common acceleration mechanism with the inverted V phenomenon.
Multifocus lemniscates: Approximation of curves
NASA Astrophysics Data System (ADS)
Rakcheeva, T. A.
2010-11-01
A focal method for the continuous approximation of smooth closed plane curves is proposed. Multifocus lemniscates are used as the approximating functions. The curve to be approximated is represented by a finite set of foci inside the curve; the number and the location of the foci provide the degrees of freedom for the focal approximation. An algorithmic solution of this problem in various modifications is constructed. Proximity criteria for curves are proposed. A comparative analysis of the approximative capabilities of the focal method with the capabilities of the classical harmonic approximation method is performed.
Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields
Jha, Anand Kumar; Boyd, Robert W.; Agarwal, Girish S.
2011-12-15
We study partially coherent fields that have a coherent-mode representation in the orbital-angular-momentum-mode basis. For such fields, we introduce the concepts of the angular coherence function and the coherence angle. Such fields are naturally produced by the process of parametric down-conversion--a second-order nonlinear optical process in which a pump photon breaks up into two entangled photons, known as the signal and idler photons. We show that the angular coherence functions of the signal and idler fields are directly related to the angular Schmidt (spiral) spectrum of the down-converted two-photon field and thus that the angular Schmidt spectrum can be measured directly by measuring the angular coherence function of either the signal or the idler field, without requiring coincidence detection.
On uniform approximation of elliptic functions by Pade approximants
Khristoforov, Denis V
2009-06-30
Diagonal Pade approximants of elliptic functions are studied. It is known that the absence of uniform convergence of such approximants is related to them having spurious poles that do not correspond to any singularities of the function being approximated. A sequence of piecewise rational functions is proposed, which is constructed from two neighbouring Pade approximants and approximates an elliptic function locally uniformly in the Stahl domain. The proof of the convergence of this sequence is based on deriving strong asymptotic formulae for the remainder function and Pade polynomials and on the analysis of the behaviour of a spurious pole. Bibliography: 23 titles.
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Wehrly, T.
1976-01-01
Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.
DALI: Derivative Approximation for LIkelihoods
NASA Astrophysics Data System (ADS)
Sellentin, Elena
2015-07-01
DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.
Angular distribution of neutral hydrogen following collisional electron detachment from H(-)
NASA Astrophysics Data System (ADS)
Moses, J. D.; Holtkamp, D.; King, J. D.; Lisowski, P. W.; Simmons, J. E.
1985-03-01
The angular distribution of neutral hydrogen following electron detachment from H(-) was measured for H(-) on nitrogen and hydrogen gas, both for neutral atoms left in the 2S state, and for all neutrals independent of the state of excitation. The results are essentially in agreement with calculations based on the Born approximation, although there is some disagreement in detail.
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Interpolation function for approximating knee joint behavior in human gait
NASA Astrophysics Data System (ADS)
Toth-Ta?c?u, Mirela; Pater, Flavius; Stoia, Dan Ioan
2013-10-01
Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.
Magnetic field and angular momentum evolution models
NASA Astrophysics Data System (ADS)
Gallet, F.
2013-11-01
The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.
Baines, Ellyn K.; McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D.; Ridgway, Stephen T.
2011-04-20
We measured the angular diameter of the lithium-rich K giant star HD 148293 using Georgia State University's Center for High Angular Resolution Astronomy Array interferometer. We used our measurement to calculate the star's effective temperature, which allowed us to place it on an H-R diagram to compare it with other Li-rich giants. Its placement supports the evidence presented by Charbonnel and Balachandran that it is undergoing a brief stage in its evolution where Li is being created.
Lu, Rongwen; Zhang, Qiuxiang; Zhi, Yanan
2015-01-01
Background Angular spectroscopy of light scattering can be used for quantitative analysis of cellular and subcellular properties, and thus promises a noninvasive methodology for in vivo assessment cellular integrity to complement in vitro histological examination. Spatial information is essential for accurate identification of localized abnormalities. However, conventional angular spectroscopy systems only provide single-channel measurement, which suffers from poor spatial resolution or requires time-consuming scanning over extended area. The purpose of this study was to develop a multi-channel angular spectroscopy for light field imaging in biological tissues. Materials and methods A microlens array (MLA) (8×8) based light field imager for 64-channel angular spectroscopy was developed. A pair of crossed polarizers was employed for polarization-sensitive recording to enable quantitative measurement at high signal specificity and sensitivity. The polarization-sensitive light field imager enables rapid measurement of multiple sampling volumes simultaneously at 18 ?m spatial-resolution and 3° angular-resolution. Comparative light field imaging and electrophysiological examination of freshly isolated and physiologically deteriorated lobster leg nerves have been conducted. Results Two-dimensional (2D) polarization-sensitive scattering patterns of the fresh nerves were highly elliptical, while they gradually lost the ellipticity and became rotationally symmetric (i.e., circular) as the nerves physiologically deteriorated due to repeated electrical stimulations. Characterized parameters, i.e., the ellipticity and the scattering intensity, rendered spatially various characteristics such as different values and deteriorating rates. Conclusions The polarization-sensitive light field imager is able to provide multi-channel angular spectroscopy of light scattering with both spatial and angular resolutions. The light scattering properties of nerves are highly dependent on the orientation of nerves and their physiological status. Further development of polarization-sensitive multi-channel angular spectroscopy may promise a methodology for rapid and reliable identification of localized abnormalities in biological tissues. PMID:25694947
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.
Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E
2015-01-01
The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data. PMID:25618076
Digital off-axis holography with angular multiplexing and synthetic aperture
NASA Astrophysics Data System (ADS)
Wang, Zhaomin; Qu, Weijuan; Yang, Fang; Wen, Yongfu; Anand, Asundi
2015-07-01
This paper discusses conventional synthetic-aperture method combined angular multiplexing in digital holography to increase the resolution and to enlarge the field of view at the same time. A structured illumination is used to realize angular multiplexing. A camera is moved by a motorized x-y stage, and scanning is performed at imaging plane. In this way we extend the band-pass for single hologram recording as well as obtain a greater sensor area resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. Moreover, a phase map of the object is experimentally presented.
Angular correlation between proton and neutron rotors
NASA Astrophysics Data System (ADS)
Tajima, N.
2013-07-01
A brief review is given on the controversy and its solution about the fact that the angular momentum vector of protons and that of neutrons in well-deformed nuclei at low total angular momenta have a strong correlation that they are oriented in opposite directions. In a simple two-rotor model in 2-dimensional space, this fact is explained as originating from the quantum mechanical uncertainty relation between the angle and the angular momentum for the relative rotation of the two rotors. As the second topic, a more realistic model consisting of two triaxial rotors in 3-dimensional space coupled with a QQ interaction is employed to investigate a possible shears-band-like collective rotation predicted by T. Otsuka, in which the angle at which the angular momentum of protons and that of neutrons intersect changes continuously from 180° at spin zero toward 0° at high spins within the same rotational band. The probability distributions of the angle between the two angular momenta and the angle between the longest principal axes of two rotors are calculated to examine the participation of the scissors mode in the evolution of the ground rotational band versus spin.
Angular-planar CMB power spectrum
Pereira, Thiago S.; Abramo, L. Raul
2009-09-15
Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C{sub l}, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C{sub l}'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7 and l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is aâ€¦
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS
Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.
2012-03-01
We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.
Angular analysis of the decay ? b ? ?(? N?) ? + ? -
NASA Astrophysics Data System (ADS)
Böer, Philipp; Feldmann, Thorsten; van Dyk, Danny
2015-01-01
We study the differential decay rate for the rare ? b ? ?(? N?) ? + ? - transition, including a determination of the complete angular distribution, assuming unpolarized ? b baryons. On the basis of a properly chosen parametrization of the various helicity amplitudes, we provide expressions for the angular observables within the Standard Model and a subset of new physics models with chirality-flipped operators. Hadronic effects at low recoil are estimated by combining information from lattice QCD with (improved) form-factor relations in Heavy Quark Effective Theory. Our estimates for large hadronic recoil — at this stage — are still rather uncertain because the baryonic input functions are not so well known, and non-factorizable spectator effects have not been worked out systematically so far. Still, our phenomenological analysis of decay asymmetries and angular observables for ? b ? ?(? N?) ? + ? - reveals that this decay mode can provide new and complementary constraints on the Wilson coefficients in radiative and semileptonic b ? s transitions compared to the corresponding mesonic modes.
Energy angular momentum closed-loop guidance
NASA Astrophysics Data System (ADS)
Patera, Russell P.
2015-03-01
A novel guidance algorithm for launch vehicle ascent to the desired mission orbit is proposed. The algorithm uses total specific energy and orbital angular momentum as new state vector parameters. These parameters are ideally suited for the ascent guidance task, since the guidance algorithm steers the launch vehicle along a pre-flight optimal trajectory in energy angular momentum space. The guidance algorithm targets apogee, perigee, inclination and right ascension of ascending node. Computational complexities are avoided by eliminating time in the guidance computation and replacing it with angular momentum magnitude. As a result, vehicle acceleration, mass, thrust, length of motor burns, and staging times are also eliminated from the pitch plane guidance calculations. The algorithm does not involve launch vehicle or target state propagation, which results in minimal computational effort. Proof of concept of the new algorithm is presented using several numerical examples that illustrate performance results.
Angular Fock coefficients: Refinement and further development
NASA Astrophysics Data System (ADS)
Liverts, Evgeny Z.; Barnea, Nir
2015-10-01
The angular coefficients ?k ,p(? ,? ) of the Fock expansion characterizing the S -state wave function of the two-electron atomic system are calculated in hyperspherical angular coordinates ? and ? . To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power j of the nucleus charge Z are applied. The "pure" j components of the angular Fock coefficients, orthogonal to the hyperspherical harmonics Yk l, are found for even values of k . To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ?2 ,0, are noted and corrected. All j components of ?4 ,1 and the majority of components and subcomponents of ?3 ,0 are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.
Electromagnetic angular momentum transport in Saturn's rings
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.
1986-01-01
It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.
Putting a new spin on angular momentum
NASA Astrophysics Data System (ADS)
Glazebrook, Karl
2015-08-01
We expand the work of Obreschkow & Glazebrook (2014) to a sample of clumpy turbulent disks at z~0.1, analogs to z~2 star-forming disks (the DYNAMO sample) and measure their specific angular momentum using integral field spectroscopy to within 20% of total in the low surface brightness outskirts (not accessible in true z~2 galaxies). We find low values, by a factor of 3 compared to normal local spirals, which is the exact value expected for the evolution of the mean angular momentum between z~0 and z~2. This strongly suggests that the fundamental driver of galaxy instability, clump size and morphology over cosmic time is specific angular momentum evolution in LCDM haloes, and is nicely explained in a simple mathematical framework we have developed.
