The Anharmonic Force Field of BeH2 Revisited
NASA Technical Reports Server (NTRS)
Martin, Jan M. L.; Lee, Timothy J.
2003-01-01
The anharmonic force field of BeH2 has been calculated near the basis set and n-particle space limits. The computed antisymmetric stretch frequencies of BeH2 and BeD2 are in excellent agreement with recent high-resolution gas-phase measurements. The agreement between theory and experiment for the other spectroscopic constants is also excellent, except for omega(sub 3) and X(sub 33) for BeH2 and G(sub 22) for BeD2. It is concluded that further experimental work is needed in order to resolve these discrepancies.
An assessment of the anharmonic force fields of the halogen cyanides
NASA Astrophysics Data System (ADS)
Lacy, M.
Anharmonic force fields in the ϱ representation (ϱ = Я/ r) have been calculated using the matrix diagonalization technique. A simple model force field and comparison method are used to assess the force fields currently available for these molecules. From this analysis, the potential surfaces defined by the present force fields are estimated to be within 2-5% of the actual molecular potential.
Ab initio calculation and anharmonic force field of hypochlorous acid, HOCl
NASA Astrophysics Data System (ADS)
Halonen, L.; Ha, T.-K.
1988-03-01
Ab initio calculations on HOCl have been performed at the third-order Møller-Plesset perturbation theory level to determine the equilibrium structure and the anharmonic force field. An empirical anharmonic force field based on the ab initio results is obtained using available experimental vibration-rotation data. Four of the six harmonic and six of the ten cubic force constants have been determined experimentally, the remaining values being fixed at the ab initio values. A good fit to the experimental vibration-rotation data of four isotopic species is obtained.
The spectroscopic constants and anharmonic force field of AgSH: An ab initio study.
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang
2016-07-01
The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH. PMID:27085293
The spectroscopic constants and anharmonic force field of AgSH: An ab initio study
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang
2016-07-01
The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH.
Empirical anharmonic force field and equilibrium structure of hypochlorous acid, HOCl
NASA Astrophysics Data System (ADS)
Escribano, R. M.; Di Lonardo, G.; Fusina, L.
1996-09-01
The cubic and quartic force fields of HOCl are investigated on the basis of the most recent experimental data on vibration-rotation interaction constants and anharmonicity constants. Some discrepancies with respect to previously reported ab initio results are found and discussed. The geometrical parameters of this molecule are also evaluated from recent data on the equilibrium values of the moments of inertia.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned. PMID:26671382
Mackie, Cameron J. Candian, Alessandra; Tielens, Alexander G. G. M.; Huang, Xinchuan; Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Oomens, Jos; Lee, Timothy J.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2015-12-01
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1980-11-01
The harmonic and anharmonic force fields and fundamental vibrational frequencies of cis-cis and cis-trans performic acid are studied ab initio in the 4-31G basis set using geometries fully optimized at this level. The frequencies predicted for the cis-cis conformer are compared with those derived from spectroscopic observations on the most stable form. An extensive comparison is made between the changes in diagonal and off-diagonal quadratic and cubic force constants, and diagonal stretching quartic constants, in going from the chain to the ring structure in performic and formic acid, and features which these changes have in common are seen to support the view that there is a hydrogen bonding type of interaction in trans-formic acid despite its unfavorable geometry.
The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO
NASA Technical Reports Server (NTRS)
Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.
1997-01-01
The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.
Hagler, A T
2015-12-01
Computer simulations are increasingly prevalent, complementing experimental studies in all fields of biophysics, chemistry, and materials. Their utility, however, is critically dependent on the validity of the underlying force fields employed. In this Perspective we review the ability of quantum mechanics, and in particular analytical ab initio derivatives, to inform on the nature of intra- and intermolecular interactions. The power inherent in the exploitation of forces and second derivatives (Hessians) to derive force fields for a variety of compound types, including inorganic, organic, and biomolecules, is explored. We discuss the use of these quantities along with QM energies and geometries to determine force constants, including nonbond and electrostatic parameters, and to assess the functional form of the energy surface. The latter includes the optimal form of out-of-plane interactions and the necessity for anharmonicity, and terms to account for coupling between internals, to adequately represent the energy of intramolecular deformations. In addition, individual second derivatives of the energy with respect to selected interaction coordinates, such as interatomic distances or individual dihedral angles, have been shown to select out for the corresponding interactions, annihilating other interactions in the potential expression. Exploitation of these quantities allows one to probe the individual interaction and explore phenomena such as, for example, anisotropy of atom-atom nonbonded interactions, charge flux, or the functional form of isolated dihedral angles, e.g., a single dihedral X-C-C-Y about a tetrahedral C-C bond. PMID:26642978
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1980-03-01
The geometry, harmonic and anharmonic force fields, and fundamental vibration frequencies of cis- and trans-formic acid are studied ab initio in the 4-31G and (9,5) basis sets. For the more stable trans-conformer (i.e., trans with respect to CH and OH) comparisons are made between the predicted and observed anharmonic frequencies, and between the calculated harmonic force constants and those Redington derived from an analysis of experimental data. In the case of the less stable cis-conformer, for which there is as yet little experimental data, the calculations serve to predict values for the fundamental vibrational frequencies.
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1981-09-01
The structures, dipole moments, force fields, and anharmonic frequencies for the planar conformation of formamide and thioformamide were calculated using the unscaled 4-31G basis set, augmented with a full set of d functions on the sulfur, and full geometry optimization. Extensive comparison of the geometries are made, especially the CO and CS bond lengths, with both the experimental values for the amides and values calculated in previous studies on the acids and other carbonyl compounds. Comparison of the dipole moments calculated using the optimized and experimental geometries with the experimental values suggest there is some inconsistancy in the experimental geometry for thioformamide. Quadratic, cubic, and quartic force constants are calculated for both amides, and hence the fundamental vibration frequencies. Critical comparisons are made with the assignments based on experimental observations. Differences in the bond lengths and stretching force constants for the two NH bonds are shown to be consistent with a hydrogen-bonding type of interaction between the proximal NH and CO and CS groups, like that in the acids.
Anharmonic force field, vibrational energies, and barrier to inversion of SiH{sub 3}{sup -}
Aarset, Kirsten; Csaszar, Attila G.; Sibert, Edwin L. III; Allen, Wesley D.; Schaefer, Henry F. III; Klopper, Wim; Theoretical Chemistry Group, Debye Institute, Utrecht University, Padualaan 14, NL-3584 CH Utrecht, The Netherlands ; Noga, Jozef
2000-03-01
The full quartic force field of the ground electronic state of the silyl anion (SiH{sub 3}{sup -}) has been determined at the CCSD(T)-R12 level employing a [Si/H]=[16s11p6d5f/7s5p4d] basis set. The vibrational energy levels, using the quartic force field as a representation of the potential energy hypersurface around equilibrium, have been determined by vibrational perturbation theory carried out to second, fourth, and sixth order. The undetected vibrational fundamental for the umbrella mode, {nu}{sub 2}, is predicted to be 844 cm-1. High-quality ab initio quantum chemical methods, including higher-order coupled cluster (CC) and many-body perturbation (MP) theory with basis sets ranging from [Si/H] [5s4p2d/3s2p] to [8s7p6d5f4g3h/7s6p5d4f3g] have been employed to obtain the best possible value for the inversion barrier of the silyl anion. The rarely quantified effects of one- and two-particle relativistic terms, core correlation, and the diagonal Born-Oppenheimer correction (DBOC) have been included in the determination of the barrier for this model system. The final electronic (vibrationless) extrapolated barrier height of this study is 8351{+-}100 cm{sup -1}. (c) 2000 American Institute of Physics.
The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO
Müller; Sørensen; Birk; Friedl
1997-11-01
The rotational spectra of O35ClO and O37ClO in their (000), (100), (010), (001), and (020) states have been reinvestigated in selected regions between 130 and 526 GHz. About 800 newly measured lines spanning the quantum numbers 2 force field. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9417962
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-01
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate. PMID:25296165
Wang, Xiaohong; Huang, Xinchuan; Bowman, Joel M; Lee, Timothy J
2013-12-14
We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations, and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configuration-interaction (VCI) approach. Agreement is within 10 cm(-1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2-QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C2v-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations. PMID:24329063
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences. PMID:27586928
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-01
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1
Dirac bound states of anharmonic oscillator in external fields
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-02-15
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.
Wang, Xiaohong; Bowman, Joel M.; Huang, Xinchuan; Lee, Timothy J.
2013-12-14
We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C{sub 4}. Vibrational fundamentals, combinations, and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configuration-interaction (VCI) approach. Agreement is within 10 cm{sup −1} between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2-QFF and MM-QFF results is also good for the C{sub 4} combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of {sup 12}C{sub 4} and two C{sub 2v}-symmetry, single {sup 13}C-substituted isotopologues are presented, which may help identification of cyclic C{sub 4} in future experimental analyses or astronomical observations.
