Science.gov

Sample records for angular resolution optical

  1. Announcement - Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths - ESO Conference

    NASA Astrophysics Data System (ADS)

    1981-03-01

    The European Southern Observatory is organizing an international conference on the subject "SCIENTIFIC IMPORTANCE OF HIGH ANGULAR RESOLUTION AT INFRARED AND OPTICAL WAVELENGTHS", to be held in the ESO building at Garching bei München during the period of 24-27 March 1981. The purpose of this conference is to discuss, on the one hand, the systems in use or under construction and possible future developments to achieve high angular resolution and, on the other hand, to discuss the areas of astrophysics which, in the next decades, will most benefit from observations at high angular resolution.

  2. Progress Toward Light Weight High Angular Resolution Multilayer Coated Optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2005-12-01

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weightWolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality.We give a progress report on our work on all three areas.

  3. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; McClelland, R. S.; ODell, S. L.; Saha, T. T.; Sharpe, M. V.

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  4. Future Prospects for Very High Angular Resolution Imaging in the UV/Optical

    NASA Astrophysics Data System (ADS)

    Allen, R. J.

    2004-05-01

    Achieving the most demanding science goals outlined by the previous speakers will ultimately require the development of coherent space-based arrays of UV/Optical light collectors spread over distances of hundreds of meters. It is possible to envisage ``in situ" assembly of large segmented filled-aperture telescopes in space using components ferried up with conventional launchers. However, the cost will grow roughly as the mass of material required, and this will ultimately limit the sizes of the apertures we can afford. Furthermore, since the collecting area and the angular resolution are coupled for diffraction-limited filled apertures, the sensitivity may be much higher than is actually required to do the science. Constellations of collectors deployed over large areas as interferometer arrays or sparse apertures offer the possibility of independently tailoring the angular resolution and the sensitivity in order to optimally match the science requirements. Several concept designs have been proposed to provide imaging data for different classes of targets such as protoplanetary disks, the nuclear regions of the nearest active galaxies, and the surfaces of stars of different types. Constellations of identical collectors may be built and launched at lower cost through mass production, but new challenges arise when they have to be deployed. The ``aperture" synthesized is only as good as the accuracy with which the individual collectors can be placed and held to the required figure. This ``station-keeping" problem is one of the most important engineering problems to be solved before the promise of virtually unlimited angular resolution in the UV/Optical can be realized. Among the attractive features of an array of free-flying collectors configured for imaging is the fact that the figure errors of the ``aperture" so produced may be much more random than is the case for monolithic or segmented telescopes. This can result in a significant improvement in the dynamic range

  5. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  6. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  7. The X-Ray Optics for the High Angular Resolution Imager (HARI)

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2010-01-01

    This slide presentation shows the basic parameters of the x-ray optics, the housing,a graph of the effective area vs energy, another graph showing the angular off-set vs HEW, and a series of graphs showing the detector offsets and tilts,

  8. Slumped glass optics with interfacing ribs for high angular resolution x-ray astronomy: a progress report

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2015-09-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.

  9. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Technical Reports Server (NTRS)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  10. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    NASA Astrophysics Data System (ADS)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than

  11. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large

  12. Microbeam High Angular Resolution Diffraction Applied to Optoelectronic Devices

    SciTech Connect

    Kazimirov, A.; Bilderback, D. H.; Sirenko, A. A.; Cai, Z.-H.; Lai, B.

    2007-01-19

    Collimating perfect crystal optics in a combination with the X-ray focusing optics has been applied to perform high angular resolution microbeam diffraction and scattering experiments on micron-size optoelectronic devices produced by modern semiconductor technology. At CHESS, we used capillary optics and perfect Si/Ge crystal(s) arrangement to perform X-ray standing waves, high angular-resolution diffraction and high resolution reciprocal space mapping analysis. At the APS, 2ID-D microscope beamline, we employed a phase zone plate producing a beam with the size of 240 nm in the horizontal plane and 350 nm in the vertical (diffraction) plane and a perfect Si (004) analyzer crystal to perform diffraction analysis of selectively grown InGaAsP and InGaAlAs-based waveguides with arc sec angular resolution.

  13. Angular Resolution of Multi-Lisa Constellations

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Gong, Xue-Fei

    2010-04-01

    In this article, we present a detailed derivation of the angular resolution of arbitrary sets of LISA (Laser Interferometer Space Antenna) constellations with a toy model for gravitational wave signals, and further generalized to more complicated cases with slowly varying gravitational wave signals of well-defined frequency at any time instant. For future space-borne LISA-like gravitational wave detectors, our results may serve as a conservative quick estimate of the detector's angular resolution and hopefully moreover a reference for the configuration designs.

  14. High angular resolution slope measuring deflectometry for the characterization of ultra-precise reflective x-ray optics

    NASA Astrophysics Data System (ADS)

    Siewert, F.; Buchheim, J.; Höft, T.; Fiedler, S.; Bourenkov, G.; Cianci, M.; Signorato, R.

    2012-07-01

    Slope measuring deflectometry has become a standard technique for inspection of ultra-precise reflective optical elements of synchrotron applications. We will report on the inspection of ultra-precise adaptive synchrotron mirrors (bimorph mirrors) to be used under grazing incidence condition. The measurements were performed at the BESSY-II Optics Laboratory of the Helmholtz Zentrum Berlin using the nanometer optical component measuring machine (NOM). Based on the data obtained by the optical measurements, we in this paper simulate the characteristics of the achievable x-ray focus by ray tracing calculations, demonstrated in the case of bimorph mirrors of the EMBL MX1 beamline for macromolecular crystallography at DESY's synchrotron radiation source PETRA III in Hamburg.

  15. Optical Mixing of Rydberg Angular Momenta

    SciTech Connect

    Corless, J.D.; Stroud, C.R., Jr.

    1997-07-01

    When optical frequency fields are used to couple a ground state to a Rydberg state, the resonant dipole coupling is to a low angular momentum state. Higher angular momentum states are typically thought not to play a role in the excitation. The extremely large dipole matrix elements coupling Rydberg states of the same n but differing l , however, allow optical fields of modest strengths to produce Rabi frequencies larger than optical frequencies. We demonstrate that these optical fields can therefore readily excite the higher angular momentum states, and we examine the consequences of this coupling. {copyright} {ital 1997} {ital The American Physical Society}

  16. A new integrated optical angular velocity sensor

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-03-01

    Very compact and low-cost rotation sensors are strongly required for any moving systems in several applications. Integrated optical angular velocity sensors seem to be very promising in terms of low cost, compactness, light weight and high-performance. In the paper a new integrated optical angular velocity sensor having a passive resonant configuration is proposed. Preliminary results are really encouraging and demonstrate the possibility of using the sensor in gyro systems for satellite applications.

  17. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  18. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  19. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  20. Angular resolution of air-shower array-telescopes

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  1. Passive optical element with selective angular reflection

    SciTech Connect

    Tremblay, C.; Rheault, F.; Boulay, R.; Tremblay, R.

    1987-02-01

    This work is related to the development of passive selective transmission materials that will contribute to regularize the solar thermal gain. We propose an original solution to the problem of seasonal control of energetic input into buildings through windows. A passive optical element with selective angular reflection is used to solve this problem. This optical element allows sunlight to enter windows during the fall and winter, whereas, owing to the different astronomical path of the sun, it stops and rejects direct sunlight by means of the optical effect called total internal reflection (TIR) during the central spring-Summer period. The purpose of this paper is to describe the optical element in some detail, to develop the principal design equations, and give the results of the optimization of optical and geometrical parameters.

  2. Optical orbital angular momentum for optical communication and its measurements

    NASA Astrophysics Data System (ADS)

    Ke, Xi-zheng; Lv, Hong; Wu, Jing-zhi; Hu, Shu-qiao

    2009-07-01

    The beam with orbital angular momentum is a present domestic and foreign research key direction. Its application and development will bring the profound influence in the optical communications field. At the same time, light's orbital angular momentum promises potential applications in both classical and quantum optical communication. The research progress of the beam with orbital angular momentum and encoding information as light's OAM for free-space optical communication were reviewed in this article, the existing design method, mechanism and description methods of encoding information as light's OAM were discussed. In quantum communication, qudits can be encoded in photons using their OAM for creating high-dimensional entanglement based on entangled photon pairs from SPDC. In this paper, light's OAM is used as information carrier for classical and quantum communication, which is promising to ensures the security of atmospheric laser communication, improves the density and precision of information transmission. It is apparent that an efficient way to measure the orbital angular momentum of individual photons and light beams with good efficiency would be of potentially great importance for optical communications and quantum information. In view of the above, the measurements of orbital angular momentum of individual photons and light beams are analyzed and discussed in detail.

  3. Resolution analysis of an angular domain imaging system with two dimensional angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) employs an angular filter to distinguish between quasi-ballistic and scattered photons based on trajectory. A 2D angular filter array was constructed using 3D printing technology to generate an array of micro-channels 500 μm x 500 μm with a length of 12 cm. The main barrier to 2D imaging with the 2D angular filter array was the shadows cast on the image by the 500 μm walls of the angular filter. The objective of this work was to perform a resolution analysis of the 2D angular filter array. The approach was to position the AFA with a two dimensional positioning stage to obtain images of areas normally obstructed by the walls of the AFA. A digital light processor was also incorporated to generate various light patterns to improve the contrast of the images. A resolution analysis was completed by imaging a knife edge submerged in various uniform scattering media (Intralipid® dilutions with water). The edge response functions obtained were then used to compute the line spread function and the theoretical resolution of the imaging system. The theoretical system resolution was measured to be between 110 μm - 180 μm when the scattering level was at or below 0.7% Intralipid®. The theoretical resolution was in agreement with a previous resolution analysis of a silicon-based angular filter with a similar aspect ratio. The measured resolution was also found to be smaller than the size of an individual channel, suggesting that the resolution of an AFA based ADI system is not dependent on the size of the micro-channel.

  4. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    NASA Astrophysics Data System (ADS)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  5. Optical design for laser Doppler angular encoder with sub-nanoradian sensitivity

    SciTech Connect

    Shu, D.; Alp, E.E.; Barraza, J.; Kuzay, T.M.; Mooney, T.

    1997-09-01

    A novel laser angular encoder system has been developed based on the principles of radar, the Doppler effect, optical heterodyning, and self aligning multiple reflection optics. Using this novel three dimensional multiple reflection optical path, a 10 to 20 times better resolution has been reached compared to commercially available laser Doppler displacement meters or laser interferometer systems. With the new angular encoder, sub-nanoradian resolution has been attained in the 8 degree measuring range in a compact setup about 60 mm (H) x 150 mm (W) x 370 mm (L) in size for high energy resolution applications at the Advanced Photon Source undulator beamline 3-ID.

  6. Astrophysical applications of high angular resolution array-telescopes

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    The air shower array-telescopes which are currently being used to search for and study point sources of UHE gamma-rays have angular resolution similar to 1 deg, limited by either the small total area of particle detectors or poor timing resolution. As the signal to noise ratio depends sensitively on the angular resolution, it seems certain that this figure will quickly be surpassed when second generation instruments come into operation. Since the trajectories of galactic cosmic rays with E 100,000 GeV are practically straight lines on scales of 1 A.U. or less, these new instruments will be able to observe a shadow cast by the Moon (angular diameter 0.5 deg). Although the angular diameter of the Sun is practically the same, its shadow will be more complex because of its magnetic field. Thus, high angular resolution observations of the Sun afford a means of investigating the solar magnetic field, and also the charge composition of cosmic rays, including the ratio of antiprotons to protons.

  7. Optical communication beyond orbital angular momentum.

    PubMed

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  8. Optical communication beyond orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  9. Optical communication beyond orbital angular momentum

    PubMed Central

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  10. Optical resolution of rotenoids

    USGS Publications Warehouse

    Abidi, S.L.

    1987-01-01

    Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.

  11. The angular resolution of air shower gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Morello, C.; Navarra, G.; Periale, L.; Vallania, P.

    1985-01-01

    A crucial charactristic of air shower arrays in the field of high energy gamma-ray astronomy is their angular resolving power, the arrival directions being obtained by the time of flight measurements. A small air shower array-telescope is used to study the resolution in the definition of the shower front as a function of the shower size.

  12. Catenary optics for achromatic generation of perfect optical angular momentum.

    PubMed

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  13. Catenary optics for achromatic generation of perfect optical angular momentum

    PubMed Central

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  14. Sensitivity in frequency dependent angular rotation of optical vortices.

    PubMed

    Rumala, Yisa S

    2016-03-10

    This paper presents robust strategies to enhance the rotation sensitivity (and resolution) of a coherent superposition of optical vortices emerging from a single spiral phase plate (SPP) device when light's optical frequency (or wavelength) going into the SPP device is varied. The paper discusses the generation and measurement of ultrasmall rotation. Factors that affect the ability to perform precision rotation measurements include the linewidth and stability of the input light source, the number of photon counts making position rotation measurements on the CCD detector, SPP reflectivity, the length of SPP device, and the angular modulation frequency of the intensity pattern due to a coherent superposition of optical vortices in a single SPP device. This paper also discusses parameters to obtain a high-sensitivity single shot measurement and multiple measurements. Furthermore, it presents what I believe is a new scaling showing the enhancement in sensitivity (and resolution) in the standard quantum limit and Heisenberg limit. With experimentally realizable parameters, there is an enhancement of rotation sensitivity by at least one order of magnitude compared to previous rotation measurements with optical vortices. Understanding robust strategies to enhance the rotation sensitivity in an SPP device is important to metrology in general and for building compact SPP sensors such as gyroscopes, molecular sensors, and thermal sensors. PMID:26974798

  15. Technologies for manufacturing of high angular resolution multilayer coated optics for future new hard x-ray missions: a status report

    NASA Astrophysics Data System (ADS)

    Borghi, G.; Vernani, D.; Marchi Boscolo, E.; Citterio, O.; Grisoni, G.; Kools, J.; Marioni, F.; Orlandi, A.; Ritucci, A.; Rossi, M.; Salmaso, G.; Valsecchi, G.; Basso, S.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Negri, B.

    2009-08-01

    High throughput lightweight Hard X-ray Optics manufactured via electroforming replication process from supersmooth mandrels are the primary candidate for some of future New Hard X-ray missions. Media Lario Technologies (MLT) is the industrial enabler exploiting the electroforming technology initially applied for the ESA XMM-Newton mission and further developed in cooperation with Brera Astronomical Observatory (INAF/OAB). The current and ongoing development activities in Media Lario Technologies complement the electroforming technology with a suite of critical manufacturing and assembly of the Mirror Module Unit. In this paper, the progress on mandrels manufacturing, mirror shell replication, multilayer coating deposition, mirror module integration, and relevant metrology is reported in view of the upcoming production phase. Mandrel production is a key point in terms of performances and schedule; the results from of NiP prototype mandrels fabricated using a proprietary multistep surface finishing process are reported. The progress in the replication of ultrathin Nickel and Nickel-Cobalt substrates gold coated mirror shells is reported together with the results of MLT Magnetron Sputtering multilayer coating technology for the hard x-ray waveband and its application to W/Si. Due to the criticality of low thickness mirror handling, the integration concept has been refined and tested on prototype mechanical structures under full illumination UV vertical optical bench.

  16. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  17. Technologies for manufacturing of high angular resolution multilayer coated optics for the New Hard X-ray Mission: a status report II

    NASA Astrophysics Data System (ADS)

    Vernani, D.; Borghi, G.; Binda, R.; Citterio, O.; Grisoni, G.; Kools, J.; Marioni, F.; Orlandi, A.; Ritucci, A.; Sironi, G.; Valsecchi, G.; Basso, S.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Negri, B.

    2010-07-01

    Focusing mirrors manufactured via galvanic replication process from negative shape mandrels is the candidate solution for some of next future X-ray missions. Media Lario Technologies (MLT) is the industrial enabler developing, in collaboration with Brera Astronomical Observatory (INAF/OAB) and Italian Space Agency, the Optical Payload for the New Hard X-ray Mission (NHXM) Italian project. The current and ongoing development activities in Media Lario Technologies complement the electroforming technology with a suite of critical manufacturing and assembly of the Mirror Module Unit. In this paper, the progress on mandrels manufacturing, mirror shell replication, multilayer coating deposition and mirror module integration, leading to the manufacturing and testing of some astronomical Hard X-ray Engineering Models, is reported. Mandrel production is a key point in terms of performances and schedule; the results from mandrels fabricated using a proprietary multistep surface finishing process are reported. The progress in the replication of ultrathin Nickel and Nickel-Cobalt substrates gold coated mirror shells is reported together with the results of MLT Magnetron Sputtering multilayer coating technology for the hard x-ray waveband and its application to Pt/C.

  18. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  19. Some factors affecting angular resolution in an adaptive antenna

    NASA Astrophysics Data System (ADS)

    Potts, B. M.; Mayhan, J. T.; Simmons, A. J.

