Science.gov

Sample records for angularly adaptive p1-double

  1. Novel Approaches to Adaptive Angular Approximations in Computational Transport

    SciTech Connect

    Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-04

    The particle-transport equation is notoriously difficult to discretize accurately, largely because the solution can be discontinuous in every variable. At any given spatial position and energy E, for example, the transport solution  can be discontinuous at an arbitrary number of arbitrary locations in the direction domain. Even if the solution is continuous it is often devoid of smoothness. This makes the direction variable extremely difficult to discretize accurately. We have attacked this problem with adaptive discretizations in the angle variables, using two distinctly different approaches. The first approach used wavelet function expansions directly and exploited their ability to capture sharp local variations. The second used discrete ordinates with a spatially varying quadrature set that adapts to the local solution. The first approach is very different from that in today’s transport codes, while the second could conceivably be implemented in such codes. Both approaches succeed in reducing angular discretization error to any desired level. The work described and results presented in this report add significantly to the understanding of angular discretization in transport problems and demonstrate that it is possible to solve this important long-standing problem in deterministic transport. Our results show that our adaptive discrete-ordinates (ADO) approach successfully: 1) Reduces angular discretization error to user-selected “tolerance” levels in a variety of difficult test problems; 2) Achieves a given error with significantly fewer unknowns than non-adaptive discrete ordinates methods; 3) Can be implemented within standard discrete-ordinates solution techniques, and thus could generate a significant impact on the field in a relatively short time. Our results show that our adaptive wavelet approach: 1) Successfully reduces the angular discretization error to arbitrarily small levels in a variety of difficult test problems, even when using the

  2. Some factors affecting angular resolution in an adaptive antenna

    NASA Astrophysics Data System (ADS)

    Potts, B. M.; Mayhan, J. T.; Simmons, A. J.

    Aperture diameter is the fundamental determinant of angular resolution for an area-coverage satellite communication adaptive nulling antenna. The choice of reference element for a phased array and the choice of phase taper for a multibeam antenna also have a large effect on resolution. For both a multibeam antenna and an array, the choice of quiescent (or unadapted) pattern will affect the resolution. In using an algorithm in which a steering weight vector is prescribed to determine the quiescent pattern, the amplitude and phase distribution of the quiescent vector may be chosen to maximize the resolution of the adapted pattern, at least in certain directions. With an array, the choice of reference element for the quiescent pattern is of most concern.

  3. Adaptive power-controllable orbital angular momentum (OAM) multicasting

    PubMed Central

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  4. Adaptive power-controllable orbital angular momentum (OAM) multicasting.

    PubMed

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, "up-down" power multicasting and "ladder" power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  5. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    SciTech Connect

    Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.

  6. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics.

    PubMed

    Li, Shuhui; Wang, Jian

    2016-04-01

    By using an adaptive feedback correction technique, we experimentally demonstrate turbulence compensation for free-space four-fold and eight-fold 16-ary quadrature amplitude modulation (16-QAM) carrying orbital angular momentum (OAM) multicasting links. The performance of multicasted OAM beams through emulated atmospheric turbulence and adaptive optics assisted compensation loop is investigated. The experimental results show that the scheme can efficiently compensate for the atmospheric turbulence induced distortions, i.e., reducing power fluctuation of multicasted OAM channels, suppressing inter-channel crosstalk, and improving the bit-error rate (BER) performance. PMID:27192267

  7. Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems.

    PubMed

    Correia, Carlos M; Jackson, Kate; Véran, Jean-Pierre; Andersen, David; Lardière, Olivier; Bradley, Colin

    2015-06-10

    Multi-object astronomical adaptive optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arcminutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular linear-quadratic-Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [J. Opt. Soc. Am. A31, 101 (2014)10.1364/JOSAA.31.000101JOAOD61084-7529], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wavefronts are never explicitly estimated in the volume, providing considerable computational savings on 10-m-class telescopes and beyond. We find that for Raven, a 10-m-class MOAO system with two science channels, the SA-LQG improves the limiting magnitude by two stellar magnitudes when both the Strehl ratio and the ensquared energy are used as figures of merit. The sky coverage is therefore improved by a factor of ~5. PMID:26192825

  8. High-Velocity Angular Vestibulo-Ocular Reflex Adaptation to Position Error Signals

    PubMed Central

    Scherer, Matthew; Schubert, Michael C.

    2010-01-01

    Background and Purpose Vestibular rehabilitation strategies including gaze stabilization exercises have been shown to increase gain of the angular vestibulo-ocular reflex (aVOR) using a retinal slip error signal (ES). The identification of additional ESs capable of promoting substitution strategies or aVOR adaptation is an important goal in the management of vestibular hypofunction. Position ESs have been shown to increase both aVOR gain and recruitment of compensatory saccades (CSs) during passive whole body rotation. This may be a useful compensatory strategy for gaze instability during active head rotation as well. In vestibular rehabilitation, the imaginary target exercise is often prescribed to improve gaze stability. This exercise uses a position ES; however, the mechanism for its effect has not been investigated. We compared aVOR gain adaptation using 2 types of small position ES: constant versus incremental. Methods Ten subjects with normal vestibular function were assessed with unpredictable and active head rotations before and after a 20-minute training session. Subjects performed 9 epochs of 40 active, high-velocity head impulses using a position ES stimulus to increase aVOR gain. Results Five subjects demonstrated significant aVOR gain increases with the constant-position ES (mean, 2%; range, −18% to 12%) compared with another 5 subjects showing significant aVOR gain increases to the incremental-position ES (mean, 3.7%; range, −2% to 22.6%). There was no difference in aVOR gain adaptation or CS recruitment between the 2 paradigms. Discussion and Conclusion These findings suggest that some subjects can increase their aVOR gain in response to high-velocity active head movement training using a position ES. The primary mechanism for this seems to be aVOR gain adaptation because CS use was not modified. The overall low change in aVOR gain adaptation with position ES suggests that retinal slip is a more powerful aVOR gain modifier. PMID:20588093

  9. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    PubMed

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  10. Is Linear Displacement Information Or Angular Displacement Information Used During The Adaptation of Pointing Responses To An Optically Shifted Image?

    NASA Technical Reports Server (NTRS)

    Bautista, Abigail B.

    1994-01-01

    Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).

  11. Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror

    NASA Astrophysics Data System (ADS)

    Treffer, A.; Brunne, J.; Bock, M.; König, S.; Wallrabe, U.; Grunwald, R.

    2016-02-01

    Adaptive autocorrelation with an angular tunable micro-electro-mechanical system is reported. A piezo-actuated Fresnel bi-mirror structure was applied to measure the second order autocorrelation of near-infrared few-cycle laser pulses in a non-collinear setup at tunable superposition angles. Because of enabling measurements with variable scaling and minimizing the influence of distortions by adaptive self-reconstruction, the approach extends the capability of autocorrelators. Flexible scaling and robustness against localized amplitude obscurations are demonstrated. The adaptive reconstruction of temporal frequency information by the Fourier analysis of autocorrelation data is shown. Experimental results and numerical simulations of the beam propagation and interference are compared for variable angles.

  12. Effects of visual reference on adaptation to motion sickness and subjective responses evoked by graded cross-coupled angular accelerations. [vestibular oculogravic effect in human acceleration adaptation

    NASA Technical Reports Server (NTRS)

    Reason, J. T.; Diaz, E.

    1973-01-01

    Three groups of 10 subjects each were exposed to stepwise increments of cross coupled angular accelerations in three visual modes: internal visual reference (IVR), external visual reference (EVR), and vision absent (VA). The subjects in the IVR condition required significantly greater amounts of stimulus exposure to neutralize their illusory subjective reactions. They also suffered a greater loss of well-being and a more marked incidence of motion sickness than did subjects in the EVR and VA conditions. The same 30 subjects were reexposed to the same graded cross coupled stimulation 1 week later. This time, however, all the subjects were tested under only the IVR condition. All three groups showed some positive transfer of adaptation, but only the IVR-IVR combination required significantly fewer head motions to achieve the same level of adaptation on the second occasion. Taken overall, however, the most efficient and least disturbing route to adaptation at the completion of the second test was via the VA-IVR combination.

  13. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  14. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    SciTech Connect

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    2008-05-21

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of the generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.

  15. Angular Cheilitis

    MedlinePlus

    ... the mouth. Overview Angular cheilitis (perlèche) is a chronic inflammatory condition of the corners of the mouth. Usually associated with a fungal ( Candidal ) or bacterial ( Staphylococcal ) infection, those ... people of all ages. Chronic pooling of saliva encourages fungal and bacterial growth, ...

  16. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  17. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  18. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  19. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  1. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  2. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  3. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  4. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  5. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  7. Angular momentum radio

    NASA Astrophysics Data System (ADS)

    Thidé, B.; Tamburini, F.; Then, H.; Someda, C. G.; Mari, Elletra; Parisi, G.; Spinello, F.; Romanato, Fra

    2014-02-01

    Wireless communication amounts to encoding information onto physical observables carried by electromagnetic (EM) fields, radiating them into surrounding space, and detecting them remotely by an appropriate sensor connected to an informationdecoding receiver. Each observable is second order in the fields and fulfills a conservation law. In present-day radio only the EM linear momentum observable is fully exploited. A fundamental physical limitation of this observable, which represents the translational degrees of freedom of the charges (typically an oscillating current along a linear antenna) and the fields, is that it is single-mode. This means that a linear-momentum radio communication link comprising one transmitting and one receiving antenna, known as a single-input-single-output (SISO) link, can provide only one transmission channel per frequency (and polarization). In contrast, angular momentum, which represents the rotational degrees of freedom, is multi-mode, allowing an angular-momentum SISO link to accommodate an arbitrary number of independent transmission channels on one and the same frequency (and polarization). We describe the physical properties of EM angular momentum and how they can be exploited, discuss real-world experiments, and outline how the capacity of angular momentum links may be further enhanced by employing multi-port techniques, i.e., the angular momentum counterpart of linear-momentum multiple-input-multiple-output (MIMO).

  8. Metamaterial broadband angular selectivity

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  9. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  10. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  11. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  12. "Angular" plasma cell cheilitis.

    PubMed

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure. PMID:24656273

  13. Angular momentum and star formation

    NASA Astrophysics Data System (ADS)

    Strittmatter, P. A.

    The present investigation is mainly concerned with the importance of high angular resolution observations in studies of star formation and, in particular, with elucidating the role which angular momentum plays in the process. A brief report is included on recent high angular resolution observations made with the Steward Observatory speckle camera system. A consideration of the angular momentum in interstellar clouds indicates that rotation precludes quasi-spherical contraction. A number of solutions to this angular momentum problem are examined, taking into account questions concerning the help provided by high angular resolution observations for an elucidation of the various possible scenarios of star formation. Technical aspects involved in obtaining suitable data are investigated. It is concluded that high angular resolution observations hold considerable promise for solving at least some of the problems associated with the role of angular momentum in star formation.