Hermes, Matthew R; Hirata, So
2014-12-28
A stochastic algorithm based on Metropolis Monte Carlo (MC) is presented for the size-extensive vibrational self-consistent field methods (XVSCF(n) and XVSCF[n]) for anharmonic molecular vibrations. The new MC-XVSCF methods substitute stochastic evaluations of a small number of high-dimensional integrals of functions of the potential energy surface (PES), which is sampled on demand, for diagrammatic equations involving high-order anharmonic force constants. This algorithm obviates the need to evaluate and store any high-dimensional partial derivatives of the potential and can be applied to the fully anharmonic PES without any Taylor-series approximation in an intrinsically parallelizable algorithm. The MC-XVSCF methods reproduce deterministic XVSCF calculations on the same Taylor-series PES in all energies, frequencies, and geometries. Calculations using the fully anharmonic PES evaluated on the fly with electronic structure methods report anharmonic effects on frequencies and geometries of much greater magnitude than deterministic XVSCF calculations, reflecting an underestimation of anharmonic effects in a Taylor-series approximation to the PES. PMID:25554137
Hermes, Matthew R.; Hirata, So
2014-12-28
A stochastic algorithm based on Metropolis Monte Carlo (MC) is presented for the size-extensive vibrational self-consistent field methods (XVSCF(n) and XVSCF[n]) for anharmonic molecular vibrations. The new MC-XVSCF methods substitute stochastic evaluations of a small number of high-dimensional integrals of functions of the potential energy surface (PES), which is sampled on demand, for diagrammatic equations involving high-order anharmonic force constants. This algorithm obviates the need to evaluate and store any high-dimensional partial derivatives of the potential and can be applied to the fully anharmonic PES without any Taylor-series approximation in an intrinsically parallelizable algorithm. The MC-XVSCF methods reproduce deterministic XVSCF calculations on the same Taylor-series PES in all energies, frequencies, and geometries. Calculations using the fully anharmonic PES evaluated on the fly with electronic structure methods report anharmonic effects on frequencies and geometries of much greater magnitude than deterministic XVSCF calculations, reflecting an underestimation of anharmonic effects in a Taylor-series approximation to the PES.
Size-extensive vibrational self-consistent field methods with anharmonic geometry corrections
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Keçeli, Murat; Hirata, So
2012-06-01
In the size-extensive vibrational self-consistent field (XVSCF) method introduced earlier [M. Keçeli and S. Hirata, J. Chem. Phys. 135, 134108 (2011)], 10.1063/1.3644895, only a small subset of even-order force constants that can form connected diagrams were used to compute extensive total energies and intensive transition frequencies. The mean-field potentials of XVSCF formed with these force constants have been shown to be effectively harmonic, making basis functions, quadrature, or matrix diagonalization in the conventional VSCF method unnecessary. We introduce two size-consistent VSCF methods, XVSCF(n) and XVSCF[n], for vibrationally averaged geometries in addition to energies and frequencies including anharmonic effects caused by up to the nth-order force constants. The methods are based on our observations that a small number of odd-order force constants of certain types can form open, connected diagrams isomorphic to the diagram of the mean-field potential gradients and that these nonzero gradients shift the potential minima by intensive amounts, which are interpreted as anharmonic geometry corrections. XVSCF(n) evaluates these mean-field gradients and force constants at the equilibrium geometry and estimates this shift accurately, but approximately, neglecting the coupling between these two quantities. XVSCF[n] solves the coupled equations for geometry corrections and frequencies with an iterative algorithm, giving results that should be identical to those of VSCF when applied to an infinite system. We present the diagrammatic and algebraic definitions, algorithms, and initial implementations as well as numerical results of these two methods. The results show that XVSCF(n) and XVSCF[n] reproduce the vibrationally averaged geometries of VSCF for naphthalene and anthracene in their ground and excited vibrational states accurately at fractions of the computational cost.
Anharmonic Vibrational Dynamics of DNA Oligomers
NASA Astrophysics Data System (ADS)
Kühn, O.; Došlić, N.; Krishnan, G. M.; Fidder, H.; Heyne, K.
Combining two-color infared pump-probe spectroscopy and anharmonic force field calculations we characterize the anharmonic coupling patterns between fingerprint modes and the hydrogen-bonded symmetric vNH2 stretching vibration in adenine-thymine dA20-dT20 DNA oligomers. Specifically, it is shown that the anharmonic coupling between the δNH2 bending and the vC4=O4 stretching vibration, both absorbing around 1665 cm-1, can be used to assign the vNH2 fundamental transition at 3215 cm-1 despite the broad background absorption of water.
Foley, B. Lachele; Tessier, Matthew B.; Woods, Robert J.
2014-01-01
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion. PMID:25530813
Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure
NASA Astrophysics Data System (ADS)
Kurtze, H.; Bayer, M.
2016-07-01
Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock-Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.
Clabo, D.A. Jr.
1987-04-01
Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Lee, Timothy J; Tielens, Alexander G G M
2015-06-28
A full derivation of the analytic transformation of the quadratic, cubic, and quartic force constants from normal coordinates to Cartesian coordinates is given. Previous attempts at this transformation have resulted in non-linear transformations; however, for the first time, a simple linear transformation is presented here. Two different approaches have been formulated and implemented, one of which does not require prior knowledge of the translation-rotation eigenvectors from diagonalization of the Hessian matrix. The validity of this method is tested using two molecules H2O and c-C3H2D(+). PMID:26133410
Energy Science and Technology Software Center (ESTSC)
2015-05-27
ParFit is a flexible and extendable framework and library of classes for fitting force-field parameters to data from high-level ab-initio calculations on the basis of deterministic and stochastic algorithms. Currently, the code is fitting MM3 and Merck force-field parameters but could easily extend to other force-field types.
Nonadiabatic anharmonic electron transfer.
Schmidt, P P
2013-03-28
The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity Δ = -ΔG. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy (Δ = Λ(s)) along a maximum ln (w) vs. Δ ridge of the surface. The surface also reveals additional regions for Δ where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions. PMID:23556710
Nonadiabatic anharmonic electron transfer
Schmidt, P. P.
2013-03-28
The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, Gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity {Delta}=-{Delta}G. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy ({Delta}={Lambda}{sub s}) along a maximum ln (w) vs. {Delta} ridge of the surface. The surface also reveals additional regions for {Delta} where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions.
Positive Anharmonicities: The Oxonide Anion as an Example
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1997-01-01
An accurate ab initio quartic force field for the ozonide anion has been determined at the singles and doubles coupled-cluster level of theory that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), using the augmented valence triple-zeta correlation consistent one-particle basis set. Convergence of the harmonic frequencies with respect to the one-particle basis set has been demonstrated by computing quadratic force fields at the CCSD(T) level using augmented valence double-zeta and quadruple-zeta basis sets. Fundamental vibrational frequencies have been determined via second-order ro-vibrational perturbation theory and also using exact variational methods. Agreement is very good, and they both show that the antisymmetric O-O stretch, v 3, possesses a positive anharmonic correction (that is, the fundamental frequency is predicted to be higher in energy than the harmonic frequency). Comparison of the O_3 and O3 quartic force fields shows that the positive anharmonic correction is the result of a particularly large F3333 symmetry internal coordinate force constant. The reasonableness of this force constant has been tested by computing both F33 and F3333 at the CCSD, CCSD(T), and CASPT2 levels of theory. A discussion of known positive anharmonicities for stretching modes is presented.
NASA Technical Reports Server (NTRS)
Wang, Xiaohong; Huang, Xinchuan; Bowman, Joel M.; Lee, Timothy J.
2013-01-01
We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp -1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations.
Vibrational levels and anharmonicity in SF 6—II. Anharmonic and potential constants
NASA Astrophysics Data System (ADS)
McDowell, Robin S.; Krohn, Burton J.
Expressions for the vibrational energy levels of spherical-top molecules are reviewed. We show that even without a full analysis of the anharmonic splitting of higher vibrational states, the positions of many observed transitions can be adequately described with "effective" anharmonicity constants that combine some of the (unknown) splitting terms together with the "true" anharmonicity constants X ij. A notation is developed that distinguishes between the effective constants obtained from binary ( X' ij) and various types of ternary ( X'' ij, …) combinations. On this basis we analyze the data set of the previous paper on the vibrational levels of SF 6, based largely on FTIR spectra obtained at a resolution of 0.05 cm -1. Many of the anharmonicity constants determine the frequencies of several bands, and can be fitted to the data by least-squares regression with standard deviations of 0.001-0.05 cm -1. Of the 21 constants X ij, we obtain values for six, plus 12 X' ijs obtained from binary combinations and one ( X‴ 22) from ternary combinations. Of the two constants undetermined in this paper, a precise value of X33 is available from high-resolution spectroscopy of 3ν 3, and only X35 remains unknown. The fit also yields band origins for the i.r.-inactive bending fundamentals ν 5 and ν 6. Using these constants, we estimate the harmonic fundamental frequencies ω i. The general quadratic force field of SF 6 has been redetermined, using as constraints in the F1 u block the central-atom isotopic frequency shifts and the Coriolis constants ζ 3 and ζ 4.
Probing the Anharmonicity of the Potential Well for a Magnetic Vortex Core in a Nanodot
NASA Astrophysics Data System (ADS)
Sukhostavets, O. V.; Pigeau, B.; Sangiao, S.; de Loubens, G.; Naletov, V. V.; Klein, O.; Mitsuzuka, K.; Andrieu, S.; Montaigne, F.; Guslienko, K. Y.
2013-12-01
The anharmonicity of the potential well confining a magnetic vortex core in a nanodot is measured dynamically with a magnetic resonance force microscope (MRFM). The stray field of the MRFM tip is used to displace the equilibrium core position away from the nanodot center. The anharmonicity is then inferred from the relative frequency shift induced on the eigenfrequency of the vortex core translational mode. An analytical framework is proposed to extract the anharmonic coefficient from this variational approach. Traces of these shifts are recorded while scanning the tip above an isolated nanodot, patterned out of a single crystal FeV film. We observe a +10% increase of the eigenfrequency when the equilibrium position of the vortex core is displaced to about one-third of its radius. This calibrates the tunability of the gyrotropic mode by external magnetic fields.
Wang Lei; Babikov, Dmitri
2011-02-15
Anharmonicity of the quantized motional states of ions in a Paul trap can be utilized to address the state-to-state transitions selectively and control the motional modes of trapped ions coherently and adiabatically [Zhao and Babikov, Phys. Rev. A 77, 012338 (2008)]. In this paper we study two sources of the vibrational anharmonicity in the ion traps: the intrinsic Coulomb anharmonicity due to ion-ion interactions and the external anharmonicity of the trapping potential. An accurate numerical approach is used to compute energies and wave functions of vibrational eigenstates. The magnitude of the Coulomb anharmonicity is determined and shown to be insufficient for successful control. In contrast, anharmonicity of the trapping potential allows one to control the motion of ions very efficiently using the time-varying electric fields. Optimal control theory is used to derive the control pulses. One ion in a slightly anharmonic trap can be easily controlled. In the two- and three-ion systems the symmetric stretching mode is dark and cannot be controlled at all. The other two normal modes of the three-ion system can be controlled and used, for example, to encode a two-qubit system into the motional states of ions. A trap architecture that allows the necessary amount of vibrational anharmonicity to be achieved is proposed.