    Aperture diameter is the fundamental determinant of angular resolution for an area-coverage satellite communication adaptive nulling antenna. The choice of reference element for a phased array and the choice of phase taper for a multibeam antenna also have a large effect on resolution. For both a multibeam antenna and an array, the choice of quiescent (or unadapted) pattern will affect the resolution. In using an algorithm in which a steering weight vector is prescribed to determine the quiescent pattern, the amplitude and phase distribution of the quiescent vector may be chosen to maximize the resolution of the adapted pattern, at least in certain directions. With an array, the choice of reference element for the quiescent pattern is of most concern.

  20. High-energy resolution, high-angular acceptance crystal monochromator

    SciTech Connect

    Toellner, T.S.; Mooney, T.; Alp, E.E.; Shastri, S.

    1992-06-01

    The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with {mu}eV{minus}neV resolution in the hard x-ray regime.

  1. High-energy resolution, high-angular acceptance crystal monochromator

    SciTech Connect

    Toellner, T.S.; Mooney, T.; Alp, E.E. ); Shastri, S. . Dept. of Applied Physics)

    1992-06-01

    The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with [mu]eV[minus]neV resolution in the hard x-ray regime.

  2. The Evershed Effect with 0.2 arcsec Angular Resolution

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Bonet, J. A.; Sánchez Almeida, J.; Domínguez Cerdeña, I.

    2006-12-01

    We present a preliminary analysis of penumbral spectra observed with unprecedented angular resolution (0.2 arcsec) using the new Swedish 1-m Solar Telescope. The use of a non-magnetic line allows us to measure Doppler shifts without magnetic contamination. The observed Doppler shifts depend on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved even with our resolution. We find a correlation between upflows and bright filaments. This association is not specific of the outer penumbra but it also occurs in the inner penumbra. The existence of such correlation was originally reported by tet{m1 BS69}, and it is suggestive of energy transport by convection in penumbrae.

  3. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  4. Quantum effects in new integrated optical angular velocity sensors

    NASA Astrophysics Data System (ADS)

    Armenise, M. N.; Ciminelli, C.; de Leonardis, F.; Passaro, V. M. N.

    2004-06-01

    The paper describes the quantum effects to be considered in the model of new integrated optical angular velocity sensors. Integrated optics provides a promising approach to low-cost, light weight, and high performance devices. Some preliminary results are also reported.

  5. Lamb wave detection with a fiber optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Garcia, Marlon R.; Sakamoto, João. M. S.; Higuti, Ricardo T.; Kitano, Cláudio

    2015-09-01

    In this work we show that the fiber optic angular displacement sensor is capable of Lamb wave detection, with results comparable to a piezoelectric transducer. Therefore, the fiber optic sensor has a great potential to be used as the Lamb wave ultrasonic receiver and to perform non-destructive and non-contact testing.

  6. Optical angular momentum in a rotating frame.

    PubMed

    Speirits, Fiona C; Lavery, Martin P J; Padgett, Miles J; Barnett, Stephen M

    2014-05-15

    It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect. PMID:24978243

  7. Differential reflective fiber-optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Shan, Mingguang; Min, Rui; Zhong, Zhi; Wang, Ying; Zhang, Yabin

    2015-05-01

    Using the characteristic that the distance apart between the emitting fiber and receiving fiber only shifts the angular-power curve, a differential reflective fiber-optic sensor for angular displacement measurement is presented through subtraction of two power signals from two receiving fibers placed on both sides of one emitting fiber. A theoretical model is established to characterize the performance of the differential reflective fiber-optic angular displacement sensor. The measurements made indicate that the general behavior of the experimental results agrees with that of the theoretical results, and the sensor can improve sensitivity by about 120%, resulting in the significant improvement of anti-interference capability, which will be more suitable for high accuracy bipolar absolute angular displacement measurement. Design guidelines are also suggested to achieve desired sensor performances.

  8. Effects of angular misalignment on optical klystron undulator radiation

    NASA Astrophysics Data System (ADS)

    Mishra, G.; Prakash, Bramh; Gehlot, Mona

    2015-11-01

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  9. Duality between spatial and angular shift in optical reflection

    SciTech Connect

    Aiello, A.; Merano, M.; Woerdman, J. P.

    2009-12-15

    We report a unified representation of the spatial and angular Goos-Haenchen and Imbert-Fedorov shifts that occur when a light beam reflects from a plane interface. We thus reveal the dual nature of spatial and angular shifts in optical beam reflection. In the Goos-Haenchen case we show theoretically and experimentally that this unification naturally arises in the context of reflection from a lossy surface (e.g., a metal).

  10. Electro-optic analyzer of angular momentum hyperentanglement

    NASA Astrophysics Data System (ADS)

    Wu, Ziwen; Chen, Lixiang

    2016-02-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  11. Electro-optic analyzer of angular momentum hyperentanglement

    PubMed Central

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  12. How orbital angular momentum affects beam shifts in optical reflection

    SciTech Connect

    Merano, M.; Hermosa, N.; Woerdman, J. P.; Aiello, A.

    2010-08-15

    It is well known that reflection of a Gaussian light beam (TEM{sub 00}) by a planar dielectric interface leads to four beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Haenchen (GH) shift, the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four shifts; this is described by a 4x4 mixing matrix.

  13. Electro-optic analyzer of angular momentum hyperentanglement.

    PubMed

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  14. The Evershed Effect Observed with 0.2" Angular Resolution

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Márquez, I.; Bonet, J. A.; Domínguez Cerdeña, I.

    2007-04-01

    We present an analysis of the Evershed effect observed with a resolution of 0.2". Using the new Swedish 1 m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the nonmagnetic line Fe I λ7090.4 allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved, even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km s-1 coexist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures and between downflows and dark structures. This association is not specific to the outer penumbra, but it also occurs in the inner penumbra. The existence of such a correlation was originally reported in 1969 by Beckers and Schröter, and it is suggestive of energy transport by convection in penumbrae.

  15. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.

    PubMed

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2015-09-01

    We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics. PMID:26382668

  16. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2015-09-01

    We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X -wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.

  17. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  18. Ultrahigh Resolution Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Chen, Yu; Aguirre, Aaron D.; Považay, Boris; Unterhuber, Angelika; Fujimoto, James G.

    Since its invention in the late 1980s [1-4] and early 1990s [5-7], the original idea of OCT was to enable noninvasive optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and post-processing. An important advance toward this goal was the introduction of ultrahigh-resolution OCT (UHR OCT). By improving axial OCT resolution by one order of magnitude from the 10 to 15 μm to the sub-μm region [8-11], UHR OCT enables superior visualization of tissue microstructure, including all major intraretinal layers in ophthalmic applications as well as cellular resolution OCT imaging in nontransparent tissue. This chapter reviews state-of-the-art technology that enables ultrahigh-resolution OCT covering the entire wavelength region from 500 to 1,600 nm and discusses fundamental limitations of OCT image resolution.

  19. How does angular resolution affect diffusion imaging measures?

    PubMed

    Zhan, Liang; Leow, Alex D; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Toga, Arthur W; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J; Thompson, Paul M

    2010-01-15

    A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols. PMID:19819339

  20. Single beam optical vortex tweezers with tunable orbital angular momentum

    SciTech Connect

    Gecevičius, Mindaugas; Drevinskas, Rokas Beresna, Martynas; Kazansky, Peter G.

    2014-06-09

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  1. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    NASA Astrophysics Data System (ADS)

    Klaer, Peter; Razinskas, Gary; Lehr, Martin; Krewer, Keno; Schertz, Florian; Wu, Xiao-Fei; Hecht, Bert; Schönhense, Gerd; Elmers, Hans Joachim

    2015-06-01

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  2. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    SciTech Connect

    Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim; Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert

    2015-06-29

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  3. An optical filter with angular selectivity of the light transmission

    NASA Astrophysics Data System (ADS)

    Zakirullin, Rustam S.

    2015-09-01

    Features of the application of a novel optical filter with angular selectivity of the light transmission to architectural glazing are considered. The filter consists of a sheet transparent substrate with thin-film grating layers on both surfaces. The gratings formed by directionally transmissive strips, alternating with absorptive, reflective, or scattering strips. Their relative position on the input and output surfaces provides angular selectivity of the directional light transmission - as the incidence angle changes, the proportion of radiation that passes through both gratings of the filter also changes. Chromogenic materials currently used in the laminated smart windows, providing control over the intensity and spectrum of the transmitted solar radiation, cannot achieve the selective regulation on the ranges of incidence angles. Such a regulation requires the use of additional daylight-redirecting devices, especially blinds, to dynamically adapt to the position of the sun. The grating optical filter provides angular selectivity of the light transmission of a window without such devices. The features of using this filter in the single and double glazed windows are described. A graphic analytical calculation method is proposed for estimating the effect of geometrical and optical parameters of the filter on the angular characteristics of the light transmission. An algorithm to optimize filtering solar radiation taking into account the geographical coordinates of terrain, time of day and year and the orientation of the window to the cardinal is set. An algorithm to calculating geometrical parameters of the filter with pre-specified characteristics of the light transmission is obtained.

  4. Micro-optical designs for angular confinement in solar cells

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Feuermann, Daniel; Mashaal, Heylal

    2015-01-01

    We identify and evaluate a variety of efficient and feasible micro-optics for confining the radiative emission of solar cells. The key criteria used for assessing viable designs are (1) high optical efficiency for both the transmission of impinging solar beam radiation and the external recycling of isotropic cell luminescent emission; (2) liberal optical tolerance; (3) compactness and (4) being amenable to fabrication from existing materials and manufacturing processes. Both imaging and nonimaging candidate designs are presented, and their superiority to previous proposals is quantified. The strategy of angular confinement for boosting cell open-circuit voltage-thereby enhancing conversion efficiency-is limited to cells where radiative recombination is the dominant carrier recombination pathway. Optical systems that restrict the angular range for emission of cell luminescence must, by reciprocity, commensurately restrict the angular range for the collection of solar radiation. This, in turn, mandates the introduction of concentrators, but not for the objective of delivering concentrated flux onto the cell. Rather, the optical system must project an acceptably uniform spatial distribution of solar flux onto the cell surface at a nominal averaged irradiance of 1 sun.

  5. Resolving enantiomers using the optical angular momentum of twisted light.

    PubMed

    Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry

    2016-03-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy. PMID:26998517

  6. Resolving enantiomers using the optical angular momentum of twisted light

    PubMed Central

    Brullot, Ward; Vanbel, Maarten K.; Swusten, Tom; Verbiest, Thierry

    2016-01-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials’ chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy. PMID:26998517

  7. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  8. Trade-off between angular and spatial resolutions in in vivo fiber tractography.

    PubMed

    Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland

    2016-04-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution. PMID:26774615

  9. Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging

    PubMed Central

    Rathi, Yogesh; Dolui, Sudipto

    2013-01-01

    Despite the relative recency of its inception, the theory of compressive sampling (aka compressed sensing) (CS) has already revolutionized multiple areas of applied sciences, a particularly important instance of which is medical imaging. Specifically, the theory has provided a different perspective on the important problem of optimal sampling in magnetic resonance imaging (MRI), with an ever-increasing body of works reporting stable and accurate reconstruction of MRI scans from the number of spectral measurements which would have been deemed unacceptably small as recently as five years ago. In this paper, the theory of CS is employed to palliate the problem of long acquisition times, which is known to be a major impediment to the clinical application of high angular resolution diffusion imaging (HARDI). Specifically, we demonstrate that a substantial reduction in data acquisition times is possible through minimization of the number of diffusion encoding gradients required for reliable reconstruction of HARDI scans. The success of such a minimization is primarily due to the availability of spherical ridgelet transformation, which excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even more accurate is a combination of the sparsity constraints in the diffusion domain with additional constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the present paper describes an original way to combine the diffusion-and spatial-domain constraints to achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in terms of reconstruction accuracy. Finally, details are provided on an efficient numerical scheme which can be used to solve the aforementioned reconstruction problem by means of standard and readily available estimation tools. The paper is concluded with experimental results which support the practical value of the proposed reconstruction methodology. PMID:21536524

  10. Orbital angular momentum exchange in an optical parametric oscillator

    SciTech Connect

    Martinelli, M.; Nussenzveig, P.; Huguenin, J. A.O.; Khoury, A.Z.

    2004-07-01

    We present a study of orbital angular momentum transfer from pump to down-converted beams in a type-II optical parametric oscillator. Cavity and anisotropy effects are investigated and demonstrated to play a central role in the transverse mode dynamics. While the idler beam can oscillate in a Laguerre-Gauss mode, the crystal birefringence induces an astigmatic effect in the signal beam that prevents the resonance of such a mode.

  11. Optical resolution from Fisher information

    NASA Astrophysics Data System (ADS)

    Motka, L.; Stoklasa, B.; D'Angelo, M.; Facchi, P.; Garuccio, A.; Hradil, Z.; Pascazio, S.; Pepe, F. V.; Teo, Y. S.; Řeháček, J.; Sánchez-Soto, L. L.

    2016-05-01

    The information gained by performing a measurement on a physical system is most appropriately assessed by the Fisher information, which in fact establishes lower bounds on estimation errors for an arbitrary unbiased estimator. We revisit the basic properties of the Fisher information and demonstrate its potential to quantify the resolution of optical systems. We illustrate this with some conceptually important examples, such as single-slit diffraction, spectroscopy and superresolution techniques.

  12. Tunable orbital angular momentum generation in optical fibers.

    PubMed

    Jiang, Youchao; Ren, Guobin; Lian, Yudong; Zhu, Bofeng; Jin, Wenxing; Jian, Shuisheng

    2016-08-01

    We present a method in this Letter to generate optical vortices with tunable orbital angular momentum (OAM) in optical fibers. The tunable OAM optical vortex is produced by combining different vector modes HE2,meven (HE2,modd) and TE0,m (TM0,m) when l=1 or combining HEl+1,meven (HEl+1,modd) and EHl-1,modd (EHl-1,meven) when l>1 with a π/2 phase shift. The vortex can be regarded as a result of overlapping two orthogonal optical vortex beams of equal helicity but opposite chirality with a π/2 phase shift. We have experimentally demonstrated the smooth variation of OAM from l=-1 to l=+1 by adjusting a polarizer at the output end of the fiber. PMID:27472612

  13. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  14. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    PubMed

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-01-01

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region. PMID:24217130

  15. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light

    PubMed Central

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V.; Wang, Jiyang

    2013-01-01

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region. PMID:24217130

  16. Generalized ray optics and orbital angular momentum carrying beams

    NASA Astrophysics Data System (ADS)

    Potoček, Václav; Barnett, Stephen M.

    2015-10-01

    In classical optics the Wolf function is the natural analogue of the quantum Wigner function and like the latter it may be negative in some regions. We discuss the implications this negativity has on the generalized ray interpretation of free-space paraxial wave evolution. Important examples include two classes of beams carrying optical orbital angular momentum—Laguerre-Gaussian (LG) and Bessel beams. We formulate their defining eigenfunction properties as phase-space symmetries of their Wolf functions, whose analytical form is shown, and discuss their interpretation in the ray picture. By moving to a more general picture of partly coherent fields, we find that new solutions displaying the same symmetries appear. In particular, we find that mixtures of Gaussian beams (thus fully describable using classical ray optics) can mimic the basic properties of LG beams without the need for negativity, and are not restricted to quantized values of angular momentum. The quantization of both the l and p parameters and negativity of the Wolf function are both inevitable and, indeed, arise naturally when a requirement on the purity of the solution is added. This work is supplemented by a set of computer animations, graphically illustrating the interpretative aspects of the described model.

  17. Synchronization of colloidal rotors through angular optical binding

    NASA Astrophysics Data System (ADS)

    Simpson, S. H.; Chvátal, L.; Zemánek, P.

    2016-02-01

    A mechanism for the synchronization of driven colloidal rotors via optical coupling torques is presented and analyzed. Following our recent experiments [Brzobohatý et al., Opt. Express 23, 7273 (2015)], 10.1364/OE.23.007273, we consider a counterpropagating optical beam trap that carries spin angular momentum, but no net linear momentum, operating in an aqueous solvent. The angular momentum carried by the beams causes the continuous low-Reynolds-number rotation of spheroidal colloids. Due to multiple scattering, the optical torques experienced by these particles depend on their relative orientations, while the effect of hydrodynamic interaction is negligible. This results in frequency pulling, which causes weakly dissimilar spheroids to synchronize their rotation rates and lock their relative phases. The effect is qualitatively captured by a coupled dipole model and quantitatively reproduced by T -matrix calculations. For pairs of rotors, the relative torque Δ τ is shown to vary with relative phase Δ ϕ according to Δ τ ≈A sin(2 Δ ϕ +δ )+B for constants A ,B ,δ , so the resulting motion is governed by the well-known Adler equation. We show that this behavior can be preserved for larger numbers of particles. The application of these phenomena to the inertial motion of particles in vacuum could provide a route to the sympathetic cooling of mesoscopic particles.

  18. Monte-Carlo studies of the angular resolution of a future Cherenkov gamma-ray telescope

    SciTech Connect

    Funk, S.; Hinton, J. A.