  14. Angular momentum projected semiclassics

    NASA Astrophysics Data System (ADS)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  15. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  16. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  17. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  18. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  19. On the relation between angular momentum and angular velocity

    NASA Astrophysics Data System (ADS)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  20. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  1. Angular anisoplanatism of a focused beam using beacons over horizontal path

    NASA Astrophysics Data System (ADS)

    Wu, Wu-ming; Ning, Yu

    2016-01-01

    The performance of the achieve laser beam propagation through atmospheric turbulence with adaptive optics is degraded by the fact that the wavefront aberrations difference. This error is only include the angular anisoplanatism when there is separation between the achieve laser beam and beacon. In the paper we derive an analytic expression for the effective angular anisoplanatism as a function of displacement angular when the turbulence profile is uniform. It shows that the effective angular anisoplanatism becomes weaker as the diameter of laser beams and the Fried transverse coherence length increase. We report results from field experiments that the effective angular anisoplanatism of a focused beam over horizontal path. It is found that measured and theoretical results are consistent. The effective wavefront variance increases with the strength of atmospheric turbulence and the angular displacement. And the constant phase of angular anisoplanatism has no effect on the Strehl ratio of the beam.

  2. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  3. The Angular Gyrus

    PubMed Central

    2013-01-01

    There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized. PMID:22547530

  4. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  5. Electromagnetically induced angular Talbot effect

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Yang, Guojian

    2015-12-01

    The discrete angular spectrum (angular Talbot effect) of a periodic grating illuminated by a suitable spherical wave front has been observed recently (Azaña and Chatellus 2104 Phys. Rev. Lett. 112 213902). In this paper we study the possibility of such a phenomenon being realized with a medium that has no macroperiodic structure itself. Tunable electromagnetically induced grating (EIG) could be such a kind of medium. We obtain an EIG based on the periodically modulated strong susceptibility due to the third-order nonlinear effect generated in a double Λ-type four-level atomic system, and show the angular Talbot effect of an amplitude EIG, as well as a hybrid EIG, as the condition of the discrete phase-modulation shift of the illumination light front is satisfied. EIG parameters are tunable and the EIG-based angular Talbot effect may have the same potential applications as its periodic grating counterpart has.

  6. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  7. Angular Momentum Ejection and Recoil*

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Coppi, B.

    2009-11-01

    The spontaneous rotation phenomenon observed in axisymmetric magnetically confined plasmas has been explained by the ``accretion theory'' [1] that considers the plasma angular momentum as gained from its interaction with the magnetic field and the surrounding material wall. The ejection of angular momentum to the wall, and the consequent recoil are attributed to modes excited at the edge while the transport of the (recoil) angular momentum from the edge toward the center is attributed to a different kind of mode. The toroidal phase velocity of the edge mode, to which the sign of the ejected angular momentum is related, is considered to change its direction in the transition from the H-regime to the L-regime. For the latter case, edge modes with phase velocity in the direction of vdi are driven by the temperature gradient of a cold ion population at the edge and damped on the ``hot'' ion population. The ``balanced'' double interaction [2] of the mode with the two populations, corresponding to a condition of marginal stability, leads to ejection of hot ions and loss of angular momentum in the direction of vdi while the cold population acquires angular momentum in the opposite direction. In the H-regime resistive ballooning modes with phase velocities in the direction of vde are viewed as the best candidates for the excited edge modes. *Sponsored in part by the U.S. DOE. [1] B. Coppi, Nucl. Fusion 42, 1 (2002) [2] B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969 (1977)

  8. Uncertainty principle for angular position and angular momentum

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, Sonja; Barnett, Stephen M.; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-08-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry.

  9. The Angular Momentum of Light

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Babiker, Mohamed

    2012-11-01

    Preface D. L. Andrews and M. Babiker; 1. Light beams carrying orbital angular momentum J. B. Götte and S. M. Barnett; 2. Vortex transformation and vortex dynamics in optical fields G. Molina-Terriza; 3. Vector beams in free space E. J. Galvez; 4. Optical beams with orbital angular momentum in nonlinear media A. S. Desyatnikov and Y. S. Kivshar; 5. Ray optics, wave optics and quantum mechanics G. Nienhuis; 6. Quantum formulation of angle and orbital angular momentum J. B. Götte and S. M. Barnett; 7. Dynamic rotational frequency shift I. Bialynicki-Birula and Z. Bialynicka-Birula; 8. Spin-orbit interactions of light in isotropic media K. Y. Bliokh, A. Aiello and M. A. Alonso; 9. Quantum electrodynamics, angular momentum and chirality D. L. Andrews and M. Babiker; 10. Trapping of charged particles by Bessel beams I. Bialynicki-Birula, Z. Bialynicka-Birula and N. Drozd; 11. Theory of atoms in twisted light M. Babiker, D. L. Andrews and V. E. Lembessis; 12. An experimentalist's introduction to orbital angular momentum for quantum optics J. Romero, D. Giovannini, S. Franke-Arnold and M. J. Padgett; 13. Measurement of light's orbital angular momentum M. P. J. Lavery, J. Courtial and M. J. Padgett; 14. Efficient generation of optical twisters using helico-conical beams V. R. Daria, D. Palima and J. Glückstad; 15. Self similar modes of coherent diffusion with orbital angular momentum O. Firstenberg, M. Shuker, R. Pugatch and N. Davidson; 16. Dimensionality of azimuthal entanglement M. van Exter, E. Eliel and H. Woerdman; Index.

  10. Two-dimensional angular transmission characterization of CPV modules.

    PubMed

    Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G

    2010-11-01

    This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement. PMID:21165081

  11. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  12. Interferometric measurement of angular motion

    NASA Astrophysics Data System (ADS)

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C.

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10-11 rad/sqrt{textrm {Hz}} from audioband down to 100 mHz and an angular measurement range of more than ±1°.

  13. Variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1981-01-01

    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.

  14. Phenomenology of preequilibrium angular distributions

    SciTech Connect

    Kalbach, C.; Mann, F.M.

    1980-05-01

    The systematics of continuum angular distributions from a wide variety of light ion nuclear reactions have been studied. To first order, the shape of the angular distributions have been found to depend only on the energy of the outgoing particle and on the division of the cross section into multi-step direct and multi-step compound parts. The angular distributions can be described in terms of Legendre polynomials with the reduced polynomial coefficients exhibiting a simple dependence on the outgoing particle energy. Two integer and four continuous parameters with universal values are needed to describe the coefficients for outgoing energies of 2 to 60 MeV in all the reaction types studied. This parameterization combined with a modified Griffin model computer code permits the calculation of double differential cross sections for light ion continuum reactions where no data is available.

  15. Non-Colinearity of Angular Velocity and Angular Momentum

    ERIC Educational Resources Information Center

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  16. Solar cell angular position transducer

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Gray, D. L. (Inventor)

    1980-01-01

    An angular position transducer utilizing photocells and a light source is disclosed. The device uses a fully rotatable baffle which is connected via an actuator shaft to the body whose rotational displacement is to be measured. The baffle blocks the light path between the light source and the photocells so that a constant semicircular beam of light reaches the photocells. The current produced by the photocells is fed through a resistor, a differential amplifier measures the voltage drop across the resistor which indicates the angular position of the actuator shaft and hence of the object.

  17. Angular velocity estimation from measurement vectors of star tracker.

    PubMed

    Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun

    2012-06-01

    In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance. PMID:22695598

  18. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  19. The lunar angular momentum problem

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    Formation of the Moon by classical Darwin-type fission of a rapidly spinning proto-Earth is discussed. The relationship of angular momentum to accretion disks is examined. The co-accretion scenario and Darwin-type fission are compared and evaluated.

  20. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  1. Olympic Wrestling and Angular Momentum.

    ERIC Educational Resources Information Center

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  2. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  3. On Dunkl angular momenta algebra

    NASA Astrophysics Data System (ADS)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  4. Neoclassical Angular Momentum Flux Revisited

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.

    2004-11-01

    The toroidal angular momentum flux in neoclassical transport theory of small rotations depends on the second order (in ion poloidal gyroradius over plasma scale length) ion distribution function. Owing to the complexity of the calculation, the result obtained a long time ago for circular cross-section tokamak plasmas in the banana regime [M.N. Rosenbluth, et al., Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1971), Vol. 1, p. 495] has never been reproduced. Using a representation of the angular momentum flux based on the solution of an adjoint equation to the usual linearized drift kinetic equation, and performing systematically a large-aspect-ratio expansion, we have obtained the flux for flux surfaces of arbitrary shape. We have found the same analytic form for the temperature gradient driven part of the flux, but the overall numerical multiplier is different and has the opposite sign. Implications for rotations in discharges with no apparent momentum input will be discussed.

  5. Phonons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-01

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  6. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  7. Discrete ordinates methods in xy geometry with spatially varying angular discretization

    SciTech Connect

    Bal, G.; Warin, X.

    1997-10-01

    The efficiency of a new quadrature rule adapted to the numerical resolution of a neutron transport problem in xy geometry is presented based on the use of the discrete ordinates method for the angular variable. The purpose of introducing this quadrature rule is to couple two different angular discretizations used on two nonoverlapping subdomains, which is useful for performing local refinement. This coupling and some numerical results of source problems are presented.

  8. NUCLEI AT HIGH ANGULAR MOMENTUM

    SciTech Connect

    Diamond, R.M.; Stephens, F.S.

    1980-06-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  9. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  10. An optical filter with angular selectivity of the light transmission

    NASA Astrophysics Data System (ADS)

    Zakirullin, Rustam S.

    2015-09-01

    Features of the application of a novel optical filter with angular selectivity of the light transmission to architectural glazing are considered. The filter consists of a sheet transparent substrate with thin-film grating layers on both surfaces. The gratings formed by directionally transmissive strips, alternating with absorptive, reflective, or scattering strips. Their relative position on the input and output surfaces provides angular selectivity of the directional light transmission - as the incidence angle changes, the proportion of radiation that passes through both gratings of the filter also changes. Chromogenic materials currently used in the laminated smart windows, providing control over the intensity and spectrum of the transmitted solar radiation, cannot achieve the selective regulation on the ranges of incidence angles. Such a regulation requires the use of additional daylight-redirecting devices, especially blinds, to dynamically adapt to the position of the sun. The grating optical filter provides angular selectivity of the light transmission of a window without such devices. The features of using this filter in the single and double glazed windows are described. A graphic analytical calculation method is proposed for estimating the effect of geometrical and optical parameters of the filter on the angular characteristics of the light transmission. An algorithm to optimize filtering solar radiation taking into account the geographical coordinates of terrain, time of day and year and the orientation of the window to the cardinal is set. An algorithm to calculating geometrical parameters of the filter with pre-specified characteristics of the light transmission is obtained.