NASA Technical Reports Server (NTRS)
Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)
2001-01-01
The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have
Improving an all-atom force field.
Mohanty, Sandipan; Hansmann, U H E
2007-07-01
Experimentally well-characterized proteins that are small enough to be computationally tractable provide useful information for refining existing all-atom force fields. This is used by us for reparametrizing a recently developed all-atom force field. Relying on high statistics parallel tempering simulations of a designed 20 residue beta-sheet peptide, we propose incremental changes that improve the force field's range of applicability. PMID:17677516
A molecular mechanics force field for lignin
Petridis, Loukas; Smith, Jeremy C
2009-02-01
A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.
Thermoelectric materials: The anharmonicity blacksmith
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2015-12-01
Anharmonicity is a property of lattice vibrations governing how they interact and how well they conduct heat. Experiments on tin selenide, the most efficient thermoelectric material known, now provide a link between anharmonicity and electronic orbitals.
Polarization effects in molecular mechanical force fields.
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594
Polarization effects in molecular mechanical force fields
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2014-01-01
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594
An Accurate Quartic Force Field and Vibrational Frequencies for HNO and DNO
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Lee, Timothy J.; Schwenke, David W.
1994-01-01
An accurate ab initio quartic force field for HNO has been determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T), in conjunction with the correlation consistent polarized valence triple zeta (cc-pVTZ) basis set. Improved harmonic frequencies were determined with the cc-pVQZ basis set. Fundamental vibrational frequencies were determined using a second-order perturbation theory analysis and also using variational calculations. The N-0 stretch and bending fundamentals are determined well from both vibrational analyses. The H-N stretch, however, is shown to have an unusually large anharmonic correction, and is not well determined using second-order perturbation theory. The H-N fundamental is well determined from the variational calculations, demonstrating the quality of the ab initio quartic force field. The zero-point energy of HNO that should be used in isodesmic reactions is also discussed.
Anharmonicity and local mode effects in the vibrational spectra of Ni(CO)4 and Co(CO)3NO
NASA Astrophysics Data System (ADS)
Mills, I. M.
Previously published data on the vibrational fundamentals and overtones of the carbonyl stretching modes of Ni(CO)4 and Co(CO)3NO are reinterpreted using the recent model of Mills and Robiette, including Darling-Dennison resonances and local mode effects. The harmonic wavenumber θm and anharmonicity constant xm associated with the carbonyl and nitrosyl stretching modes are derived, and the 13C and 18O isotopic shifts are discussed in relation to the harmonic and anharmonic force field.
Predicted vibrational spectra from anharmonic potential functions
Dunn, K.M.
1986-01-01
The dissertation develops a procedure for predicting vibrational spectra of polyatomic molecules from a combination of theoretical and experimental information. Ab initio quantum chemical calculations provide anharmonic force constants including cubics and diagonal quartics. A variational procedure analogous to configuration interaction is then used to compute eigenvalues of the pure vibrational Hamiltonian. The diagonal quadratic force constants are then adjusted until the calculated fundamental frequencies agree with experiment. The resulting theoretical-experimental force field may then be used to predict the energies of vibrationally excited states. The method is applied to three molecules: hydrogen cyanide, ammonia, and methyl fluoride. For hydrogen cyanide, the dissertation presents predicted energies for all of the vibrationally excited states with up to four quanta of excitation distributed among the four modes. The root-mean-square error is 8.7 cm{sup {minus}1} for the states below 11,000 cm{sup {minus}1}. The force constants for ammonia are adjusted to reproduce the fundamental frequencies of ND{sub 3}. The force constants then predict the energies of states below 7000 cm{sup {minus}1} with an rms error of 5.8 cm{sup {minus}1} for ND{sub 3} and 16.7 cm{sup {minus}1} for NH{sub 3}. Finally, the adjusted force constants for methyl fluoride predict the energies of states below 4100 cm{sup {minus}1} with an rms error of 4.3 cm{sup {minus}1}. These force constants are also used to predict the CH stretching overtone region of CH{sub 3}F and the first, second and third overtone regions of CD{sub 2}FH for which experimental information is not available.
Force Field Development for Lipid Membrane Simulations.
Lyubartsev, Alexander P; Rabinovich, Alexander L
2016-10-01
With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26766518
Static and dynamical Meissner force fields
NASA Technical Reports Server (NTRS)
Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.
1991-01-01
The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.
Three-Dimensional Force Field Spectroscopy
NASA Astrophysics Data System (ADS)
Schwarz, Alexander; Hölscher, Hendrik; Langkat, S. M.; Wiesendanger, R.
2003-12-01
A method is presented that utilizes the frequency modulation technique in ultra-high vacuum to measure the tip-sample force field in all three dimensions with atomic resolution. It is based on a systematic procedure to record frequency shift versus distance curves. After their conversion into the tip-surface potential landscape the complete force field in all three dimensions can be calculated. Experimental results obtained in the non-contact regime on NiO(001) with an iron-coated silicon tip are presented to demonstrate that interatomic vertical and lateral forces can be determined and assigned to specific sites within the surface unit cell.
Probing anharmonicity of a quantum oscillator in an optomechanical cavity
NASA Astrophysics Data System (ADS)
Latmiral, Ludovico; Armata, Federico; Genoni, Marco G.; Pikovski, Igor; Kim, M. S.
2016-05-01
We present a way of measuring with high precision the anharmonicity of a quantum oscillator coupled to an optical field via radiation pressure. Our protocol uses a sequence of pulsed interactions to perform a loop in the phase space of the mechanical oscillator, which is prepared in a thermal state. We show how the optical field acquires a phase depending on the anharmonicity. Remarkably, one only needs small initial cooling of the mechanical motion to probe even small anharmonicities. Finally, by applying tools from quantum estimation theory, we calculate the ultimate bound on the estimation precision posed by quantum mechanics and compare it with the precision obtainable with feasible measurements such as homodyne and heterodyne detection on the cavity field. In particular we demonstrate that homodyne detection is nearly optimal in the limit of a large number of photons of the field and we discuss the estimation precision of small anharmonicities in terms of its signal-to-noise ratio.
Lipid14: The Amber Lipid Force Field.
Dickson, Callum J; Madej, Benjamin D; Skjevik, Age A; Betz, Robin M; Teigen, Knut; Gould, Ian R; Walker, Ross C
2014-02-11
The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855
Controlling Casimir force via coherent driving field
NASA Astrophysics Data System (ADS)
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
Studies of Phonon Anharmonicity in Solids
NASA Astrophysics Data System (ADS)
Lan, Tian
the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures. To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties. These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2 g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.
Importance of local force fields on lattice thermal conductivity reduction in PbTe1-xSex alloys
NASA Astrophysics Data System (ADS)
Murakami, Takuru; Shiga, Takuma; Hori, Takuma; Esfarjani, Keivan; Shiomi, Junichiro
2013-05-01
Lattice thermal conductivity of PbTe1-xSex alloyed crystals has been calculated by molecular-dynamics simulations with anharmonic interatomic force constants (a-IFCs) obtained from first principles. The a-IFCs of pure PbTe and PbSe were calculated by the real-space displacement method with care of the stability for molecular-dynamics simulations. An empirical mixing rule of a-IFCs has been developed to account for both mass and local force-field differences in alloys. The obtained alloy-fraction dependence of lattice thermal conductivity reduction agrees well with the experiments. The comparative study shows that the local force-field difference significantly impacts the lattice thermal conductivity.
Theis, Riley A; Fortenberry, Ryan C
2015-05-21
The argonium cation, ArH(+), has been previously detected in nature for the first time. This cation is believed to form through the gas-phase reaction of Ar(+) and H2. In this work, quantum chemical techniques show that the reaction of Ar and H3(+) may be a viable alternative or contributor to the creation of ArH(+) corroborating previous analysis. In order to further evaluate this claim, highly accurate quartic force field computations are used to produce spectroscopic data and anharmonic vibrational frequencies for ArH3(+) in its 18 isotopologues. NeH3(+) is also analyzed but has a low Ne-H3(+) dissociation barrier. Therefore, it less likely to be observed. Consequently, NeH(+) is also unlikely to be formed from NeH3(+) as it was also not from NeH2(+). PMID:25923978
NASA Technical Reports Server (NTRS)
Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.
1980-01-01
This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.
Current Status of Protein Force Fields for Molecular Dynamics
Lopes, Pedro E.M.; Guvench, Olgun
2015-01-01
Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958
Exact Solution of The Anharmonic Electron-Phonon Problem
NASA Astrophysics Data System (ADS)
Freericks, James; Jarrell, Mark; Mahan, Gerald
1998-03-01
The anharmonic Holstein model is solved exactly using a quantum Monte Carlo simulation on an infinite-dimensional hypercubic lattice (dynamical-mean-field theory). We find that lattice anharmonicity greatly favors superconducting solutions over charge-density-wave (CDW) solutions, and that it generically causes the phase diagrams to be asymmetric in the filling. We compare the exact solutions to different perturbation theories to shed light on the effects of the anharmonicity. As a general rule, we do not find significant enhancements of the superconducting transition temperature relative to the CDW transition temperatures (in the harmonic case), but the phase space for superconductivity is greatly enhanced by anharmonicity. JKF was supported by ONR-YIP N000149610828, MJ by NSF DMR-9357199 and DMR-9704021, and GDM by DOE under DE-AC05-96OR22464.