    2008-12-24

    The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of this observational technique, providing high sensitivity and an angular resolution of {approx}0.1 deg. per event above an energy threshold of {approx}100 GeV. Planned future arrays of IACTs such as AGIS or CTA are aiming at significantly improving the angular resolution. Preliminary results have shown that values down to {approx}1' might be achievable. Here we present the results of Monte-Carlo simulations that aim to exploring the limits of angular resolution for next generation IACTs and investigate how the resolution can be optimised by changes to array and telescope parameters such as the number of pixel in the camera, the field of view of the camera, the angular pixel size, the mirror size, and also the telescope separation.

  19. Optical imaging through non-transparent small aquatic creatures with angular-domain imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rongen L. K.; Tsui, Polly B. L.; Chiang, Gary; Chapman, Glenn H.

    2011-03-01

    When imaging through small aquatic creatures, scattered photons produce problems in image quality and resolution. Angular Domain Imaging (ADI) reduces scattered photons and improves the image quality and resolution. ADI is an imaging technique which utilizes the angular spectrum of photons to filter multiple-scattered photons and accept only photons with small angular deviation from their original trajectory. Advantages of the ADI technique are that it is insensitive to wavelength and the sources are not required to be high optical quality, coherent, or pulsed, as with OCT or time domain. Our target is to image a small species called Branchiostoma lanceolatum, a lancet that is 5-8cm long and 5mm thick, by using ADI to remove the scattering in order to image internal structures. A laser illuminates the lancelet in a water-filled container and a spatiofrequency filter removes the scattered photons before the imager. Experimentally, a coherent Nd:Yag second harmonic (533nm) laser creates images but also optical interference occuring within the internal structures of the lancelet. Conversely, an incoherent broad-band white light source eliminates the structural interference effect; however, the wavelength variation of the scattering coefficient combined with the limitation of the image sensor's dynamic range limit the ability to distinguish the internal structures in many areas. Thus, an IR diode laser (780nm) is used to lower the scattering coefficient as compared to conventional visible light source and to diminish the interference effects due to its shorter coherence length.

  20. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.; The CYGNUS Collaboration

    1993-05-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70{sub {minus}0.06}{sup {plus}0.07} degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a {approximately}25% improvement in the resolution. The systematic pointing error of the array is less than 0.4{degree}.

  1. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.

    1993-01-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70[sub [minus]0.06][sup [plus]0.07] degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a [approximately]25% improvement in the resolution. The systematic pointing error of the array is less than 0.4[degree].

  2. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  3. Development of an optical fiber sensor for angular displacement measurements.

    PubMed

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science. PMID:24211963

  4. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  5. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    PubMed

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction. PMID:22505104

  6. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  7. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  8. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; Carlotti, Alexis; Brandt, Timothy; Janson, Markus; Guyon, Olivier; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  9. High-angular resolution observations of the Pistol star

    NASA Astrophysics Data System (ADS)

    Martayan, Christophe; Blomme, Ronny; Le Bouquin, Jean-Baptiste; Merand, Anthony; Montagnier, Guillaume; Selman, Fernando; Girard, Julien; Fox, Andrew; Baade, Dietrich; Frémat, Yves; Lobel, Alex; Martins, Fabrice; Patru, Fabien; Rivinius, Thomas; Sana, Hugues; Štefl, Stanislas; Zorec, Juan; Semaan, Thierry

    2011-07-01

    First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinforce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.

  10. Angular resolution of orthogonal polarizations using inhomogeneous control field

    NASA Astrophysics Data System (ADS)

    Dasgupta, Shubhrangshu; Kumar, Pardeep

    2016-05-01

    The control of propagation direction of light by another light through their interaction with the medium has created a new avenue of research, with a special focus on the beam deflection in a homogeneous medium subjected to external fields. The key requirement for such a deflection is the spatial modulation of the refractive index of the medium induced by an inhomogeneous field. Beam deflection has been previously studied inside a medium, where electromagnetically induced transparency (EIT) or active Raman gain (ARG) plays the crucial role. Here, we present a theoretical analysis to demonstrate the polarization-dependent light deflection of a weak probe field in a weakly birefringent medium in tripod configuration. We show that by changing the incidence angle of a control field as well as its transverse intensity profile, one can induce quite large (~ 100 mrad) angular divergence to different polarization components of the probe field. We identify that it is the coherent population oscillation (CPO) that leads to negligible absorption of the polarization components, contrary to the proposals which rely upon EIT and ARG.

  11. Method and apparatus for optically monitoring the angular position of a rotating mirror

    NASA Technical Reports Server (NTRS)

    Lansing, J. C., Jr.; Cline, R. W. (Inventor)

    1974-01-01

    An optical system monitors the angular position of a rotating scanning mirror to indicate the effective start and end of each scan. At a certain angular position, a ray of energy transmitted to the mirror is reflected a plurality of times between the reflectors associated with the optical system and the line on the mirror parallel to the axis, and then to a detector to sense that angular position. A single optical system may be arranged to sense a plurality of different angular positions for each revolution of the mirror.

  12. Low Power Compact Radio Galaxies at High Angular Resolution

    SciTech Connect

    Giroletti, Marcello; Giovannini, G.; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  13. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  14. Bayesian deconvolution for angular super-resolution in forward-looking scanning radar.

    PubMed

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson-Lucy algorithm. PMID:25806871

  15. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  16. HARDI: A high angular resolution deployable interferometer for space

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd

    1992-01-01

    We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.

  17. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation

    PubMed Central

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  18. High-Angular-Resolution Microbeam X-Ray Diffraction with CCD Detector

    SciTech Connect

    Imai, Yasuhiko; Kimura, Shigeru; Sakaia, Akira; Sakata, Osami

    2010-04-06

    We have introduced a CCD-type two-dimensional X-ray detector for a microbeam X-ray diffraction system using synchrotron radiation, so that we can measure local reciprocal space maps (RSM) of samples rapidly. A local RSM of a strain-relaxed SiGe 004 grown on a Si (001) substrate was measured in higher-angular-resolution and faster than a conventional way. The measurement was achieved in 1 h 40 min. with the 2theta resolution of 80 murad and the spatial resolution of 1.4(h)x0.5(v) {mu}m{sup 2}. The introduction of the CCD enabled us to measure RSMs at many points in a sample, that is, the distribution of strain fields and lattice tilts can be revealed in high-angular- and high-spatial-resolution.

  19. GeV gamma-ray astronomy telescopes with high angular resolution

    NASA Technical Reports Server (NTRS)

    Mcbreen, B.

    1985-01-01

    Gamma-ray telescopes flown on satellites have poor angular resolution with typical point source error circles of a few square degrees. It is shown that a major improvement in angular resolution for the detection of gamma-rays in the GeV region can be obtained with a single crystal as converter. The electron produced by a gamma ray incident at a small angle to a major crystal axis or plane is captured into channeling and radiates gamma rays. The channeling radiation and the electron-positron pair can be detected and yield point source locations with a precision of 5 arcseconds at 10 GeV. This is an improvement of three orders of magnitude on the angular precision of telescopes sensitive to gamma-rays above 50 MeV flown on Satellites.

  20. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light

    PubMed Central

    Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  1. HST/FGS High Angular Resolution Observations of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Cellino, A.; Kaasalainen, M.; Torppa, J.; Marchis, F.; Richardson, D. C.; Elankumaran, P.; Berthier, J.; Colas, F.; Lounis, S.

    2006-09-01

    Binary or multiple asteroids are important bodies that provide insight into the physical properties of asteroids in general. The knowledge of the components orbit in a binary provides the total mass with high accuracy and generally permits a rough bulk-density estimate [1,2]. We have observed 10 selected binary or multiple asteroids (22 Kalliope, 45 Eugenia, 87 Sylvia, 90 Antiope, 107 Camilla, 121 Hermione, 283 Emma, 379 Huenna, 617 Patroclus, 762 Pulcova) with the HST/FGS interferometer in order to obtain high resolution data on the size and shape of their primaries (HST proposal ID 10614). All these systems except the Jupiter Trojan 617 Patroclus are located in the main-belt of asteroids. Combining these HST/FGS data to topographic models obtained from lightcurve inversion [3,4] yields the volume and hence the bulk density of these bodies with unprecedented accuracy [5]. This work will allow us to obtain important information on their internal structure, and insight into the possible gravitational re-accumulation process after a catastrophic disruptive collision [e.g. 6,7,8].In particular, one can see whether or not the surfaces of theses bodies closely follow an effective equipotential surface, and under what circumstances such a correspondence is or is not attained . We will present the preliminary results for the data reduction and the size and bulk density determination. [1] Merline et al. (2003). In: Asteroids III, pp 289. [2] Marchis et al. (2005) ACM 2005, Buzios, Brazil. [3] Kaasalainen et al. (2002) Icarus 159, 359. [4] Torppa et al. (2003) Icarus 164, 346. [5] Hestroffer et al. (2003) ACM 2002, ESA-SP 500, 493. [6] Michel et al. (2004) P&SS 52, 1109. [7] Durda et al. (2004) Icarus 167, 342. [8] Paolicchi et al. (1993) Cel. Mech., 57, 49.

  2. QUART: Quasar hosts Unveiled by high Angular Resolution Techniques

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley; Murray, Norman W.; Armus, Lee; Larkin, James E.

    2016-06-01

    We present results from the new QUART survey that aims to resolve high-redshift (z = 1.5 - 2.5) radio-quiet and radio-loud quasi stellar object (QSO) host galaxies using the integral field spectrograph (IFS) OSIRIS, and the Keck Adaptive Optics (AO) system. The combination of AO and IFS provides the necessary contrast to disentangle the bright-unresolved QSO from the underlying faint host galaxy with unprecedented sensitivity. We study the ionized gas in these systems to sub-kiloparsec scales, yielding essential constraints on the resolved host galaxies dynamics, morphologies, star formation rates, metallicities, and nebular emission diagnostics. We combine OSIRIS and AO observations with multi-wavelength data sets from Atacama Large Millimeter/submillimeter Array, Hubble Space Telescope, and Very Large Array to better understand the multiple phases of the ISM and stellar population properties of the hosts. Radio-quiet QSOs have shown little-to-no star formation and no evidence of extended QSO narrow line emission. In contrast, our latest OSIRIS results of radio-loud z~1.5-2 quasars have revealed evidence for both concurrent star formation and extended quasar narrow line emission with strong outflows. These outflows are co-spatial with structure observed in the radio data, typically with the path of the quasar jet and/or lobe structure. These winds are highly extended (8-12 kpc) and show broad emission line profiles (extending up to 2,500 km/s), indicating strong evidence of quasar “feedback” in their host galaxies.

  3. Optical-resolution photoacoustic endomicroscopy in vivo

    PubMed Central

    Yang, Joon-Mo; Li, Chiye; Chen, Ruimin; Rao, Bin; Yao, Junjie; Yeh, Cheng-Hung; Danielli, Amos; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) has become a major experimental tool of photoacoustic tomography, with unique imaging capabilities for various biological applications. However, conventional imaging systems are all table-top embodiments, which preclude their use in internal organs. In this study, by applying the OR-PAM concept to our recently developed endoscopic technique, called photoacoustic endoscopy (PAE), we created an optical-resolution photoacoustic endomicroscopy (OR-PAEM) system, which enables internal organ imaging with a much finer resolution than conventional acoustic-resolution PAE systems. OR-PAEM has potential preclinical and clinical applications using either endogenous or exogenous contrast agents. PMID:25798315

  4. PREFACE: The Universe under the Microscope: Astrophysics at High Angular Resolution

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2009-01-01

    High angular resolution techniques at infrared and centimeter to millimeter wavelengths have become of ever increasing importance for astrophysical research in the past decade. They have led to important breakthroughs, like the direct imaging of protoplanetary discs and of the first exoplanets, the measurement of stellar orbits around the black hole at the center of the Milky Way, or the detection of sub-parsec-scale jets in low luminosity AGN. With adaptive optics in a mature state, infrared/optical astronomy is pushing toward extreme adaptive optics, extremely large telescopes, and infrared/optical interferometry with large aperture telescopes. At longer wavelengths, large arrays start to conquer the sub-millimeter window, with the mid-term goal of global VLBI at sub-millimeter wavelengths. These new techniques will have enormous impact on the field because they will enable us to address issues such as directly measuring the properties of exoplanets, imaging the surfaces of stars, examining stellar dynamics in extremely dense cluster cores, disentangling the processes at the bottom of black hole accretion flows in the jet launching region, or testing general relativity in the strong gravity regime near the event horizon of supermassive black holes. The conference The Universe under the Microscope: Astrophysics at High Angular Resolution, held at the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef, Germany, on 12-25 April 2008, aimed at an interdisciplinary approach by bringing together astrophysicists from the three great branches of the field, instrumentation, observation, and theory, to discuss the current state of research and the possibilities offered by the next-generation instruments. Editors of the proceedings Rainer Schödel Instituto de Astrofísica de Andalucía -CSIC, Granada, Spain Andreas Eckart I. Physikalisches Institut der Universität zu Köln, Köln, Germany Susanne Pfalzner I. Physikalisches Institut der Universität zu

  5. On the Angular Resolution of the AGILE Gamma-Ray Imaging Detector

    NASA Astrophysics Data System (ADS)

    Sabatini, S.; Donnarumma, I.; Tavani, M.; Trois, A.; Bulgarelli, A.; Argan, A.; Barbiellini, G.; Cattaneo, P. W.; Chen, A.; Del Monte, E.; Fioretti, V.; Gianotti, F.; Giuliani, A.; Longo, F.; Lucarelli, F.; Morselli, A.; Pittori, C.; Verrecchia, F.; Caraveo, P.

    2015-08-01

    We present a study of the angular resolution of the AGILE gamma-ray imaging detector (GRID) that has been operational in space since 2007 April. The AGILE instrument is made of an array of 12 planes that are each equipped with a tungsten converter and silicon microstrip detectors, and is sensitive in the energy range 50 MeV-10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploit an analog readout system with dedicated electronics coupled with silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its {E}-2 energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ˜ 4^\\circ at 100 MeV; ˜ 0\\buildrel{\\circ}\\over{.} 8 at 1 GeV; ˜ 0\\buildrel{\\circ}\\over{.} 9 integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, characterized by a flat response up to 30^\\circ off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE/GRID and Fermi/LAT (Large Area Telescope), is interesting in view of future gamma-ray missions, which are currently under study. The two instruments exploit different detector configurations that affect the angular resolution: the former is optimized in the readout and track reconstruction, especially in the low-energy band, the latter is optimized in terms of converter thickness and power consumption. We show that despite these differences, the angular resolution of both instruments is very similar, between 100 MeV and a few GeV.

  6. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    NASA Astrophysics Data System (ADS)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  7. Hybrid optical and acoustic resolution optoacoustic endoscopy.

    PubMed

    He, Hailong; Wissmeyer, Georg; Ovsepian, Saak V; Buehler, Andreas; Ntziachristos, Vasilis

    2016-06-15

    We propose the implementation of hybrid optical and acoustic resolution optoacoustic endoscopy. Laser light is transmitted to tissue by two types of illumination for achieving optical and acoustic resolution imaging. A 20 MHz ultrasound detector is used for recording optoacoustic signals. The endoscopy probe attains a 3.6 mm diameter and is fully encapsulated into a catheter system. We validate the imaging performance of the hybrid endoscope on phantoms and ex vivo, and discuss the necessity for the extended resolution and depth range of endoscopy achieved. PMID:27304269

  8. Invariant high resolution optical skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-02-01

    Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.

  9. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    PubMed

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  10. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    PubMed Central

    He, Li; Li, Huan; Li, Mo

    2016-01-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  11. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D P; Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Hagmann, C A

    2004-04-20

    In a recent paper it has been shown that the nuclear Ramsauer model does not do well in representing details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for {sup 208}Pb. We show that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. The effect of increasing the number of Monte Carlo angle bins is studied to determine the dispersion necessary for calculations to be sensitive to the observed discrepancies in angular distributions. We also show that transport calculations are sensitive to differences in the elastic scattering cross section given by recent fits of {sup 208}Pb data compared with older fits.

  12. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Chang, Richard K.

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90° < θ < 165° and 0° < phi < 360°) and with high angular resolution (1024 pixels in θ and 512 pixels in phi). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,phi), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method.

  13. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    SciTech Connect

    Germain, L.; Kratsch, D.; Salib, M.; Gey, N.

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: • ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. • Unlike classical methods, ALGrId works even beyond the relative angular resolution. • If the orientation noise peaks at 0.7°, ALGrid detects 0.4°-boundaries correctly. • In the same example, the classical algorithm identifies 1.1°-boundaries only.

  14. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  15. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    SciTech Connect

    Lyakin, D V; Ryabukho, V P

    2013-10-31

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  16. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  17. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D P; Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Hagmann, C A

    2004-09-30

    The nuclear Ramsauer model is a semi-classical, analytic approximation to nucleon-nucleus scattering that reproduces total cross section data at the 1% level for A > 40, E{sub n} = 5-60 MeV with 7-10 parameters. A quick overview of the model is given, demonstrating the model's utility in nuclear data evaluation. The Ramsauer model predictions for reaction cross section, elastic cross section, and elastic scattering angular distributions are considered. In a recent paper it has been shown that the nuclear Ramsauer model does not do well in predicting details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for {sup 208}Pb. However, in this contribution it is demonstrated that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. Simple studies indicate that 512-2048 bins are necessary to achieve the dispersion required for calculations to be sensitive to the observed discrepancies in angular distributions.