  11. Angular momentum of binary asteroids: Implications for their possible origin

    NASA Astrophysics Data System (ADS)

    Descamps, P.; Marchis, F.

    2008-01-01

    We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary ( R>100 km) with a much smaller secondary ( R<20 km) is that they all have total angular momentum of ˜0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems.

  12. Two-dimensional angular filter array for angular domain imaging with 3D printed angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) is a technique that is capable of generating two dimensional shadowgrams of attenuating targets embedded in a scattering medium. In ADI, an angular filter array (AFA) is positioned between the sample and the detector to distinguish between quasi-ballistic photons and scattered photons. An AFA is a series of micro-channels with a high aspect ratio. Previous AFAs from our group were constructed by micro-machining the micro-channels into a silicon wafer, limiting the imaging area to a one dimensional line. Two dimensional images were acquired via scanning. The objective of this work was to extend the AFA design to two dimensions to allow for two dimensional imaging with minimal scanning. The second objective of this work was to perform an initial characterization of the imaging capabilities of the 2D AFA. Our approach was to use rapid 3D prototyping techniques to generate an array of micro-channels. The imaging capabilities were then evaluated by imaging a 0.9 mm graphite rod submerged in a scattering media. Contrast was observed to improve when a second angular filter array was placed in front of the sample to mask the incoming light.

  13. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  14. Uncertainty relations for angular momentum

    NASA Astrophysics Data System (ADS)

    Dammeier, Lars; Schwonnek, René; Werner, Reinhard F.

    2015-09-01

    In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the ‘uncertainty regions’ given by all vectors, whose components are specified by the variances of the three angular momentum components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius \\sqrt{s(s+1)}. Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s\\to 1 as s\\to ∞ .

  15. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  16. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  17. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  18. Useful angular selectivity in oblique columnar aluminum

    NASA Astrophysics Data System (ADS)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  19. Configuration interaction calculations with infinite angular = expansions

    SciTech Connect

    Goldman, S.P.; Glickman, T.

    1996-05-01

    The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.

  20. The Angular Momentum of the Solar System

    NASA Astrophysics Data System (ADS)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  1. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  2. Mean Angular Momenta of Primary Photofission Products

    SciTech Connect

    Bezshyyko, O.A.; Kadenko, I.M.; Plujko, V.A.; Yermolenko, R.V.; Mazur, V.M.; Strilchuk, N.V.; Vishnevsky, I.M.; Zheltonozhsky, V.A.

    2005-05-24

    Isomer ratios and mean angular momenta for photofission products of 237Np and 238U are obtained. The technique of gamma-ray spectrometry for isomeric ratio determination was used. Fissionable nuclei were irradiated by bremsstrahlung spectrum of microtron M-30 with electron energy 16 MeV. Calculations of mean angular momenta were performed by modified version of the EMPIRE II code.

  3. Orbital angular momentum in the nucleon

    SciTech Connect

    Garvey, Gerald T.

    2010-05-15

    Analysis of the measured value of the integrated d-bar-u-bar asymmetry (I{sub fas} = 0.147 +- 0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  4. The angular momentum of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.

  5. The angular momentum of the Oort cloud

    SciTech Connect

    Weissman, P.R. )

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values. 21 refs.

  6. Angular momentum dependence of complex fragment emission

    SciTech Connect

    Sobotka, L.G.; Sarantites, D.G.; Li, Z.; Dines, E.L.; Halbert, M.L.; Hensley, D.C.; Lisle, J.C.; Schmitt, R.P.; Majka, Z.; Nebbia, G.

    1987-12-01

    The angular momentum dependence of large fragment production in long-lived reactions is studied by measurements of fragment cross sections from reactions with substantially different angular momentum distributions and the coincident ..gamma..-ray multiplicity distributions. The results indicate that the primary l-wave distributions move to larger mean values and decrease in width and skewness with increasing mass symmetry in the decay channel. The results also confirm that the partition of angular momentum kinetic energy relaxed heavy-ion reactions is that expected for a rigidly rotating intermediate.

  7. Optical Mixing of Rydberg Angular Momenta

    SciTech Connect

    Corless, J.D.; Stroud, C.R., Jr.

    1997-07-01

    When optical frequency fields are used to couple a ground state to a Rydberg state, the resonant dipole coupling is to a low angular momentum state. Higher angular momentum states are typically thought not to play a role in the excitation. The extremely large dipole matrix elements coupling Rydberg states of the same n but differing l , however, allow optical fields of modest strengths to produce Rabi frequencies larger than optical frequencies. We demonstrate that these optical fields can therefore readily excite the higher angular momentum states, and we examine the consequences of this coupling. {copyright} {ital 1997} {ital The American Physical Society}

  8. Angular momentum in the Local Group

    SciTech Connect

    Dunn, A.; Laflamme, R.

    1994-04-01

    We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.

  9. Stellar Angular Diameter Relations for Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Adams, Arthur; Boyajian, Tabetha S.; von Braun, Kaspar

    2016-01-01

    Determining the physical properties of microlensing events depends on having accurate angular radii of the source star. Using long-baseline optical interferometry we are able to determine the angular sizes of nearby stars with uncertainties less than 2 percent. We present empirical estimates of angular diameters for both dwarfs/subgiants and giant stars as functions of five color indices which are relevant to planned microlensing surveys. We find in all considered colors that metallicity does not play a statistically significant role in predicting stellar size for the samples of stars considered.

  10. Calculates Angular Quadrature Weights and Cosines.

    Energy Science and Technology Software Center (ESTSC)

    1988-02-18

    DSNQUAD calculates the angular quadrature weights and cosines for use in CCC-254/ANISN-ORNL. The subroutines in DSNQUAD were lifted from the XSDRN-PM code, which is supplied with the CCC-475/ SCALIAS-77 package.

  11. Gravitational waves carrying orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  12. Angular performance measure for tighter uncertainty relations

    SciTech Connect

    Hradil, Z.; Rehacek, J.; Klimov, A. B.; Rigas, I.; Sanchez-Soto, L. L.

    2010-01-15

    The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.

  13. Angular wander measurements of maser clusters

    NASA Astrophysics Data System (ADS)

    Mutel, Robert L.

    Angular wander measurements of the relative positions of closely spaced maser features provides a powerful probe of interstellar turbulence associated with regions of star formation. Differential angular wander is easily measured in a maser complex and can strongly distinguish between shallow and steep power-law turbulence. The best candidates for such measurements appear to be the 6 and 12 GHz type II methanol masers.

  14. A new integrated optical angular velocity sensor

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-03-01

    Very compact and low-cost rotation sensors are strongly required for any moving systems in several applications. Integrated optical angular velocity sensors seem to be very promising in terms of low cost, compactness, light weight and high-performance. In the paper a new integrated optical angular velocity sensor having a passive resonant configuration is proposed. Preliminary results are really encouraging and demonstrate the possibility of using the sensor in gyro systems for satellite applications.

  15. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  16. A detection system with broad angular acceptance for particle identification and angular distribution measurements

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Arazi, A.; Fernández Niello, J. O.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Figueira, J. M.; Hojman, D.; Martí, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.

    2013-10-01

    A new detection system for time-optimized heavy-ion angular distribution measurements has been designed and constructed. This device is composed by an ionization chamber with a segmented-grid anode and three position-sensitive silicon detectors. This particular arrangement allows identifying reaction products emitted within a 30° wide angular range with better than 1° angular resolution. As a demonstration of its capabilities, angular distributions of the elastic scattering cross-section and the production of alpha particles in the 7Li+27Al system, at an energy above the Coulomb barrier, are presented.

  17. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  18. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  19. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  20. Magnetic field and angular momentum evolution models

    NASA Astrophysics Data System (ADS)

    Gallet, F.

    2013-11-01

    The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  1. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  2. Dirac Green function for angular projection potentials.

    PubMed

    Zeller, Rudolf

    2015-11-25

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired. PMID:26523824

  3. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    PubMed

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-01-01

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs. PMID:24614016

  4. Dirac Green function for angular projection potentials

    NASA Astrophysics Data System (ADS)

    Zeller, Rudolf

    2015-11-01

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.

  5. Angular momentum conservation for dynamical black holes

    SciTech Connect

    Hayward, Sean A.

    2006-11-15

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.

  6. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  7. Optimal method for exoplanet detection by angular differential imaging.

    PubMed

    Mugnier, Laurent M; Cornia, Alberto; Sauvage, Jean-François; Rousset, Gérard; Fusco, Thierry; Védrenne, Nicolas

    2009-06-01

    We propose a novel method for the efficient direct detection of exoplanets from the ground using angular differential imaging. The method combines images appropriately, then uses the combined images jointly in a maximum-likelihood framework to estimate the position and intensity of potential planets orbiting the observed star. It takes into account the mixture of photon and detector noises and a positivity constraint on the planet's intensity. A reasonable detection criterion is also proposed based on the computation of the noise propagation from the images to the estimated intensity of the potential planet. The implementation of this method is tested on simulated data that take into account static aberrations before and after the coronagraph, residual turbulence after adaptive optics correction, and noise. PMID:19488172

  8. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  9. Energy angular momentum closed-loop guidance

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2015-03-01

    A novel guidance algorithm for launch vehicle ascent to the desired mission orbit is proposed. The algorithm uses total specific energy and orbital angular momentum as new state vector parameters. These parameters are ideally suited for the ascent guidance task, since the guidance algorithm steers the launch vehicle along a pre-flight optimal trajectory in energy angular momentum space. The guidance algorithm targets apogee, perigee, inclination and right ascension of ascending node. Computational complexities are avoided by eliminating time in the guidance computation and replacing it with angular momentum magnitude. As a result, vehicle acceleration, mass, thrust, length of motor burns, and staging times are also eliminated from the pitch plane guidance calculations. The algorithm does not involve launch vehicle or target state propagation, which results in minimal computational effort. Proof of concept of the new algorithm is presented using several numerical examples that illustrate performance results.

  10. Inequalities for angular derivatives and boundary interpolation

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Vladimir; Elin, Mark; Shoikhet, David

    2013-03-01

    The classical Julia-Wolff-Carathéodory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271-289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna-Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions.

  11. Angular momentum conservation in dipolar energy transfer.

    PubMed

    Guo, Dong; Knight, Troy E; McCusker, James K

    2011-12-23

    Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions. PMID:22194572

  12. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  13. Improved numerical projection of angular momentum

    NASA Astrophysics Data System (ADS)

    O'Mara, Kevin; Johnson, Calvin

    2015-10-01

    Nuclear many-body states have good angular momenta, but many theoretical building blocks such as deformed Slater determinants do not. Hence one must numerically project out states of good angular momenta, usually through a computationally taxing three-dimensional integral. We took an existing code for angular-momentum projected Hartree-Fock and improved its performance, partly through judicious ordering of the loops, precomputing arrays of important combinatorics, and careful application of parallelization. We also investigated a novel inversion scheme. This work is potentially applicable to multiple approaches in many-body calculations, and should also be generalizable to particle number projection. Supported by SDSU Summer Undergraduate Research Program and by DOE Award Number DE-FG02-96ER40985.