Application of satellite scatterometer to the study of Earth angular momentum balance
NASA Astrophysics Data System (ADS)
Xu, Jin
The dynamics of the Earth system has been studied for many years; however, it is still not fully understood on a fundamental level because of its underlying complexity. The interactions among the atmosphere, ocean and solid Earth, which occur through energy and momentum exchanges and mass transport, are often essential. However, the actual mechanisms by which the angular momentum is transferred from the atmosphere to the solid Earth still remain unclear. The atmosphere exchanges angular momentum with the solid Earth through the two major torques: wind stress torque and mountain torque. The ocean exchanges angular momentum with the solid Earth through pressure and friction torque acting on the ocean floor. Since a large portion of the atmospheric angular momentum is exchanged with the ocean through the wind stress torque acting on the sea surface, precise observations of sea surface wind, the major driven force causing the oceanic circulation, can provide an opportunity for fully understanding these mechanisms. A quantitative understanding of the relations between the wind forcing and the reaction of the ocean is also desirable. In this research, the European Remote Sensing Satellite 1 (ERS-1) scatterometer measurements were reprocessed using the European Space Agency (ESA)'s CMOD4 model function and a line-wise ambiguity removal algorithm with sea-ice detection scheme to obtain the unique wind vector from the scatterometer's multi-solutions. The reprocessed wind stress fields were compared with both ESA's wind products and the National Center for Environmental Prediction (NCEP) analytical fields. The results indicated that the wind stress fields generated by the new algorithm are reasonably better. This more accurate and consistent ERS-1 scatterometer global high resolution surface wind data was then used to study the Earth system angular momentum balance, including forcing a parallel free-surface ocean general circulation model to investigate the changes of the oceanic angular momentum and its contribution to the Earth angular momentum balance. The calculated global torque agrees very well with changes in the atmospheric angular momentum. The oceanic angular momentum itself only accounts for a relatively small portion in the Earth angular momentum balance. Torques that include the ERS-1 scatterometer wind forcing over the ocean produce a better balance with the rate of change of global atmospheric angular momentum compared to those from the NCEP model system alone.
ERIC Educational Resources Information Center
Hale, Claudia L.; Cooks, Leda M.
1994-01-01
Focusing on the teaching of alternative dispute resolutions at universities, Claudia L. Hale and Leda M. Cooks argue that mediation should be taught primarily as a communication process that involves the joint efforts of mediator and disputants. Teachers of mediation should begin by distinguishing mediation from other forms of dispute resolution,…
Combining global and local approximations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1991-01-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.
Angular distribution of electrons from powerful accelerators
NASA Astrophysics Data System (ADS)
Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.
2007-07-01
A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ?0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.
Angular distribution of emission from hyperbolic metamaterials
Gu, Lei; Livenere, J. E.; Zhu, G.; Tumkur, T. U.; Hu, H.; Cortes, C. L.; Jacob, Z.; Prokes, S. M.; Noginov, M. A.
2014-01-01
We have studied angular distribution of emission of dye molecules deposited on lamellar metal/dielectric and Si/Ag nanowire based metamaterials with hyperbolic dispersion. In agreement with the theoretical prediction, the emission pattern of dye on top of lamellar metamaterial is similar to that on top of metal. At the same time, the effective medium model predicts the emission patterns of the nanowire array and the dye film deposited on glass to be nearly identical to each other. This is not the case of our experiment. We tentatively explain the nearly Lambertian (?cos?) angular distribution of emission of the nanowire based sample by a surface roughness. PMID:25476126
DASI: The Degree Angular Scale Interferometer
NASA Astrophysics Data System (ADS)
Leitch, E. M.; Carlstrom, J. E.; Davidson, G.; Dragovan, M.; Halverson, N. W.; Holzapfel, W. L.; Laroque, S.; Kovac, J.; Pryke, C.; Schartman, E.; Yamasaki, M. J.
The Degree Angular Scale Interferometer (DASI) is a 13-element array of horns operating at 26 - 36 GHz designed explicitly to image anisotropy in the Cosmic Microwave Background radiation and to determine its angular power spectrum over the range 140 < l < 920. DASI was deployed sucessfully at the Amudsen-Scott South Pole station last austral summer (1999/2000) and is now collecting data. An overview of the instrument and its capabilities, as well as the current state of the observations and data analysis will be presented.
Probing Angular Correlations in Sequential Double Ionization
Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.
2011-09-09
We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.
Mechanism of Angular Momentum Exchange between Molecules and Laguerre-Gaussian Beams
Alexandrescu, Adrian; Cojoc, Dan; Fabrizio, Enzo Di
2006-06-23
We derive the interaction Hamiltonian between a diatomic molecule and a Laguerre-Gaussian beam under the assumption of a small spread of the center of mass wave function of the molecule in comparison with the beam waist. Considering the dynamical variables of the center of mass, vibrational, rotational, and electronic motion, we show that, within the electronic dipole approximation, the orbital angular momentum of the field couples with the rotational and electronic motion. The changes in the transition probabilities and selection rules induced by the field orbital angular momentum and the applicability of the derived interaction mechanisms for polyatomic molecules are discussed.
Annihilation of angular momentum bias during thrusting and spinning-up maneuvers
NASA Technical Reports Server (NTRS)
Longuski, J. M.; Kia, T.; Breckenridge, W. G.
1989-01-01
During spinning-up and thrusting maneuvers of rockets and spacecraft, undesired transverse torques (from error sources such as thruster misalignment, center-of-mass offset and thruster mismatch) perturb the angular momentum vector from its original orientation. In this paper a maneuver scheme is presented which virtually annihilates the angular momentum vector bias, even though the magnitude and direction of the perturbing body-fixed torques are unknown. In the analysis it is assumed that the torques are small and constant and that the spacecraft or rocket can be approximated by a rigid body, which may be asymmetric. Typical maneuvers of the Galileo spacecraft are simulated to demonstrate the technique.
Lloyd, Sophia; Babiker, Mohamed; Yuan, Jun
2012-02-17
Following the very recent experimental realization of electron vortices, we consider their interaction with matter, in particular, the transfer of orbital angular momentum in the context of electron energy-loss spectroscopy, and the recently observed dichroism in thin film magnetized iron samples. We show here that orbital angular momentum exchange does indeed occur between electron vortices and the internal electronic-type motion, as well as center-of-mass motion of atoms in the electric dipole approximation. This contrasts with the case of optical vortices where such transfer only occurs in transitions involving multipoles higher than the dipole. The physical basis of the observed dichroism is explained. PMID:22401214
The coupled states approximation for scattering of two diatoms
NASA Technical Reports Server (NTRS)
Heil, T. G.; Kouri, D. J.; Green, S.
1978-01-01
The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.
ANGULAR DIAMETERS AND EFFECTIVE TEMPERATURES OF 25 K GIANT STARS FROM THE CHARA ARRAY
Baines, Ellyn K.; Doellinger, Michaela P.; Cusano, Felice E-mail: mdoellin@eso.or
2010-02-20
Using Georgia State University's Center for High Angular Resolution Astronomy Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and Hipparcos parallaxes produces physical linear radii for the sample. Except for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures.
Observation of High Angular Momentum Excitons in Cuprous Oxide
NASA Astrophysics Data System (ADS)
Thewes, J.; Heckötter, J.; Kazimierczuk, T.; Aßmann, M.; Fröhlich, D.; Bayer, M.; Semina, M. A.; Glazov, M. M.
2015-07-01
The recent observation of dipole-allowed P excitons up to principal quantum numbers of n =25 in cuprous oxide has given insight into exciton states with unprecedented spectral resolution. While so far the exciton description as a hydrogenlike complex has been fully adequate for cubic crystals, we demonstrate here distinct deviations: The breaking of rotational symmetry leads to mixing of high angular momentum F and H excitons with the P excitons so that they can be observed in absorption. The F excitons show a threefold splitting that depends systematically on n , in agreement with theoretical considerations. From detailed comparison of experiment and theory we determine the cubic anisotropy parameter of the Cu2O valence band.
Establishing an IERS Sub-Center for Ocean Angular Momentum
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
2001-01-01
With the objective of establishing the Special Bureau for the Oceans (SBO), a new archival center for ocean angular momentum (OAM) products, we have computed and analyzed a number of OAM products from several ocean models, with and without data assimilation. All three components of OAM (axial term related to length of day variations and equatorial terms related to polar motion) have been examined in detail, in comparison to the respective Earth rotation parameters. An 11+ year time series of OAM given at 5-day intervals has been made publicly available. Other OAM products spanning longer periods and with higher temporal resolution, as well as products calculated from ocean model/data assimilation systems, have been prepared and should become part of the SBO archives in the near future.
BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA
Sutter, P. M.; Wandelt, Benjamin D.; Malu, Siddarth S.
2012-09-15
We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as O(n{sub p} log n{sub p}) where n{sub p} measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.
Cosmic microwave background bispectrum on small angular scales
Pitrou, Cyril; Uzan, Jean-Philippe; Bernardeau, Francis
2008-09-15
This article investigates the nonlinear evolution of cosmological perturbations on sub-Hubble scales in order to evaluate the unavoidable deviations from Gaussianity that arise from the nonlinear dynamics. It shows that the dominant contribution to modes coupling in the cosmic microwave background temperature anisotropies on small angular scales is driven by the sub-Hubble nonlinear evolution of the dark matter component. The perturbation equations, involving, in particular, the first moments of the Boltzmann equation for photons, are integrated up to second order in perturbations. An analytical analysis of the solutions gives a physical understanding of the result as well as an estimation of its order of magnitude. This allows one to quantify the expected deviation from Gaussianity of the cosmic microwave background temperature anisotropy and, in particular, to compute its bispectrum on small angular scales. Restricting to equilateral configurations, we show that the nonlinear evolution accounts for a contribution that would be equivalent to a constant primordial non-Gaussianity of order f{sub NL}{approx}25 on scales ranging approximately from l{approx}1000 to l{approx}3000.
Optimization of Angular-Momentum Biases of Reaction Wheels
NASA Technical Reports Server (NTRS)
Lee, Clifford; Lee, Allan
2008-01-01
RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Inclusion of angular momentum in FREYA
Randrup, JÃ¸rgen; Vogt, Ramona
2015-05-18
The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.
Spacecraft Angular State Estimation After Sensor Failure
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); BarItzhack, Itzhack Y.; Harman, Richard R.
2002-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro failure in a spacecraft (SC) with a special mission profile. The source of the problem is presented, two algorithms are suggested, an observability study is carried out, and the efficiency of the algorithms is demonstrated.
A Novel Permanent Magnetic Angular Acceleration Sensor
Zhao, Hao; Feng, Hao
2015-01-01
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(radÂ·sâˆ’2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217
A Novel Permanent Magnetic Angular Acceleration Sensor.
Zhao, Hao; Feng, Hao
2015-01-01
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(radÂ·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217
Optical angular momentum: Multipole transitions and photonics
Andrews, David L.