  18. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D.P.; Anderson, J.D.; Bauer, R.W.; Dietrich, F.S.; Hagmann, C.A.; Grimes, S.M.

    2005-05-24

    The nuclear Ramsauer model is a semi-classical, analytic approximation to nucleon-nucleus scattering that reproduces total cross-section data at the 1% level for A > 40, En = 5-60 MeV with 7-10 parameters. A quick overview of the model is given, demonstrating the model's utility in nuclear data evaluation. The Ramsauer model predictions for reaction cross section, elastic cross section, and elastic scattering angular distributions are considered. In a recent paper it has been shown that the nuclear Ramsauer model does not do well in predicting details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for 208Pb. However, in this contribution it is demonstrated that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. Simple studies indicate that 512-2048 bins are necessary to achieve the dispersion required for calculations to be sensitive to the observed discrepancies in angular distributions.

  19. High-resolution extended source optical coherence tomography.

    PubMed

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Xianghong; Liu, Linbo

    2015-10-01

    High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity without axial resolution degradation by the use of a spectrally encoded extended source (SEES) technique; it allows larger sample power without exceeding the maximum permissible exposure (MPE). In this study, we demonstrate a high-resolution extended source (HRES) OCT system, which is capable of providing a transverse resolution of 4.4 µm and an axial resolution of 2.1 µm in air with the SEES technique. We first theoretically show a sensitivity advantage of 6-dB of the HRES-OCT over that of its point source counterpart using numerical simulations, and then experimentally validate the applicability of the SEES technique to high-resolution OCT (HR-OCT) by comparing the HRES-OCT with an equivalent point-source system. In the HRES-OCT system, a dispersive prism was placed in the infinity space of the sample arm optics to spectrally extend the visual angle (angular subtense) of the light source to 10.3 mrad. This extended source allowed ~4 times larger MPE than its point source counterpart, which results in an enhancement of ~6 dB in sensitivity. Specifically, to solve the unbalanced dispersion between the sample and the reference arm optics, we proposed easy and efficient methods for system calibration and dispersion correction, respectively. With a maximum scanning speed reaching up to 60K A-lines/s, we further conducted imaging experiments with HRES-OCT using the human fingertip in vivo and the swine eye tissues ex vivo. Results demonstrate that the HRES-OCT is able to achieve significantly larger penetration depth than its conventional point source OCT counterpart. PMID:26480153

  20. High angular resolution observations of star-forming regions with BETTII and SOFIA

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime; Rinehart, Stephen; Mundy, Lee G.; Benford, Dominic J.; Dhabal, Arnab; Fixsen, Dale J.; Leisawitz, David; Maher, Stephen F.; Mentzell, Eric; Silverberg, Robert F.; Staguhn, Johannes; Veach, Todd; Cardiff BETTII Team

    2016-01-01

    High angular resolution observations in the far-infrared are important to understand the star formation process in embedded star clusters where extinction is large and stars form in close proximity. The material taking part in the star forming process is heated by the young stars and emits primarily in the far-IR; hence observations of the far-IR dust emission yields vital information about the gravitational potential, the mass and energy distribution, and core/star formation process. Previous observatories, such as Herschel, Spitzer and WISE lack the angular resolution required to study these dense star forming cores and are further limited by saturation in bright cores.The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is pioneering the path to sub-arcsecond resolution at far-IR wavelengths. This thesis talk discusses the instrumental challenges in building BETTII, as well as results from our SOFIA survey to illustrate the potential of higher-angular resolution observations. The 8m-long two element interferometer is being tested at NASA GSFC and is scheduled for first flight in fall 2016. BETTII will provide 0.5 to 1 arcsecond spatial resolution and spectral resolving power of 10 to 100 between 30 and 90 microns, where most of the dust continuum emission peaks in local star forming regions. It will achieve spatially-resolved spectroscopy of bright, dense cores with unprecedented high definition. This talk focuses on the main challenges and solutions associated with building BETTII: thermal stability, attitude/pointing control, and path length stabilization. In each of these areas we look at the trade-off between design, control, and knowledge in order to achieve the best-possible instrumental capability and sensitivity.As a first step towards resolving cluster cores, we surveyed 10 nearby star-forming clusters with SOFIA FORCAST at 11, 19, 31 and 37 microns. The FORCAST instrument has the highest angular resolution currently available in

  1. Exploring Small Spatial Scales in the Transition Region and Solar Corona with the Very High Angular Resolution Imaging Spectrometer (VERIS)

    NASA Astrophysics Data System (ADS)

    Chua, D. H.; Korendyke, C. M.; Vourlidas, A.; Brown, C. M.; Tun-Beltran, S.; Klimchuk, J. A.; Landi, E.; Seely, J.; Davila, J. M.; Hagood, R.; Roberts, D.; Shepler, E.; Feldman, R.; Moser, J.; Shea, J.

    2012-12-01

    Theoretical and experimental investigations of the transition region and coronal loops point to the importance of processes occurring on small spatial scales in governing the strong dynamics and impulsive energy release in these regions. As a consequence, high spatial, temporal, and temperature resolution over a broad temperature range, and accuracy in velocity and density determinations are all critical observational parameters. Current instruments lack one or more of these properties. These observational deficiencies have created a wide array of opposing descriptions of coronal loop heating and questions such as whether or not the plasma within coronal loops is multi-thermal or isothermal. High spectral and spatial resolution spectroscopic data are absolutely required to resolve these controversies and to advance our understanding of the dynamics within the solar atmosphere. We will achieve this with the Very High Angular Resolution Imaging Spectrometer (VERIS) sounding rocket payload. VERIS consists of an off-axis paraboloid telescope feeding a very high angular resolution, extreme ultraviolet (EUV) imaging spectrometer that will provide the first ever, simultaneous sub-arcsecond (0.16 arcsecond/pixel) spectra in bright lines needed to study plasma structures in the transition region, quiet corona, and active region core. It will do so with a spectral resolution of >5000 to allow Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two-element, normal incidence optical design with highly reflective, broad wavelength coverage EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Combined with Hinode Solar Optical Telescope (SOT) and ground based observatories, VERIS will deliver simultaneous observations of the entire solar atmosphere from the photosphere to the multi-million degree corona at sub-arcsecond resolution for the first time ever, allowing us to understand the

  2. An Acousto-Optical Sensor with High Angular Resolution

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2012-01-01

    The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034

  3. On the natures of the spin and orbital parts of optical angular momentum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Allen, L.; Cameron, Robert P.; Gilson, Claire R.; Padgett, Miles J.; Speirits, Fiona C.; Yao, Alison M.

    2016-06-01

    The modern field of optical angular momentum began with the realisation by Allen et al in 1992 that, in addition to the spin associated with polarisation, light beams with helical phase fronts carry orbital angular momentum. There has been much confusion and debate, however, surrounding the intricacies of the field and, in particular, the separation of the angular momentum into its spin and orbital parts. Here we take the opportunity to state the current position as we understand it, which we present as six perspectives: (i) we start with a reprise of the 1992 paper in which it was pointed out that the Laguerre–Gaussian modes, familiar from laser physics, carry orbital angular momentum. (ii) The total angular momentum may be separated into spin and orbital parts, but neither alone is a true angular momentum. (iii) The spin and orbital parts, although not themselves true angular momenta, are distinct and physically meaningful, as has been demonstrated clearly in a range of experiments. (iv) The orbital part of the angular momentum in the direction of propagation of a beam is not simply the azimuthal component of the linear momentum. (v) The component of spin in the direction of propagation is not the helicity, although these are related quantities. (vi) Finally, the spin and orbital parts of the angular momentum correspond to distinct symmetries of the free electromagnetic field and hence are separately conserved quantities.

  4. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.

  5. Resilience of hybrid optical angular momentum qubits to turbulence

    PubMed Central

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P.; Sciarrino, Fabio

    2015-01-01

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667

  6. Resilience of hybrid optical angular momentum qubits to turbulence.

    PubMed

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-01-01

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667

  7. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  8. Creating optical near-field orbital angular momentum in a gold metasurface.

    PubMed

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-01

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results. PMID:25798810

  9. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light. PMID:27136989

  10. Novel ultrahigh resolution optical fibre temperature sensor

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Dooly, Gerard; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    In this paper a novel patent pending high resolution optical fibre temperature sensor, based on an optical fibre pressure and temperature sensor (OFTPS), which is surrounded by an oil filled chamber, is presented. The OFPTS is based on a Fabry Perot interferometer (FPI) which has an embedded fibre Bragg grating (FBG). The high ratio between the volume of the oil filled outer cavity and the FPIs air filled cavity, results in a highly sensitive temperature sensor. The FBG element of the device can be used for wide range temperature measurements, and combining this capability with the high resolution capability of the FPI/oil cavity results in a wide range and high resolution temperature sensing device. The outer diameter of the sensor is less than 1mm in diameter and can be designed to be even smaller. The sensors temperature response was measured in a range of ΔT = 7K and resulted in a shift in the optical spectrum of ΔλF = 61.42nm. Therefore the Q-point of the reflected optical FPI spectrum is shifting with a sensitivity of sot = 8.77 nm/K . The sensitivity can easily be further increased by changing the oil/air volumetric ratio and therefore adapt the sensor to a wide variety of applications.

  11. Shower disc sampling and the angular resolution of gamma-ray shower detectors

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.

    1985-01-01

    As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.

  12. Passive torque wrench and angular position detection using a single-beam optical trap.

    PubMed

    Inman, James; Forth, Scott; Wang, Michelle D

    2010-09-01

    The recent advent of angular optical trapping techniques has allowed for rotational control and direct torque measurement on biological substrates. Here we present a method that increases the versatility and flexibility of these techniques. We demonstrate that a single beam with a rapidly rotating linear polarization can be utilized to apply a constant controllable torque to a trapped particle without active feedback, while simultaneously measuring the particle angular position. In addition, this device can rapidly switch between a torque wrench and an angular trap. These features should make possible torsional measurements across a wide range of biological systems. PMID:20808379

  13. Quality assessment of High Angular Resolution Diffusion Imaging data using bootstrap on Q-ball reconstruction

    PubMed Central

    Cohen-Adad, J.; Descoteaux, M.; Wald, L.L.

    2011-01-01

    Purpose To develop a bootstrap method to assess the quality of High Angular Resolution Diffusion Imaging (HARDI) data using Q-Ball imaging (QBI) reconstruction. Materials and Methods HARDI data were re-shuffled using regular bootstrap with jackknife sampling. For each bootstrap dataset, the diffusion orientation distribution function (ODF) was estimated voxel-wise using QBI reconstruction based on spherical harmonics functions. The reproducibility of the ODF was assessed using the Jensen-Shannon divergence (JSD) and the angular confidence interval was derived for the first and the second ODF maxima. The sensitivity of the bootstrap method was evaluated on a human subject by adding synthetic noise to the data, by acquiring a map of image signal-to-noise ratio (SNR) and by varying the echo time and the b-value. Results The JSD was directly linked to the image SNR. The impact of echo times and b-values was reflected by both the JSD and the angular confidence interval, proving the usefulness of the bootstrap method to evaluate specific features of HARDI data. Conclusion The bootstrap method can effectively assess the quality of HARDI data and can be used to evaluate new hardware and pulse sequences, perform multi-fiber probabilistic tractography, and provide reliability metrics to support clinical studies. PMID:21509879

  14. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  15. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Herz, Paul R.; Chen, Yu; Aguirre, Aaron D.; Fujimoto, James G.; Mashimo, Hiroshi; Schmitt, Joseph; Koski, Amanda; Goodnow, John; Petersen, Chris

    2004-07-01

    Optical coherence tomography (OCT) is an emerging medical imaging technology that can generate high resolution, cross-sectional images of tissue in situ and in real time. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10-15 µm for in vivo studies. In this study, in vivo imaging of the rabbit gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 µm), using a broadband Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, trachea, and colon reveal high resolution details of tissue architecture. Definitive correlation of architectural features in OCT images and histological sections is shown. The ability of ultrahigh resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo advances the development of OCT as a potential imaging tool for the early detection of neoplastic changes in biological tissue.

  16. High angular resolution absolute intensity of the solar continuum from 1400 to 1790 A.

    NASA Technical Reports Server (NTRS)

    Brueckner, G. E.; Moe, O. K.

    1972-01-01

    Absolute intensities of the solar UV continuum from 1400 to 1790 A have been measured from rocket spectra taken on August 13, 1970. The spectra had an angular resolution of 2 arc sec by 1 arc min, and the pointing accuracy of the instrument was plus or minus 2 arc sec. This permits us to study the center-to-limb variation of the intensity with a spatial resolution of 2 arc sec. Four positions on the solar disk have been studied corresponding to values of cos theta = 0.12, 0.22, 0.28 and 0.72, where theta is the heliocentric position angle. The measurements give higher values for the intensity than recent photoelectric measurement, but are in good agreement with the intensities of Widing et al.

  17. Optimal Short-Time Acquisition Schemes in High Angular Resolution Diffusion-Weighted Imaging

    PubMed Central

    Prčkovska, V.; Achterberg, H. C.; Bastiani, M.; Pullens, P.; Balmashnova, E.; ter Haar Romeny, B. M.; Vilanova, A.; Roebroeck, A.

    2013-01-01

    This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10 min) combines a moderate b-value (around 2000 s/mm2) with a relatively low number of acquired directions (>48). Our findings generalize to other methods and additional improvements in MR acquisition techniques. PMID:23554808

  18. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    NASA Astrophysics Data System (ADS)

    Gómez de León, F. C.; Meroño Pérez, P. A.

    2010-07-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement.

  19. Role of photonic angular momentum states in nonreciprocal diffraction from magneto-optical cylinder arrays

    SciTech Connect

    Guo, Tian-Jing; Wu, Li-Ting; Yang, Mu; Guo, Rui-Peng; Cui, Hai-Xu; Chen, Jing

    2014-07-15

    Optical eigenstates in a concentrically symmetric resonator are photonic angular momentum states (PAMSs) with quantized optical orbital angular momentums (OAMs). Nonreciprocal optical phenomena can be obtained if we lift the degeneracy of PAMSs. In this article, we provide a comprehensive study of nonreciprocal optical diffraction of various orders from a magneto-optical cylinder array. We show that nonreciprocal diffraction can be obtained only for these nonzero orders. Role of PAMSs, the excitation of which is sensitive to the directions of incidence, applied magnetic field, and arrangement of the cylinders, are studied. Some interesting phenomena such as a dispersionless quasi-omnidirectional nonreciprocal diffraction and spikes associated with high-OAM PAMSs are present and discussed.

  20. Electron-optic limitations on image resolution

    NASA Technical Reports Server (NTRS)

    Engstrom, R. W.

    1973-01-01

    Various approaches are considered to the solution of the electron-optical problem of designing an image tube configuration. Emphasis is placed on the method of computer design, and an illustration is given in which the technique is used in the design of an 80-mm image tube with a zoom capability of 3:1. The solutions are discussed to such problems as image distortion, magnification, and electron bundles striking the zoom electrode. Three types of an electron-optical configuration are examined for the electron-optic limitations to resolution: (1) the proximity image tube, (2) the magnetic-type image tube having uniform electric and magnetic fields, and (3) the electrostatic-type image tube such as the 80-mm zoom tube.

  1. Addition and subtraction operation of optical orbital angular momentum with dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Yi, Xunong; Li, Ying; Ling, Xiaohui; Liu, Yachao; Ke, Yougang; Fan, Dianyuan

    2015-12-01

    In this work, we propose a simple approach to realize addition and subtraction operation of optical orbital angular momentum (OAM) based on dielectric metasurfaces. The spin-orbit interaction of light in spatially inhomogeneous and anisotropic metasurfaces results in the spin-to-orbital angular momentum conversion. The subtraction system of OAM consists of two cascaded metasurfaces, while the addition system of OAM is constituted by inserting a half waveplate (HWP) between the two metasurfaces. Our experimental results are in good agreement with the theoretical calculation. These results could be useful for OAM-carrying beams applied in optical communication, information processing, etc.

  2. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  3. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  4. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    PubMed

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  5. Transient optical angular momentum effects in light-matter interactions

    NASA Astrophysics Data System (ADS)

    Carter, A. R.; Babiker, M.; Al-Amri, M.; Andrews, D. L.

    2005-10-01

    The time evolution of the radiation pressure forces due to the action of laser light on matter in the form of neutral molecules, atoms, and ions is considered when the frequency of the light is comparable to a dipole-allowed transition frequency. We find that the transient regime, applicable from the instant the laser is switched on, is important for the gross motion, provided that the upper-state lifetime Γ-1 is relatively long, while the steady-state regime, formally such that t≫ Γ-1 , is appropriate for the evaluation of the forces and the dynamics for large Γ . With a focus on the orbital-angular-momentum-endowed laser light, the light-induced time-dependent forces and torques are determined and their full time dependence utilized to determine trajectories. Marked differences are found in both translational and rotational features in comparison with the results emerging when the steady-state forces are assumed from the outset. Intricate and detailed atom trajectories are plotted for Laguerre-Gaussian light at near resonance for a transition of Eu3+ that has a particularly small Γ . The implications of the results for trapping and manipulating atoms and ions using laser light are pointed out and discussed.