  14. Electromagnetic angular momentum transport in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.

    1986-01-01

    It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.

  15. A Methodologic Approach for Normalizing Angular Work and Velocity During Isotonic and Isokinetic Eccentric Training

    PubMed Central

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276

  16. An Adaptive Critic Approach to Reference Model Adaptation

    NASA Technical Reports Server (NTRS)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  17. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have

  18. Angular momentum in spin-phonon processes

    NASA Astrophysics Data System (ADS)

    Garanin, D. A.; Chudnovsky, E. M.

    2015-07-01

    Quantum theory of spin relaxation in the elastic environment is revised with account of the concept of a phonon spin recently introduced by Zhang and Niu [L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014), 10.1103/PhysRevLett.112.085503]. Similar to the case of the electromagnetic field, the division of the angular momentum associated with elastic deformations into the orbital part and the part due to phonon spins proves to be useful for the analysis of the balance of the angular momentum. Such analysis sheds important light on microscopic processes leading to the Einstein-de Haas effect.

  19. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  20. Angular distribution of emission from hyperbolic metamaterials

    PubMed Central

    Gu, Lei; Livenere, J. E.; Zhu, G.; Tumkur, T. U.; Hu, H.; Cortes, C. L.; Jacob, Z.; Prokes, S. M.; Noginov, M. A.

    2014-01-01

    We have studied angular distribution of emission of dye molecules deposited on lamellar metal/dielectric and Si/Ag nanowire based metamaterials with hyperbolic dispersion. In agreement with the theoretical prediction, the emission pattern of dye on top of lamellar metamaterial is similar to that on top of metal. At the same time, the effective medium model predicts the emission patterns of the nanowire array and the dye film deposited on glass to be nearly identical to each other. This is not the case of our experiment. We tentatively explain the nearly Lambertian (∝cosθ) angular distribution of emission of the nanowire based sample by a surface roughness. PMID:25476126

  1. Angular Resolution of Multi-Lisa Constellations

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Gong, Xue-Fei

    2010-04-01

    In this article, we present a detailed derivation of the angular resolution of arbitrary sets of LISA (Laser Interferometer Space Antenna) constellations with a toy model for gravitational wave signals, and further generalized to more complicated cases with slowly varying gravitational wave signals of well-defined frequency at any time instant. For future space-borne LISA-like gravitational wave detectors, our results may serve as a conservative quick estimate of the detector's angular resolution and hopefully moreover a reference for the configuration designs.

  2. On the vector model of angular momentum

    NASA Astrophysics Data System (ADS)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  3. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  4. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  5. Heteromodal conceptual processing in the angular gyrus

    PubMed Central

    Bonner, Michael F.; Peelle, Jonathan E.; Cook, Philip A.; Grossman, Murray

    2013-01-01

    Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. PMID:23333416

  6. Spacecraft Angular State Estimation After Sensor Failure

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); BarItzhack, Itzhack Y.; Harman, Richard R.

    2002-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro failure in a spacecraft (SC) with a special mission profile. The source of the problem is presented, two algorithms are suggested, an observability study is carried out, and the efficiency of the algorithms is demonstrated.

  7. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  8. Angular distribution of turbulence in wave space

    NASA Technical Reports Server (NTRS)

    Coleman, G.; Ferziger, J. H.; Bertoglio, J. P.

    1987-01-01

    An alternative to the one-point closure model for turbulence, the large eddy simulation (LES), together with its more exact relative, direct numerical simulation (DNS) are discussed. These methods are beginning to serve as partial substitutes for turbulence experiments. The eddy damped quasi-normal Markovian (EDQNM) theory is reviewed. Angular distribution of the converted data was examined in relationship to EDQNM.

  9. Inclusion of angular momentum in FREYA

    SciTech Connect

    Randrup, Jørgen; Vogt, Ramona

    2015-05-18

    The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.

  10. The Role of Angularity in Route Choice

    NASA Astrophysics Data System (ADS)

    Turner, Alasdair

    The paths of 2425 individual motorcycle trips made in London were analyzed in order to uncover the route choice decisions made by drivers. The paths were derived from global positioning system (GPS) data collected by a courier company for each of their drivers, using algorithms developed for the purpose of this paper. Motorcycle couriers were chosen due to the fact that they both know streets very well and that they do not rely on the GPS to guide their navigation. Each trace was mapped to the underlying road network, and two competing hypotheses for route choice decisions were compared: (a) that riders attempt to minimize the Manhattan distance between locations and (b) that they attempt to minimize the angular distance. In each case, the distance actually traveled was compared to the minimum possible either block or angular distance through the road network. It is usually believed that drivers who know streets well will navigate trips that reduce Manhattan distance; however, here it is shown that angularity appears to play an important role in route choice. 63% of trips made took the minimum possible angular distance between origin and destination, while 51% of trips followed the minimum possible block distance. This implies that impact of turns on cognitive distance plays an important role in decision making, even when a driver has good knowledge of the spatial network.

  11. A Novel Permanent Magnetic Angular Acceleration Sensor.

    PubMed

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  12. Inclusion of Angular Momentum in FREYA

    NASA Astrophysics Data System (ADS)

    Randrup, Jørgen; Vogt, Ramona

    The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.

  13. Angular momentum evolution of Algol binaries

    NASA Astrophysics Data System (ADS)

    Ibanoǧlu, C.; Soydugan, F.; Soydugan, E.; Dervişoǧlu, A.

    2006-11-01

    We have compiled the well-determined absolute parameters of Algol-type binaries. The lists contain the parameters of 74 detached and 61 semidetached close binaries. The double-lined eclipsing binaries provide not only the most accurate determinations of stellar mass, radius and temperatures but also distance-independent luminosity for each of their individual components. The distributions of the primary and secondary masses of detached binaries (DBs) are similar, whilst the secondary masses of the semidetached binaries (SDBs) are mostly smaller than 2 Msolar with a peak in the M2-bin (0.21-1.0). The components of the DBs are almost all located in the main-sequence band. On the contrary, the secondary components of the SDBs have larger radii and luminosity with respect to the same mass and the same effective temperature of main-sequence counterparts. They occupy a region of the Hertzsprung-Russell diagram between terminal-age main sequence and giants. Moreover, the total angular momenta and specific angular momenta are larger for the SDBs of orbital periods with P > 5 d than those of the shorter period ones. The specific angular momenta of SDBs with periods longer than 5 d are 65 per cent greater than that of the short period group with the same mass. The DBs and the SDBs with orbital periods longer and shorter than 5 d are separated into three groups in the J/M5/3 - q diagram. The SDBs with mass ratios greater than 0.3 and P > 5 d have almost the same angular momentum to those of DBs. However, the SDBs with short periods have the smallest angular momentum even though they have the same mass ratios. This result reveals that angular momentum loss (AML) considerably affects the evolution of close binary systems. Recently, Chen, Li & Qian suggested that, in addition to magnetic braking, a circumbinary disc may play an important role in AML from Algol-type binaries. Their calculations indicated that the evolution of Algol-type binaries can be significantly affected by

  14. Miniaturized photoelectric angular sensor with simplified design

    NASA Astrophysics Data System (ADS)

    Dumbravescu, Niculae; Schiaua, Silviu

    1999-09-01

    In building the movable elements of robots, peripheral devices and measuring apparata, increasing the resolution of the angular sensor systems, based on incremental rotary encoders, is essential, together with decreasing the complexity, dimensions and weight. Especially when the angular sensor is integrated in a measuring system, belonging to a programmed light airplane for surveillance, the key issue is to reduce both dimensions and weight. This can be done using a simplified design, which consists in the following solutions: replacement of the fragile Cr on glass substrate, 1.5 mm thick (normally used for the fabrication of incremental disks), with light Cr on polycarbonate substrate, with only 0.15 mm thick; the absence of collimating optics (based on microlenses, used in IR emitter-photocell receiver assembly), as a result of the good coupling efficiency (due to the possible approaching of these elements at minimum 0.45 mm); the shrinkage of the disk's diameters to only 14 mm; the use of surface mounting devices and the related surface mounting technology, enabling to reduce dimensions and weight. The maximum number of slits on a 14 mm diameter dividing disk, usually obtained in a Cr on polycarbonate version, being approx. 1000, no problem occurs in our case, for 360 slits. The requested angular resolution (only 0.5 degrees for the light airplane), using the whole classical '4x digital multiplication' is not necessary, but a lower one of only 2x, resulting in a simplified electronics. The proposed design permitted, that an original arrangement, for building a small size, lightweight, heavy-duty incremental transducer based angular sensor system, to be obtained, useful not only in avionics, but also in robotics, or other special applications. Besides, extending the number of fixed gratings (masks) allows, that many primary signals to be derived, and a further increase in resolution of even 6 angular minutes to be obtained from the initial 360 slits.

  15. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    PubMed

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107

  16. Performance criteria for dosimeter angular response

    SciTech Connect

    Roberson, P.L.; Fox, R. A.; Cummings, F. M.; McDonald, J. C.; Jones, K.L.

    1988-06-01

    This report provides criteria for evaluating the response of personnel dosimeters to radiation at nonperpendicular incidence. The US Department of Energy Laboratory Accreditation Program (DOELAP) ensures that dosimetry systems at DOE facilities meet acceptable standards for precision and accuracy. In the past, these standards were limited to tests for system variability, energy dependence, and level of detection. The proposed criteria will broaden the scope of DOELAP to include the angular response of personnel dosimeters. Because occupational exposures in the workplace are rarely due to radiation from only one direction, dosimeters must accurately assign individual dose equivalent from irradiation at any forward angle of incidence. Including an angular response criterion in DOELAP would improve the quality of personnel monitoring provided that the criterion is developed from appropriate dose quantities. This report provides guidance for assigning individual dose equivalents for radiation fields at nonperpendicular incidence to the dosimeter. 21 refs., 10 figs., 10 tabs.

  17. From transverse angular momentum to photonic wheels

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Banzer, Peter; Neugebauer, Martin; Leuchs, Gerd

    2015-12-01

    Scientists have known for more than a century that light possesses both linear and angular momenta along the direction of propagation. However, only recent advances in optics have led to the notion of spinning electromagnetic fields capable of carrying angular momenta transverse to the direction of motion. Such fields enable numerous applications in nano-optics, biosensing and near-field microscopy, including three-dimensional control over atoms, molecules and nanostructures, and allowing for the realization of chiral nanophotonic interfaces and plasmonic devices. Here, we report on recent developments of optics with light carrying transverse spin. We present both the underlying principles and the latest achievements, and also highlight new capabilities and future applications emerging from this young yet already advanced field of research.