Jaramillo-Botero, Andres; Naserifar, Saber; Goddard, William A
2014-04-01
First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular compositions, interactions, and environmental conditions unexplored by experiments. That is, assuming they have been optimally prepared from a diverse training set. The trade-off has been force field engines that are functionally complex, with a large number of nonbonded and bonded analytical forms that give rise to rather large parameter search spaces. To address this problem, we have developed GARFfield (genetic algorithm-based reactive force field optimizer method), a hybrid multiobjective Pareto-optimal parameter development scheme based on genetic algorithms, hill-climbing routines and conjugate-gradient minimization. To demonstrate the capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields. PMID:26580361
NASA Astrophysics Data System (ADS)
Hollman, David S.; Schaefer, Henry F.
2012-02-01
Explicitly correlated ab initio methods have been used to compute full quartic force fields for the three chain minima for HOOOOH, which are found to lie within 1 kcal mol-1. The CCSD(T)-F12 method with the cc-pVTZ-F12 basis set was used to compute equilibrium structures, anharmonic vibrational frequencies, and rotational constants for HOOH, HOOOH, and three chain isomers of HOOOOH, with the two former force fields being used as benchmarks for the latter three. The full quartic force fields were computed in such a way as to yield fundamental frequencies for all isotopologues at once. The present research confirms the recent experimental identification of HOOOH and provides reliable force fields in support of future experimental work on the enigmatic bonding paradigms involved in the HOOOOH chain.
Sultan - forced flow, high field test facility
Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.
1981-09-01
Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.
Force field dependence of riboswitch dynamics.
Hanke, Christian A; Gohlke, Holger
2015-01-01
Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 μs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics. PMID:25726465
Conformal field theory of critical Casimir forces
NASA Astrophysics Data System (ADS)
Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran
2015-03-01
Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.
Devereux, Mike; Gresh, Nohad; Piquemal, Jean-Philip; Meuwly, Markus
2014-08-01
A supervised, semiautomated approach to force field parameter fitting is described and applied to the SIBFA polarizable force field. The I-NoLLS interactive, nonlinear least squares fitting program is used as an engine for parameter refinement while keeping parameter values within a physical range. Interactive fitting is shown to avoid many of the stability problems that frequently afflict highly correlated, nonlinear fitting problems occurring in force field parametrizations. The method is used to obtain parameters for the H2O, formamide, and imidazole molecular fragments and their complexes with the Mg(2+) cation. Reference data obtained from ab initio calculations using an auc-cc-pVTZ basis set exploit advances in modern computer hardware to provide a more accurate parametrization of SIBFA than has previously been available. PMID:24965869
Transferable force field for alcohols and polyalcohols.
Ferrando, Nicolas; Lachet, Véronique; Teuler, Jean-Marie; Boutin, Anne
2009-04-30
A new force field has been developed for alcohol and polyalcohol molecules. Based on the anisotropic united-atom force field AUA4 developed for hydrocarbons, it only introduces one new anisotropic united atom corresponding to the hydroxyl group OH. In the case of polyalcohols and complex molecules, the calculation of the intramolecular electrostatic energy is revisited. These interactions are calculated between charges belonging to the different local dipoles of the molecule, one dipole being defined as a group of consecutive charges globally neutral. This new method allows avoiding the use of empirical scaling parameters commonly introduced to calculate 1-4 electrostatic interactions. The transferability of the proposed potential is demonstrated through the simulation of a wide variety of alcohol families: primary alcohols (methanol, ethanol, propan-1-ol, hexan-1-ol, octan-1-ol), secondary alcohols (propan-2-ol), tertiary alcohols (2-methylpropan-2-ol), phenol, and diols (1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol). Monte Carlo simulations carried out in the Gibbs ensemble lead to a good agreement between calculated and experimental data for the thermodynamic properties along the liquid/vapor saturation curve, for the critical point coordinates and for the liquid structure at room temperature. Additional simulations were performed on the methanol + n-butane system showing the capability of the proposed potential to reproduce the azeotropic behavior of such mixtures with a good agreement. PMID:19344171
Electromagnetic unification of matter and force fields
NASA Astrophysics Data System (ADS)
John, Sarah
2004-05-01
Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.
Cosmic Ray Acceleration in Force Free Fields
NASA Astrophysics Data System (ADS)
Colgate, Stirling; Li, Hui; Kronberg, Philipp
2002-11-01
Galactic, extragalactic, and cluster magnetic fields are in apparent pressure equilibrium with the in-fall pressure of matter from the external medium, IGM, onto the Galaxies and clusters, and from the voids onto the galaxy sheets, (walls), implying fields of 5 , 0.5, & 20 μG respectively. Equipartition or minimum energy, implies β_CR=n_CRm_pc^2/(B^2/8π)˜= 1. The total energy in field and CRs is then ˜= 10^55 ergs Galactic and ˜= 4 ot 10^60 ergs per galaxy in the IGM and less within clusters, e.g., radio lobes, synchrotron "glow" in the IGM (Kronberg), and the UHECRs spectrum, Γ =-2.6. CRs escape from the Galaxy to the IGM, τ˜=10^7y, and similarly from the walls to the voids, ˜=10^8y, less than the GZK cut-off time provided B_galaxy>B_IGM>B_voids. The free energy of black hole formation, The Los Alamos model, is just sufficient. The lack of shocks at the boundaries of over pressured radio lobes and the need for high acceleration efficiency suggests eE_allel˜= eη_reconJ_allel, acceleration by reconnection of these force-free fields.
Detecting anharmonicity at a glance
NASA Astrophysics Data System (ADS)
Giliberti, M.; Stellato, M.; Barbieri, S.; Cavinato, M.; Rigon, E.; Tamborini, M.
2014-11-01
Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases.
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D.
2010-01-01
The widely used CHARMM additive all-atom force field includes parameters for proteins, nucleic acids, lipids and carbohydrates. In the present paper an extension of the CHARMM force field to drug-like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present paper in the context of the model systems, pyrrolidine, and 3-phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all-CHARMM” simulations on drug-target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. PMID:19575467
Anharmonic stacking in supercoiled DNA
NASA Astrophysics Data System (ADS)
Zoli, Marco
2012-05-01
Multistep denaturation in a short circular DNA molecule is analyzed by a mesoscopic Hamiltonian model which accounts for the helicoidal geometry. Computation of melting profiles by the path integral method suggests that stacking anharmonicity stabilizes the double helix against thermal disruption of the hydrogen bonds. Twisting is essential in the model to capture the importance of nonlinear effects on the thermodynamical properties. In a ladder model with zero twist, anharmonic stacking scarcely affects the thermodynamics. Moderately untwisted helices, with respect to the equilibrium conformation, show an energetic advantage against the overtwisted ones. Accordingly moderately untwisted helices better sustain local fluctuational openings and make more unlikely the thermally driven complete strand separation.
The Energetics of Motivated Cognition: A Force-Field Analysis
ERIC Educational Resources Information Center
Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia
2012-01-01
A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…
Motor imagery facilitates force field learning.
Anwar, Muhammad Nabeel; Tomi, Naoki; Ito, Koji
2011-06-13
Humans have the ability to produce an internal reproduction of a specific motor action without any overt motor output. Recent findings show that the processes underlying motor imagery are similar to those active during motor execution and both share common neural substrates. This suggests that the imagery of motor movements might play an important role in acquiring new motor skills. In this study we used haptic robot in conjunction with motor imagery technique to improve learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent and position-dependent mixed force field. The groups performed movements with motor imagery produced higher after effects and decreased muscle co-contraction with respect to no-motor imagery group. These results showed a positive influence of motor imagery on acquiring new motor skill and suggest that motor learning can be facilitated by mental practice and could be used to increase the rate of adaptation. PMID:21555118
The Introduction of Fields in Relation to Force
ERIC Educational Resources Information Center
Brunt, Marjorie; Brunt, Geoff
2012-01-01
The introduction of force at age 14-16 years is considered, starting with elementary student experiments using magnetic force fields. The meaningless use of terms such as "action" and "reaction", or "agent" and "receiver" is discussed. (Contains 6 figures.)
Dislocation core fields and forces in FCC metals
Henager, Charles H.; Hoagland, Richard G.
2004-04-01
Atomistic models were used to obtain dislocation core fields for edge, screw, and mixed dislocations in Al and Cu using EAM. Core fields are analyzed using a line force dipole representation, with dilatant and dipole terms. The core field contribution to the force between dislocations is shown to be significant for interactions within 50b.
Ramakrishnan, Raghunathan; Rauhut, Guntram
2015-04-21
Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.
Brief: Field measurements of casing tension forces
Quigley, M.S.; Lewis, D.B.; Boswell, R.S.
1995-02-01
Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these tests clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.
Dynamics of Infinite Classical Anharmonic Crystals
NASA Astrophysics Data System (ADS)
Buttà, Paolo; Marchioro, Carlo
2016-06-01
We consider an unbounded lattice and at each point of this lattice an anharmonic oscillator, that interacts with its first neighborhoods via a pair potential V and is subjected to a restoring force of potential U. We assume that U and V are even nonnegative polynomials of degree 2σ _1 and 2σ _2 . We study the time evolution of this system, with a control of the growth in time of the local energy, and we give a nontrivial bound on the velocity of propagation of a perturbation. This is an extension to the case σ _1 < 2σ _2-1 of some already known results obtained for σ _1 ≥ 2σ _2-1.
Dynamics of Infinite Classical Anharmonic Crystals
NASA Astrophysics Data System (ADS)
Buttà, Paolo; Marchioro, Carlo
2016-08-01
We consider an unbounded lattice and at each point of this lattice an anharmonic oscillator, that interacts with its first neighborhoods via a pair potential V and is subjected to a restoring force of potential U. We assume that U and V are even nonnegative polynomials of degree 2σ _1 and 2σ _2. We study the time evolution of this system, with a control of the growth in time of the local energy, and we give a nontrivial bound on the velocity of propagation of a perturbation. This is an extension to the case σ _1 < 2σ _2-1 of some already known results obtained for σ _1 ≥ 2σ _2-1.