  6. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    NASA Technical Reports Server (NTRS)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  7. ESOPO a Medium Resolution Optical Spectrograph

    NASA Astrophysics Data System (ADS)

    Farah, A.; Chapa, O.; Cobos, F.; Colorado, E.; Costero, R.; Echevarria, J.; García, B.; Garfias, F.; González, J.; Granados, F.; Guisa, G.; Luna, E.; Martínez, B.; Murillo, F.; Pedrayes, M.; Pérez, F.; Quirós, F.; Tejada, C.; Sierra, G.

    2009-05-01

    The Instituto de Astronomía, of the Universidad Nacional Autónoma de México, after an internal licitation, determined to design and manufacture a Medium Resolution Optical Spectrograph. The instrument will be attached to the 2.1 m telescope at the National Astronomical Observatory at San Pedro Mártir, México. The project was granted to the ESOPO group, winner of the call for proposals. The basic purpose of the project is to equip the observatory with a modern and more efficient spectrograph. Its main goal is to solve astronomical problems that require an ample optical range with a spectral resolution between 500 and 5000. These projects include observations of extended stellar objects, external galaxies, and stars inside our galaxy. In this work we present the scientific goals of ESOPO spectrograph, its translation to high level requirements, its optical design as well as its mechanical design and optomechanics for 24 lenses. The error budget for image quality and motion are included. Finally, management, organization, and first light date of the project are described.

  8. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  9. The angular resolution of the GRAPES-3 array from the shadows of the Moon and the Sun

    NASA Astrophysics Data System (ADS)

    Oshima, A.; Dugad, S. R.; Goswami, U. D.; Gupta, S. K.; Hayashi, Y.; Ito, N.; Iyer, A.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Minamino, M.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Nonaka, T.; Ogio, S.; Rao, B. S.; Ravindran, K. C.; Tanaka, H.; Tonwar, S. C.; GRAPES-3 Collaboration

    2010-03-01

    The absence of a well established point source of very high energy (≳10TeV) γ-rays in the sky, makes the measurement of the angular resolution and the absolute pointing accuracy of an extensive air shower (EAS) array a challenging task. In the past, several groups have utilized the reduction in the isotropic flux of cosmic rays due to the shadows of the Moon and the Sun, to measure the angular resolution and the absolute pointing accuracy of their arrays. The data collected from the GRAPES-3 EAS array, over the period of 4 years from 2000 to 2003, has been used to observe the shadow of the Moon at a level of ˜5σ and that of the Sun at a lower level of significance. The high density of the detectors in GRAPES-3 enabled an angular resolution of 0.7° to be obtained at energies as low as 30 TeV. The angular resolution studies were further extended by using two other techniques, namely, the even-odd and the left-right methods. All three techniques have yielded nearly identical results on the energy dependent angular resolution.

  10. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  11. ATMOSPHERIC PHASE CORRECTION USING CARMA-PACS: HIGH ANGULAR RESOLUTION OBSERVATIONS OF THE FU ORIONIS STAR PP 13S*

    SciTech Connect

    Perez, Laura M.; Carpenter, John M.; Isella, Andrea; Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.; Zauderer, B. Ashley; Bolatto, Alberto D.; Teuben, Peter J.; Bock, Douglas C.; Carlstrom, John; Culverhouse, Thomas L.; Marrone, Daniel P.; Joy, Marshall; Kwon, Woojin; Plambeck, Richard L.; Wright, Melvyn C. H.

    2010-11-20

    We present 0.''15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M{sub sun}, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability.

  12. Lateral-angular and temporal characteristics of EAS optical radiation

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Chuykova, T. A.; Galkin, V. I.; Roganova, T. M.

    1985-01-01

    Characteristics of the direct and scattered components of electron-photon shower optical radiation for distances R 500 m from the shower core to a detector, allowing for the Cerenkov and fluorescent mechanism of photon generation are presented. The results of calculations are employed to clarify the techniques for determination of the shower parameters detected by both installations registering fluorescent light and those recording Cerenkov light.

  13. Optical elements with extended depth of focus and arbitrary distribution of intensity along the focal segment obtained by angular modulation of the optical power

    NASA Astrophysics Data System (ADS)

    Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.

    2015-04-01

    Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.

  14. The Milli-Arc-Second Structure Imager, MASSIM: A New Concept for a High Angular Resolution X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.; Reynolds, C.; Sambruna, R.; Streitmatter, R.; Windt, D.

    2008-01-01

    MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.

  15. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  16. New optical and radio frequency angular tropospheric refraction models for deep space applications

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  17. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yuan, X.-C.; Tao, S. H.; Burge, R. E.

    2007-07-01

    As a proof of concept, we experimentally demonstrate multiplexing of free-space optical signals in multiple channels labeled with different states of orbital angular momentum. The multiplexing process is carried out by a dynamic liquid-crystal spatial light modulator, while the phase function is calculated by an iterative algorithm. A binary amplitude computer-generated hologram serves as a demultiplexer.

  18. Quantitative assessment of motion correction for high angular resolution diffusion imaging.

    PubMed

    Sakaie, Ken E; Lowe, Mark J

    2010-02-01

    Several methods have been proposed for motion correction of high angular resolution diffusion imaging (HARDI) data. There have been few comparisons of these methods, partly due to a lack of quantitative metrics of performance. We compare two motion correction strategies using two figures of merit: displacement introduced by the motion correction and the 95% confidence interval of the cone of uncertainty of voxels with prolate tensors. What follows is a general approach for assessing motion correction of HARDI data that may have broad application for quality assurance and optimization of postprocessing protocols. Our analysis demonstrates two important issues related to motion correction of HARDI data: (1) although neither method we tested was dramatically superior in performance, both were dramatically better than performing no motion correction, and (2) iteration of motion correction can improve the final results. Based on the results demonstrated here, iterative motion correction is strongly recommended for HARDI acquisitions. PMID:19695824

  19. High-resolution atmospheric angular momentum. Functions from different ecmwf data classes

    NASA Astrophysics Data System (ADS)

    Schindelegger, M.; Boehm, J.; Schuh, H.; Salstein, D. A.

    2011-10-01

    Atmospheric excitation of Earth rotation at daily and sub-daily periods is routinely inferred from six-hourly atmospheric angular momentum (AAM) functions, which are derived from the operational analysis fields of Numerical Weather Models. The so-called delayed cut-off stream, recently introduced by the European Centre for Medium-Range Weather Forecasts (ECMWF), though, produces meteorological data with higher temporal resolution by incorporating short-term forecasts, and thus allows the estimation of three-hourly AAM functions. In detail, we determine six- and three-hourly AAM functions for a time span of five years. Comparisons of the two series reveal differences in amplitude and phase, but also highlight the counteraction of pressure and wind terms at short time scales. Moreover, the three-hourly AAM record represents an opportunity to resolve better the semi-diurnal band of atmosphere-induced variations in polar motion and LOD.

  20. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    PubMed

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  1. Ion extraction optics with tunable ion angular distribution of ribbon beams

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Distaso, Daniel; Campbell, Christopher; Singh, Vikram; Renau, Anthony

    2015-09-01

    The characteristics of the ion angular distribution (IAD) of an extracted ion beam are determined by the shape, location, and orientation of the plasma meniscus. We describe an electrostatic lens that allows modification of plasma meniscus topology and as a result in situ control of the IAD of extracted ribbon ion beams, i.e., control of ion mean angle and angular spread. The ion extraction optics supposes the use of an electrode immersed in the plasma which is located adjacent to the extraction slit. By electrically biasing the electrode relative to the plasma, the meniscus topology and its orientation relative to the wafer plane can be controlled. Thus, 300 mm wide ribbon ion beams with characteristic mean angle spanning from 0° to 50° and angular spread as low as 4°can be obtained. Ion angular distribution can be tuned in terms of mean angle and angular spread for different ion beam energies and beam currents. In addition, being made of conductive material, the extraction optics is insensitive to the possible conductive deposits resulting from byproducts of ion beam bombardment of the wafer surface.

  2. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  3. Resolution of a target-tracking optical novelty filter

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T. H.; Cheng, Li-Jen

    1991-01-01

    The resolution of a target-tracking optical novelty filter is discussed in terms of the response time of the nonlinear medium, the speed of the target, and the resolution of the input device. Optical novelty filters using a faster nonlinear medium may have a higher output resolution. This is particularly true in the case of tracking high-speed targets. The potential of implementing high-resolution optical novelty filters using photorefractive GaAs is investigated experimentally.

  4. Angular-dispersion-induced spatiotemporal aberrations in noncollinear optical parametric amplifiers

    SciTech Connect

    Bromage, Jake; Dorrer, Christophe; Zuegel, Jonathan D.

    2010-01-01

    We characterize spatiotemporal aberrations induced in noncollinear optical parametric amplifiers (NOPAs), for the first time (to our knowledge), using spatially resolved spectral interferometry. Measurements show that when the submillimeter pump and signal beams are not correctly aligned, several degrees of pulse-front tilt caused by angular dispersion are introduced by the NOPA angular-dependent gain, without significant loss of bandwidth. After eliminating the pulse-front tilt, analysis of the residual higher-order aberrations shows that far-field intensities reaching 80% of the theoretical limit can be achieved without complex spatiospectral phase optimization.

  5. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    SciTech Connect

    Bliokh, Konstantin Yu.

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  6. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    SciTech Connect

    Zou, Longfang; López-García, Martin; Oulton, Ruth; Klemm, Maciej; Withayachumnankul, Withawat; Fumeaux, Christophe; Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  7. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.

    PubMed

    Walsh, Gary F

    2016-03-21

    We propose and numerically demonstrate a Pancharatnam-Berry optical element (PBOE) device that simultaneously sorts spin (SAM) and orbital (OAM) angular momentum. This device exploits the circular polarization selective properties of PBOEs to modulate independently the orthogonal SAM eigenstates within a geometric optical transformation that sorts OAM, enabling single measurement characterization of the full angular momentum eigenstate. This expands the available state space for OAM communication and enables characterization of the eigenmode composition of structured polarization beams. We define the two-dimensional orientation patterns of the transversely varying half-waveplate PBOEs that implement the angular momentum sorter. We show that the device discriminates the OAM and SAM eigenstates of optical beams including laser cavity modes such as Laguerre-Gaussian OAM eigenmodes, Hermite-Gaussian modes, and hybrid modes with complex structured polarization. We also demonstrate that it can determine the m parameter of higher order LGml Laguerre-Gaussian modes. The ability of this device to decode information from spatially structured optical phase has potential for applications in communication, encryption, modal characterization, and scientific measurements. PMID:27136857

  8. Development of a super-resolution optical microscope for directional dark matter search experiment

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Asada, T.; Consiglio, L.; D`Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T.; Pupilli, F.; Sirignano, C.; Tawara, Y.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  9. Micro gamma camera optics with high sensitivity and resolution (Invited Paper)

    NASA Astrophysics Data System (ADS)

    MacDonald, C. A.; Mail, Noor; Gibson, W. M.; Jorgenson, S. M.; Ritman, E. L.

    2005-04-01

    Polycapillary x-ray optics are bundles of micron size hollow tubes, inside of which x rays are propagated by total reflection much like visible light in solid fiber optics. The small critical angle for total reflection from the glass walls of the tubes, 0.06° at 27 keV, results in very high angular selectivity. The field of view of each capillary tube is limited by this angular acceptance to less than 50 microns at a source-to-optic distance of 2 cm. Each adjacent tube works in parallel so that a large area can be covered at this resolution with much higher count rate than for a single collimator. Measurements have been performed using 125I brachytherapy seeds in Lucite phantoms using the optics and imaging detectors. Measured resolutions were detector-limited at better than 0.1 mm. Calculations for expected sensitivity and signal-to-background ratios were developed from geometrical models and show good agreement with measurements. Results indicate that the optics provide superior signal count rates to conventional collimators for geometries such as small animal imaging in which sub millimeter resolution with inch-wide or larger fields of view are desirable.

  10. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  11. Limits of spectral resolution in optical measurements

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.

    2014-08-01

    Nowadays a growing number of scientists relies on optical spectral measurements for their research. The market is full of new plug-and-play equipment for spectral analysis that take the fuss out of the measurements. As with other instruments (computers, lasers, etc.) the researcher doesńt need any longer to work with someone with a post-graduate formation on the technology to be able to do excellent research. But, as in every instrument, there are limitations on the instrument use that affect its precision and resolution. Currently there is in the market a large variety of equipment for spectral measurements. They range from the huge long focal length double pass monochromators to the small pocket size USB connected array spectrometers. The different configurations have different sensitivities on the light input system, light intensity, coherence, polarization, etc. In this talk we will discuss a few of the limitations in spectral measurements that can be found in experimental setups.

  12. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  13. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  14. Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells.

    PubMed

    Wu, Tengfei; Yang, Shaobo; Li, Xingfei

    2013-03-25

    Symmetry breaking of metallic nanoparticles results in many unique optical properties. We use the discrete dipole approximation method to study the optical properties of overlapped nanoshells which further break the rotational symmetry compared with the semishells. The optical properties of the nanoparticles can be tuned from the visible to near infrared regime by varying the geometry parameters and the hybrid components of nanoparticles. The calculated extinction spectra show the two-dimensional anisotropy of the angular optical response of the nanoparticles. The plasmon hybridization model provides a way to interpret the resonance modes of the nanoparticles. The tunable plasmon resonances, the enhanced local fields and the anisotropic optical properties suggest that the overlapped nanoshells have potential applications in surface-enhanced spectroscopy and "smart" coating in windows or display devices. PMID:23546162

  15. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Lazio, J.; Bale, S.; Burns, J. O.; Farrell, W. M.; Gopalswamy, N.; Jones, D. L.; Kasper, J. C.; Weiler, K.

    2011-12-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the Lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton) on which 16 single polarization

  16. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt

    2012-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single

  17. Lenses and effective spatial resolution in macroscopic optical mapping.

    PubMed

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-02-21

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals. PMID:17264363

  18. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Juman, Guzhaliayi; Yoshida, Itsuki; Miyamoto, Katsuhiko; Kawata, Shigeo; Ohno, Seigo; Omatsu, Takashige

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  19. The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region

    NASA Astrophysics Data System (ADS)

    ALMA Partnership; Brogan, C. L.; Pérez, L. M.; Hunter, T. R.; Dent, W. R. F.; Hales, A. S.; Hills, R. E.; Corder, S.; Fomalont, E. B.; Vlahakis, C.; Asaki, Y.; Barkats, D.; Hirota, A.; Hodge, J. A.; Impellizzeri, C. M. V.; Kneissl, R.; Liuzzo, E.; Lucas, R.; Marcelino, N.; Matsushita, S.; Nakanishi, K.; Phillips, N.; Richards, A. M. S.; Toledo, I.; Aladro, R.; Broguiere, D.; Cortes, J. R.; Cortes, P. C.; Espada, D.; Galarza, F.; Garcia-Appadoo, D.; Guzman-Ramirez, L.; Humphreys, E. M.; Jung, T.; Kameno, S.; Laing, R. A.; Leon, S.; Marconi, G.; Mignano, A.; Nikolic, B.; Nyman, L.-A.; Radiszcz, M.; Remijan, A.; Rodón, J. A.; Sawada, T.; Takahashi, S.; Tilanus, R. P. J.; Vila Vilaro, B.; Watson, L. C.; Wiklind, T.; Akiyama, E.; Chapillon, E.; de Gregorio-Monsalvo, I.; Di Francesco, J.; Gueth, F.; Kawamura, A.; Lee, C.-F.; Nguyen Luong, Q.; Mangum, J.; Pietu, V.; Sanhueza, P.; Saigo, K.; Takakuwa, S.; Ubach, C.; van Kempen, T.; Wootten, A.; Castro-Carrizo, A.; Francke, H.; Gallardo, J.; Garcia, J.; Gonzalez, S.; Hill, T.; Kaminski, T.; Kurono, Y.; Liu, H.-Y.; Lopez, C.; Morales, F.; Plarre, K.; Schieven, G.; Testi, L.; Videla, L.; Villard, E.; Andreani, P.; Hibbard, J. E.; Tatematsu, K.

    2015-07-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.″ 075 (10 AU) to 0.″ 025 (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analog HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46\\buildrel{\\circ}\\over{.} 72+/- 0\\buildrel{\\circ}\\over{.} 05) and position angle (+138\\buildrel{\\circ}\\over{.} 02+/- 0\\buildrel{\\circ}\\over{.} 07). We obtain a high-fidelity image of the 1.0 mm spectral index (α), which ranges from α ˜ 2.0 in the optically thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km s-1 consistent with Keplerian motion around a ˜1.3 {M}⊙ star, although complicated by absorption at low blueshifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHα358 at 2.9 mm. .

  20. Fiber optic sensor for angular position measurement: application for an electrical power-assisted steering system

    NASA Astrophysics Data System (ADS)

    Javahiraly, Nicolas; Chakari, Ayoub

    2013-05-01

    To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range (± several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 μm rc (core radius) = 50 μm nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20°C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.