  18. Phenomenological Determination of the Orbital Angular Momentum

    SciTech Connect

    Ramsey, Gordon P.

    2009-08-04

    Measurements involving the gluon spin, {delta}G(x, t) and the corresponding asymmetry, A(x,t) = {delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = (1/2) sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.

  19. Precompound nucleon angular distributions in the continuum

    SciTech Connect

    Blann, M.; Scobel, W.; Plechaty, E.

    1985-08-01

    Angular distributions for nucleon induced reactions (incident energies 14 to 90 MeV) leading to precompound nucleon emission in the continuum (emitted particle energies 9-70 MeV) are calculated based on nucleon-nucleon scattering kinematics for an incident nucleon on a Fermi gas. Analytic expressions due to Kikuchi and Kawai are used for the single scattering kernel. The geometry dependent hybrid model is used to generate the differential cross sections for first, second, etc. order scattering, these weightings being used to fold the single scattering kernel. Results are found to reproduce all experimental angular distributions quite well at angles in the 20/sup 0/ to 90/sup 0/ range. Ad-hoc modifications to approximate quantal effects and Coulomb deflections are explored, but the results do not seem to offer a consistent means of reproducing back angle yields, and give generally poorer results at very forward angles.

  20. Angular description for 3D scattering centers

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Raynal, Ann Marie; Ling, Hao; Moore, John; Velten, Vincent J.

    2006-05-01

    The electromagnetic scattered field from an electrically large target can often be well modeled as if it is emanating from a discrete set of scattering centers (see Fig. 1). In the scattering center extraction tool we developed previously based on the shooting and bouncing ray technique, no correspondence is maintained amongst the 3D scattering center extracted at adjacent angles. In this paper we present a multi-dimensional clustering algorithm to track the angular and spatial behaviors of 3D scattering centers and group them into features. The extracted features for the Slicy and backhoe targets are presented. We also describe two metrics for measuring the angular persistence and spatial mobility of the 3D scattering centers that make up these features in order to gather insights into target physics and feature stability. We find that features that are most persistent are also the most mobile and discuss implications for optimal SAR imaging.

  1. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  2. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  3. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  4. Behavior of nuclei at high angular momentum

    SciTech Connect

    Stephens, F.S.

    1982-07-01

    The present report begins with a brief overview of nuclear shapes and level structures at high-spin values. The new spectroscopy associated with angular-momentum alignments is described, and some of the exciting possibilities of this spectroscopy are explored. Nuclear moments of inertia are discussed and a somewhat different one is defined, together with a method for measuring it and some early results. Finally a few comments on the future prospects for high-spin physics are offered.

  5. Diaphyseal angular deformities in three foals.

    PubMed

    White, K K

    1983-02-01

    Angular limb deformities in 3 foals were found to originate in the diaphyseal region of the 3rd metacarpal (2) and metatarsal (1) bones. In each case, treatment consisted of wedge ostectomy followed by compression plating. Two foals survived for useful performance; the 3rd was euthanatized because of ischemia of the operated limb. The condition appeared to resemble a similar syndrome in man involving tibial curvature. PMID:6826451

  6. Angular Fock coefficients: Refinement and further development

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2015-10-01

    The angular coefficients ψk ,p(α ,θ ) of the Fock expansion characterizing the S -state wave function of the two-electron atomic system are calculated in hyperspherical angular coordinates α and θ . To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power j of the nucleus charge Z are applied. The "pure" j components of the angular Fock coefficients, orthogonal to the hyperspherical harmonics Yk l, are found for even values of k . To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ψ2 ,0, are noted and corrected. All j components of ψ4 ,1 and the majority of components and subcomponents of ψ3 ,0 are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.

  7. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  8. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  9. A Neural Circuit for Angular Velocity Computation

    PubMed Central

    Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  10. A neural circuit for angular velocity computation.

    PubMed

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  11. Nuclear structure at high angular momentum

    SciTech Connect

    Stephens, F.S.

    1980-06-01

    This review paper begins by discussing the limits faced in the attempts to get nuclei to hold very high angular momentum. The method presently used to produce nuclei with the maximum angular momentum is described. Then the physics of high-spin states is taken up; some properties of a purely collective, classical rotor are described, and the effects of coupling single-particle motion to this are considered. Next, backbending, its causes, and a new spectroscopy of bands and backbends at high spin values are discussed. Noncollective states occur when the nuclear angular momentum is carried by a few high-j particles and is aligned along a symmetry axis. There results an irregular yrast line, along which there are no collective transitions. Noncollective behavior in the lead region, the hafnium region, and the N = 82 region is examined. Then the discussion moves on to collective behavior and recent studies on continuum spectra. Evidence for rotation is given, and effective moments of inertia for this rotation are evaluated. Finally, current ..gamma..-ray energy correlation studies are described. 68 references, 36 figures. (RWR)

  12. Optical angular momentum in a rotating frame.

    PubMed

    Speirits, Fiona C; Lavery, Martin P J; Padgett, Miles J; Barnett, Stephen M

    2014-05-15

    It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect. PMID:24978243

  13. Resolution analysis of an angular domain imaging system with two dimensional angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) employs an angular filter to distinguish between quasi-ballistic and scattered photons based on trajectory. A 2D angular filter array was constructed using 3D printing technology to generate an array of micro-channels 500 μm x 500 μm with a length of 12 cm. The main barrier to 2D imaging with the 2D angular filter array was the shadows cast on the image by the 500 μm walls of the angular filter. The objective of this work was to perform a resolution analysis of the 2D angular filter array. The approach was to position the AFA with a two dimensional positioning stage to obtain images of areas normally obstructed by the walls of the AFA. A digital light processor was also incorporated to generate various light patterns to improve the contrast of the images. A resolution analysis was completed by imaging a knife edge submerged in various uniform scattering media (Intralipid® dilutions with water). The edge response functions obtained were then used to compute the line spread function and the theoretical resolution of the imaging system. The theoretical system resolution was measured to be between 110 μm - 180 μm when the scattering level was at or below 0.7% Intralipid®. The theoretical resolution was in agreement with a previous resolution analysis of a silicon-based angular filter with a similar aspect ratio. The measured resolution was also found to be smaller than the size of an individual channel, suggesting that the resolution of an AFA based ADI system is not dependent on the size of the micro-channel.

  14. Measurement and analysis of angular velocity variations of twelve-cylinder diesel engine crankshaft

    NASA Astrophysics Data System (ADS)

    Bulatović, Ž. M.; Štavljanin, M. S.; Tomić, M. V.; Knežević, D. M.; Biočanin, S. Lj.

    2011-11-01

    This paper presents the procedures for measuring and analyzing the angular velocity variation of twelve-cylinder diesel engine crankshaft on its free end and on the power-output end. In addition, the paper deals with important aspects of the measurement of crankshaft torsional oscillations. The method is based on digital encoders placed at two distances, and one of them is a sensor not inserted directly on the shaft, i.e. a non-contact method with a toothed disc is used. The principle based on toothed disc is also used to measure the actual camshaft angular velocity of in-line compact high-pressure pump the engine is equipped with, and this paper aims to demonstrate the possibility of measuring the actual angular velocity of any rotating shaft in the engine, on which it is physically possible to mount a toothed disc. The method was created completely independently during long-range development and research tests of V46 family engines. This method is specific for its particular adaptability for use on larger engines with extensive vibrations and torsional oscillations. The main purpose of this paper is a practical contribution to all the more interesting research of the use of engine crankshaft angular velocity as a diagnostic tool for identifying the engine irregular running.

  15. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  16. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    SciTech Connect

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow

  17. Adaptive Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).

  18. Asymmetric angular-selective thermal emission

    NASA Astrophysics Data System (ADS)

    Sakr, Enas; Dhaka, Shailja; Bermel, Peter

    2016-03-01

    Thermal emission from blackbodies and flat metallic surfaces is non-directional, following the Lambert cosine law. However, highly directional thermal emission could be useful for improving the efficiency of a broad range of different applications, including thermophotovoltaics, spectroscopy and infra-red light sources. This is particularly true if strong symmetry breaking could ensure emission only in one particular direction. In this work, we investigate the possibility of tailoring asymmetric thermal emission using structured metasurfaces. These are built from surface grating unit elements that support asymmetric localization of thermal surface plasmon polaritons. The angular dependence of emissivity is studied using a rigorous coupled wave analysis (RCWA) of absorption, plus Kirchhoff's law of thermal radiation. It is further validated using a direct thermal simulation of emission originating from the metal. Asymmetric angular selectivity with near-blackbody emissivity is demonstrated for different shallow blazed grating structures. We study the effect of changing the period, depth and shape of the grating unit cell on the direction angle, angular spread, and magnitude of coupled radiation mode. In particular, a periodic sawtooth structure with a period of 1.5λ and angle of 8°was shown to create significant asymmetry of at least a factor of 3. Such structures can be considered arbitrary directional sources that can be carefully patterned on metallic surfaces to yield thermal lenses with designed focal lengths, targeted to particular concentration ratios. The benefit of this approach is that it can enhance the view factor between thermal emitters and receivers, without restricting the area ratio or separation distance.

  19. Lunar influence on equatorial atmospheric angular momentum

    NASA Astrophysics Data System (ADS)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-11-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and σ1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.

  20. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  1. Convert Acoustic Resonances to Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-chun; Zhang, Likun

    2016-07-01

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM.

  2. Angular distributions of neutron-nucleus collisions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2011-06-15

    We derive the total and the differential cross sections with respect to angle for neutron-induced reactions from an analytical model having a simple functional form to demonstrate the quantitative agreement with the measured cross sections. The energy dependence of the neutron-nucleus interaction cross sections are estimated successfully for energies ranging from 5 to 600 MeV. In this work, the effect of the imaginary part of the nuclear potential is treated more appropriately compared to our earlier work. The angular distributions for neutron scattering also agree reasonably well with the experimental data at forward angles.

  3. Linear and angular retroreflecting interferometric alignment target

    DOEpatents

    Maxey, L. Curtis

    2001-01-01

    The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

  4. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM. PMID:27472113

  5. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

    SciTech Connect

    Kucukboyaci, Vefa; Haghighat, Alireza

    2001-06-17

    New angular multigrid formulations have been developed, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, which are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S{sub N} code. Through use of the Fourier analysis method for an infinite, homogeneous medium, the effectiveness of the V-Cycle scheme was investigated for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. The theoretical analysis revealed that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. The effectiveness of the new schemes was also investigated for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem.