2010-03-15
The premise that multipolar decay should produce photons uniquely imprinted with a measurably corresponding angular momentum is shown in general to be untrue. To assume a one-to-one correlation between the transition multipoles involved in source decay and detector excitation is to impose a generally unsupportable one-to-one correlation between the multipolar form of emission transition and a multipolar character for the detected field. It is specifically proven impossible to determine without ambiguity, by use of any conventional detector, and for any photon emitted through the nondipolar decay of an atomic excited state, a unique multipolar character for the transition associated with its generation. Consistent with the angular quantum uncertainty principle, removal of a detector from the immediate vicinity of the source produces a decreasing angular uncertainty in photon propagation direction, reflected in an increasing range of integer values for the measured angular momentum. In such a context it follows that when the decay of an electronic excited state occurs by an electric quadrupolar transition, for example, any assumption that the radiation so produced is conveyed in the form of 'quadrupole photons' is experimentally unverifiable. The results of the general proof based on irreducible tensor analysis invite experimental verification, and they signify certain limitations on quantum optical data transmission.
Heteromodal conceptual processing in the angular gyrus
Bonner, Michael F.; Peelle, Jonathan E.; Cook, Philip A.; Grossman, Murray
2013-01-01
Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. PMID:23333416
Space-angle approximations in the variational nodal method.
Lewis, E. E.; Palmiotti, G.; Taiwo, T.
1999-03-12
The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared.
Extra-tropical QBO signals in angular momentum and wave forcing
NASA Technical Reports Server (NTRS)
Baldwin, Mark P.; Tung, Ka Kit
1994-01-01
Although the period of the equatorial stratospheric quasi-biennal oscillation (QBO) is approximately 30 months, quasi-biennial modulation of the extratropical annual cycle may be expected to produce additional spectral peaks at approximately to produce additional spectral peaks at approximately 8.6 and 20 months in the extratropics. Using Northern Hemisphere data for 1964-78 and global data for 1978-93 it is shown that these spectral peaks are robust in both angular momentum and Eliassen-Palm flux divergence. This spectral signature represents a circulation anomaly in both hemispheres, and implies a dynamical origin to the previously observed similar spectral peaks in column ozone in the extratropics.
Angular momentum evolution of Algol binaries
NASA Astrophysics Data System (ADS)
Ibano?lu, C.; Soydugan, F.; Soydugan, E.; Dervi?o?lu, A.
2006-11-01
We have compiled the well-determined absolute parameters of Algol-type binaries. The lists contain the parameters of 74 detached and 61 semidetached close binaries. The double-lined eclipsing binaries provide not only the most accurate determinations of stellar mass, radius and temperatures but also distance-independent luminosity for each of their individual components. The distributions of the primary and secondary masses of detached binaries (DBs) are similar, whilst the secondary masses of the semidetached binaries (SDBs) are mostly smaller than 2 Msolar with a peak in the M2-bin (0.21-1.0). The components of the DBs are almost all located in the main-sequence band. On the contrary, the secondary components of the SDBs have larger radii and luminosity with respect to the same mass and the same effective temperature of main-sequence counterparts. They occupy a region of the Hertzsprung-Russell diagram between terminal-age main sequence and giants. Moreover, the total angular momenta and specific angular momenta are larger for the SDBs of orbital periods with P > 5 d than those of the shorter period ones. The specific angular momenta of SDBs with periods longer than 5 d are 65 per cent greater than that of the short period group with the same mass. The DBs and the SDBs with orbital periods longer and shorter than 5 d are separated into three groups in the J/M5/3 - q diagram. The SDBs with mass ratios greater than 0.3 and P > 5 d have almost the same angular momentum to those of DBs. However, the SDBs with short periods have the smallest angular momentum even though they have the same mass ratios. This result reveals that angular momentum loss (AML) considerably affects the evolution of close binary systems. Recently, Chen, Li & Qian suggested that, in addition to magnetic braking, a circumbinary disc may play an important role in AML from Algol-type binaries. Their calculations indicated that the evolution of Algol-type binaries can be significantly affected by the circumbinary disc. Our results show that the evolution of close binaries begins as a DB and losing angular momentum, first via stellar wind and then magnetic braking plus circumbinary disc the period is shortened and orbit shrinks. Thereafter, the evolution of the system is accelerated and mass transfer rates are enhanced which result in a smaller mass ratios.
ERIC Educational Resources Information Center
Higbie, J.
1981-01-01
Describes problems using the Jenkins and White approach and standard diffraction theory when dealing with the topic of finite conjugate, point-source resolution and how they may be resolved using the relatively obscure Abbe's sine theorem. (JN)
Unexpectedly low angular extent of journal bearing pressures: experiment and theory
NASA Astrophysics Data System (ADS)
Sharma, Nikhil; Vimal, T.; Chatterjee, Anindya
2015-04-01
Journal bearings have been studied for a long time. Pressure solutions for the same, as presented in textbooks, typically have angular extents exceeding 150Â°. Here, for a bearing with a relatively larger clearance ratio (0.01 as opposed to, say, 0.001), our experiments show an angular extent of about 50Â° only. Such small angular extents cannot be predicted, even approximately, by the existing simple theories for journal bearing pressures. However, such theories are based on assumptions whereby only the relative speed between bearing and journal surfaces enters the governing equations. We discuss how these same assumptions motivate some new combinations of boundary conditions that allow reasonably simple numerical treatment. In this paper, the resulting families of possible solutions are computed semi-numerically using a Fourier series expansion in one direction and finite differences and numerical continuation in the other. We find that one such solution family contains small-extent solutions similar to those observed experimentally.
Attosecond delay and angular asymmetry in plasmonic photoemission of C60
NASA Astrophysics Data System (ADS)
Barillot, T.; Cauchy, C.; Loriot, V.; Bordas, C.; Lepine, F.; Hervieux, P.-A.; Gisselbrecht, M.; Johnsson, P.; Laksman, J.; Mansson, E.; Sorensen, S.; Canton, S.; Dahlstrom, J.; Magrakvelidze, M.; Chakraborty, H.; Dixit, G.; Madjet, M.
2015-05-01
We present a theory-experiment joint study of effects of the giant plasmon resonance of C60 on photoionization angular asymmetry, phase and time delay. Phases of ionization amplitudes are utilized to compute Wigner-Smith delays and angular asymmetries of emissions from HOMO and HOMO-1 levels in time-dependent local density approximation (TDLDA), uncovering significant plasmon effects. Electron momentum imaging spectroscopy is used to measure the photoelectron angular distribution asymmetry parameter at the plasmon that agreed well with TDLDA. Preliminary results of our experiments using RABITT pump-probe metrology show promise of attosecond measurements of plasmon-driven delays to complement our predictions. *franck.lepine@univ-lyon1.fr **himadri@nwmissouri.edu Supported by the US NSF, CNRS, ANR.
Angular distribution of emitted electrons in sodium clusters: A semiclassical approach
Giglio, E.; Reinhard, P.-G.; Suraud, E.
2003-04-01
We present a theoretical study of the angular distribution of emitted electrons of a sodium cluster, irradiated by short and intense laser pulses. While the polarization of the excitation field tends to focus a directional emission, the dynamical correlations tend to thermalize the electrons, giving rise to a more isotropic ionization. The competition between these processes is investigated using a semiclassical model Vlasov-Uehling-Uhlenbeck, where the dynamical correlations are taken in account by the electron-electron correlations in the Markovian approximation, the widely known Uehling-Uhlenbeck collision term. The results are compared to a semiclassical pure mean-field propagation (Vlasov equation) to work out the influence of dynamical correlations on the angular distribution of the electron emission. The trends with laser intensity and frequency are explored. The time evolution of the angular distributions shows that direct emission processes are stronger in the early phase of the processs, while isotropic thermal emission dominates later.
Angular Fulde-Ferrell-Larkin-Ovchinnikov state in cold fermion gases in a toroidal trap
Yanase, Youichi
2009-12-01
We study the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in which the rotation symmetry is spontaneously broken, in population imbalanced fermion gases near the BCS-BEC crossover. We investigate the superfluid gases at low temperatures on the basis of the Bogoliubov-de Gennes equation and examine the stability against thermal fluctuations using the T-matrix approach beyond the local-density approximation. We find that the angular FFLO state is stabilized in the gases confined in the toroidal trap but not in the harmonic trap. The angular FFLO state is stable near the BCS-BEC crossover owing to the formation of pseudogap. Spatial dependences of number density and local population imbalance are shown for an experimental test.
Noncommutative geometry of angular momentum space U(su(2))
NASA Astrophysics Data System (ADS)
Batista, Eliezer; Majid, Shahn
2003-01-01
We study the standard angular momentum algebra [xi,xj]=???ijkxk as a noncommutative manifold R?3. We show that there is a natural 4D differential calculus and obtain its cohomology and Hodge * operator. We solve the spin 0 wave equation and some aspects of the Maxwell or electromagnetic theory including solutions for a uniform electric current density, and we find a natural Dirac operator ?/. We embed R?3 inside a 4D noncommutative space-time which is the limit q?1 of q-Minkowski space and show that R?3 has a natural quantum isometry group given by the quantum double C(SU(2))?U(su(2)) which is a singular limit of the q-Lorentz group. We view R?3 as a collection of all fuzzy spheres taken together. We also analyze the semiclassical limit via minimum uncertainty states |j,?,?> approximating classical positions in polar coordinates.
Freehand spatial-angular compounding of photoacoustic images
NASA Astrophysics Data System (ADS)
Kang, Hyun-Jae; Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Taylor, Russell H.; Boctor, Emad M.
2014-03-01
Photoacoustic (PA) imaging is an emerging medical imaging modality that relies on the absorption of optical energy and the subsequent emission of acoustic waves that are detected with a conventional ultrasound probe. PA images are susceptible to background noise artifacts that reduce the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We investigated spatial-angular compounding of PA images to enhance these image qualities. Spatial-angular compounding was implemented by averaging multiple PA images acquired as an ultrasound probe was rotated about the elevational axis with the laser beam and PA target fixed in the same location. An external tracking system was used to provide the position and orientation (i.e. pose) information of each PA image. Based on this pose information, frames in similar elevational planes were filtered from the acquired image data and compounded using one of two methods. One method registered overlapping signals between frames prior to compounding (using the pose information), while the second method omitted this spatial registration step. These two methods were applied to pre-beamformed RF, beamformed RF, and envelope-detected data, resulting in six different compounding pipelines. Compounded PA images with similar lateral resolution to a single reference image had factors of 1.1 - 1.6, 2.0 - 11.1, and 2.0 - 11.1 improvements in contrast, CNR, and SNR, respectively, when compared to the reference image. These improvements depended on the amount of relative motion between the reference image and the images that were compounded. The inclusion of spatial registration prior to compounding preserved lateral resolution and signal location when the relative rotations about the elevation axis were 3.5° or less for images that were within an elevational distance of 2.5 mm from the reference image, particularly when the method was applied to the enveloped-detected data. Results indicate that spatial-angular compounding has the potential to improve image quality for a variety of photoacoustic imaging applications.