  1. Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves.

    PubMed

    Sinibaldi, Alberto; Anopchenko, Aleksei; Rizzo, Riccardo; Danz, Norbert; Munzert, Peter; Rivolo, Paola; Frascella, Francesca; Ricciardi, Serena; Michelotti, Francesco

    2015-05-01

    In label-free biosensing, a continuous improvement of the limit of detection is necessary to resolve the small change of the surface refractive index produced by interacting biomolecules at a very small concentration. In the present work, optical sensors based on one-dimensional photonic crystals supporting Bloch surface waves are proposed and adopted for label-free optical biosensing. We describe the implementation of an angularly resolved ellipsometric optical sensing scheme based on Bloch surface waves sustained by tantala/silica multilayers. The angular operation is obtained using a focused beam at fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results show that the experimental limit of detection for a particular photonic crystal design is 6.5 × 10(-7) refractive index units (RIU)/Hz(1/2) and further decrease could be obtained. For the first time, we report on the practical application of this technique to a cancer biomarker protocol that aims at the detection of a specific glycoprotein (angiopoietin 2) involved in angiogenesis and inflammation processes. PMID:25782873

  2. Label-free optical-resolution photoacoustic endomicroscopy in vivo

    NASA Astrophysics Data System (ADS)

    Yang, Joon-Mo; Li, Chiye; Chen, Ruimin; Rao, Bin; Yao, Junjie; Yeh, Cheng-Hung; Danielli, Amos; Maslov, Konstantin; Zhou, Qifa; Shung, K. K.; Wang, Lihong V.

    2015-03-01

    Intravital microscopy techniques have become increasingly important in biomedical research because they can provide unique microscopic views of various biological or disease developmental processes in situ. Here we present an optical-resolution photoacoustic endomicroscopy (OR-PAEM) system that visualizes internal organs with a much finer resolution than conventional acoustic-resolution photoacoustic endoscopy systems. By combining gradient index (GRIN) lens-based optical focusing and ultrasonic ring transducer-based acoustic focusing, we achieved a transverse resolution as fine as ~10 μm at an optical working distance of 6.5 mm. The OR-PAEM system's high-resolution intravital imaging capability is demonstrated through animal experiments.

  3. Submillimeter Array High-angular Resolution Observations of the Monoceros R2 Star-forming Cluster

    NASA Astrophysics Data System (ADS)

    Dierickx, M.; Jiménez-Serra, I.; Rivilla, V. M.; Zhang, Q.

    2015-04-01

    We present the first high-angular resolution study of the MonR2 star-forming complex carried out with the Submillimeter Array at (sub-)millimeter wavelengths. We image the continuum and molecular line emission toward the young stellar objects in MonR2 at 0.85 and 1.3 mm, with resolutions ranging from 0.″ 5 to ˜3″. While free-free emission dominates the IRS1 and IRS2 continuum, dust thermal emission prevails for IRS3 and IRS5, giving envelope masses of ˜0.1-0.3 {{M}⊙ }. IRS5 splits into at least two sub-arcsecond scale sources, IRS5B and the more massive IRS5A. Our 12CO(2-1) images reveal 11 previously unknown molecular outflows in the MonR2 clump. Comparing these outflows with known IR sources in the IRS5 and IRS3 subclusters allows for tentative identification of driving stars. Line images of molecular species such as CH3CN or CH3OH show that, besides IRS3 (a well-known hot molecular core), IRS5 is also a chemically active source in the region. The gas excitation temperature derived from CH3CN lines toward IRS5 is 144 ± 15 K, indicating a deeply embedded protostar at the hot-core evolutionary stage. Spectral energy distribution fitting of IRS5 gives a mass of ˜7 M ⊙ and a luminosity of 300 {{L}⊙ } for the central source. The derived physical properties of the CO outflows suggest that they contribute to the turbulent support of the MonR2 complex and to the gas velocity dispersion in the clump’s center. The detection of a large number of CO outflows widespread across the region supports the competitive accretion scenario as origin of the MonR2 star cluster.

  4. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    PubMed Central

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  5. Anatomy of a Photodissociation Region: High angular resolution images of molecular emission in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tauber, Jan A.; Tielens, A. G. G. M.; Meixner, Margaret; Foldsmith, Paul F.

    1994-01-01

    We present observations of the molecular component of the Orion Bar, a prototypical Photodissociation Region (PDR) illuminated by the Trapezium cluster. The high angular resolution (6 sec-10 sec) that we have achieved by combining single-dish and interferometric observations has allowed us to examine in detail the spatial and kinematic morphology of this region and to estimate the physical characteristics of the molecular gas it contains. Our observations indicate that this PDR can be essentially described as a homogeneously distributed slab of moderately dense material (approximately 5 x 10(exp 4)/cu cm), in which are embedded a small number of dense (greater than 10(exp 6)/cu cm) clumps. The latter play little or no role in determining the thickness and kinetic temperature structure of this PDR. This observational picture is largely supported by PDR model calculations for this region, which we describe in detail in this work. We also find our model predictions of the intensities of a variety of atomic and molecular lines to be in good general agreement with a number of previous observations.

  6. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data

    PubMed Central

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-01-01

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674

  7. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding.

    PubMed

    Iftimia, N; Bouma, B E; Tearney, G J

    2003-04-01

    Speckle, the dominant factor reducing image quality in optical coherence tomography (OCT), limits the ability to identify cellular structures that are essential for diagnosis of a variety of diseases. We describe a new high-speed method for implementing angular compounding by path length encoding (ACPE) for reducing speckle in OCT images. By averaging images obtained at different incident angles, with each image encoded by path length, ACPE maintains high-speed image acquisition and requires minimal modifications to OCT probe optics. ACPE images obtained from tissue phantoms and human skin in vivo demonstrate a qualitative improvement over traditional OCT and an increased SNR that correlates well with theory. PMID:12683852

  8. Orbital angular momentum (OAM) multiplexing in free-space optical data transfer

    NASA Astrophysics Data System (ADS)

    Lin, Jiao; Yuan, Xiao-Cong; Tao, Shaohua

    2006-08-01

    In the optical wireless communication systems proposed by Gibson, et al, the information is encoded as states of orbital angular momentum (OAM) of light and the transmitter unit can produce laser beam with single OAM-state in a time-slot. Recently we have proved that it is possible to generate multiple OAM-states simultaneously by single spatial light modulator. This method is adopted in our free-space optical wireless communication system and these OAM-states can be detected in the receiving unit by a computer-generated hologram. Hence, the transmission capacity is enhanced significantly without increasing the complexity of system.

  9. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices

    PubMed Central

    Wang, Yu; Feng, Xue; Zhang, Dengke; Zhao, Peng; Li, Xiangdong; Cui, Kaiyu; Liu, Fang; Huang, Yidong

    2015-01-01

    An integrated device, which consists of a variable amplitude splitter and an orbital angular momentum (OAM) emitter, is proposed for the superposition of optical vortex beams. With fixed wavelength and power of incident beam, the OAM of the radiated optical superimposed vortex beam can be dynamically tuned. To verify the operating principle, the proposed device has been fabricated on the SOI substrate and experimentally measured. The experimental results confirm the tunability of superimposed vortex beams. Moreover, the ability of independently varying the OAM flux and the geometric distribution of intensity is illustrated and discussed with numerical simulation. We believe that this work would be promising in various applications. PMID:26190669

  10. THE ANGULAR DISTRIBUTION OF Ly{alpha} RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM

    SciTech Connect

    Yang Yang; Shu Chiwang; Roy, Ishani; Fang Lizhi

    2013-07-20

    We investigate the angular distribution of Ly{alpha} photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable {mu}, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the {mu} distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency {nu}{sub 0}, I contains only a linear term of {mu}. For photons with frequencies at the double peaks of the flux, the {mu}-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at {nu}{sub 0} or at the double peaks, the {mu} distributions actually are independent of the initial {mu} distribution of photons of the source. This is because the photons with frequencies either at {nu}{sub 0} or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  11. The Angular Distribution of Lyα Resonant Photons Emerging from an Optically Thick Medium

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Roy, Ishani; Shu, Chi-Wang; Fang, Li-Zhi

    2013-07-01

    We investigate the angular distribution of Lyα photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable μ, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the μ distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency ν0, I contains only a linear term of μ. For photons with frequencies at the double peaks of the flux, the μ-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at ν0 or at the double peaks, the μ distributions actually are independent of the initial μ distribution of photons of the source. This is because the photons with frequencies either at ν0 or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  12. COSMIC: A high resolution, large collecting area telescope. [Coherent Optical System of Modular Imaging Collectors (COSMIC)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Carleton, N. P.

    1985-01-01

    The spaceborne Coherent Optical System of Modular Imaging Collectors (COSMIC) is presented. It has high angular resolution and can produce images of complex, low-surface-brightness objects such as distant galaxies. If configured as a 36 m filled linear array, COSMIC can have 15 times better angular resolution and 10 times greater collecting area than the Space Telescope. Alternatively, if the collecting area is spread out to create an unfilled two-dimensional array, there is the additional advantage of not needing to rotate the array in order to build up a reconstructed image. Considerations which led to the design concept, scientific goals, and the potentially useful role of a space station for assembly are discussed.

  13. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  14. Expanded horizons for generating and exploring optical angular momentum in vortex structures

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Coles, Matt M.; Williams, Mathew D.; Bradshaw, David S.

    2013-09-01

    Spin provides for a well-known extension to the information capacity of nanometer-scale electronic devices. Spin transfer can be effected with high fidelity between quantum dots, this type of emission being primarily associated with emission dipoles. However, in seeking to extend the more common spectroscopic connection of dipole transitions with orbital angular momentum, it has been shown impossible to securely transmit information on any other multipolar basis - partly because point detectors are confined to polarization measurement. Standard polarization methods in optics provide for only two independent degrees of freedom, such as the circular states of opposing handedness associated with photon spin. Complex light beams with structured wave-fronts or vector polarization do, however, offer a basis for additional degrees of freedom, enabling individual photons to convey far more information content. A familiar example is afforded by Laguerre-Gaussian modes, whose helically twisted wave-front and vortex fields are associated with orbital angular momentum. Each individual photon in such a beam has been shown to carry the entire spatial helical-mode information, supporting an experimental basis for sorting beams of different angular momentum content. One very recent development is a scheme for such optical vortices to be directly generated through electronic relaxation processes in structured molecular chromophore arrays.

  15. High resolution bragg focusing optics for synchrotron monochromators and analyzers

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Gofron, K.J.

    1997-07-01

    A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

  16. Optical image encryption based on cascaded iterative angular spectrum algorithm and its implementation with parallel hardware

    NASA Astrophysics Data System (ADS)

    Yu, Biin; Peng, Xiang; Tian, Jindong; Niu, Hanben

    2006-01-01

    A cascaded iterative angular spectrum approach (CIASA) based on the methodology of virtual optics is presented for optical security applications. The technique encodes the target image into two different phase only masks (POM) using a concept of free-space angular spectrum propagation. The two phase-masks are designed and located in any two arbitrary planes interrelated through the free space propagation domain in order to implement the optical encryption or authenticity verification. And both phase masks can serve as enciphered texts. Compared with previous methods, the proposed algorithm employs an improved searching strategy: modifying the phase-distributions of both masks synchronously as well as enlarging the searching space. And with such a scheme, we make use of a high performance floating-point Digital Signal Processor (DSP) to accomplish a design of multiple-locks and multiple-keys optical image encryption system. An evaluation of the system performance is made and it is shown that the algorithm results in much faster convergence and better image quality for the recovered image. And two masks and system parameters can be used to design keys for image encryption, therefore the decrypted image can be obtained only when all these keys are under authorization. This key-assignment strategy may reduce the risk of being intruded and show a high security level. These characters may introduce a high level security that makes the encrypted image more difficult to be decrypted by an unauthorized person.

  17. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  18. Characterization of Optical Components for the Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Essinger-Hileman, Thomas; Xu, Zhilei; Marriage, Tobias

    2016-06-01

    Inflation theory posits a rapid expansion at the beginning of the universe that explains the homogeneity, isotropy and flatness of our universe. The theory postulates perturbations to space-time with both scalar and tensor components, the latter of which would give rise to a "B-mode" polarization in the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS), with its broadband frequency coverage and rapid front-end modulation, has the unique ability to map the entire B-mode angular power spectrum where there the inflationary signal is expected to dominate. In this poster, I give an overview of CLASS and present work on the characterization of CLASS optical components, including infrared filters, using a custom Fourier Transform Interferometer.

  19. Wide-window angular spectrum method for optical field propagation through ABCD systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanyang; Guo, Jin; Liu, Lisheng; Wang, Tingfeng; Shao, Junfeng

    2014-10-01

    The wide-window angular spectrum (WWAS) method is proposed to simulate field propagation through paraxial optical systems, mainly based on the Collins formula and the scaled Fourier transform (SFT). The application of the SFT algorithm makes the sampling processes in the input space, output space and spatial-frequency domains completely independent, and as a result, we can choose a larger calculation window size for simulating long-distance propagation without increasing the calculation burden. The sampling criteria are derived analytically and used in the numerical simulations to present the correctness and effectiveness of the WWAS algorithm. The advantages of the algorithm are shown by making a comparison with other angular spectrum methods for the free-space propagation case.

  20. Sizing of individual aerosol particles using TAOS (Two-dimensional Angular Optical Scattering) pattern total intensity

    NASA Astrophysics Data System (ADS)

    Zallie, J. T.; Aptowicz, K. B.; Martin, S.; Pan, Y.

    2015-12-01

    The morphology of single aerosol particles has been explored previously using the TAOS (Two-dimensional Angular Optical Scattering) technique, which captures angularly resolved scattering patterns. Particle size is known to strongly influence the light scattering properties of aerosols and therefore is a critical parameter to discern from the TAOS patterns. In this work, T-matrix simulation of light scattering from spherical and spheroidal particles is used to explore the possibility of sizing particles from the total light scattering signal detected using the TAOS technique. Scattering patterns were calculated for particles that span various particle sizes, spheroidal shapes, complex refractive indices and particles orientations representative of atmospheric aerosol distributions. A power law relationship between particle size and total scattering intensity was found that could crudely size particles but with significant error.

  1. Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing.

    PubMed

    Ueno, Y; Toda, Y; Adachi, S; Morita, R; Tawara, T

    2009-10-26

    We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (approximately 1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials. PMID:19997285

  2. Superposition and detection of two helical beams for optical orbital angular momentum communication

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Dong; Gao, Chunqing; Gao, Mingwei; Qi, Xiaoqing; Weber, Horst

    2008-07-01

    A loop-like system with a Dove prism is used to generate a collinear superposition of two helical beams with different azimuthal quantum numbers in this manuscript. After the generation of the helical beams distributed on the circle centered at the optical axis by using a binary amplitude grating, the diffractive field is separated into two polarized ones with the same distribution. Rotated by the Dove prism in the loop-like system in counter directions and combined together, the two fields will generate the collinear superposition of two helical beams in certain direction. The experiment shows consistency with the theoretical analysis. This method has potential applications in optical communication by using orbital angular momentum of laser beams (optical vortices).

  3. Theory and imaging applications of the angular correlation of multiply-scattered optical fields

    NASA Astrophysics Data System (ADS)

    Hoover, Brian Gilday

    Through analysis of the field angular correlation the scattering of quasimonochromatic optical fields is considered as a coherence-based process well into the multiple scattering regime. Coherence analysis leads to the prediction of coherent effects in multiply-scattered light that can be applied to perform computed amplitude- phase imaging through turbid media and noninvasive laser material characterization. With the incentive of improved imaging through turbid media an experiment is described that directly compares the degradations, with the number of scattering mean free paths, of the field angular correlation and the correlation of the scattered wave with an unscattered reference wave, both of which can be used to form gates for imaging techniques in scattered light. Results for 20μ m polymer spheres show that the former correlation is consistently larger well into the multiple scattering regime (up to 10 mean free paths) for wavevector separations less than at least 50mm -1, and that the two correlations tend to merge in this scattering regime for larger wavevector separations. The implications of the results for imaging applications are considered. Complementary theoretical formulations of coherence effects in multiply-scattered fields are presented. Relations of the spatial coherence properties to the angular characteristics of the scattered field are established. A coherence-based model of multiple scattering processes is derived. The model predicts radiative-transfer-like behavior for restricted observational parameters, but also shows that the coherence-based process is required for an accurate description of the scattered field over an observational parameters. The applicability of the model to noninvasive laser material characterization is emphasized. A wavefront-sensor method is presented for measurement of the complex field angular correlation function of a three-dimensional turbid medium. The angular correlation function is measured at a series of

  4. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Poulton, R.; Roche, P. F.; Hernán-Caballero, A.; Aretxaga, I.; Martínez-Paredes, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Díaz-Santos, T.; Levenson, N. A.; Packham, C.; Colina, L.; Esquej, P.; González-Martín, O.; Ichikawa, K.; Imanishi, M.; Rodríguez Espinosa, J. M.; Telesco, C.