  6. Angular anisotropy in valence photoionization of Na clusters: theoretical investigation using jellium model

    NASA Astrophysics Data System (ADS)

    Jänkälä, Kari

    2013-03-01

    Calculation of the behaviour of photoelectron angular anisotropy in valence ionization of initially neutral NaX (X = 34-58) clusters is provided. The calculations are carried out for 1p, 1d and 1g jellium orbitals as a function of photon energy. The adapted theoretical framework is spherical jellium model using Woods-Saxon potential, which is modified to account for the long-range Coulomb tail in the final state. We discuss on the observed dramatic variations of the angular anisotropy parameter β as a function incident photon energy. It is shown that the behaviour is connected to the oscillation of the valence photoionization cross sections, that is a specific interference property of such metallic clusters whose valence structure can be described using the jellium model. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  7. Adapting Animals.

    ERIC Educational Resources Information Center

    Wedman, John; Wedman, Judy

    1985-01-01

    The "Animals" program found on the Apple II and IIe system master disk can be adapted for use in the mathematics classroom. Instructions for making the necessary changes and suggestions for using it in lessons related to geometric shapes are provided. (JN)

  8. Adaptive homeostasis.

    PubMed

    Davies, Kelvin J A

    2016-06-01

    Homeostasis is a central pillar of modern Physiology. The term homeostasis was invented by Walter Bradford Cannon in an attempt to extend and codify the principle of 'milieu intérieur,' or a constant interior bodily environment, that had previously been postulated by Claude Bernard. Clearly, 'milieu intérieur' and homeostasis have served us well for over a century. Nevertheless, research on signal transduction systems that regulate gene expression, or that cause biochemical alterations to existing enzymes, in response to external and internal stimuli, makes it clear that biological systems are continuously making short-term adaptations both to set-points, and to the range of 'normal' capacity. These transient adaptations typically occur in response to relatively mild changes in conditions, to programs of exercise training, or to sub-toxic, non-damaging levels of chemical agents; thus, the terms hormesis, heterostasis, and allostasis are not accurate descriptors. Therefore, an operational adjustment to our understanding of homeostasis suggests that the modified term, Adaptive Homeostasis, may be useful especially in studies of stress, toxicology, disease, and aging. Adaptive Homeostasis may be defined as follows: 'The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.' PMID:27112802

  9. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  10. Axions and the galactic angular momentum distribution

    NASA Astrophysics Data System (ADS)

    Banik, N.; Sikivie, P.

    2013-12-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest-energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid He4 and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and acquire the same velocity distribution. The resulting baryonic angular momentum distribution gives a good qualitative fit to the distributions observed in dwarf galaxies. We give estimates of the minimum fraction of dark matter that is composed of axions.

  11. Axial-conductances angular filter investigation

    NASA Astrophysics Data System (ADS)

    Hannan, P. W.; Pedersen, J. F.

    1984-04-01

    This report describes the concept, analysis, design, construction, and tests of an angular filter using an axial-conductance medium. The filter provides rejection that increases with incidence angle in the E plane. It is essentially invisible at broadside incidence, does not have critical tolerances on dimensions or materials, and operates over a wide frequency band. Analysis of an ideal homogeneous axial-conductance medium shows that the optimum value for the axial loss tangent is unity. With this value, the homogeneous medium provides approximately 8 dB of absorptive rejection per wavelength of filter thickness at a 45 E-plane incidence angle. Analysis of a practical inhomogeneous axial-conductance medium shows that some loss is introduced at broadside incidence, and that two types of waves can exist in the medium when only one wave is incident at an oblique angle. When the practical medium has dimensions that are properly chosen, its broadside loss can be negligible, and its rejection versus incidence angle can approximate that of the ideal medium. Tests of inhomogeneous samples in simulator wave guide confirm these analytical results. A screen printing method for depositing thick-film resistive ink on thin dielectric sheets has been investigated. With this method a 5x5 foot angular filter, designed for operation at 10 GHz, has been constructed containing over 70,000 axial-conductance elements.

  12. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  13. Practical scaling law for photoelectron angular distributions

    SciTech Connect

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-10-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u{sub p}{identical_to}U{sub p}/({Dirac_h}/2{pi}){omega}, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) {epsilon}{sub b}{identical_to}E{sub b}/({Dirac_h}/2{pi}){omega}, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested.

  14. A spectral analysis of the earth's angular momentum budget

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Dickey, J. O.; Callahan, P. S.

    1985-01-01

    The exchange of angular momentum between the solid earth and the atmosphere from January 1976 through March 1982 is investigated using estimates of the earth's rotation from optical astrometry and lunar laser ranging and meteorological estimates of the atmospheric angular momentum M(atm). The physics of the earth's angular momentum budget is described, and earth rotation measurements are related to changes in the angular momentum of the fluid parts of the earth. The availability and reliability of earth rotation and M(atm) data are reported, and the possibility of estimating the exchange of angular momentum with the oceans and with the core is examined. Estimates of the power spectrum, cospectral coherence, and linear transfer functions and an analysis of the unmodeled part of the angular momentum budget are presented and discussed. The amplitude and phase of the semiannual, monthly, and fortnightly tidal variations in the length of day are estimated after removing observed atmospheric excitation.

  15. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. PMID:20371254

  16. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  17. Connector adapter

    NASA Technical Reports Server (NTRS)

    Hacker, Scott C. (Inventor); Dean, Richard J. (Inventor); Burge, Scott W. (Inventor); Dartez, Toby W. (Inventor)

    2007-01-01

    An adapter for installing a connector to a terminal post, wherein the connector is attached to a cable, is presented. In an embodiment, the adapter is comprised of an elongated collet member having a longitudinal axis comprised of a first collet member end, a second collet member end, an outer collet member surface, and an inner collet member surface. The inner collet member surface at the first collet member end is used to engage the connector. The outer collet member surface at the first collet member end is tapered for a predetermined first length at a predetermined taper angle. The collet includes a longitudinal slot that extends along the longitudinal axis initiating at the first collet member end for a predetermined second length. The first collet member end is formed of a predetermined number of sections segregated by a predetermined number of channels and the longitudinal slot.

  18. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  19. Adaptive sampler

    DOEpatents

    Watson, Bobby L.; Aeby, Ian

    1982-01-01

    An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  20. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  1. Angular momenta creation in relativistic electron-positron plasma.

    PubMed

    Tatsuno, T; Berezhiani, V I; Pekker, M; Mahajan, S M

    2003-07-01

    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrödinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe. PMID:12935260

  2. Peculiarities of Angular Distribution of Electrons at Si <100> Channeling

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Pivovarov, Yu L.; Takabayashi, Y.; Tukhfatullin, T. A.

    2012-05-01

    The properties of both angular and spatial distribution of 255 MeV electrons at <100> channeling in silicon crystal has been investigated experimentally at the linac injector of SAGA light source and by computer simulations. The simulation of trajectories, angular and spatial distributions of electrons on the screen monitor has been performed taking into account initial spatial as well as angular beam divergence of electron beam. Both experimental data and simulations show the brilliant effect of so-called "doughnut scattering".

  3. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    PubMed

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented. PMID:27137257

  4. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  5. Visual reaction times during prolonged angular acceleration parallel the subjective perception of rotation

    NASA Technical Reports Server (NTRS)

    Mattson, D. L.

    1975-01-01

    The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.

  6. Passive optical element with selective angular reflection

    SciTech Connect

    Tremblay, C.; Rheault, F.; Boulay, R.; Tremblay, R.

    1987-02-01

    This work is related to the development of passive selective transmission materials that will contribute to regularize the solar thermal gain. We propose an original solution to the problem of seasonal control of energetic input into buildings through windows. A passive optical element with selective angular reflection is used to solve this problem. This optical element allows sunlight to enter windows during the fall and winter, whereas, owing to the different astronomical path of the sun, it stops and rejects direct sunlight by means of the optical effect called total internal reflection (TIR) during the central spring-Summer period. The purpose of this paper is to describe the optical element in some detail, to develop the principal design equations, and give the results of the optimization of optical and geometrical parameters.

  7. Wideband phase-locked angular modulator

    NASA Technical Reports Server (NTRS)

    Nguyen, L.

    1989-01-01

    A phase-locked loop (PLL) angular modulator scheme has been proposed which has the characteristics of wideband modulation frequency response. The modulator design is independent of the PLL closed-loop transfer function H(s), thereby allowing independent optimization of the loop's parameters as well as the modulator's parameters. A phase modulator implementing the proposed scheme was built to phase modulate a low-noise phase-locked signal source at the output frequency of 2290 MHz. The measurement results validated the analysis by demonstrating that the resulting baseband modulation bandwidth exceeded that of the phase-locked loop by over an order of magnitude. However, it is expected to be able to achieve much wider response still.

  8. Angular relation of axes in perceptual space

    NASA Technical Reports Server (NTRS)

    Bucher, Urs

    1992-01-01

    The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.

  9. Optical communication beyond orbital angular momentum.

    PubMed

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  10. Optical communication beyond orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  11. Optical communication beyond orbital angular momentum

    PubMed Central

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  12. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  13. Arbitrarily tunable orbital angular momentum of photons

    PubMed Central

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  14. Angular Clustering of Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Garcet, O.; Disseau, L.; Pacaud, F.; Pierre, M.; Gueguen, A.; Alloin, D.; Chiappetti, L.; Gosset, E.; Maccagni, D.; Surdej, J.; Valtchanov, I.

    2006-09-01

    We describe the properties of X-ray point-like sources detected over 4.2 sq. degs. of the largest contiguous survey with XMM-Newton to date (the XMM-LSS survey) to fluxes of F2-10 keV 8x10-15 erg/s/cm2 and F0.5-2 keV 2x10-15 erg/s/cm2 respectively. For 1200 sources in the soft band, we find a two-point angular correlation function (ACF) signal similar to previous work, but no correlation for 400 sources in the hard band. A sample of 200 faint sources with hard X-ray spectra does show a 2-3 sigma positive signal with a power-law normalization theta0>40 arcsec. We discuss implications, including the fact that a large correlation length for obscured AGN is inconsistent with simple AGN Unification based on orientation only.

  15. Colliding particles carrying nonzero orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ivanov, Igor P.

    2011-05-01

    Photons carrying nonzero orbital angular momentum (twisted photons) are well-known in optics. Recently, using Compton backscattering to boost optical twisted photons to high energies was suggested. Twisted electrons in the intermediate energy range have also been produced recently. Thus, collisions involving energetic twisted particles seem to be feasible and represent a new tool in high-energy physics. Here we discuss some generic features of scattering processes involving twisted particles in the initial and/or final state. In order to avoid additional complications arising from nontrivial polarization states, we focus here on scalar fields only. We show that processes involving twisted particles allow one to perform a Fourier analysis of the plane-wave cross section with respect to the azimuthal angles of the initial particles. In addition, using twisted states, one can probe the autocorrelation function of the amplitude, which is inaccessible in the plane-wave collisions. Finally, we discuss prospects for experimental study of these effects.

  16. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  17. Arbitrarily tunable orbital angular momentum of photons.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  18. Angular biasing in implicit Monte-Carlo

    SciTech Connect

    Zimmerman, G.B.