TOPICAL REVIEW: Polarization effects in molecular mechanical force fields
NASA Astrophysics Data System (ADS)
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2009-08-01
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations.
NASA Astrophysics Data System (ADS)
Wofford, B. A.; Lieb, S. G.; Bevan, J. W.
1987-10-01
The anharmonicity constant X sub 11 is presently evaluated, and the anharmonicity-corrected fundamental frequency omega sub 1 is determined, on the basis of observations of the 2nu sub 1 overtone band in the hydrogen-bonded HNC---HF complex. These data are used in conjunction with rovibrational analyses in the common and perdeuterated isotopic species of HCN---HF to calculate an approximate stretching harmonic force. The results obtained are the basis of a quantitative assessment of the applicability of the Cummings and Wood (1974) approximation of this hydrogen-bonded complex, as well as of an estimate of the equilibrium distortion constant in the harmonic limit.
Lorentz Body Force Induced by Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2003-01-01
The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.
Grimme, Stefan
2014-10-14
A black-box type procedure is presented for the generation of molecule-specific, classical potential energy functions (force-field, FF) solely from quantum mechanically (QM) computed input data. The approach can treat covalently bound molecules and noncovalent complexes with almost arbitrary structure. The necessary QM information consists of the equilibrium structure and the corresponding Hessian matrix, atomic partial charges, and covalent bond orders. The FF fit is performed automatically without any further input and yields a specific (nontransferable) potential which very closely resembles the QM reference potential near the equilibrium. The resulting atomistic, fully flexible FF is anharmonic and allows smooth dissociation of covalent bonds into atoms. A newly proposed force-constant-bond-energy relation with little empiricism provides reasonably accurate (about 5-10% error) atomization energies for almost arbitrary diatomic and polyatomic molecules. Intra- and intermolecular noncovalent interactions are treated by using well established and accurate D3 dispersion coefficients, CM5 charges from small basis set QM calculations, and a new interatomic repulsion potential. Particular attention has been paid to the construction of the torsion potentials which are partially obtained from automatic QM-tight-binding calculations for model systems. Detailed benchmarks are presented for conformational energies, atomization energies, vibrational frequencies, gas phase structures of organic molecules, and transition metal complexes. Comparisons to results from standard FF or semiempirical methods reveal very good accuracy of the new potential. While further studies are necessary to validate the approach, the initial results suggest QMDFF as a routine tool for the computation of a wide range of properties and systems (e.g., for molecular dynamics of isolated molecules, explicit solvation, self-solvation (melting) or even for molecular crystals) in particular when standard
Ponderomotive Force in the Presence of Electric Fields
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.
2013-01-01
This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.
Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields
Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.
2012-02-14
Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.
PARMBSC1: A REFINED FORCE-FIELD FOR DNA SIMULATIONS
Ivani, Ivan; Dans, Pablo D.; Noy, Agnes; Pérez, Alberto; Faustino, Ignacio; Hospital, Adam; Walther, Jürgen; Andrio, Pau; Goñi, Ramon; Balaceanu, Alexandra; Portella, Guillem; Battistini, Federica; Gelpí, Josep Lluis; González, Carlos; Vendruscolo, Michele; Laughton, Charles A.; Harris, Sarah A.; Case, David A.; Orozco, Modesto
2015-01-01
We present parmbsc1, a new force-field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (~140 μs) covering most of the DNA structural space. Parmbsc1 provides high quality results in diverse systems, solving problems of previous force-fields. Parmbsc1 aims to be a reference force-field for the study of DNA in the next decade. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/. PMID:26569599
Approximate photochemical dynamics of azobenzene with reactive force fields
Li, Yan; Hartke, Bernd
2013-12-14
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)
The interoperability force in the ERP field
NASA Astrophysics Data System (ADS)
Boza, Andrés; Cuenca, Llanos; Poler, Raúl; Michaelides, Zenon
2015-04-01
Enterprise resource planning (ERP) systems participate in interoperability projects and this participation sometimes leads to new proposals for the ERP field. The aim of this paper is to identify the role that interoperability plays in the evolution of ERP systems. To go about this, ERP systems have been first identified within interoperability frameworks. Second, the initiatives in the ERP field driven by interoperability requirements have been identified from two perspectives: technological and business. The ERP field is evolving from classical ERP as information system integrators to a new generation of fully interoperable ERP. Interoperability is changing the way of running business, and ERP systems are changing to adapt to the current stream of interoperability.
Prediction of Mechanical Properties of Polymers With Various Force Fields
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.
Vibrational spectrum and force field of dimethyldimethoxysilane
Tenisheva, T.F.; Lazarev, A.N.
1986-01-01
Experimental data is presented on the spectra of (CH/sub 3/)/sub 2/Si(OCH/sub 3/)/sub 2/ (I), (CH/sub 3/)/sub 2/Si(OCD/sub 3/)/sub 2/ (II), and (CD/sub 3/)/sub 2/Si(OCH/sub 3/)/sub 2/ (III). The results of the determination of the force constants on the basis of the optimization of the solution of the inverse mechanical problem of the theory of molecular vibrations with consideration of all the internal degrees of freedom with the exception of the coordinates corresponding to internal rotations are discussed. Raman spectra of I, II, and III in the liquid phase is shown and the IR spectra of amorphous films of I, II, and III are illustrated.
Anharmonic Vibrational Analysis for the Propadienylidene Molecule (H2C═C═C:).
Wu, Qunyan; Hao, Qiang; Wilke, Jeremiah J; Simmonett, Andrew C; Yamaguchi, Yukio; Li, Qianshu; Fang, De-Cai; Schaefer, Henry F
2010-10-12
Maier et al. found that photolysis of singlet cyclopropenylidene (1S) in a matrix yields triplet propargylene (2T), which upon further irradiation is converted to singlet propadienylidene (vinylidenecarbene, 3S). Their discovery was followed by interstellar identification of 3S by Cernicharo et al. An accurate quartic force field for propadienylidene (3S) has been determined employing the ab initio coupled-cluster (CC) with single and double excitations and perturbative triple excitations [CCSD(T)] method and the correlation-consistent core-valence quadruple-ζ (cc-pCVQZ) basis set. Utilizing vibrational second-order perturbation theory (VPT2), vibration-rotation coupling constants, rotational constants, centrifugal distortion constants, vibrational anharmonic constants, and fundamental vibrational frequencies are determined. The predicted fundamental frequencies for 3S as well as its (13)C and deuterium isotopologues are in good agreement with experimental values. The theoretical zero-point vibration corrected rotational constants B0 are consistent with experimental values within 0.3% of errors. The isotopic shifts of B0 are in close to exact agreement with experimental observations. The mean absolute deviation between theoretical anharmonic and experimental fundamental vibrational frequencies for 24 modes (excluding CH2 s-str.) is only 2.6 cm(-1). The isotopic shifts of the vibrational frequencies are also in excellent agreement with the available experimental values. However, a large discrepancy is observed for the CH2 symmetric stretch, casting doubt on the experimental assignment for this mode. PMID:26616774
Molecular dynamics simulations of methane hydrate using polarizable force fields
Jiang, H.N.; Jordan, K.D.; Taylor, C.E.
2007-06-14
Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are found between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl
Mitigated-force carriage for high magnetic field environments
Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.
2015-05-19
A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.
Apparatus having reduced mechanical forces for supporting high magnetic fields
Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.
1991-01-01
The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.
NASA Technical Reports Server (NTRS)
El-Kaddah, N.; Szekely, J.
1982-01-01
A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.
Force field parameter estimation of functional perfluoropolyether lubricants
Smith, Robert; Seung Chung, Pil; Steckel, Janice A.; Jhon, Myung S.; Biegler, Lorenz T.
2011-01-01
The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants
Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.
2011-01-01
The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants
Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.
2011-01-01
The head disk interface in a hard disk drive can be considered to be one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models. In this paper, we investigate beyond molecular level and perform ab initio calculations to obtain the force field parameters. Intramolecular force field parameters for Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Alternating Magnetic Field Forces for Satellite Formation Flying
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.
2012-01-01
Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.
Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants
Smith, R; Chung, P S; Steckel, J A; Jhon, M S; Biegler, L T
2011-01-01
The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraolwere evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Huang, Xinchuan; Francisco, Joseph S.; Crawford, T. Daniel; Lee, Timothy J.
2011-10-01
In the search for a full mechanism creating CO2 from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO2 in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm-1 for A0 and 10-4 cm-1 for B0 and C0 compared with experiment as well as fundamental vibrational frequencies within 4 cm-1 of the known gas phase experimental ν1 and ν2 modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO2-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.
Macroscopic quantum many-body tunneling of attractive Bose-Einstein condensate in anharmonic trap
NASA Astrophysics Data System (ADS)
Haldar, Sudip Kumar; Debnath, Pankaj Kumar; Chakrabarti, Barnali
2013-09-01
We study the stability of attractive atomic Bose-Einstein condensate and the macroscopic quantum many-body tunneling (MQT) in the anharmonic trap. We utilize correlated two-body basis function which keeps all possible two-body correlations. The anharmonic parameter ( λ) is slowly tuned from harmonic to anharmonic. For each choice of λ the many-body equation is solved adiabatically. The use of the van der Waals interaction gives realistic picture which substantially differs from the mean-field results. For weak anharmonicity, we observe that the attractive condensate gains stability with larger number of bosons compared to that in the pure harmonic trap. The transition from resonances to bound states with weak anharmonicity also differs significantly from the earlier study of [N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)]. We also study the tunneling of the metastable condensate very close to the critical number N cr of collapse and observe that near collapse the MQT is the dominant decay mechanism compared to the two-body and three-body loss rate. We also observe the power law behavior in MQT near the critical point. The results for pure harmonic trap are in agreement with mean-field results. However, we fail to retrieve the power law behavior in anharmonic trap although MQT is still the dominant decay mechanism.