Evaluation of the table Mountain Ronchi telescope for angular tracking
NASA Technical Reports Server (NTRS)
Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.
1992-01-01
The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.
NASA Astrophysics Data System (ADS)
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie
2012-01-01
Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.
Metrical Diophantine approximation for quaternions
NASA Astrophysics Data System (ADS)
Dodson, Maurice; Everitt, Brent
2014-11-01
Analogues of the classical theorems of Khintchine, Jarnik and Jarnik-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general `lim sup' sets.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away from the conclusion. These algorithms allow one to reason accurately with uncertain data. The above environment can replicate state-f-the-art expert system environments which provides a continuity between the current expert systems which cannot be validated or verified and future expert systems which should be both validated and verified
NASA Astrophysics Data System (ADS)
Sakane, E.; Kawai, T.
2002-10-01
In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of internal translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field Ïˆk, the loss of ``spin'' angular momentum, which is the generator of internal SL(2,C) transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of PoincarÃ© coordinate transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, FranÃ§oise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness. PMID:23516082
Angular Momentum Role in the Hypercritical Accretion of Binary-driven Hypernovae
NASA Astrophysics Data System (ADS)
Becerra, L.; Cipolletta, F.; Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo
2015-10-01
The induced gravitational collapse paradigm explains a class of energetic, {E}{{iso}}? {10}52 erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, {L}{{acc}}, and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, {[{cJ}/({{GM}}2)]}{{max}}? 0.7, and (3) can support less angular momentum than the one transported by supernova ejecta, {L}{{acc}}\\gt {J}{{NS,max}}, hence there is an angular momentum excess that necessarily leads to jetted emission.
Angular momentum redistribution by SASI spiral modes and consequences for neutron star spins
NASA Astrophysics Data System (ADS)
Guilet, Jérôme; Fernández, Rodrigo
2014-07-01
In the collapsing core of massive stars, the standing accretion shock instability (SASI) can drive spiral modes that efficiently redistribute angular momentum. This process can impart a spin to the forming neutron star even when the progenitor star is non-rotating. Here we develop the first analytical description of the angular momentum redistribution driven by a spiral mode of the SASI. Our analysis, valid in the limit of small mode amplitude, shows that the angular momentum separation is driven by the Reynolds stress generated by the spiral mode. The resulting solutions compare favourably with previous 3D hydrodynamic simulations of the SASI in the linear and weakly non-linear phases. Reasonable agreement is also found when extrapolating the solutions into the fully non-linear phase. A Reynolds decomposition of the flow is performed in the saturated state of these simulations, showing that outward angular momentum transport by the Reynolds stress and the fluctuating component of the mass flux balance inward transport by advection. We derive an approximate analytic expression for the maximum angular momentum deposited in the neutron star as a function of the mass accretion rate, shock radius, shock compression ratio, and amplitude of the spiral mode at the time of explosion. Implications for the birth spin periods of neutron stars are discussed.
Quasicrystalline decagonal and related crystalline approximant structures
Daulton, T.L.
1992-01-01
The icosahedral phase is a condensed phase of matter that has a noncrystallographic point group with long range orientational and translational order but lacks strict periodicity. Periodicity is replaced in all dimensions by a mathematically well defined quasiperiodicity. Two and one dimensional quasicrystals also form in the same metallic-alloy systems as does the icosahedral quasicrystal. The decagonal phase is an example of a two-dimensional quasicrystal that occurs with dicrete one dimensional periodicites of approximately 4 [angstrom] x (1, 2, 3, and 4). The different periodicity decagonal phases are studied with an analytical transmission electron microscope (TEM), using high resolution electron microscopy (HREM), convergent beam electron diffraction (CBED), selected area diffraction (SAD), energy-dispersive x-ray spectroscopy (EDXS), and electron energy-loss spectroscopy (EELS). X-ray powder diffraction studies are also presented. Closely related crystalline structures that approximate well the noncrystallographic symmetries of quasicrystals, were also studied. These crystals also exhibit the same discrete periodicities present in the decagonal phases. The striking similarities between the different periodicity decagonal phases, the icosahedral phase, and the crystalline approximant structures suggest that they all contain similar fundamental atomic clusters. Further, the discrete decagonal periodicities observed suggest that the decagonal structures are formed by different stacking sequences of similar atomic clusters. An atomic model that is based on distorted icosahedrally symmetric clusters that are stacked with different interpenentration depths to form the different periodicity decagonal phases is presented.
THE ANGULAR DISTRIBUTION OF Ly{alpha} RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM
Yang Yang; Shu Chiwang; Roy, Ishani; Fang Lizhi
2013-07-20
We investigate the angular distribution of Ly{alpha} photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable {mu}, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the {mu} distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency {nu}{sub 0}, I contains only a linear term of {mu}. For photons with frequencies at the double peaks of the flux, the {mu}-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at {nu}{sub 0} or at the double peaks, the {mu} distributions actually are independent of the initial {mu} distribution of photons of the source. This is because the photons with frequencies either at {nu}{sub 0} or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.
Analysis of Angular Momentum in Planetary Systems and Host Stars
NASA Astrophysics Data System (ADS)
Irwin, Stacy Ann
The spin angular momentum of massive single Main Sequence stars has long been shown to follow a primary power law of stellar mass, J ? Malpha. Lower mass stars contain much less spin angular momentum, and a secondary power law describes the upper bound of their angular momenta. The Solar System's orbital angular momentum is of the same order of magnitude as the primary law, whereas the Sun's spin angular momentum is consistent with the secondary relationship. This suggests that planets are an important clue to answering questions about stellar angular momentum loss and transfer. With recent planetary discoveries, the angular momenta of exoplanetary systems can now be determined. The spin and orbital angular momenta of a sample including 426 host stars and 532 planets is calculated. Main Sequence host stars range from 0.6 to 1.7 solar masses, and their angular momenta are shown to agree well with previous studies of stellar angular momentum, generally falling on or below the appropriate power law, and exhibiting detection method biases. The systems' angular momenta, including both the planetary orbital and stellar spin components, are widely spread above and below the primary power law, but on average agree well with the primary relationship. The results indicate that the primary power law describes angular momenta of stars of <2 solar masses well, when planetary angular momentum is included. For 90% of the systems, the angular momentum contained in the planets is greater than the spin angular momentum of the host star, a characteristic shared by the Solar System. Undetected planets contribute significant bias to the system angular momentum as well as to the proportion of angular momentum contained in the planets. This bias is used to identify systems which are likely to harbor additional planets in already known planetary systems, assuming the Solar System's proportions are typical.
Development of a primary angular shock calibration system
NASA Astrophysics Data System (ADS)
Peng, Jun
2008-06-01
Primary angular shock calibration system is developed by Changcheng Institute of Metrology & Measurement (CIMM). It uses brushless servo motor driving the air bearing system to generate rotational angle, angular velocity and angular acceleration. Both grating and heterodyne laser interferometer with diffraction grating is used to measure the angular movement, which are traceable to the International System of Units (SI). It can be used to calibrate angular transducers, i.e. angular accelerometer, angular velocity transducer, and rotational angle transducer to obtain sensitivity by angular shock or other kinds of excitation. Heterodyne laser interferometer with diffraction grating is successfully used in the measurement of angular acceleration. The method of using grating and scanning heads measure angular acceleration is developed. One characteristic of this system is that it could generate different kind of excitation signals, which include half sine, trapezoidal, sinusoidal, etc. and it can work as a high performance rate table to generate constant angular velocity. The preliminary test shows the uncertainty in calibrating angular accelerometer should be better than 2%. This paper introduces the mechanic system, control system and measurement system of the angular shock calibration system.
A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments
Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar
2010-01-01
This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements. PMID:22319320
Phenomenological Determination of the Orbital Angular Momentum
Ramsey, Gordon P.
2009-08-04
Measurements involving the gluon spin, {delta}G(x, t) and the corresponding asymmetry, A(x,t) = {delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = (1/2) sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.
Performance criteria for dosimeter angular response
Roberson, P.L.; Fox, R. A.; Cummings, F. M.; McDonald, J. C.; Jones, K.L.
1988-06-01
This report provides criteria for evaluating the response of personnel dosimeters to radiation at nonperpendicular incidence. The US Department of Energy Laboratory Accreditation Program (DOELAP) ensures that dosimetry systems at DOE facilities meet acceptable standards for precision and accuracy. In the past, these standards were limited to tests for system variability, energy dependence, and level of detection. The proposed criteria will broaden the scope of DOELAP to include the angular response of personnel dosimeters. Because occupational exposures in the workplace are rarely due to radiation from only one direction, dosimeters must accurately assign individual dose equivalent from irradiation at any forward angle of incidence. Including an angular response criterion in DOELAP would improve the quality of personnel monitoring provided that the criterion is developed from appropriate dose quantities. This report provides guidance for assigning individual dose equivalents for radiation fields at nonperpendicular incidence to the dosimeter. 21 refs., 10 figs., 10 tabs.
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
From transverse angular momentum to photonic wheels
NASA Astrophysics Data System (ADS)
Aiello, Andrea; Banzer, Peter; Neugebauer, Martin; Leuchs, Gerd
2015-12-01
Scientists have known for more than a century that light possesses both linear and angular momenta along the direction of propagation. However, only recent advances in optics have led to the notion of spinning electromagnetic fields capable of carrying angular momenta transverse to the direction of motion. Such fields enable numerous applications in nano-optics, biosensing and near-field microscopy, including three-dimensional control over atoms, molecules and nanostructures, and allowing for the realization of chiral nanophotonic interfaces and plasmonic devices. Here, we report on recent developments of optics with light carrying transverse spin. We present both the underlying principles and the latest achievements, and also highlight new capabilities and future applications emerging from this young yet already advanced field of research.
Angular distribution of laser ablation plasma
Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.
2010-05-23
An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
(Perturbed angular correlations in zirconia ceramics)
Not Available
1990-01-01
This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.
Oscillations in the angular velocity of pulsars
NASA Astrophysics Data System (ADS)
Shahabasyan, K. M.; Shahabasyan, M. K.
2011-03-01
Observational data on long-period oscillations in the angular velocity of pulsars are examined. The characteristic radii of the superfluid regions of pulsars are determined assuming that these oscillations are collective elastic oscillations of a superfluid vortex lattice (Tkachenko oscillations). These radii are compared with values obtained in various theoretical models of neutron stars which assume the existence of a superfluid quark "CFL"-core or a superfluid hyperon core. This method can be used to estimate the radii of pulsars.
Angular distributions in sup 109 Cd
Singh, K.P. ); Avasthi, D.K.; Govil, I.M. )
1992-05-01
The low-lying levels in {sup 109}Cd were excited via the ({ital p},{ital n}{gamma}) reaction. Angular distributions of deexcitated gamma rays were studied at 4.2 MeV proton energy to resolve the ambiguity in the spin values for the levels at 721.3, 891.1, 997.3, and 1133.6 keV excitation energies.