    2016-08-01

    We investigate the evolutionary connection between local IR-bright galaxies (log LIR ≥ 11.4 L⊙) and quasars. We use high angular resolution (˜ 0.3-0.4 arcsec˜ few hundred parsecs) 8 - 13 μm ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear 11.3 μm PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star-formation dominated phase.

  5. Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Hadjara, M.; Vakili, F.; Bendjoya, P.; Millour, F.; Abe, L.; Carciofi, A. C.; Faes, D. M.; Kervella, P.; Lagarde, S.; Marconi, A.; Monin, J.-L.; Niccolini, G.; Petrov, R. G.; Weigelt, G.

    2012-09-01

    Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims: Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods: We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br γ line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during ~5 h/night, corresponding to ~60° position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results: By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius Req = 11.6 ± 0.3 R⊙, equatorial rotation velocity Veq = 298 ± 9 km s-1, rotation axis inclination angle i = 101.5 ± 5.2°, and rotation axis position angle (from North to East) PArot = 34.9 ± 1.6°. From these parameters and the stellar distance, the equatorial angular diameter ⌀eq of Achernar is found to be 2.45 ± 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, ⌀eq and PArot measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions: The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed

  6. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    SciTech Connect

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing; Guo, Rui-Peng; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing

    2014-10-21

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications are discussed.

  7. Control of optical orbital angular momentum by Vogel spiral arrays of metallic nanoparticles.

    PubMed

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2012-12-15

    In this Letter, we experimentally demonstrate structured light carrying multiple values of orbital angular momentum (OAM) in the farfield scattering region of Vogel spiral arrays of metallic nanoparticles. Using Fourier-Hankel mode decomposition analysis and interferometric reconstruction of the complex amplitude of scattered waves, we show the ability to encode well-defined numerical sequences, determined by the aperiodic spiral geometry, into azimuthal OAM values, in excellent agreement with analytical scattering theory. The generation of azimuthal sequences of OAM values by light scattering from engineered aperiodic surfaces is relevant to a number of device applications for secure optical communication, classical cryptography, and quantum cryptography. PMID:23258010

  8. Phase conjugation and adiabatic mode conversion in a driven optical parametric oscillator with orbital angular momentum

    SciTech Connect

    Coutinho dos Santos, B.; Souza, C. E. R.; Dechoum, K.; Khoury, A. Z.

    2007-11-15

    We developed a theoretical model for the spatial mode dynamics of an optical parametric oscillator under injection of orbital angular momentum. This process is interpreted in terms of a Poincare representation of first order spatial modes. The spatial properties of the down-converted fields can be easily understood from their symmetries in this geometric representation. By considering an adiabatic mode conversion of the injected signal, we calculate the evolution of the down-converted beams. A phase conjugation effect is predicted which is a consequence of the symmetry in the Poincare sphere. We also propose an experiment to measure this effect.

  9. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing.

    PubMed

    Baghdady, Joshua; Miller, Keith; Morgan, Kaitlyn; Byrd, Matthew; Osler, Sean; Ragusa, Robert; Li, Wenzhe; Cochenour, Brandon M; Johnson, Eric G

    2016-05-01

    In this work we experimentally demonstrated an underwater wireless optical communications (UWOC) link over a 2.96 m distance with two 445-nm fiber-pigtailed laser diodes employing Orbital Angular Momentum (OAM) to allow for spatial multiplexing. Using an on-off keying, non-return-to-zero (OOK-NRZ) modulation scheme, a data rate of 3 Gbit/s was achieved in water with an attenuation coefficient of 0.4128 m-1 at an average bit error rate (BER) of 2.073 × 10-4, well beneath the forward error correction (FEC) threshold. PMID:27137593

  10. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics.

    PubMed

    Li, Shuhui; Wang, Jian

    2016-04-01

    By using an adaptive feedback correction technique, we experimentally demonstrate turbulence compensation for free-space four-fold and eight-fold 16-ary quadrature amplitude modulation (16-QAM) carrying orbital angular momentum (OAM) multicasting links. The performance of multicasted OAM beams through emulated atmospheric turbulence and adaptive optics assisted compensation loop is investigated. The experimental results show that the scheme can efficiently compensate for the atmospheric turbulence induced distortions, i.e., reducing power fluctuation of multicasted OAM channels, suppressing inter-channel crosstalk, and improving the bit-error rate (BER) performance. PMID:27192267

  11. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    NASA Astrophysics Data System (ADS)

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing; Guo, Rui-Peng; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing

    2014-10-01

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications are discussed.

  12. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB. PMID:24690870

  13. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    SciTech Connect

    Sana, H.; Lacour, S.; Gauchet, L.; Pickel, D.; Berger, J.-P.; Norris, B.; Olofsson, J.; Absil, O.; De Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved

  14. High-angular resolution observations towards OMC-2 FIR 4: Dissecting an intermediate-mass protocluster

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Sánchez-Monge, Á.; Ceccarelli, C.; Dominik, C.; Kama, M.; Caux, E.; Fontani, F.; Fuente, A.; Ho, P. T. P.; Neri, R.; Shimajiri, Y.

    2013-08-01

    Context. Intermediate-mass stars are an important ingredient of our Galaxy and a key to understanding how high- and low-mass stars form in clusters. One of the closest known young intermediate-mass protoclusters is OMC-2 FIR 4, which is located at a distance of 420 pc in Orion. This region is one of the few where the complete 500-2000 GHz spectrum has been observed with the heterodyne spectrometer HIFI on board the Herschel satellite, and unbiased spectral surveys at 0.8, 1, 2, and 3 mm have been obtained with the JCMT and IRAM 30-m telescopes. Aims: We aim to disentangle the core multiplicity, to investigate the morphology of this region in order to study the formation of a low- and intermediate-mass protostar cluster, and to aid in interpretation of the single-dish line profiles already in our hands. Methods: We used the IRAM Plateau de Bure Interferometer to image OMC-2 FIR 4 in the 2-mm continuum emission, as well as in DCO+(2-1), DCN(2-1), C34S(3-2), and several CH3OH lines. In addition, we analysed observations of the NH3(1, 1) and (2, 2) inversion transitions that used the Very Large Array of the NRAO. The resulting maps have an angular resolution that allows us to resolve structures of 5″, which is equivalent to ~2000 AU. Results: Our observations reveal three spatially resolved sources within OMC-2 FIR 4, of one or several solar masses each, with hints of further unresolved substructure within them. Two of these sources have elongated shapes and are associated with dust continuum emission peaks, thus likely containing at least one molecular core each. One of them also displays radio continuum emission, which may be attributed to a young B3-B4 star that dominates the overall luminosity output of the region. The third identified source displays a DCO+(2-1) emission peak and weak dust continuum emission. Its higher abundance of DCO+ relative to the other two regions suggests a lower temperature, hence its possible association with either a younger low

  15. Properties of dense cores in clustered massive star-forming regions at high angular resolution

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Álvaro; Palau, Aina; Fontani, Francesco; Busquet, Gemma; Juárez, Carmen; Estalella, Robert; Tan, Jonathan C.; Sepúlveda, Inma; Ho, Paul T. P.; Zhang, Qizhou; Kurtz, Stan

    2013-07-01

    We aim at characterizing dense cores in the clustered environments associated with intermediate-/high-mass star-forming regions. For this, we present a uniform analysis of Very Large Array NH3 (1,1) and (2,2) observations towards a sample of 15 intermediate-/high-mass star-forming regions, where we identify a total of 73 cores, classify them as protostellar, quiescent starless, or perturbed starless, and derive some physical properties. The average sizes and ammonia column densities of the total sample are ˜0.06 pc and ˜1015 cm-2, respectively, with no significant differences between the starless and protostellar cores, while the linewidth and rotational temperature of quiescent starless cores are smaller, ˜1.0 km s-1 and 16 K, than linewidths and temperatures of protostellar (˜1.8 km s-1 and 21 K), and perturbed starless (˜1.4 km s-1 and 19 K) cores. Such linewidths and temperatures for these quiescent starless cores in the surroundings of intermediate-/high-mass stars are still significantly larger than the typical linewidths and rotational temperatures measured in starless cores of low-mass star-forming regions, implying an important non-thermal component. We confirm at high angular resolutions (spatial scales ˜0.05 pc) the correlations previously found with single-dish telescopes (spatial scales ≳ 0.1 pc) between the linewidth and the rotational temperature of the cores, as well as between the rotational temperature and the linewidth with respect to the bolometric luminosity. In addition, we find a correlation between the temperature of each core and the incident flux from the most massive star in the cluster, suggesting that the large temperatures measured in the starless cores of our sample could be due to heating from the nearby massive star. A simple virial equilibrium analysis seems to suggest a scenario of a self-similar, self-gravitating, turbulent, virialized hierarchy of structures from clumps (˜0.1-10 pc) to cores (˜0.05 pc). A closer

  16. Spectro-angular optical biosensor based on surface plasmon resonance operating in the visible spectrum

    NASA Astrophysics Data System (ADS)

    Filion Côté, Sandrine; Roche, Philip J. R.; Kirk, Andrew G.

    2013-02-01

    Surface plasmon resonance (SPR) sensing is one of the most widely used methods to implement biosensors due to its sensitivity and capacity for label-free detection. Most conventional SPR sensors measure the change in reflectance at a metal-dielectric interface as a function of either angle or wavelength. However, it has recently been shown that an increase in sensitivity and a greater robustness against noise can be achieved by measuring reflectivity in both domains simultaneously, in a so-called spectro-angular SPR biosensor. This provides a surface plasmon dispersion curve captured on an image sensor that can be tracked in real time. A single value decomposition method is used to project the dispersion curve onto a basis set and allow the image obtained from an unknown refractive index sample to be compared very accurately with a pre-calculated reference set. The objective of the current work is to further improve the detection limit of the spectro-angular biosensor. Simulations have shown that the spatial resolution and numerical precision of the image sensor have a significant impact on the accuracy of the refractive index change measurement. Therefore, upgrading the cameras used for the data acquisition could significantly improve the detection limit of the SPR biosensor. In this work, simulation results are presented to justify the modifications of the experimental system and to estimate the expected improvement in the detection limit of the spectro-angular biosensor by using higher spatial resolution and higher data precision cameras. Experimental results are presented and compared with the previous design.

  17. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    PubMed

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively. PMID:26698429

  18. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    PubMed

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications. PMID:27607486

  19. Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems.

    PubMed

    Correia, Carlos M; Jackson, Kate; Véran, Jean-Pierre; Andersen, David; Lardière, Olivier; Bradley, Colin

    2015-06-10

    Multi-object astronomical adaptive optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arcminutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular linear-quadratic-Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [J. Opt. Soc. Am. A31, 101 (2014)10.1364/JOSAA.31.000101JOAOD61084-7529], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wavefronts are never explicitly estimated in the volume, providing considerable computational savings on 10-m-class telescopes and beyond. We find that for Raven, a 10-m-class MOAO system with two science channels, the SA-LQG improves the limiting magnitude by two stellar magnitudes when both the Strehl ratio and the ensquared energy are used as figures of merit. The sky coverage is therefore improved by a factor of ~5. PMID:26192825

  20. The SAMI Galaxy Survey: the link between angular momentum and optical morphology

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Fogarty, L. M. R.; Bekki, K.; van de Sande, J.; Couch, W.; Catinella, B.; Colless, M.; Obreschkow, D.; Taranu, D.; Tescari, E.; Barat, D.; Bland-Hawthorn, J.; Bloom, J.; Bryant, J. J.; Cluver, M.; Croom, S. M.; Drinkwater, M. J.; d'Eugenio, F.; Konstantopoulos, I. S.; Lopez-Sanchez, A.; Mahajan, S.; Scott, N.; Tonini, C.; Wong, O. I.; Allen, J. T.; Brough, S.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kelvin, L. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Richards, S.; Sharp, R.; Sweet, S. M.

    2016-08-01

    We investigate the relationship between stellar and gas specific angular momentum j, stellar mass M★ and optical morphology for a sample of 488 galaxies extracted from the SAMI Galaxy Survey. We find that j, measured within one effective radius, monotonically increases with M★ and that, for M★ > 109.5 M⊙, the scatter in this relation strongly correlates with optical morphology (i.e., visual classification and Sérsic index). These findings confirm that massive galaxies of all types lie on a plane relating mass, angular momentum and stellar light distribution, and suggest that the large-scale morphology of a galaxy is regulated by its mass and dynamical state. We show that the significant scatter in the M★ - j relation is accounted for by the fact that, at fixed stellar mass, the contribution of ordered motions to the dynamical support of galaxies varies by at least a factor of three. Indeed, the stellar spin parameter (quantified via λR) correlates strongly with Sérsic and concentration indices. This correlation is particularly strong once slow-rotators are removed from the sample, showing that late-type galaxies and early-type fast rotators form a continuous class of objects in terms of their kinematic properties.

  1. Dual resolution, vacuum compatible optical mount

    DOEpatents

    Halpin, John Michael

    2011-10-04

    An optical mount for an optical element includes a mounting plate, a lever arm pivot coupled to mounting plate, and an adjustment plate. The optical mount also includes a flexure pivot mechanically coupling the adjustment plate to the mounting plate and a lever arm. The optical mount further includes a first adjustment device extending from the adjustment plate to make contact with the lever arm at a first contact point. A projection of a line from the first contact point to a pivot point, measured along the lever arm, is a first predetermined distance. The optical mount additionally includes a second adjustment device extending from the adjustment plate to make contact with the lever arm at a second contact point. A projection of a line from the second contact point to the pivot point, measured along the lever arm, is a second predetermined distance greater than the first predetermined distance.

  2. Studying the Transfer of Optical Orbital Angular Momentum to a Helical Bacterium

    NASA Astrophysics Data System (ADS)

    Davis, Dana; Horton, Timothy; Reichman, Steven; Link, Justin; Schmitzer, Heidrun; Robbins, Jennifer; Engle, Dorothy

    2014-03-01

    The purpose of this research is to study how the angular momentum of an optical vortex created by a 1064 nm laser is transferred to a helical shaped bacterium. When under the influence of a laser in optical tweezers, the helical shape of the bacteria causes it to spin in the trap. A spatial light modulator reshapes the beam and is twisted either into a left handed or right handed helix. This results in an optical vortex with a diameter which can be adjusted from roughly half a micron to three microns. The rotational speed of a helical bacterium in this type of optical trap should depend on the handedness of the vortex and the handedness of the bacterium being tweezed. When both the tweezing beam and the bacterium have the same handedness, a slight reduction in rotational speed should be observed; when the tweezing beam has the opposite handedness of the bacterium, a slight increase in rotational speed should be expected. We present our first experiments with magnetospirillum magnetotacticum and rhodospirillum rubrum.

  3. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-09-01

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded "space" for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ = ± 2 q ℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  4. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    SciTech Connect

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  5. A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe

    NASA Astrophysics Data System (ADS)

    Patience, J.; Ghez, A. M.; Reid, I. N.; Matthews, K.

    2002-03-01

    Two hundred forty-two members of the Praesepe and α Persei clusters have been surveyed with high angular resolution 2.2 μm speckle imaging on the 3 m Infrared Telescope Facility, the 5 m Hale, and the 10 m Keck telescopes, along with direct imaging using the near-infrared camera (NICMOS) aboard the Hubble Space Telescope. The observed stars range in spectral type from B (~5 Msolar) to early M (~0.5 Msolar), with the majority of the targets more massive than ~0.8 Msolar. The one quadruple and 39 binary systems detected encompass separations from 0.053" to 7.28" 28 of the systems are new detections, and there are nine candidate substellar companions. The results of the survey are used to test binary star formation and evolution scenarios and to investigate the effects of companion stars on X-ray emission and stellar rotation. The main results are as follows:1. Over the projected separation range of 26 to 581 AU and magnitude differences of ΔK<4.0 (comparable to mass ratios q=Msec/Mprim>0.25), the companion-star fraction (CSF) for α Per is 0.09+/-0.03, and that for Praesepe is 0.10+/-0.03. This fraction is consistent with the field G dwarf value, implying that there is not a systematic decline in multiplicity with age at these separations on timescales of a few times 107 yr. The combination of previous spectroscopic work and the current cluster survey results in a cluster binary separation distribution that peaks at 4+1-1.5 AU, a significantly smaller value than the peaks of both the field G dwarf and the nearby T Tauri distributions. If the field G dwarf distribution represents a superposition of distributions from the populations that contributed to the field, then the data imply that ~30% of field binaries formed in dark clouds like the nearby T Tauri stars and the remaining ~70% formed in denser regions.2. An exploration of the binary star properties reveals a cluster CSF that increases with decreasing target mass, and a cluster mass ratio distribution that

  6. Development of high angular resolution x-ray telescopes based on slumped glass foils

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Basso, S.; Borsa, F.; Citterio, O.; Civitani, M.; Conconi, P.; Pagano, G.; Pareschi, G.; Proserpio, L.; Salmaso, B.; Sironi, G.; Spiga, D.; Tagliaferri, G.; Zambra, A.; Parodi, G.; Martelli, F.; Gallieni, D.; Tintori, M.; Bavdaz, M.; Wille, E.