Comparing molecular dynamics force fields in the essential subspace.
Martín-García, Fernando; Papaleo, Elena; Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten
2015-01-01
The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their "unbalanced" counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178
Force-Field Compensation in a Manual Tracking Task
Squeri, Valentina; Masia, Lorenzo; Casadio, Maura; Morasso, Pietro; Vergaro, Elena
2010-01-01
This study addresses force/movement control in a dynamic “hybrid” task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%), which is a function of the implicit accuracy of the tracking task. PMID:20567516
Visualization of Force Fields in Protein Structure Prediction
Crawford, Clark; Kreylos, Oliver; Hamann, Bernd; Crivelli, Silvia
2005-04-26
The force fields used in molecular computational biology are not mathematically defined in such a way that their mathematical representation would facilitate the straightforward application of volume visualization techniques. To visualize energy, it is necessary to define a spatial mapping for these fields. Equipped with such a mapping, we can generate volume renderings of the internal energy states in a molecule. We describe our force field, the spatial mapping that we used for energy, and the visualizations that we produced from this mapping. We provide images and animations that offer insight into the computational behavior of the energy optimization algorithms that we employ.
Finite-element time evolution operator for the anharmonic oscillator
NASA Technical Reports Server (NTRS)
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Tailor-made force fields for crystal-structure prediction.
Neumann, Marcus A
2008-08-14
A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947
Force field dependent solution properties of glycine oligomers
Drake, Justin A.
2015-01-01
Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all-atom, microsecond MD simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g. end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623
Force field-dependent solution properties of glycine oligomers.
Drake, Justin A; Pettitt, B Montgomery
2015-06-30
Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly(3) and Gly(10) in aqueous solution from all atom, microsecond molecular dynamics (MD) simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly(3) and Gly(10) were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g., end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623
Benchmarking of Force Fields for Molecule-Membrane Interactions.
Paloncýová, Markéta; Fabre, Gabin; DeVane, Russell H; Trouillas, Patrick; Berka, Karel; Otyepka, Michal
2014-09-01
Studies of drug-membrane interactions witness an ever-growing interest, as penetration, accumulation, and positioning of drugs play a crucial role in drug delivery and metabolism in human body. Molecular dynamics simulations complement nicely experimental measurements and provide us with new insight into drug-membrane interactions; however, the quality of the theoretical data dramatically depends on the quality of the force field used. We calculated the free energy profiles of 11 molecules through a model dimyristoylphosphatidylcholine (DMPC) membrane bilayer using five force fields, namely Berger, Slipids, CHARMM36, GAFFlipids, and GROMOS 43A1-S3. For the sake of comparison, we also employed the semicontinuous tool COSMOmic. High correlation was observed between theoretical and experimental partition coefficients (log K). Partition coefficients calculated by all-atomic force fields (Slipids, CHARMM36, and GAFFlipids) and COSMOmic differed by less than 0.75 log units from the experiment and Slipids emerged as the best performing force field. This work provides the following recommendations (i) for a global, systematic and high throughput thermodynamic evaluations (e.g., log K) of drugs COSMOmic is a tool of choice due to low computational costs; (ii) for studies of the hydrophilic molecules CHARMM36 should be considered; and (iii) for studies of more complex systems, taking into account all pros and cons, Slipids is the force field of choice. PMID:26588554
Force-free magnetic fields - The magneto-frictional method
NASA Technical Reports Server (NTRS)
Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.
1986-01-01
The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.
Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.
Panek, Paweł T; Jacob, Christoph R
2016-08-18
Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra. PMID:27472016
A single ion anharmonic mechanical oscillator with nonlinear dissipation
NASA Astrophysics Data System (ADS)
Akerman, Nitzan; Kotler, Shlomi; Glickman, Yinnon; Keselman, Anna; Dallal, Yehonatan; Ozeri, Roee
2010-03-01
A driven, damped, nearly harmonic oscillator with a small cubic term in the force, is known as the Duffing oscillator. The Duffing oscillator shows various interesting features of non-linear response such as bistability and hysteresis. Several features of the Duffing instability have been recently measured using superconducting qubits and nano-mechanical resonators. Linear Paul traps can be well approximated as harmonic but have a small an-harmonicity due to their deviation from an ideal quadruple geometry. We study the steady state motion of a single trapped Sr^+ ion, subject to a near-resonance drive and dissipation in a linear Paul trap with a small anharmonicity. The driving force is applied by an oscillating voltage on the trap end-caps. Dissipation is the result of laser Doppler cooling. We measure both the amplitude and phase of the driven oscillations and find a good agreement with the Duffing oscillator model. When the cooling laser is close to resonance the standard Duffing model has to be extended to account for non-linearity in the dissipative force. Both the linear and the nonlinear terms of the dissipative force for various cooling laser detunings are determined by the line-shape of the - cooling transition and the cooling laser intensity and can therefore be conveniently controlled.
Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces.
Huang, Fei; Tamma, Venkata Ananth; Mardy, Zahra; Burdett, Jonathan; Wickramasinghe, H Kumar
2015-01-01
We demonstrate the application of Atomic Force Microscopy (AFM) for mapping optical near-fields with nanometer resolution, limited only by the AFM probe geometry. By detecting the optical force between a gold coated AFM probe and its image dipole on a glass substrate, we profile the electric field distributions of tightly focused laser beams with different polarizations. The experimentally recorded focal force maps agree well with theoretical predictions based on a dipole-dipole interaction model. We experimentally estimate the aspect ratio of the apex of gold coated AFM probe using only optical forces. We also show that the optical force between a sharp gold coated AFM probe and a spherical gold nanoparticle of radius 15 nm, is indicative of the electric field distribution between the two interacting particles. Photo Induced Force Microscopy (PIFM) allows for background free, thermal noise limited mechanical imaging of optical phenomenon over wide range of wavelengths from Visible to RF with detection sensitivity limited only by AFM performance. PMID:26073331
Force-free field model of ball lightning
NASA Astrophysics Data System (ADS)
Tsui, K. H.
2001-03-01
Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky.
Toroidal linear force-free magnetic fields with axial symmetry
NASA Astrophysics Data System (ADS)
Vandas, M.; Romashets, E.
2016-01-01
Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.
Interaction Forces Between Multiple Bodies in a Magnetic Field
NASA Technical Reports Server (NTRS)
Joffe, Benjamin
1996-01-01
Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.
An implicit divalent counterion force field for RNA molecular dynamics
NASA Astrophysics Data System (ADS)
Henke, Paul S.; Mak, Chi H.
2016-03-01
How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.
Additive CHARMM force field for naturally occurring modified ribonucleotides.
Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D; Nilsson, Lennart
2016-04-15
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all-atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. PMID:26841080
Additive CHARMM force field for naturally occurring modified ribonucleotides
Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D.
2016-01-01
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26841080
Transferable force fields for adsorption of small gases in zeolites.
Martin-Calvo, A; Gutiérrez-Sevillano, J J; Parra, J B; Ania, C O; Calero, S
2015-10-01
We provide transferable force fields for oxygen, nitrogen, and carbon monoxide that are able to reproduce experimental adsorption in both pure silica and alumino-substituted zeolites at cryogenic and high temperatures. The force field parameters can be combined with those previously reported for carbon dioxide, methane, and argon, opening the possibility for studying mixtures of interest containing the six components. Using these force field parameters we obtained some adsorption isotherms at cryogenic temperatures that at first sight were in discrepancies with experimental values for certain molecules and structures. We attribute these discrepancies to the sensitiveness of the equipment and to kinetic impedimenta that can lead to erratic results. Additional problems can be found during simulations when extra-framework cations are present in the system as their lack of mobility at low temperatures could lead to kinetic effects that hinder experimental adsorption. PMID:26313242
Water-Silica Force Field for Simulating Nanodevices
Cruz-Chu, Eduardo R.; Aksimentiev, Aleksei; Schulten, Klaus
2008-01-01
Amorphous silica is an inorganic material that is central for many nanotechnology appplications, such as nanoelectronics, microfluidics, and nanopore technology. In order to use molecular dynamics (MD) simulations to study the behavior of biomolecules with silica, we developed a force field for amorphous silica surfaces based on their macroscopic wetting properties that is compatible with the CHARMM force field and TIP3P water model. The contact angle of a water droplet with silica served as a criterion to tune the intermolecular interactions. The resulting force field was used to study the permeation of water through silica nanopores, illustrating the influence of the surface topography and the intermolecular parameters on permeation kinetics. We find that minute modeling of the amorphous surface is critical for MD studies, since the particular arrangement of surface atoms controls sensitively electrostatic interactions between silica and water. PMID:17064100
2012-01-01
Atmospheric humidity strongly influences the interactions between dry granular particles in process containers. To reduce the energy loss in industrial production processes caused by particle agglomeration, a basic understanding of the dependence of particle interactions on humidity is necessary. Hence, in this study, molecular dynamic simulations were carried out to calculate the adhesion between silica surfaces in the presence of adsorbed water. For a realistic description, the choice of force field is crucial. Because of their frequent use and transferability to biochemical systems, the Clay and CWCA force fields were investigated with respect to their ability to describe the water–silica interface in comparison to the more advanced Reax force field, ab initio calculations, and experiments. PMID:23378869
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2014-01-01
The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.