    1994-10-20

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.

  19. Angular momentum effects in subbarrier fusion

    SciTech Connect

    Halbert, M.L.; Beene, J.R.; Hensley, D.C.; Honkanen, K.; Semkow, T.M.; Abenante, V.; Sarantites, D.G.; Li, Z.

    1988-01-01

    Angular-momentum distributions sigma/sub L/ for the compound nucleus /sup 164/Yb were deduced from measurements of ..gamma..-ray multiplicity for all significant evaporation residues from fusion of /sup 64/Ni and /sup 100/Mo at and below the Coulomb barrier. The excitation functions can be reproduced with coupled-channels calculations only if additional coupling beyond the known inelastic strengths is included. Even with this augmented coupling, however, at the lowest bombarding energies the experimental sigma/sub L/ extend to higher L values than the predictions. Single-barrier penetration models for a potential with an energy-dependent depth and shape fitted to the excitation function likewise underestimate the role of high-L partial waves. Somewhat better success is achieved with models in which fission is allowed to occur at distances comparable with or even larger than the Coulomb barrier radius. 24 refs., 3 figs., 2 tabs.

  20. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  1. Chiral symmetries associated with angular momentum

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.; Kleinert, M.

    2014-03-01

    In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle-hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses.

  2. Angular Approach Scanning Ion Conductance Microscopy.

    PubMed

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. PMID:27224490

  3. Delocalized correlations in twin light beams with orbital angular momentum.

    PubMed

    Marino, A M; Boyer, V; Pooser, R C; Lett, P D; Lemons, K; Jones, K M

    2008-08-29

    We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.7 dB is demonstrated with beams carrying orbital angular momentum. Delocalized spatial correlations between the twin beams are observed. PMID:18851611

  4. Quantum hyper-entanglement and angular spectrum decomposition applied to sensors

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2016-05-01

    Hyper-entanglement with an emphasis on mode type is used to extend a previously developed atmospheric imaging system. Angular spectrum expansions combined with second quantization formalism permits many different mode types to be considered using a common formalism. Fundamental Gaussian, standard Hermite-Gaussian, standard Laguerre- Gaussian, and Bessel modes are developed. Hyper-entanglement refers to entanglement in more than one degree of freedom, e.g. polarization, energy-time and orbital angular momentum. The system functions at optical or infrared frequencies. Only the signal photon propagates in the atmosphere, the ancilla photon is retained within the detector. This results in loss being essentially classical, giving rise to stronger forms of entanglement. A simple atomic physics based model of the scattering target is developed. This model permits the derivation in closed form of the loss coefficient for photons with a given mode type scattering from the target. Signal loss models for propagation, transmission, detection, and scattering are developed and applied. The probability of detection of photonic orbital angular momentum is considered in terms of random media theory. A model of generation and detection efficiencies for the different degrees of freedom is also considered. The implications of loss mechanisms for signal to noise ratio (SNR), and other quantum information theoretic quantities are discussed. Techniques for further enhancing the system's SNR and resolution through adaptive optics are examined. The formalism permits random noise and entangled or nonentangled sources of interference to be modeled.

  5. Modification of the DSN radio frequency angular tropospheric refraction model

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.

  6. Quark and Gluon Orbital Angular Momentum: Where Are We?

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric; Liu, Keh-Fei

    2016-06-01

    The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.

  7. One particularity of energy-angular secondary electrons spectrum

    NASA Astrophysics Data System (ADS)

    Borisov, S. S.; Zaitsev, S. I.

    2006-05-01

    In this work we discuss the problems of the energy-angular spectrum of backscattered and true secondary electrons simulation using the discrete (DLA) and the continuous (CLA) loss approximations. The presence of an angular spectrum artefact - the deviation from the sinusoidal distribution over the range of 177-18O° from the beam direction is shown.

  8. Spatial Angular Compounding for Elastography without the Incompressibility Assumption

    PubMed Central

    Rao, Min; Varghese, Tomy

    2007-01-01

    Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in the axial strain elastogram utilizing a least-squares approach on the angular displacement estimates that does not use the incompressibility assumption. This method produces axial strain elastograms with higher image quality, compared to noncompounded axial strain elastograms, and is referred to as the least-squares angular-compounding approach for elastography. To distinguish between these two angular compounding methods, the spatial-angular compounding with angular weighting based on the tissue incompressibility assumption is referred to as weighted compounding. In this paper, we compare the performance of the two angular-compounding techniques for elastography using beam steering on a linear-array transducer. Quantitative experimental results demonstrate that least-squares compounding provides comparable but smaller improvements in both the elastographic signal-to-noise ratio and the contrast-to-noise ratio, as compared to the weighted-compounding method. Ultrasound simulation results suggest that the least-squares compounding method performs better and provide accurate and robust results when compared to the weighted compounding method, in the case where the incompressibility assumption does not hold. PMID:16761786

  9. Angular distribution of light scattered from heavily doped silica fibres

    SciTech Connect

    Alekseev, V V; Likhachev, M E; Bubnov, M M; Salganskii, M Yu; Khopin, V F; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-10-31

    This paper describes an experimental setup for precision measurements of the angular distribution of light scattered by optical fibres in a wide angular range and demonstrates that the models of anomalous scattering proposed to date need to be refined. We have found and interpreted a discrepancy between the Rayleigh scattering coefficients measured by different techniques.

  10. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  11. Methods for measuring and transporting angular momentum in general relativity

    NASA Astrophysics Data System (ADS)

    Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin

    2016-03-01

    For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.

  12. High-dimensional quantum nature of ghost angular Young's diffraction

    SciTech Connect

    Chen Lixiang; Leach, Jonathan; Jack, Barry; Padgett, Miles J.; Franke-Arnold, Sonja; She Weilong

    2010-09-15

    We propose a technique to characterize the dimensionality of entangled sources affected by any environment, including phase and amplitude masks or atmospheric turbulence. We illustrate this technique on the example of angular ghost diffraction using the orbital angular momentum (OAM) spectrum generated by a nonlocal double slit. We realize a nonlocal angular double slit by placing single angular slits in the paths of the signal and idler modes of the entangled light field generated by parametric down-conversion. Based on the observed OAM spectrum and the measured Shannon dimensionality spectrum of the possible quantum channels that contribute to Young's ghost diffraction, we calculate the associated dimensionality D{sub total}. The measured D{sub total} ranges between 1 and 2.74 depending on the opening angle of the angular slits. The ability to quantify the nature of high-dimensional entanglement is vital when considering quantum information protocols.

  13. Cyclic transformation of orbital angular momentum modes

    NASA Astrophysics Data System (ADS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-04-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

  14. Millimetre Wave with Rotational Orbital Angular Momentum

    PubMed Central

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  15. Interannual variation of global atmospheric angular momentum

    SciTech Connect

    Chen, Tsing-Chang; Yen, Ming-Cheng; Tribbia, J.J.

    1996-10-01

    The relative atmospheric angular momentum (RAM) integrated over the globe is an explicit variable representing the state of the atmospheric general circulation. After removing the annual, semiannual, and higher-frequency components, the filtered global RAM time series for the past 14 years (1979-92) is highly correlated with both the Southern Oscillation index and the tropical Pacific sea surface temperature averaged over Area NINO-3 (5{degrees}S-5{degrees}N, 150{degrees}W-90{degrees}W). The interannual variation of global RAM is coherent with the poleward propagation of RAM anomalies. The global RAM anomalies reach their minimum values when westerly anomalies emerge in the Tropics and higher latitudes during a cold El Nino-Southern Oscillation (ENSO) event. On the other hand, global RAM anomalies attain their maximum values when westerly anomalies arrive at the subtropics of both hemispheres during a warm ENSO event. It is demonstrated that the poleward propagation of RAM anomalies results from the flip-flop oscillation of the anomalous circulation between cold and warm ENSO events. 11 refs., 3 figs.

  16. CLASS: The Cosmology Large Angular Scale Surveyor

    NASA Technical Reports Server (NTRS)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Semiclassical model for attosecond angular streaking.

    PubMed

    Smolarski, M; Eckle, P; Keller, U; Dörner, R

    2010-08-16

    Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result. PMID:20721150

  18. Angular Synchronization by Eigenvectors and Semidefinite Programming

    PubMed Central

    Singer, A.

    2010-01-01

    The angular synchronization problem is to obtain an accurate estimation (up to a constant additive phase) for a set of unknown angles θ1, …, θn from m noisy measurements of their offsets θi − θj mod 2π. Of particular interest is angle recovery in the presence of many outlier measurements that are uniformly distributed in [0, 2π) and carry no information on the true offsets. We introduce an efficient recovery algorithm for the unknown angles from the top eigenvector of a specially designed Hermitian matrix. The eigenvector method is extremely stable and succeeds even when the number of outliers is exceedingly large. For example, we successfully estimate n = 400 angles from a full set of m=(4002) offset measurements of which 90% are outliers in less than a second on a commercial laptop. The performance of the method is analyzed using random matrix theory and information theory. We discuss the relation of the synchronization problem to the combinatorial optimization problem Max-2-Lin mod L and present a semidefinite relaxation for angle recovery, drawing similarities with the Goemans-Williamson algorithm for finding the maximum cut in a weighted graph. We present extensions of the eigenvector method to other synchronization problems that involve different group structures and their applications, such as the time synchronization problem in distributed networks and the surface reconstruction problems in computer vision and optics. PMID:21179593

  19. The missing angular momentum of superconductors.

    PubMed

    Hirsch, J E

    2008-06-11

    We point out that the Meissner effect, the process by which a superconductor expels magnetic field from its interior, represents an unsolved puzzle within the London-Bardeen-Cooper-Schrieffer theoretical framework used to describe the physics of conventional superconductors, because it appears to give rise to non-conservation of angular momentum. Possible ways to avoid this inconsistency within the conventional theory of superconductivity are argued to be far-fetched. Consequently, we argue that unless/until a consistent explanation is put forth, the existence of the Meissner effect represents an anomaly that casts doubt on the validity of the conventional framework. Instead, we point out that three elements of the unconventional theory of hole superconductivity (that are not part of the conventional theory) allow for a consistent explanation of the Meissner effect, namely: (i) that the charge distribution in superconductors is macroscopically inhomogeneous, (ii) that superconducting electrons reside in mesoscopic orbits of radius 2λ(L) (λ(L) = London penetration depth), and (iii) that spin-orbit coupling plays an essential role in superconductivity. PMID:21694324

  20. Angular velocity and centripetal acceleration relationship

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.; Vogt, Patrik; Kuhn, Jochen

    2014-05-01

    During the last few years, the growing boom of smartphones has given rise to a considerable number of applications exploiting the functionality of the sensors incorporated in these devices. A sector that has unexpectedly taken advantage of the power of these tools is physics teaching, as reflected in several recent papers. In effect, the use of smartphones has been proposed in several physics experiments spanning mechanics, electromagnetism, optics, oscillations, and waves, among other subjects. Although mechanical experiments have received considerable attention, most of them are based on the use of the accelerometer. An aspect that has received less attention is the use of rotation sensors or gyroscopes. An additional advance in the use of these devices is given by the possibility of obtaining data using the accelerometer and the gyroscope simultaneously. The aim of this paper is to consider the relation between the centripetal acceleration and the angular velocity. Instead of using a formal laboratory setup, in this experiment a smartphone is attached to the floor of a merry-go-round, found in many playgrounds. Several experiments were performed with the roundabout rotating in both directions and with the smart-phone at different distances from the center. The coherence of the measurements is shown.