Levin, Roger
2006-03-01
The sooner conflict is identified and confronted, the more quickly it can be resolved (and the sooner, the better). When this is accomplished calmly and objectively, many areas of conflict will be eliminated. Addressing conflict as it arises also sends a clear message to the team that the practice seeks resolution, not punishment or negative consequences. In addition, the dentist and the office manager need to lead by example by avoiding gossip and encouraging open communication. The goal is to go from a parent-child relationship with the dental team to an adult-adult relationship using this series of managerial conflict resolution steps. PMID:16570474
Nuclear structure at high angular momentum
Stephens, F.S.
1980-06-01
This review paper begins by discussing the limits faced in the attempts to get nuclei to hold very high angular momentum. The method presently used to produce nuclei with the maximum angular momentum is described. Then the physics of high-spin states is taken up; some properties of a purely collective, classical rotor are described, and the effects of coupling single-particle motion to this are considered. Next, backbending, its causes, and a new spectroscopy of bands and backbends at high spin values are discussed. Noncollective states occur when the nuclear angular momentum is carried by a few high-j particles and is aligned along a symmetry axis. There results an irregular yrast line, along which there are no collective transitions. Noncollective behavior in the lead region, the hafnium region, and the N = 82 region is examined. Then the discussion moves on to collective behavior and recent studies on continuum spectra. Evidence for rotation is given, and effective moments of inertia for this rotation are evaluated. Finally, current ..gamma..-ray energy correlation studies are described. 68 references, 36 figures. (RWR)
NASA Astrophysics Data System (ADS)
Barletta, P.; Kievsky, A.
2005-04-01
The Discrete Variable Representation (DVR) is used in combination with the Hyperspherical Adiabatic Approximation (HAA) to obtain variational estimates for the solution of the Schrödinger equation for a three-body system. This method is particularly appropriate to study weakly bound systems, such as nuclear or van der Waals complexes. It can be applied to bound states as well as to scattering observables. Applications will be shown for a three-nucleon system using a simple scalar interaction, restricted to the lowest adiabatic curve, and to zero partial angular momenta.
Sensitivity in frequency dependent angular rotation of optical vortices.
Rumala, Yisa S
2016-03-10
This paper presents robust strategies to enhance the rotation sensitivity (and resolution) of a coherent superposition of optical vortices emerging from a single spiral phase plate (SPP) device when light's optical frequency (or wavelength) going into the SPP device is varied. The paper discusses the generation and measurement of ultrasmall rotation. Factors that affect the ability to perform precision rotation measurements include the linewidth and stability of the input light source, the number of photon counts making position rotation measurements on the CCD detector, SPP reflectivity, the length of SPP device, and the angular modulation frequency of the intensity pattern due to a coherent superposition of optical vortices in a single SPP device. This paper also discusses parameters to obtain a high-sensitivity single shot measurement and multiple measurements. Furthermore, it presents what I believe is a new scaling showing the enhancement in sensitivity (and resolution) in the standard quantum limit and Heisenberg limit. With experimentally realizable parameters, there is an enhancement of rotation sensitivity by at least one order of magnitude compared to previous rotation measurements with optical vortices. Understanding robust strategies to enhance the rotation sensitivity in an SPP device is important to metrology in general and for building compact SPP sensors such as gyroscopes, molecular sensors, and thermal sensors. PMID:26974798
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Relativistic regular approximations revisited: An infinite-order relativistic approximation
Dyall, K.G.; van Lenthe, E.
1999-07-01
The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy{endash}Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy{endash}Wouthuysen transformation, which results in the ZORA Hamiltonian and a nonunit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E{sup 3}/c{sup 4} for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the nonvariational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. {copyright} {ital 1999 American Institute of Physics.}
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence. PMID:22273930
Maximum angular accuracy of pulsed laser radar in photocounting limit.
Elbaum, M; Diament, P; King, M; Edelson, W
1977-07-01
To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds. PMID:20168845
A note on the accuracy of a computable approximation for the period of a pendulum
NASA Astrophysics Data System (ADS)
Oden, Eric; Richards, Kendall
2015-06-01
We discuss the accuracy of a previously proposed computable approximation for the period of the simple pendulum. In particular, we apply known inequalities for the Gaussian hypergeometric function to prove that the associated error is a monotonic function of the maximum angular displacement, ?. For any given range of ?, this provides an analytical verification of a precise bound for the associated error.
Approximating spatially exclusive invasion processes
NASA Astrophysics Data System (ADS)
Ross, Joshua V.; Binder, Benjamin J.
2014-05-01
A number of biological processes, such as invasive plant species and cell migration, are composed of two key mechanisms: motility and reproduction. Due to the spatially exclusive interacting behavior of these processes a cellular automata (CA) model is specified to simulate a one-dimensional invasion process. Three (independence, Poisson, and 2D-Markov chain) approximations are considered that attempt to capture the average behavior of the CA. We show that our 2D-Markov chain approximation accurately predicts the state of the CA for a wide range of motility and reproduction rates.
Quantitative approximation schemes for glasses
NASA Astrophysics Data System (ADS)
Mangeat, Matthieu; Zamponi, Francesco
2016-01-01
By means of a systematic expansion around the infinite-dimensional solution, we obtain an approximation scheme to compute properties of glasses in low dimensions. The resulting equations take as input the thermodynamic and structural properties of the equilibrium liquid, and from this they allow one to compute properties of the glass. They are therefore similar in spirit to the Mode Coupling approximation scheme. Our scheme becomes exact, by construction, in dimension d ?? , and it can be improved systematically by adding more terms in the expansion.
Heat pipe transient response approximation
NASA Astrophysics Data System (ADS)
Reid, Robert S.
2002-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .
Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
NASA Astrophysics Data System (ADS)
Taskin, F.; Koçak, G.
2010-09-01
The approximate analytical solutions of the Schrödinger equation for the Eckart potential are presented for the arbitrary angular momentum by using a new approximation of the centrifugal term. The energy eigenvalues and the corresponding wavefunctions are obtained for different values of screening parameter. The numerical examples are presented and the results are in good agreement with the values in the literature. Three special cases, i.e., s-wave, ? = ? = 1, and ? = 0, are investigated.
NASA Astrophysics Data System (ADS)
Urusov, V. A.
2016-01-01
The algorithm of reconstruction of particle energy spectrum from electrostatic spectrometer data under condition of angular dependence of the energy distribution of the charged particles flow at the spectrometer entrance. It is shown that, assuming a linear relationship between the potentials, a standard method of recovering the spectrum by means of dividing the recorded signal by the scanning voltage gives the correct result in the first approximation.
NASA Technical Reports Server (NTRS)
Fenwick, J.; Dijulio, R.; Ek, M. C.; Ehrgott, R.
1982-01-01
Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small.
Threshold photoneutron angular distribution and polarization studies of nuclei
Holt, R.J.
1980-01-01
The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in /sup 60/Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in /sup 208/Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in /sup 17/O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the /sup 17/O(..gamma..,n/sub 0/)/sup 16/O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (..gamma..,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(..gamma..,n)H reaction. The question of isospin-splitting of the giant dipole resonance in /sup 60/Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting.
Natural roller bearing fault detection by angular measurement of true instantaneous angular speed
NASA Astrophysics Data System (ADS)
Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; RÃ©mond, D.
2010-10-01
The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.
NASA Astrophysics Data System (ADS)
White, Martin
2014-04-01
This year marks the 100th anniversary of the birth of Yakov Zel'dovich. Amongst his many legacies is the Zel'dovich approximation for the growth of large-scale structure, which remains one of the most successful and insightful analytic models of structure formation. We use the Zel'dovich approximation to compute the two-point function of the matter and biased tracers, and compare to the results of N-body simulations and other Lagrangian perturbation theories. We show that Lagrangian perturbation theories converge well and that the Zel'dovich approximation provides a good fit to the N-body results except for the quadrupole moment of the halo correlation function. We extend the calculation of halo bias to third order and also consider non-local biasing schemes, none of which remove the discrepancy. We argue that a part of the discrepancy owes to an incorrect prediction of inter-halo velocity correlations. We use the Zel'dovich approximation to compute the ingredients of the Gaussian streaming model and show that this hybrid method provides a good fit to clustering of haloes in redshift space down to scales of tens of Mpc.
Padé approximations and diophantine geometry.
Chudnovsky, D V; Chudnovsky, G V
1985-04-01
Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves. PMID:16593552
Approximations to wire grid inductance.
Warne, Larry Kevin; Johnson, William Arthur; Merewether, Kimball O.
2004-06-01
By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Angular momentum exchange in white dwarf binaries accreting through direct impact
Sepinsky, J. F.; Kalogera, V. E-mail: vicky@northwestern.edu
2014-04-20
We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, as well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers of events/systems for which double white dwarfs may be a progenitor, e.g., Type Ia supernovae, Type.Ia supernovae, and AM CVn.
Spline Approximation of Thin Shell Dynamics
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1996-01-01
A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.
Chemical Laws, Idealization and Approximation
NASA Astrophysics Data System (ADS)
Tobin, Emma
2013-07-01
This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.
A quantum relaxation-time approximation for finite fermion systems
Reinhard, P.-G.; Suraud, E.
2015-03-15
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
A quantum relaxation-time approximation for finite fermion systems
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Suraud, E.
2015-03-01
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
Improved approximate inspirals of test bodies into Kerr black holes
NASA Astrophysics Data System (ADS)
Gair, Jonathan R.; Glampedakis, Kostas
2006-03-01
We present an improved version of the approximate scheme for generating inspirals of test bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original “hybrid” scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle ? during the inspiral. Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First, we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing eccentricity and/or 90° inclination. Second, we use higher order post-Newtonian formulas, adapted for generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of ?. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky-based calculations. As an application of our improved scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date, and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in the LISA data.
Improved approximate inspirals of test bodies into Kerr black holes
Gair, Jonathan R; Glampedakis, Kostas
2006-03-15
We present an improved version of the approximate scheme for generating inspirals of test bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original 'hybrid' scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle {iota} during the inspiral. Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First, we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing eccentricity and/or 90 deg. inclination. Second, we use higher order post-Newtonian formulas, adapted for generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of {iota}. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky-based calculations. As an application of our improved scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date, and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in the LISA data.
Angularly-resolved elastic light scattering of micro-particles
NASA Astrophysics Data System (ADS)
Aptowicz, Kevin B.