Understandng of phonon anharmonicity in thermoelectric clathrates
NASA Astrophysics Data System (ADS)
Tanigaki, Katsumi; Wu, Jiazhen; Shimotani, Hidekazu; Huynh, Khuong; Akagi, Kazuto; AIMR Collaboration; Department of Physics, Graduate School of Science Collaboration
Anharmonicity in phonons, apart from the conventional Einstein- or Debye- mode harmonic phonons, is frequently observed for amorphous or glass-like materials. A frontier topic relating to anharmonic phonons revolves around the fact that they are also observed in a single crystal with a void of cage structure. Although the origin of the phonon anharmonicity has been the center of scientific debate for many years, a clear understanding has not yet been achieved. In the present study, we show that the anharmonic oscillations in thermoelectric clathrates can successfully be rationalized in terms of a single unified exponential line for a variety of clathrates by employing a new parameter associated with the freedom of space. The intrinsic nature of phonon anharmonicity is described based on the unified picture with a help of first principles calculations. Although the origin of the anharmonicity appearing in disordered materials is complex to understand due to the missing information on the real structure, the present unified picture gives important information applicable to other systems.
Scattered field generation and optical forces in transformation optics
NASA Astrophysics Data System (ADS)
Novitsky, A. V.
2016-04-01
In this paper we develop an approach for making various scattered electromagnetic fields on the transformation-optics ground. To do so, we use the a special coordinate transformation from the a vacuum virtual space to physical space, which changes the boundary of the scattering device upon transformation. We explore this approach for small scatterers compared with radiation wavelength, which allows us to predict the arbitrarily directed optical forces. Obtaining scattered fields and optical forces can be useful in nano-optics and optical micromanipulation.
Mitigated-force carriage for high magnetic field environments
Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L
2014-05-20
A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.
Analytic cubic and quartic force fields using density-functional theory
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth; Jonsson, Dan; Bast, Radovan; Ekström, Ulf; Helgaker, Trygve
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
Analytic cubic and quartic force fields using density-functional theory.
Ringholm, Magnus; Jonsson, Dan; Bast, Radovan; Gao, Bin; Thorvaldsen, Andreas J; Ekström, Ulf; Helgaker, Trygve; Ruud, Kenneth
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn-Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange-correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree-Fock results. The Hartree-Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants. PMID:25669359
Energy buildup in sheared force-free magnetic fields
NASA Technical Reports Server (NTRS)
Wolfson, Richard; Low, Boon C.
1992-01-01
Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.
Force field development from first principles for materials design
NASA Astrophysics Data System (ADS)
Chan, Maria; Kinaci, Alper; Narayanan, Badri; Sen, Fatih; Gray, Stephen; Davis, Michael; Sankaranaryanan, Subramanian
2015-03-01
The ability to perform accurate calculations efficiently is crucial for computational materials design. In this talk, we will discuss a stream-lined approach to force field development using first principles density functional theory training data and machine learning algorithms. We will also discuss the validation of this approach on precious metal nanoparticles.
An improved generalized AMBER force field (GAFF) for urea.
Ozpinar, Gül Altinbaş; Peukert, Wolfgang; Clark, Timothy
2010-09-01
We describe an improved force field parameter set for the generalized AMBER force field (GAFF) for urea. Quantum chemical computations were used to obtain geometrical and energetic parameters of urea dimers and larger oligomers using AM1 semiempirical MO theory, density functional theory at the B3LYP/6-31G(d,p) level, MP2 and CCSD ab initio calculations with the 6-311++G(d,p), aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets, and with the CBS-QB3 and CBS-APNO complete basis set methods. Seven different urea dimer structures were optimized at the MP2/aug-cc-pVDZ level to obtain accurate interaction energies. Atomic partial charges were calculated at the MP2/aug-cc-pVDZ level with the restrained electrostatic potential (RESP) fitting approach. The interaction energies computed with these new RESP charges in the force field are consistent with those obtained from CCSD and MP2 calculations. The linear dimer structure calculated using the force field with modified geometrical parameters and the new RESP charge set agrees well with available experimental data. PMID:20162312
Comparison of different force fields for the study of disaccharides
Technology Transfer Automated Retrieval System (TEKTRAN)
Eighteen empirical force fields and the semi-empirical quantum method PM3CARB-1 were compared for studying ß-cellobiose, a-maltose, and a-galabiose [a-D-Galp-(1'4)-a-D-Galp]. For each disaccharide, the energies of 54 conformers with differing hydroxymethyl, hydroxyl and glycosidic linkage orientatio...
Frequency-dependent force fields for QMMM calculations.
Harczuk, Ignat; Vahtras, Olav; Ågren, Hans
2015-03-28
We outline the construction of frequency-dependent polarizable force fields. The force fields are derived from analytic response theory for different frequencies using a generalization of the LoProp algorithm giving a decomposition of a molecular dynamical polarizability to localized atomic dynamical polarizabilities. These force fields can enter in a variety of applications - we focus on two such applications in this work: firstly, they can be incorporated in a physical, straightforward, way for current existing methods that use polarizable embeddings, and we can show, for the first time, the effect of the frequency dispersion within the classical environment of a quantum mechanics-molecular mechanics (QMMM) method. Our methodology is here evaluated for some test cases comprising water clusters and organic residues. Secondly, together with a modified Silberstein-Applequist procedure for interacting inducible point-dipoles, these frequency-dependent polarizable force fields can be used for a classical determination of frequency-dependent cluster polarizabilities. We evaluate this methodology by comparing with the corresponding results obtained from quantum mechanics or QMMM where the absolute mean [small alpha, Greek, macron] is determined with respect to the size of the QM and MM parts of the total system. PMID:25714984
Symmetrization of the AMBER and CHARMM force fields.
Małolepsza, Edyta; Strodel, Birgit; Khalili, Mey; Trygubenko, Semen; Fejer, Szilard N; Wales, David J
2010-05-01
The AMBER and CHARMM force fields are analyzed from the viewpoint of the permutational symmetry of the potential for feasible exchanges of identical atoms and chemical groups in amino and nucleic acids. In each case, we propose schemes for symmetrizing the potentials, which greatly facilitate the bookkeeping associated with constructing kinetic transition networks via geometry optimization. PMID:20082393
Generating distributed forcing fields for spatial hydrologic modeling
Technology Transfer Automated Retrieval System (TEKTRAN)
Spatial hydrologic modeling requires the development of distributed forcing fields of weather and precipitation. This is particularly difficult in mountainous regions of the western US, where measurement sites are limited and the landscape is dominated by complex terrain and variations in vegetatio...
The effect of gravitational tidal forces on renormalized quantum fields
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.; Shore, Graham M.
2012-02-01
The effect of gravitational tidal forces on renormalized quantum fields propagating in curved spacetime is investigated and a generalisation of the optical theorem to curved spacetime is proved. In the case of QED, the interaction of tidal forces with the vacuum polarization cloud of virtual e + e - pairs dressing the renormalized photon has been shown to produce several novel phenomena. In particular, the photon field amplitude can locally increase as well as decrease, corresponding to a negative imaginary part of the refractive index, in apparent violation of unitarity and the optical theorem. Below threshold decays into e + e - pairs may also occur. In this paper, these issues are studied from the point of view of a non-equilibrium initial-value problem, with the field evolution from an initial null surface being calculated for physically distinct initial conditions and for both scalar field theories and QED. It is shown how a generalised version of the optical theorem, valid in curved spacetime, allows a local increase in amplitude while maintaining consistency with unitarity. The picture emerges of the field being dressed and undressed as it propagates through curved spacetime, with the local gravitational tidal forces determining the degree of dressing and hence the amplitude of the renormalized quantum field. These effects are illustrated with many examples, including a description of the undressing of a photon in the vicinity of a black hole singularity.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Hirata, So
2014-08-01
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm-1 and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Hermes, Matthew R.; Hirata, So
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
GLYCAM06: a generalizable biomolecular force field. Carbohydrates.
Kirschner, Karl N; Yongye, Austin B; Tschampel, Sarah M; González-Outeiriño, Jorge; Daniels, Charlisa R; Foley, B Lachele; Woods, Robert J
2008-03-01
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies. PMID:17849372
GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates
KIRSCHNER, KARL N.; YONGYE, AUSTIN B.; TSCHAMPEL, SARAH M.; GONZÁLEZ-OUTEIRIÑO, JORGE; DANIELS, CHARLISA R.; FOLEY, B. LACHELE; WOODS, ROBERT J.
2015-01-01
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both α- and β-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies. PMID:17849372
Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition
NASA Astrophysics Data System (ADS)
Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng
2015-11-01
We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.
NASA Astrophysics Data System (ADS)
Tadano, Terumasa; Tsuneyuki, Shinji
2015-12-01
We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi2Te3 based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO3 can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.
Tadano, Terumasa; Tsuneyuki, Shinji
2015-12-31
We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi{sub 2}Te{sub 3} based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO{sub 3} can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.
Developing accurate molecular mechanics force fields for conjugated molecular systems.
Do, Hainam; Troisi, Alessandro
2015-10-14
A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel. PMID:26349916
Automatic molecular structure perception for the universal force field.
Artemova, Svetlana; Jaillet, Léonard; Redon, Stephane
2016-05-15
The Universal Force Field (UFF) is a classical force field applicable to almost all atom types of the periodic table. Such a flexibility makes this force field a potential good candidate for simulations involving a large spectrum of systems and, indeed, UFF has been applied to various families of molecules. Unfortunately, initializing UFF, that is, performing molecular structure perception to determine which parameters should be used to compute the UFF energy and forces, appears to be a difficult problem. Although many perception methods exist, they mostly focus on organic molecules, and are thus not well-adapted to the diversity of systems potentially considered with UFF. In this article, we propose an automatic perception method for initializing UFF that includes the identification of the system's connectivity, the assignment of bond orders as well as UFF atom types. This perception scheme is proposed as a self-contained UFF implementation integrated in a new module for the SAMSON software platform for computational nanoscience (http://www.samson-connect.net). We validate both the automatic perception method and the UFF implementation on a series of benchmarks. PMID:26927616
Atomistic force field for alumina fit to density functional theory
Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
NASA Astrophysics Data System (ADS)
Brilliantov, N. V.; Seidel, C.