    2012-09-01

    The mirrors of the International X-ray Observatory (IXO) were based on a large number of high quality segments, aiming at achieving a global spatial resolution better than 5” HEW while giving a large collecting area (around 3m2@ 1 keV). A study concerning the hot slumping of thin glass foils was started in Europe, funded by ESA and led by the Brera Astronomical Observatory (INAF-OAB), for the development of a replication technology based on glass material. The study is currently continuing even after the IXO program has been descoped and renamed ATHENA, in the perspective of using the technology under development for other future missions or applications. INAF-OAB efforts have been focused on the "Direct" slumping approach with convex moulds, meaning that during the thermal cycle the optical surface of the glass is in direct contact with the mould surface. The single mirror segments are made of thin glass plates (0.4 mm thick), with a reflecting area of 200 mm × 200 mm. The adopted integration process foresees the use of glass reinforcing ribs for bonding together the plates in such a way to form a rigid and stiff stack of segmented mirror shells; the stack is supported by a thick backplane. During the bonding process, the plates are constrained in close contact with the surface of a precisely figured integration master by the application of vacuum pump suction. In this way, the springback deformations and the low frequency errors still present in the plates' profile after slumping can be corrected. The status of the technology development is presented in this paper, together with the description and metrology of the prototypes already realized or under construction at the Observatory laboratories.

  7. Multispectral angular domain optical tomography in scattering media with argon and diode laser sources

    NASA Astrophysics Data System (ADS)

    Chan, Paulman K. Y.; Vasefi, Fartash; Chapman, Glenn H.; Kaminska, Bozena; Pfeiffer, Nick

    2007-02-01

    Angular Domain Imaging (ADI) within highly scattering media employs micromachined angular filter tunnels to detect nonscattered photons which pass through the tunnels unattenuated while scattered photons collide with the tunnel walls. Each tunnel is micromachined approximately 51 μm wide by 10 mm long in silicon, giving a maximum acceptance angle of 0.29 degrees. The ADI technique is inherently independent of wavelength, and thus multispectral laser sources can be incorporated. Previous ADI experiments employed a 488-514 nm Argon ion laser source. This paper describes the construction of a new imaging system utilizing a high-power (up to 0.5 W) laser diode at the 670 nm wavelength, along with an aspheric and cylindrical lens system for shaping the beam into a collimated line of light. ADI results of biological samples (i.e. chicken breast tissue) are also presented. Image resolution is 204 μm or better in compressed chicken breast tissue approximately 3.8 mm in thickness. Digital image processing techniques are employed to improve image contrast, definition, and detectability of test structures. Because silicon is 40% reflective, scattered light at up to three times the acceptance angle is not sufficiently absorbed by the angular filter tunnels and contributes significant background noise, thus decreasing image contrast and detectability. Roughening of the tunnel surface using a NH4OH etchant solution scatters light hitting the walls, thus allowing it to be absorbed. Images after roughening show dramatic reductions in background scattered light levels between tunnels, suggesting that further experiments will make progress towards improved contrast and detectability of structures.

  8. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  9. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    NASA Astrophysics Data System (ADS)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  10. High resolution interferometer with multiple-pass optical configuration.

    PubMed

    Ahn, Jeongho; Kim, Jong-Ahn; Kang, Chu-Shik; Kim, Jae-Wan; Kim, Soohyun

    2009-11-01

    An interferometer having fourteen times higher resolution than a conventional single-pass interferometer has been developed by making multiple-pass optical path. To embody the multiple-pass optical configuration, a two-dimensional corner cube array block was designed, and its symmetric structure minimized the measurement error. The effect from the alignment error and the imperfection of corner cube is calculated as picometer level. An experiment proves that the suggested interferometer has about 45 nm of optical resolution and its nonlinearity is about 0.5 nm in peak-to-valley. PMID:19997342

  11. Laser-scanning optical-resolution photoacoustic microscopy.

    PubMed

    Xie, Zhixing; Jiao, Shuliang; Zhang, Hao F; Puliafito, Carmen A

    2009-06-15

    We have developed a laser-scanning optical-resolution photoacoustic microscopy method that can potentially fuse with existing optical microscopic imaging modalities. To acquire an image, the ultrasonic transducer is kept stationary during data acquisition, and only the laser light is raster scanned by an x-y galvanometer scanner. A lateral resolution of 7.8 microm and a circular field of view with a diameter of 6 mm were achieved in an optically clear medium. Using a laser system working at a pulse repetition rate of 1,024 Hz, the data acquisition time for an image consisting of 256 x 256 pixels was less than 2 min. PMID:19529698

  12. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  13. Simulations of atomic resolution tip-enhanced optical microscopy

    NASA Astrophysics Data System (ADS)

    Downes, Andrew; Salter, Donald; Elfick, Alistair

    2006-11-01

    Optical techniques can access a wealth of information but traditionally their resolution has been restricted by the diffraction limit. Near-field techniques, which used nanoscale apertures or nanotip electric field enhancement, have succeeded in circumventing Abbe’s law. We show that atomic resolution is theoretically achievable for tip enhanced optical microscopy. Using finite element analysis of the electromagnetic field around a small radius metallic scanning probe microscopy tip, we modeled various tip radii and materials, and an aqueous environment as well as ambient air. For a 1 nm gold tip we predict a strong red shift, and surprisingly high values for the enhancement of the intensity of scattered light over 107. For this tip, we predict that 0.2 nm lateral resolution in optical imaging is achievable good enough to resolve individual atomic bonds. The promise of optical data at these spatial scales offers great potential for nanometrology and nanotechnology applications.

  14. High-resolution adaptive optics test bed for vision science

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Thompson, Charles A.; Olivier, Scot S.; Bauman, Brian J.; Flath, Laurence M.; Silva, Dennis A.; Sawvel, Robert M.; Barnes, Thomas B.; Werner, John S.

    2002-02-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  15. In vivo switchable optical- and acoustic-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Kim, Jaewoo; Kim, Chulhong

    2016-03-01

    Photoacoustic microscopy (PAM) provides high resolution and large penetration depth by utilizing the high optical sensitivity and low scattering of ultrasound. Hybrid PAM systems can be classified into two categories: opticalresolution photoacoustic microscopy (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). ORPAM provides a very high lateral resolution with a strong optical focus, but the penetration depth is limited to one optical transport mean free path. AR-PAM provides a relatively greater penetration depth using diffused light in biological tissues. The resolution of AR-PAM is determined by its ultrasonic parameters. In this study, we performed an in vivo testing of a switchable OR-/AR-PAM system. In this system, two modes can be switched by changing its collimator lens and optical fiber. The lateral resolution of OR-PAM was measured using a resolution test target, and the full width at half maximum (FWHM) of the edge spread function was 2.5 μm. To calculate the lateral resolution of ARPAM, a 6-μm-diameter carbon fiber was used, and the FWHM of the line spread function was 80.2 μm. We successfully demonstrated the multiscale imaging capability of the switchable OR-/AR-PAM system by visualizing microvascular networks in mouse ears, brain, legs, skin, and eyes.

  16. Photonic orbital angular momentum in starlight. Further analysis of the 2011 Starfire Optical Range Observations

    NASA Astrophysics Data System (ADS)

    Oesch, Denis W.; Sanchez, Darryl J.

    2014-07-01

    Context. Each attempt by the Atmospheric Simulation and Adaptive-optics Laboratory Testbed (ASALT) research group to detect turbulence-induced photonic orbital angular momentum (POAM) has been successful, spanning laboratory, simulation and field experiments, with the possible exception of the 2011 Starfire Optical Range (SOR) astronomical observations, a search for POAM induced by astronomical sources. Aims: The purposes of this work are to discuss how POAM from astronomical turbulent assemblages of molecules or atoms (TAMA) would appear in observations and then to reanalyze the data from the 2011 SOR observations using a more refined technique as a demonstration of POAM in starlight. Methods: This work uses the method of projections used previously in analysis of terrestrial data. Results: Using the method of projections, the noise floor of the system was reevaluated and is found to be no greater than 1%. Reevaluation of the 2011 SOR observations reveals that a POAM signal is evident in all of the data. Conclusions: POAM signals have been found in every instance of extended propagation through turbulence conducted by the ASALT research group, including the 2011 SOR observations. POAM is an inevitable result of the propagation of optical waves through turbulence. We express our gratitude to the Air Force Office of Scientific Research for their support of this research.

  17. Classical to quantum optical network link for orbital angular momentum-carrying light.

    PubMed

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen

    2015-07-13

    Using orbital angular momentum (OAM) conservation in second-order nonlinear interaction processes, we create a classical to quantum optical network link in the OAM degrees of freedom of light via sum frequency generation, followed by spontaneous parametric down-conversion. Coherent OAM-carrying beams at 1550 nm are up-converted to 525.5-nm OAM-carrying beams in the first crystal, and are used to pump a second crystal to generate non-degenerate OAM entangled photon pairs at 795 nm and 1550 nm. By switching the OAM carried by the classical part, OAM correlation in the quantum part is shifted. High-level OAM entanglements in two-dimensional subspaces are verified. PMID:26191902

  18. Measurement of angular antispring effect in optical cavity by radiation pressure

    SciTech Connect

    Sakata, Shihori; Nishizawa, Atsushi; Ishizaki, Hideharu; Kawamura, Seiji; Miyakawa, Osamu

    2010-03-15

    We present a measurement of an angular antispring effect caused by radiation pressure in an optical cavity with a mirror of 20 mg suspended by a silica fiber of 10 {mu}m in diameter. The antispring effect occurred since the torque on the suspended mirror is increased with the higher radiation pressure force, pushing the system towards instability. We measured shifts of the rotational resonant frequencies of the suspended mirror from 2.0 Hz to 1.0 Hz with the increased circulating power. It is verified that the result agrees with the theoretical curve to show the antispring effect. The result proves that it will be possible to make a reliable control system model of the radiation pressure effect for the second generation of the gravitational wave detectors.

  19. Ultrahigh-Resolution Optical Coherence Tomography Using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Fujimoto, J. G.; Aguirre, A. D.; Chen, Y.; Herz, P. R.; Hsiung, P.-L.; Ko, T. H.; Nishizawa, N.; Kärtner, F. X.

    Optical coherence tomography (OCT) is an emerging optical imaging modality for biomedical research and clinical medicine. OCT can perform high resolution, cross-sectional tomographic imaging in materials and biological systems by measuring the echo time delay and magnitude of backreflected or backscattered light [1]. In medical applications, OCT has the advantage that imaging can be performed in situ and in real time, without the need to remove and process specimens as in conventional excisional biopsy and histopathology. OCT can achieve axial image resolutions of 1 to 15 μm; one to two orders of magnitude higher than standard ultrasound imaging. The image resolution in OCT is determined by the coherence length of the light source and is inversely proportional to its bandwidth. Femtosecond lasers can generate extremely broad bandwidths and have enabled major advances in ultrahigh-resolution OCT imaging. This chapter provides an overview of OCT technology and ultrahigh-resolution OCT imaging using femtosecond lasers.

  20. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  1. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  2. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  3. Linear Transforms for Fourier Data on the Sphere: Application to High Angular Resolution Diffusion MRI of the Brain

    PubMed Central

    Haldar, Justin P.; Leahy, Richard M.

    2013-01-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603

  4. The high angular resolution view of local X-ray selected AGN in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Asmus, D.; Hönig, S. F.; Smette, A.; Duschl, W. J.; Matsuta, K.; Ichikawa, K.; Ueda, Y.; Terashima, Y.; Gilli, R.; Comastri, A.; Vignali, C.

    2012-09-01

    Hard X-ray and mid-infrared observations probe the peaks in broadband spectra of active galactic nucle (AGN), sampling the bulk of their accretion energy. But bolometric emission measurements of Seyfert galaxies can be strongly biased by unresolved nuclear stellar emission. Disentangling these components using emission line proxies for the intrinsic AGN power suffers from various uncertainties. Here, we show that fundamental new insights into AGN are enabled by using high angular resolution observations of Seyferts with the largest telescopes currently available. We have imaged the 9 month Swift/BAT selected AGN sample using the VLT, Gemini and Subaru at their diffraction-limit at 12°. Collecting all high angular resolution data yields a large database of 150 AGN of all types with a point-like detected nucleus. This sample serves as a benchmark for studies on unification issues and accurate (unbiased) AGN bolometric corrections. We discuss some key results, including new inferences on the structures of Seyfert nuclei from the enlarged infrared/Xray correlation and show that the MIR to X-ray flux ratio is independent of the Eddington fraction (lEdd) over about 4 orders of magnitude down to lEdd 10^{-4} at least, which appears to be the threshold below which accretion properties change.

  5. Free-space optical communications using encoding of data on different orbital-angular-momentum modes

    NASA Astrophysics Data System (ADS)

    Willner, Asher J.; Ren, Yongxiong; Xie, Guodong; Li, Long; Cao, Yinwen; Zhao, Zhe; Liao, Peicheng; Wang, Zhe; Yan, Yan; Ahmed, Nisar; Liu, Cong; Tur, Moshe; Willner, Alan E.

    2016-03-01

    Free-space optical communications can play a significant role in line-of-sight links. In general, data can be encoded on the amplitude, phase, or temporal position of the optical wave. Importantly, there are environments for which ever-more information is desired for a given amount of optical energy. This can be accomplished if there are more degrees-of-freedom that the wave can occupy to provide higher energy efficiency for a given capacity (i.e., bits/photon). Traditionally, free-space optical links have used only a single beam, such that there was little opportunity for a wave to occupy more than one spatial location, thereby not allowing the spatial domain to be used for data encoding. Recently, space- and mode-multiplexing has been demonstrated to simultaneously transmit multiple data-carrying free-space beams. Each spatially overlapping mode was orthogonal to other modes and carried a unique amount of orbital-angular-momentum (OAM). In this paper, we consider that OAM modes could be a data-encoding domain, such that a beam could uniquely occupy one of many modes, i.e., 4 modes would provide 4 possible states and double the bits of information for the same amount of energy. In the past, such OAM-based encoding was shown at kHz data rates. We will present the architecture and experimental results for OAM-based data encoding for a free-space 1.55-μm data link under different system parameters. Key features of the results include: (a) encoding on several modes is accomplished using a fast switch, and (b) low bit-error-rates are achieved at >Gbit/s, which is orders-of-magnitude faster than previous results.

  6. Evolution of the vortex and the asymmetrical parts of orbital angular momentum in separable first-order optical systems.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2004-07-15

    We analyze the evolution of the vortex and the asymmetrical parts of orbital angular momentum during its propagation through separable first-order optical systems. We find that the evolution of the vortex part depends on only parameters a(x), a(y), b(x), and b(y) of the ray transformation matrix and that isotropic systems with the same ratio b/a produce the same change of the vortex part of the orbital angular momentum. Finally, it is shown that, when light propagates through an optical fiber with a quadratic refractive-index profile, the vortex part of the orbital angular momentum cannot change its sign more than four times per period. PMID:15309827

  7. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    SciTech Connect

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  8. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media.

    PubMed

    Gardner, Adam R; Hayakawa, Carole K; Venugopalan, Vasan

    2014-06-01

    We present a coupled forward-adjoint Monte Carlo (cFAMC) method to determine the spatially resolved sensitivity distributions produced by optical interrogation of three-dimensional (3-D) tissue volumes. We develop a general computational framework that computes the spatial and angular distributions of the forward-adjoint light fields to provide accurate computations in mesoscopic tissue volumes. We provide full computational details of the cFAMC method and provide results for low- and high-scattering tissues probed using a single pair of optical fibers. We examine the effects of source-detector separation and orientation on the sensitivity distributions and consider how the degree of angular discretization used in the 3-D tissue model impacts the accuracy of the resulting absorption sensitivity profiles. We discuss the value of such computations for optical imaging and the design of optical measurements. PMID:24972356

  9. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media

    PubMed Central

    Gardner, Adam R.; Hayakawa, Carole K.; Venugopalan, Vasan

    2014-01-01

    Abstract. We present a coupled forward-adjoint Monte Carlo (cFAMC) method to determine the spatially resolved sensitivity distributions produced by optical interrogation of three-dimensional (3-D) tissue volumes. We develop a general computational framework that computes the spatial and angular distributions of the forward-adjoint light fields to provide accurate computations in mesoscopic tissue volumes. We provide full computational details of the cFAMC method and provide results for low- and high-scattering tissues probed using a single pair of optical fibers. We examine the effects of source-detector separation and orientation on the sensitivity distributions and consider how the degree of angular discretization used in the 3-D tissue model impacts the accuracy of the resulting absorption sensitivity profiles. We discuss the value of such computations for optical imaging and the design of optical measurements. PMID:24972356

  10. Improving Recording Density of All-Optical Magnetic Storage by Using High-Pass Angular Spectrum Filters

    NASA Astrophysics Data System (ADS)

    Zhuang, You-Yi; Zhang, Yao-Ju

    2009-10-01

    A new design is presented to improve the magnetic recording density in all-optical magnetic storage. By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy. Magnetization of the film is induced by the inverse Faraday effect. As the obstructed angle of the filter increases the magnetic recording density increases evidently. The magnetization intensity and the sidelobe effect are also discussed.