From microbiology to astrophysics, the scientific community has long embraced elastic light scattering from small particles as a diagnostic tool. Elastic light scattering has an extremely large scattering cross-section, allowing for single particle interrogation. This is critical in applications where trace amounts of suspect particles are to be detected in a diverse background of natural aerosols. By angularly-resolving the elastically scattered light, features can be detected in these patterns that are sensitive to a particle's morphology (shape, size, internal structure, and composition). An apparatus to collect LA TAOS (Large-Angle Two-dimensional Angular Optical Scattering) patterns from single particles in-situ and in real-time was designed and constructed. The setup utilizes a cross-beam trigger system to minimize the effects of the aberration coma stemming from the main collection optic, an ellipsoidal mirror. LA TAOS patterns of ambient aerosols were collected and analyzed. Approximately 15% of the ambient aerosol had a sphere-like shape. The refractive index of these spheres was estimated by curve-fitting to Lorenz-Mie theory. In addition, the island features prevalent in the LA TAOS pattern were analyzed. Metrics generated from these were used to get partial discrimination between clusters of Bacillus subtilis spores (a simulant for anthrax) and aerosol particles found in the ambient atmosphere. A novel experimental setup for collecting simultaneously LA TAOS patterns at two wavelengths in the mid-infrared was also implemented. With this setup, the relative strength of single-particle absorption could be discerned at the two illuminating wavelengths.
Angular Momentum and Galaxy Formation Revisited
NASA Astrophysics Data System (ADS)
Romanowsky, Aaron J.; Fall, S. Michael
2012-12-01
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf-M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.
ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED
Romanowsky, Aaron J.; Fall, S. Michael
2012-12-15
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j{sub *}-M{sub *} scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j{sub *}, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement ({approx}60% and {approx}10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j{sub *} and M{sub *} (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j{sub *}-M{sub *} relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.
Angular momentum transfer in optically induced photonic lattices
Petrovic, Milan S.; Jovic, Dragana M.; Prvanovic, Slobodan; Belic, Milivoj R.
2007-08-15
The transfer of orbital angular momentum from vortex beams to optically induced photonic lattices is demonstrated. It is found that the sum of the angular momenta of interacting incoherent counterpropagating (CP) beams is not conserved, whereas their difference is. The sum of angular momenta of copropagating (CO) interacting beams is strictly conserved. It is also found that the transfer of angular momentum in CP interacting beams is minimal, amounting to a few percent, whereas the transfer in CO interacting beams is substantial, amounting to tens of percent. In fixed lattices, for both CP and CO beams, angular momentum is never conserved.
Angular momentum redistribution by mixed modes in evolved low-mass stars. I. Theoretical formalism
NASA Astrophysics Data System (ADS)
Belkacem, K.; Marques, J. P.; Goupil, M. J.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Mosser, B.; Grosjean, M.
2015-07-01
Seismic observations by the space-borne mission Kepler have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude and instead predict a drastic spin-up of red giant cores. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the transformed Eulerian mean (TEM) formalism, which allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a 1.3 MâŠ™ benchmark model, representative of observed CoRoT and Kepler oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper. Appendix A is available in electronic form at http://www.aanda.org
Lunar influence on equatorial atmospheric angular momentum
NASA Astrophysics Data System (ADS)
Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay
2014-11-01
This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and ?1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.
Lunar influence on equatorial atmospheric angular momentum
NASA Astrophysics Data System (ADS)
Bizouard, C.; Zotov, L.; Sidorenkov, N.
2015-08-01
This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the non-rotating frame and lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component is mostly constituted of prograde circular motions, especially of a harmonic at 13.6 days, and of a weekly broad band variation. A simple equilibrium tide model explains the 13.6-day pressure term as result of the O1 lunar tide; the tidal lunar origin of the whole band from 2 to 30 days is attested by specific features, not occurring for seasonal band dominated by the solar thermal effect.
Angular Momentum Distribution of Fission Fragments
NASA Astrophysics Data System (ADS)
Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.
2014-04-01
Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements obtained with the DANCE calorimeter at LANSCE with our full-scale simulation of the primary fragment de-excitation, using the recently developed CGMF code, based on a Monte-Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomeric ratios as a function of the initial angular momentum of the fission fragments. Comparison with the available experimental data allows us to determine the initial spin distribution. Finally, we study the sensitivity to the discrete spectra input.
Models and theory for precompound angular distributions
Blann, M.; Pohl, B.A.; Remington, B.A. ); Scobel, W.; Trabandt, M. . 1. Inst. fuer Experimentalphysik); Byrd, R.C. ); Foster, C.C. ); Bonetti, R.; Chiesa, C. . Ist. di Fisica Generale Applicata); Grimes, S.M. (Ohio Univ
1990-06-06
We compare angular distributions calculated by folding nucleon- nucleon scattering kernels, using the theory of Feshbach, Kerman and Koonin, and the systematics of Kalbach, with a wide range of data. The data range from (n,xn) at 14 MeV incident energy to (p,xn) at 160 MeV incident energy. The FKK theory works well with one adjustable parameter, the depth of the nucleon-nucleon interaction potential. The systematics work well when normalized to the hybrid model single differential cross section prediction. The nucleon- nucleon scattering approach seems inadequate. 9 refs., 10 figs.
Linear and angular retroreflecting interferometric alignment target
Maxey, L. Curtis (Powell, TN)
2001-01-01
The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.
EQUAL CHANNEL ANGULAR EXTRUSION (ECAE) OF BERYLLIUM.
Field, R. D.; Hartwig, K. T.; Necker, C. T.; Bingert, J. F.; Agnew, S. R.
2001-01-01
The Equal Channel Angular Extrusion (ECAE) technique has been applied to a P/M source Be alloy. Single and two-pass extrusions have been successfully completed, using two different processing routes, on Ni-canned billets of Be at 400 C. No cracking was observed in the billet and significant grain refinement was achieved. In this paper, microstructural features and dislocation structures are discussed for the single-pass material, including evidence of
Angular momentum sensitive two-center interference.
Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U
2014-01-17
In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections ?, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns. PMID:24484004
Angularly anisotropic correlation in granular packings
Xia, Chengjie; Cao, Yixin; Kou, Binquan; Li, Jindong; Wang, Yujie; Xiao, Xianghui; Fezzaa, Kamel
2014-12-01
We present an x-ray microtomography study of the three-dimensional structural correlations in monodisperse granular packings. By measuring an orientation-dependent pair correlation function, we find that the local structure shows an angularly anisotropic orientation correlation. The correlation is strongest along the major axis of the local Minkowski tensor of the Voronoi cell. It turns out that this anisotropic correlation is consistent with the existence of some locally favored structures. The study suggests the importance of high-order structural correlations in random granular packings.
Angular correlation studies in noble gases
NASA Technical Reports Server (NTRS)
Coleman, P. G.
1990-01-01
There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.
Microcomputer-controlled perturbed angular correlation spectrometer
Jaeger, H.; Gardner, J.A.; Su, H.T.; Rasera, R.L.
1987-09-01
A four-detector time-differential perturbed angular correlation spectrometer controlled by an inexpensive microcomputer is described. The use of twin-single-channel analyzers permits each detector to identify both gamma rays in the cascade. An improved gating logic system reduces the MCA/computer deadtime and allows larger sample activity and faster data accumulation. The twin-single-channel analyzer and gating circuit additions also permit simultaneous accumulation of two statistically independent sets of four-channel spectra. The spectrometer provides on-line display of raw data and the perturbation function derived from either set of four-channel spectra.
Fujita, H.; Berg, G. P. A.; Fujimura, H.; Fujita, K.; Hara, K.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakamoto, N.; Sakemi, Y.; Shimizu, Y.; Wakasa, T.; Fujita, Y.; Adachi, T.; Shimbara, Y.; Yoshifuku, M.; Rapaport, J.; Botha, N. T.; Kawabata, T.; Neveling, R.
2009-02-15
The isovector transitions from the ground state (g.s.) of {sup 16}O to the negative parity states in {sup 16}F, i.e., the J{sup {pi}}=0{sup -} g.s., the 0.193 MeV, 1{sup -} state, the 0.424 MeV, 2{sup -} state, the 0.721 MeV, 3{sup -} state, and the 4{sup -}''stretched'' state at 6.372 MeV, were studied by using a high resolution {sup 16}O({sup 3}He,t){sup 16}F reaction at 140 MeV/nucleon. With the help of high energy resolution, these states were, for the first time, clearly resolved in a charge exchange reaction at an intermediate energy, which favorably excites spin-flip states. Angular distributions of the reaction cross sections were measured in the laboratory frame from 0 deg. to 14 deg. Parameters of phenomenological effective interactions were derived so as to reproduce these angular distributions in distorted wave Born approximation (DWBA) calculations. The angular distribution of the 0{sup -} state could be reproduced well at {theta}{sub c.m.}<10 deg. The empirical values, however, are larger by a factor of 2-2.5 in the larger angle region, where the contribution of the so-called 'condensed pion field' is expected. The high resolution also enabled the decay widths of these states to be measured.
Moretto, L.G.
1982-03-01
The sequential emission of /sup 4/He is demonstrated in the reaction Ho + Ta and the /sup 4/He angular distribution is used to test the rigid rotation limit in the reaction Ho + Ag. A more refined analysis of the dependence of continuum ..gamma..-ray multiplicities upon Q-value and gamma ray energy shows that reasonable agreement with the statistical model is obtained if one assumes the presence of low energy aligned dipole transitions in the reactions Ho, Yb, Sm, Ag + Ho. Sequential fission angular distributions from very asymmetric reactions U, Au + Ne provide a severe test for the statistical model.
EDITORIAL: Special issue on orbital angular momentum Special issue on orbital angular momentum
NASA Astrophysics Data System (ADS)
Molina-Terriza, G.; Padgett, M.
2011-06-01
It is now nearly 20 years since Allen et al published their seminal paper at Leiden: `Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes' (L Allen, M W Beijersbergen, R J C Spreeuw and J P Woerdman 1992 Phys. Rev. A 45 8185). Although it had long been recognized that light could carry an angular momentum in addition to that associated with photon spin, this had previously only been associated with high-order and rare atomic/molecular transitions. The breakthrough of Allen et al was their recognition that laser beams carrying orbital angular momentum could be produced within a standard optics laboratory. The natural basis set for such beams were the Laguerre-Gaussian laser modes whose perfectly helical phasefronts give an azimuthal component to the Poynting vector and hence energy and momentum flow around the beam axis. In this original work from Leiden, they used a clever combination of cylindrical lenses to transform between Laguerre-Gaussian and Hermite-Gaussian laser modes. However, in parallel with these studies had been the use of diffractive optics (holograms) to introduce helical phasefronts to a normal laser beam. Although at the time the link to orbital angular momentum went unnoticed, this holographic technique is now the method of choice for both generation and measurement of light beams containing orbital angular momentum. In 1995, Rubinsztein-Dunlop and co-workers showed that the orbital angular momentum of a focused light beam could be transferred within optical tweezers to set small particles into rotation. However, these optical spanners were just the beginning of what orbital angular momentum could do. The paper of Allen et al in 1992 undoubtedly created a new field of optics research, producing many papers which themselves have impacted various fields ranging from optical manipulation, non-linear and quantum optics to imaging. Beyond optical wavelengths, orbital angular momentum is becoming an important concept in electron, x-ray and radio frequency beams. Whatever the future holds, the story is not yet over.