  1. Millimetre Wave with Rotational Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  2. Angular Distribution and Angular Dispersion in Collision of 19F+27Al at 114 MeV

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Yu-Chuan; Li, Song-Lin; Duan, Li-Min; Xu, Hu-Shan; Xu, Hua-Gen; Chen, Ruo-Fu; Wu, He-Yu; Han, Jian-Long; Li, Zhi-Chang; Lu, Xiu-Qin; Zhao, Kui; Liu, Jian-Cheng; Sergey, Yu-Kun

    2004-10-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27Al at 114 MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  3. Applications of minimum redundancy arrays in adaptive beamforming

    NASA Astrophysics Data System (ADS)

    Fattouche, M.; Nichols, S. T.; Jorgenson, M. B.

    1991-10-01

    It is shown, through analysis and simulation, that the use of a minimum redundancy array (MRA) in conjunction with an adaptive beamformer results in performance superior to that attained by a comparable system based on an array with uniformly spaced elements, or uniform array (UA) in terms of rejecting interferences located in close angular proximity to the look direction. Further, it is demonstrated that choosing the adaptive elements of a thinned adaptive array (TAA) based on a minimum spatial redundancy criterion, rather than spacing them uniformly, results in improved rejection of main lobe interferences, with negligible degradation in sidelobe interference rejection capabilities.

  4. Angular dependent light emission from planar waveguides

    SciTech Connect

    Peter, Jaison; Prabhu, Radhakrishna; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Kailasnath, M.

    2015-01-07

    We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm.

  5. Indirect precise angular control using four-wave mixing

    SciTech Connect

    Zhang, Wei; Ding, Dong-Sheng; Shi, Bao-Sen Guo, Guang-Can; Jiang, Yun-Kun

    2014-04-28

    Here, we show indirect precise angular control using a four-wave mixing (FWM) process. This was performed with a superposition of light with orbital angular momentum in an M-Type configuration of a hot {sup 85}Rb atomic ensemble. A gear-shaped interference pattern is observed at FWM light with a donut-shaped input signal. The gear could be rotated and is controlled through the change of the polarization of the pump laser. Our experimental results that are based on nonlinear coherent interactions have applications in image processing and precise angular control.

  6. Angular resolution of air-shower array-telescopes

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  7. Electro-optic analyzer of angular momentum hyperentanglement

    NASA Astrophysics Data System (ADS)

    Wu, Ziwen; Chen, Lixiang

    2016-02-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  8. Detection of a spinning object using light's orbital angular momentum.

    PubMed

    Lavery, Martin P J; Speirits, Fiona C; Barnett, Stephen M; Padgett, Miles J

    2013-08-01

    The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was still present when the angular momentum vector was parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings. PMID:23908234

  9. Electro-optic analyzer of angular momentum hyperentanglement

    PubMed Central

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  10. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    NASA Astrophysics Data System (ADS)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-01

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ˜ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ˜ 1.5% in 2 ˜ 40 K. The origin of this angular MR was also discussed.

  11. How orbital angular momentum affects beam shifts in optical reflection

    SciTech Connect

    Merano, M.; Hermosa, N.; Woerdman, J. P.; Aiello, A.

    2010-08-15

    It is well known that reflection of a Gaussian light beam (TEM{sub 00}) by a planar dielectric interface leads to four beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Haenchen (GH) shift, the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four shifts; this is described by a 4x4 mixing matrix.

  12. Angular momentum evolution during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire L.; Greaves, Jane S.

    2014-01-01

    We focused on analysing the role played by protoplanetary disks in the evolution of angular momentum during star formation. If all the angular momentum contained within collapsing pre-stellar cores was conserved during their formation, proto-stars would reach rotation rates exceeding their break-up velocities before they reached the main sequence (Bodenheimer 1995). In order to avoid this occuring, methods by which proto-stars can lose angular momentum must exist. Angular momentum can be transferred from star to disk via stellar magnetic field lines through a process called magnetic braking (Camenzind 1990; Königl 1991). Alternatively, the stellar angular momentum can be lost from the star-disk system entirely via stellar- or disk-winds (e.g. Pelletier & Pudritz 1992; Matt & Pudritz 2005). The proportion of lost stellar angular momentum retained within the protoplanetary disk is important to studies of planetary system formation. If the bulk motion within the disk remains Keplerian, any increase of angular momentum in the disk causes an outward migration of disk material and an expansion of the disk. Therefore, an increase in disk angular momentum may cause a reduction in the disk surface density, often used to indicate the disk's ability to form planets. We made use of multi-wavelength data available in the literature to directly calculate the stellar and disk angular momenta for two nearby regions of star formation. Namely, these were the densely populated and highly irradiated Orion Nebula Cluster (ONC) and the comparitively sparse Taurus-Auriga region. Due to the limited size of the ONC dataset, we produced an average surface density profile for the region. We modelled the stars as solid body rotators due to their fully convective nature (Krishnamurthi et al. 1997) and assumed the disks are flat and undergo Keplerian rotation about the same rotation axis as the star. We observed the older disks within each of the two star forming regions to be preferentially

  13. Angular vibrations of cryogenically cooled double-crystal monochromators.

    PubMed

    Sergueev, I; Döhrmann, R; Horbach, J; Heuer, J

    2016-09-01

    The effect of angular vibrations of the crystals in cryogenically cooled monochromators on the beam performance has been studied theoretically and experimentally. A simple relation between amplitude of the vibrations and size of the focused beam is developed. It is shown that the double-crystal monochromator vibrations affect not only the image size but also the image position along the optical axis. Several methods to measure vibrations with the X-ray beam are explained and analyzed. The methods have been applied to systematically study angular crystal vibrations at monochromators installed at the PETRA III light source. Characteristic values of the amplitudes of angular vibrations for different monochromators are presented. PMID:27577762

  14. Electro-optic analyzer of angular momentum hyperentanglement.

    PubMed

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  15. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    SciTech Connect

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  16. Turbulent equipartition and homogenization of plasma angular momentum.

    PubMed

    Gürcan, O D; Diamond, P H; Hahm, T S

    2008-04-01

    A physical model of turbulent equipartition (TEP) of plasma angular momentum is developed. We show that using a simple, model insensitive ansatz of conservation of total angular momentum, a TEP pinch of angular momentum can be obtained. We note that this term corresponds to a part of the pinch velocity previously calculated using quasilinear gyrokinetic theory. We observe that the nondiffusive TEP flux is inward, and therefore may explain the peakedness of the rotation profiles observed in certain experiments. Similar expressions for linear toroidal momentum and flow are computed and it is noted that there is an additional effect due the radial profile of moment of inertia density. PMID:18517961

  17. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  18. Scanning Twyman interferometer for measuring small angular displacement

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Tong, Yue

    2010-12-01

    We present a simple but effective method for measuring small angular displacement based on a scanning Twyman interferometer ,in which, one of the two mirrors is mounted on the piezoelectric ceramic (PZT) droved by saw-tooth voltage, the status of interference fringes changes from static to dynamic. A photoelectric detector detects this dynamic photo-signal and changes into electronic signal. The signal is inputted into an oscillograph. The oscillogram will present interference crests. The method for measuring small angular displacement is based on the linear relation between the angular displacement and the crest shift on the oscillogram.

  19. Scanning Twyman interferometer for measuring small angular displacement

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Tong, Yue

    2011-05-01

    We present a simple but effective method for measuring small angular displacement based on a scanning Twyman interferometer ,in which, one of the two mirrors is mounted on the piezoelectric ceramic (PZT) droved by saw-tooth voltage, the status of interference fringes changes from static to dynamic. A photoelectric detector detects this dynamic photo-signal and changes into electronic signal. The signal is inputted into an oscillograph. The oscillogram will present interference crests. The method for measuring small angular displacement is based on the linear relation between the angular displacement and the crest shift on the oscillogram.

  20. Generation and detection of orbital angular momentum via metasurface.

    PubMed

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  1. Generation and detection of orbital angular momentum via metasurface

    NASA Astrophysics Data System (ADS)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  2. Generation and detection of orbital angular momentum via metasurface

    PubMed Central

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  3. Vestibular adaptation to space in monkeys

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1998-01-01

    Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.

  4. The angular momentum dependence of complex fragment emission

    SciTech Connect

    Sobtka, L.G.; Sarantites, D.G.; Li, Z.; Dines, E.L.; Halbert, M.L.; Hensley, D.C.; Schmitt, R.P.; Majka, Z.; Nebbia, G.; Griffin, H.C.

    1987-01-01

    Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV /sup 45/Sc + /sup 65/Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from /sup 93/Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident ..gamma..-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs.

  5. Fabrication of the planar angular rotator using the CMOS process

    NASA Astrophysics Data System (ADS)

    Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen

    2002-05-01

    In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.

  6. Grating angle magnification enhanced angular sensor and scanner

    NASA Technical Reports Server (NTRS)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  7. Differential reflective fiber-optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Shan, Mingguang; Min, Rui; Zhong, Zhi; Wang, Ying; Zhang, Yabin

    2015-05-01

    Using the characteristic that the distance apart between the emitting fiber and receiving fiber only shifts the angular-power curve, a differential reflective fiber-optic sensor for angular displacement measurement is presented through subtraction of two power signals from two receiving fibers placed on both sides of one emitting fiber. A theoretical model is established to characterize the performance of the differential reflective fiber-optic angular displacement sensor. The measurements made indicate that the general behavior of the experimental results agrees with that of the theoretical results, and the sensor can improve sensitivity by about 120%, resulting in the significant improvement of anti-interference capability, which will be more suitable for high accuracy bipolar absolute angular displacement measurement. Design guidelines are also suggested to achieve desired sensor performances.

  8. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  9. Lateral Magnification-Angular Magnification Relationship for a Simple Magnifier.

    ERIC Educational Resources Information Center

    Keating, Michael P.

    1980-01-01

    Discusses the lateral magnification-angular magnification relationship in the case of a simple magnifying lens. This discussion intends to show how the relationship can be treated in undergraduate optics courses as well as in many general physics courses. (HM)

  10. Two-color ghost imaging with enhanced angular resolving power

    SciTech Connect

    Karmakar, Sanjit; Shih, Yanhua

    2010-03-15

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.