Potential of the approximation method
Amano, K.; Maruoka, A.
1996-12-31
Developing some techniques for the approximation method, we establish precise versions of the following statements concerning lower bounds for circuits that detect cliques of size s in a graph with m vertices: For 5 {le} s {le} m/4, a monotone circuit computing CLIQUE(m, s) contains at least (1/2)1.8{sup min}({radical}s-1/2,m/(4s)) gates: If a non-monotone circuit computes CLIQUE using a {open_quotes}small{close_quotes} amount of negation, then the circuit contains an exponential number of gates. The former is proved very simply using so called bottleneck counting argument within the framework of approximation, whereas the latter is verified introducing a notion of restricting negation and generalizing the sunflower contraction.
Linear approximations of nonlinear systems
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Su, R.
1983-01-01
A method for designing an automatic flight controller for short and vertical takeoff aircraft is presently being developed at NASA Ames Research Center. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system, called the modified tangent model, was recently introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this an approximation of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x(0) yields the same modified tangent model.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. PMID:24636222
Very high resolution radiometer
NASA Technical Reports Server (NTRS)
Aronson, A. I.
1974-01-01
A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.
Angular Rate Estimation Using a Distributed Set of Accelerometers
Park, Sungsu; Hong, Sung Kyung
2011-01-01
A distributed set of accelerometers based on the minimum number of 12 accelerometers allows for computation of the magnitude of angular rate without using the integration operation. However, it is not easy to extract the magnitude of angular rate in the presence of the accelerometer noises, and even worse, it is difficult to determine the direction of a rotation because the angular rate is present in its quadratic form within the inertial measurement system equations. In this paper, an extended Kalman filter scheme to correctly estimate both the direction and magnitude of the angular rate through fusion of the angular acceleration and quadratic form of the angular rate is proposed. We also provide observability analysis for the general distributed accelerometers-based inertial measurement unit, and show that the angular rate can be correctly estimated by general nonlinear state estimators such as an extended Kalman filter, except under certain extreme conditions. PMID:22346651
Approximate Counting of Graphical Realizations
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erd?s and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erd?s and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Neighbourhood approximation using randomized forests.
Konukoglu, Ender; Glocker, Ben; Zikic, Darko; Criminisi, Antonio
2013-10-01
Leveraging available annotated data is an essential component of many modern methods for medical image analysis. In particular, approaches making use of the "neighbourhood" structure between images for this purpose have shown significant potential. Such techniques achieve high accuracy in analysing an image by propagating information from its immediate "neighbours" within an annotated database. Despite their success in certain applications, wide use of these methods is limited due to the challenging task of determining the neighbours for an out-of-sample image. This task is either computationally expensive due to large database sizes and costly distance evaluations, or infeasible due to distance definitions over semantic information, such as ground truth annotations, which is not available for out-of-sample images. This article introduces Neighbourhood Approximation Forests (NAFs), a supervised learning algorithm providing a general and efficient approach for the task of approximate nearest neighbour retrieval for arbitrary distances. Starting from an image training database and a user-defined distance between images, the algorithm learns to use appearance-based features to cluster images approximating the neighbourhood structured induced by the distance. NAF is able to efficiently infer nearest neighbours of an out-of-sample image, even when the original distance is based on semantic information. We perform experimental evaluation in two different scenarios: (i) age prediction from brain MRI and (ii) patch-based segmentation of unregistered, arbitrary field of view CT images. The results demonstrate the performance, computational benefits, and potential of NAF for different image analysis applications. PMID:23725639
Approximate Counting of Graphical Realizations.
Erd?s, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erd?s and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erd?s and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Computer Experiments for Function Approximations
Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C
2007-10-15
This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.
Approximate reasoning using terminological models
NASA Technical Reports Server (NTRS)
Yen, John; Vaidya, Nitin
1992-01-01
Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.
Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.
2014-05-01
Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.
Model-independent forecasts of CMB angular power spectra for the Planck mission
NASA Astrophysics Data System (ADS)
Aghamousa, Amir; Arjunwadkar, Mihir; Souradeep, Tarun
2014-01-01
The Planck mission, designed for making measurements of the cosmic microwave background (CMB) radiation with unprecedented accuracy and angular resolution, is expected to release its entire data in the near future. In this paper, we provide model-independent forecasts for the TT, EE, and TE angular power spectra for the Planck mission using synthetic data based on the best-fit Lambda cold dark matter (Î›CDM) model. The nonparametric function estimation methodology we use here is based on the agnostic viewpoint of allowing the data to speak for themselves rather than letting the models decide what is inferred from the data. Our analysis indicates that the three Planck angular power spectra will be determined sufficiently well for 2â‰¤l â‰²lmax, where lmax=25001ex" (TT1ex" ), 1377(EE), and 1727(TE) respectively. A key signature of reionization, namely, a bump at low values of l, is evident in our forecasts for the EE and TE power spectra. Nonparametric confidence bands in the phase shift (Ï•m) versus acoustic scale (lA) plane, corresponding to the first eight peaks in the TT power spectrum, show a confluence region for 300â‰²lAâ‰²305 which is in good agreement with the estimate lA=300 based on the best-fit Î›CDM model. From our results, we expect that the final Planck data should lead to accurate model-independent estimates of CMB angular power spectra using our nonparametric regression formalism.
Claritas Fossae, Approximately Natural Color
NASA Technical Reports Server (NTRS)
1995-01-01
Syria Planum-centered volcanism and tectonism produced fractures, narrow to broad grabens, large scarps, and broad fold and thrust ridges that deformed a basement complex. Picture is centered at latitude 29 degrees S., longitude 101 degree W. The region appears to have been mantled by materials of unknown origin. Colors seen in the enhanced color version (PIA00154) are due to variable proportions of dust and sand and possibly to different kinds of weathering or alterations. Viking Orbiter Picture Numbers 421A42 (violet), 421A48 (green), and 421A50 (red) at 106 m/pixel resolution. Picture width is 117 km. North is 101 degree clockwise from top.
Angular power spectra with finite counts
NASA Astrophysics Data System (ADS)
Campbell, Sheldon S.
2015-04-01
Angular anisotropy techniques for cosmic diffuse radiation maps are powerful probes, even for quite small data sets. A popular observable is the angular power spectrum; we present a detailed study applicable to any unbinned source skymap S(n) from which N random, independent events are observed. Its exact variance, which is due to the finite statistics, depends only on S(n) and N; we also derive an unbiased estimator of the variance from the data. First-order effects agree with previous analytic estimates. Importantly, heretofore unidentified higher order effects are found to contribute to the variance and may cause the uncertainty to be significantly larger than previous analytic estimates - potentially orders of magnitude larger. Neglect of these higher order terms, when significant, may result in a spurious detection of the power spectrum. On the other hand, this would indicate the presence of higher order spatial correlations, such as a large bispectrum, providing new clues about the sources. Numerical simulations are shown to support these conclusions. Applying the formalism to an ensemble of Gaussian-distributed skymaps, the noise-dominated part of the power-spectrum uncertainty is significantly increased at high multipoles by the new, higher order effects. This work is important for harmonic analyses of the distributions of diffuse high-energy ?-rays, neutrinos, and charged cosmic rays, as well as for populations of sparse point sources such as active galactic nuclei.
Angular orientation of nanorods using nanophotonic tweezers.
Kang, Pilgyu; Serey, Xavier; Chen, Yih-Fan; Erickson, David
2012-12-12
Near-field optical techniques have enabled the trapping, transport, and handling of nanoscopic materials much smaller than what can be manipulated with traditional optical tweezers. Here we extend the scope of what is possible by demonstrating angular orientation and rotational control of both biological and nonbiological nanoscale rods using photonic crystal nanotweezers. In our experiments, single microtubules (diameter 25 nm, length 8 ?m) and multiwalled carbon nanotubes (outer diameter 110-170 nm, length 5 ?m) are rotated by the optical torque resulting from their interaction with the evanescent field emanating from these devices. An angular trap stiffness of ? = 92.8 pN·nm/rad(2)·mW is demonstrated for the microtubules, and a torsional spring constant of 22.8 pN·nm/rad(2)·mW is measured for the nanotubes. We expect that this new capability will facilitate the development of high precision nanoassembly schemes and biophysical studies of bending strains of biomolecules. PMID:23145817
Optical imaging through non-transparent small aquatic creatures with angular-domain imaging
NASA Astrophysics Data System (ADS)
Cheng, Rongen L. K.; Tsui, Polly B. L.; Chiang, Gary; Chapman, Glenn H.
2011-03-01
When imaging through small aquatic creatures, scattered photons produce problems in image quality and resolution. Angular Domain Imaging (ADI) reduces scattered photons and improves the image quality and resolution. ADI is an imaging technique which utilizes the angular spectrum of photons to filter multiple-scattered photons and accept only photons with small angular deviation from their original trajectory. Advantages of the ADI technique are that it is insensitive to wavelength and the sources are not required to be high optical quality, coherent, or pulsed, as with OCT or time domain. Our target is to image a small species called Branchiostoma lanceolatum, a lancet that is 5-8cm long and 5mm thick, by using ADI to remove the scattering in order to image internal structures. A laser illuminates the lancelet in a water-filled container and a spatiofrequency filter removes the scattered photons before the imager. Experimentally, a coherent Nd:Yag second harmonic (533nm) laser creates images but also optical interference occuring within the internal structures of the lancelet. Conversely, an incoherent broad-band white light source eliminates the structural interference effect; however, the wavelength variation of the scattering coefficient combined with the limitation of the image sensor's dynamic range limit the ability to distinguish the internal structures in many areas. Thus, an IR diode laser (780nm) is used to lower the scattering coefficient as compared to conventional visible light source and to diminish the interference effects due to its shorter coherence length.
Approximately Independent Features of Languages
NASA Astrophysics Data System (ADS)
Holman, Eric W.
To facilitate the testing of models for the evolution of languages, the present paper offers a set of linguistic features that are approximately independent of each other. To find these features, the adjusted Rand index (R?) is used to estimate the degree of pairwise relationship among 130 linguistic features in a large published database. Many of the R? values prove to be near zero, as predicted for independent features, and a subset of 47 features is found with an average R? of -0.0001. These 47 features are recommended for use in statistical tests that require independent units of analysis.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
The structural physical approximation conjecture
NASA Astrophysics Data System (ADS)
Shultz, Fred
2016-01-01
It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
Morphometrical aspect on angular branch of facial artery.
Gocmen-Mas, Nuket; Edizer, Mete; Keles, Nigar; Aksu, Funda; Magden, Orhan; Lafci, Sevda; Ates, Hasan; Karabekir, Selim
2015-05-01
Anatomic variability and anastomosis of the angular artery of the facial artery with the other arteries are important for both anatomists and surgeons. In particular, the angular artery is a significant landmark in dacryocystorhinostomy. Because of variations on anatomy of the angular artery, there are limited numbers of anatomic studies on the flaps of facial region. Hence, the aim of the cadaveric study was to evaluate the anatomic features of the angular artery in detail to help surgical procedures.The artery was represented under ×4 loop magnification in 32 sides of 16 formalin-fixed adult cadavers. The angular artery's position, diameter, and branch patterns relevant to the nose arterial supply were evaluated. The facial artery ended symmetrically in 10 (62.5%) of the cadavers. The facial artery was terminated as angular artery in all of the cases. The types of the angular artery were as follows: classical angular type in 8 cases (25.0%), nasal type in 15 cases (46.9%), alar type in 4 cases (12.5%), and labial type in 5 cases (15.6%) on the facial halves. We studied the topographic anatomic features of the angular artery for increasing reliability of the flaps on the region. The angular arterial anatomic details are critical and essential for surgical cosmetic and functional results. PMID:25974802
NASA Astrophysics Data System (ADS)
Tajmar, M.; Plesescu, F.; Seifert, B.
2009-02-01
Modern fiber-optic gyroscopes are calibrated using the Earth's rotation or stepper motor actuated rotation tables. We investigated the angular velocity resolution of the Optolink SRS-1000 fiber-optic gyroscope using a piezo-activated rotation table down to angular velocity steps of 1 × 10-7 rad s-1 with an accuracy of 1.5 × 10-8 rad s-1. To our knowledge, these are the smallest velocity steps resolved and reported in the literature so far. Our results show that such a gyroscope may be also used for nanopositioning purposes in addition to its usual navigation application.
ALMA Debuts High-Resolution Results
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
The exciting results of the highest-resolution test campaign yet attempted by the Atacama Large Millimeter/submillimeter Array (ALMA) are detailed in a recent set of four papers. Animation (click to watch) of the asteroid Juno as seen in mm wavelengths by ALMA's Long Baseline Campaign. Image credit: ALMA (NRAO/ESO/NAOJ) ALMA's array of antennas can be configured so that the baseline of the simulated telescope is as small as 150 m or as large as 15 km across. In its smaller configurations, ALMA studies the large-scale structure of cold objects in the Universe â€” and this is how the array has been used since it began its first operations in 2011. But now ALMA has begun to test its long-baseline configuration, in which it is able to make its highest-resolution observations and study the small-scale structure of objects in detail. The Targets ALMA's Long Baseline Campaign, run in late 2014, observed five science targets using 22-36 antennas arranged with a baseline of up to the full 15 km. The targets were selected to push the limits of ALMA's capabilities: each target has a small angular size (less than two arcseconds) with fine-scale structure that is largely unresolved in previous observations. Two of the targets, the variable star Mira and the active galaxy 3C138, were primarily used for calibration and comparisons of ALMA data to those of other telescopes. The remaining three targets not only demonstrated ALMA's capabilities, but also resulted in new science discoveries. ALMA's highest resolution observation yet, of the gravitationally lensed galaxy SDP.81. The maximum resolution of this image is 23 milliarcseconds. Image credit: ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF Juno is one of the largest asteroids in our solar system's main asteroid belt. ALMA's observations of Juno were made when the asteroid was approximately 295 million km from Earth, and the ten images ALMA took have been stitched together into a brief animation that show the asteroid tumbling through space as it orbits the Sun. The resolution of these images â€” enough to study the shape and even some surface features of the asteroid! â€” are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 â€” located so far away that the light we see was emitted when the Universe was only 15% of its current age â€” is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign
ALMA Debuts High-Resolution Results
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-01-01
The exciting results of the highest-resolution test campaign yet attempted by the Atacama Large Millimeter/submillimeter Array (ALMA) are detailed in a recent set of four papers.Animation (click to watch) of the asteroid Juno as seen in mm wavelengths by ALMAs Long Baseline Campaign. Image credit: ALMA (NRAO/ESO/NAOJ)ALMAs array of antennas can be configured so that the baseline of the simulated telescope is as small as 150 m or as large as 15 km across. In its smaller configurations, ALMA studies the large-scale structure of cold objects in the Universe and this is how the array has been used since it began its first operations in 2011. But now ALMA has begun to test its long-baseline configuration, in which it is able to make its highest-resolution observations and study the small-scale structure of objects in detail.The TargetsALMAs Long Baseline Campaign, run in late 2014, observed five science targets using 2236 antennas arranged with a baseline of up to the full 15 km. The targets were selected to push the limits of ALMAs capabilities: each target has a small angular size (less than two arcseconds) with fine-scale structure that is largely unresolved in previous observations. Two of the targets, the variable star Mira and the active galaxy 3C138, were primarily used for calibration and comparisons of ALMA data to those of other telescopes. The remaining three targets not only demonstrated ALMAs capabilities, but also resulted in new science discoveries.ALMAs highest resolution observation yet, of the gravitationally lensed galaxy SDP.81. The maximum resolution of this image is 23 milliarcseconds. Image credit: ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSFJuno is one of the largest asteroids in our solar systems main asteroid belt. ALMAs observations of Juno were made when the asteroid was approximately 295 million km from Earth, and the ten images ALMA took have been stitched together into a brief animation that show the asteroid tumbling through space as it orbits the Sun. The resolution of these images enough to study the shape and even some surface features of the asteroid! are unprecedented for this wavelength.HL Tau is a young star surrounded by a protoplanetary disk. ALMAs detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve.The star-forming galaxy SDP.81 located so far away that the light we see was emitted when the Universe was only 15% of its current age is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMAs high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it.The observations from ALMAs first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, its clear that exciting times are ahead!Citation:ALMA Partnership et al.2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign
Haxton, Daniel J.; McCurdy, C. William; Rescigno, Thomas N.
2006-01-12
The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formulated in the local complex potential model, under the assumption that the axial recoil approximation describes the dissociation dynamics. An additional approximation, which is found to be valid in the case of H2O but not in the case of H2S, makes it possible to describe the angular dependence of DEA solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynamics calculations. For H2S, the final-vibrational-state-specific angular dependence of DEA is obtained by incorporating the variation of the angular dependence of the entrance amplitude with nuclear geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and, for H2S, full quantum calculations of the nuclear dynamics using the Multi-Configuration Time-Dependent Hartree method, are performed.
Approximate simulation of quantum channels
Beny, Cedric; Oreshkov, Ognyan
2011-08-15
Earlier, we proved a duality between two optimizations problems [Phys. Rev. Lett. 104, 120501 (2010)]. The primary one is, given two quantum channels M and N, to find a quantum channel R such that R White-Bullet N is optimally close to M as measured by the worst-case entanglement fidelity. The dual problem involves the information obtained by the environment through the so-called complementary channels M and N, and consists in finding a quantum channel R' such that R Prime White-Bullet cM is optimally close to N. It turns out to be easier to find an approximate solution to the dual problem in certain important situations, notably when M is the identity channel - the problem of quantum error correction - yielding a good near-optimal worst-case entanglement fidelity as well as the corresponding near-optimal correcting channel. Here we provide more detailed proofs of these results. In addition, we generalize the main theorem to the case where there are certain constraints on the implementation of R, namely, on the number of Kraus operators. We also offer a simple algebraic form for the near-optimal correction channel in the case M=id. For approximate error correction, we show that any {epsilon}-correctable channel is, up to appending an ancilla, {epsilon}-close to an exactly correctable one. We also demonstrate an application of our theorem to the problem of minimax state discrimination.
Plasma Physics Approximations in Ares
Managan, R. A.
2015-01-08
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F_{n}( Î¼/Î¸ ), the chemical potential, Î¼ or Î¶ = ln(1+e^{ Î¼/Î¸} ), and the temperature, Î¸ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either Î¼ or Î¶ . The fits use Î¶ as the independent variable instead of Î¼/Î¸ . New fits are provided for A^{Î±} (Î¶ ),A^{Î²} (Î¶ ), Î¶, f(Î¶ ) = (1 + e^{-Î¼/Î¸})F_{1/2}(Î¼/Î¸), F_{1/2}'/F_{1/2}, F_{c}^{Î±}, and F_{c}^{Î²}. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as Î¶â†’ 0 or âˆž. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Wavelet Approximation in Data Assimilation
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Memnonia Fossae, Approximately Natural Color
NASA Technical Reports Server (NTRS)
1995-01-01
Tharsis-centered volcanic and tectonic activity resulted in the formation of radial grabens of Memnonia Fossae, which cut materials of the ancient cratered highlands and the relatively young, highland-embaying lava flows from the Tharsis volcanoes. Center of picture is at latitude 16 degrees S., longitude 142 degrees W. Natural color version shows albedo variations and uniform colors. The enhanced color version (PIA00151, following decorrelation stretch), however, reveals a diversity of subtle color variations; many of the color variations may be due to different lava flow units and variable amounts of weathering, possible alteration by water, and eolian redistributions. Viking Orbiter Picture Numbers 41B52 (green), 41b54 (red), and 41B56 (blue) at 198 m/pixel resolution. Picture width is 206 km. North is 119 degrees counter-clockwise from top.
ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY
Imara, Nia; Blitz, Leo
2011-05-10
We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution {sup 13}CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s{sup -1} pc{sup -1}-whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.
A novel instrument for generating angular increments of 1 nanoradian.
Alcock, Simon G; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain
2015-12-01
Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only âˆ¼0.3 nrad rms over âˆ¼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (âˆ¼57 ndeg) angular increments over a range of >7000 Î¼rad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube. PMID:26724074
A novel instrument for generating angular increments of 1 nanoradian
NASA Astrophysics Data System (ADS)
Alcock, Simon G.; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain
2015-12-01
Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only Ëœ0.3 nrad rms over Ëœ30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (Ëœ57 ndeg) angular increments over a range of >7000 Î¼rad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.
Characterization of the angular memory effect of scattered light in biological tissues.
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-18
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ?1 mm thick tissue layers. PMID:26074598
Length of day and atmospheric angular momentum - A comparison of 1981-1983
NASA Technical Reports Server (NTRS)
Morgan, P. J.; King, R. W.; Shapiro, I. I.
1985-01-01
In connection with the availability of observations of increasingly greater accuracy and higher time resolution, studies have been conducted regarding the relationship between the earth's rotation and the angular momentum of its atmosphere. The present paper reports an investigation conducted on the basis of earth rotation values determined during the time from 1981 to 1983 with the aid of very long baseline interferometry (VLBI), lunar laser ranging (LLR), and satellite laser ranging (SLR). The values obtained with the different techniques were compared, and a combined series of length of day (LOD) values were computed. A similar computation procedure was applied to the atmospheric angular momentum (AAM) values of U.S. and European origin to obtain corresponding series of LOD values.