2012-01-01
The response of grafted polyelectrolytes to electrostatic field that favors adsorption is studied theoretically and by means of molecular dynamics (MD). Applying to the free chain end a constant force which counteracts adsorption, we analyze the size of the desorbed part as a function of force and electric field. Simulations with different loads, corresponding to linear, nonlinear and Hertzian springs, applied to the free end have been also performed to explore the generation of mechanical force by electric field. The MD results are in good agreement with the predictions of theory.
Particle energization in a chaotic force-free magnetic field
NASA Astrophysics Data System (ADS)
Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda
2015-04-01
A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.
Field measurement of basal forces generated by erosive debris flows
McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.
2013-01-01
It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite
Optical field and attractive force at the subwavelength slit.
Shapiro, David; Nies, Daniel; Belai, Oleg; Wurm, Matthias; Nesterov, Vladimir
2016-07-11
In recent works, a novel light-induced attractive force was predicted between two metal plates. This force arises by the interaction of surface plasmons which are excited at the metal when a transverse magnetic mode propagates through a subwavelength slit between two metal bodies. In this paper, the analytical and numerical calculations of this magnetic field are presented for the perfect metal and for gold. The amplitude and the phase transient curves between the known limiting cases of narrow and wide slits compared to the wavelength are found. The curve is shown to oscillate due to the emergence of new waveguide modes. The analytic solution for the perfect metal is in agreement with the computation for gold by means of the finite element method. The simple asymptotic formula for the light-induced attractive force is found in the limit of a narrow slit. PMID:27410865
Optimal shortcuts for atomic transport in anharmonic traps
NASA Astrophysics Data System (ADS)
Zhang, Qi; Muga, J. G.; Guéry-Odelin, D.; Chen, Xi
2016-06-01
We design fast trap trajectories to transport cold atoms in anharmonic traps, combining invariant-based inverse engineering, perturbation theory, and optimal control theory. Among the ideal trajectories for harmonic traps, we choose the ones that minimize the anharmonic energy.
Nonlinear Force-Free Field Extrapolation of NOAA AR 0696
NASA Astrophysics Data System (ADS)
Thalmann, J. K.; Wiegelmann, T.
2007-12-01
We investigate the 3D coronal magnetic field structure of NOAA AR 0696 in the period of November 09-11, 2004, before and after an X2.5 flare (occurring around 02:13 UT on November 10, 2004). The coronal magnetic field dominates the structure of the solar corona and consequently plays a key role for the understanding of the initiation of flares. The most accurate presently available method to derive the coronal magnetic field is currently the nonlinear force-free field extrapolation from measurements of the photospheric magnetic field vector. These vector-magnetograms were processed from stokes I, Q, U, and V measurements of the Big Bear Solar Observatory and extrapolated into the corona with the nonlinear force-free optimization code developed by Wiegelmann (2004). We analyze the corresponding time series of coronal equilibria regarding topology changes of the 3D coronal magnetic field during the flare. Furthermore, quantities such as the temporal evolution of the magnetic energy and helicity are computed.
Thermodynamic properties of wadsleyite with anharmonic effect
NASA Astrophysics Data System (ADS)
Wu, Zhongqing
2015-02-01
The thermodynamic properties of crystals can be routinely calculated by density functional theory calculations combining with quasi-harmonic approximation. Based on the method developed recently by Wu and Wentzcovitch (Phys Rev B 79:104304, 2009) and Wu (Phys Rev B 81:172301, 2010), we are able to further ab initio include anharmonic effect on thermodynamic properties of crystals by one additional canonical ensemble with numbers of particle, volume and temperature fixed (NVT) molecular dynamic simulations. Our study indicates that phonon-phonon interaction causes the renormalized phonon frequencies of wadsleyite decrease with temperature. This is consistent with the Raman experimental observation. The anharmonic free energy of wadsleyite is negative and its heat capacity at constant pressure can exceed the Dulong-Petit limit at high temperature. The anharmonicity still significantly affects thermodynamic properties of wadsleyite at pressure and temperature conditions correspond to the transition zone.
Mapping the force field of a hydrogen-bonded assembly
Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N.R.; Kantorovich, L.; Moriarty, P.
2014-01-01
Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism. PMID:24875276
Direct computation of parameters for accurate polarizable force fields
Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.
2014-11-21
We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.
Efficient parametrization of complex molecule-surface force fields.
Gao, David Z; Federici Canova, Filippo; Watkins, Matthew B; Shluger, Alexander L
2015-06-15
We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA) methods to optimize the large parameter sets needed to describe such systems. The derived potentials are able to well reproduce adsorption geometries and adsorption energies calculated using density functional theory. Finally, we discuss the challenges in creating a sufficient fitting library, determining whether or not the GA optimization has completed, and the transferability of such force fields to similar molecules. PMID:25891018
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2
Force-field parameters for beryllium complexes in amorphous layers.
Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander
2016-09-01
Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375
Tuning the mass of chameleon fields in Casimir force experiments.
Brax, Ph; van de Bruck, C; Davis, A C; Shaw, D J; Iannuzzi, D
2010-06-18
We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long-range Casimir force experiments. PMID:20867290
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-08-07
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10{sup 6} self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-01-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across
Anharmonicity effects in the frictionlike mode of graphite
NASA Astrophysics Data System (ADS)
Menéndez, C.; Lobato, A.; Abbasi-Pérez, D.; Fernández-Núñez, J.; Baonza, V. G.; Recio, J. M.
2016-04-01
Graphite is a prototypical solid lubricant demanding a thorough understanding of its low-friction behavior. The E2 g(1) Raman active vibrational mode of graphite is associated with the rigid-layer relative movement of its graphene sheets. Thus, this mode can provide a good means of exploring the low resistance of graphene layers to slip with respect to each other. To take advantage of this fact, the anharmonicity of the E2 g(1) mode has to be carefully characterized and evaluated since the atomic arrangement of carbon atoms in the ambient condition ABA stacking of graphite evidences potential asymmetry. The calculated one-dimensional energetic profile of the E2 g(1) mode reveals this local anisotropy around the energy minima and can be microscopically interpreted in terms of electron density interactions. Morse-type potentials accurately fit the energetic profiles at different interlayer separations, and provide simple analytical expressions for evaluating harmonic and anharmonic contributions to the Γ -point E2 g(1) frequency ωE2g(1 ) under a perturbative algebraic treatment. We quantify how the anharmonic contribution increases with the available energy (E ) at zero pressure, and how this contribution decreases as hydrostatic pressure (p ) or uniaxial stress is applied for a given available energy. The calculated ωE2g(1 )-p and ωE2g(1 )-E trends indicate an increasing (decreasing) of frictional forces in graphite with pressure (temperature). Our conclusions are supported by the good agreement of the calculated frequencies with existing Raman experiments under hydrostatic pressure conditions.
Current Status of the AMOEBA Polarizable Force Field
Ponder, Jay W.; Wu, Chuanjie; Ren, Pengyu; Pande, Vijay S.; Chodera, John D.; Schnieders, Michael J.; Haque, Imran; Mobley, David L.; Lambrecht, Daniel S.; DiStasio, Robert A.; Head-Gordon, Martin; Clark, Gary N. I.; Johnson, Margaret E.
2010-01-01
Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models towards more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with AMOEBA for demanding problems such as relative conformational energies of the alanine tetrapeptide and isomers of water sulfate complexes. AMOEBA is shown to be especially successful on protein-ligand binding and computational X-ray crystallography where polarization and accurate electrostatics are critical. PMID:20136072
Force-free magnetic fields - Generating functions and footpoint displacements
NASA Technical Reports Server (NTRS)
Wolfson, Richard; Verma, Ritu
1991-01-01
This paper presents analytic and numerical calculations that explore equilibrium sequences of bipolar force-free magnetic fields in relation to displacments of their magnetic footpoints. It is shown that the appearance of magnetic islands - sometimes interpreted as marking the loss of equilibrium in models of the solar atmosphere - is likely associated only with physically unrealistic footpoint displacements such as infinite separation or 'tearing' of the model photosphere. The work suggests that the loss of equilibrium in bipolar configurations, sometimes proposed as a mechanism for eruptive solar events, probably requires either fully three-dimensional field configurations or nonzero plasma pressure. The results apply only to fields that are strictly bipolar, and do not rule out equilibrium loss in more complex structures such as quadrupolar fields.
Design and optimization of force-reduced high field magnets
NASA Astrophysics Data System (ADS)
Rembeczki, Szabolcs
High field magnets have many important applications in different areas of research, in the power industry and also for military purposes. For example, high field magnets are particularly useful in: material sciences, high energy physics, plasma physics (as fusion magnets), high power applications (as energy storage devices), and space applications (in propulsion systems). One of the main issues with high-field magnets is the presence of very large electromagnetic stresses that must be counteracted and therefore require heavy support structures. In superconducting magnets, the problems caused by Lorentz forces are further complicated by the fact that superconductors for high field applications are pressure sensitive. The current carrying capacity is greatly reduced under stress and strain (especially in the case of Nb 3Sn and the new high temperature superconductors) so the reduction of the acting forces is of even greater importance. Different force-reduced magnet concepts have been studied in the past, both numerical and analytical methods have been used to solve this problem. The developed concepts are based on such complex winding geometries that the realization and manufacturing of such coils is extremely difficult and these concepts are mainly of theoretical interest. In the presented research, a novel concept for force-reduced magnets has been developed and analyzed which is easy to realize and therefore is of practical interest. The analysis has been performed with a new methodology, which does not require the time consuming finite element calculations. The developed computer models describe the 3-dimensional winding configuration by sets of filaments (filamentary approximation). This approach is much faster than finite element analysis and therefore allows rapid optimization of concepts. The method has been extensively tested on geometries of force-reduced solenoids where even analytical solutions exist. As a further cross check, the developed computer
Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields
NASA Astrophysics Data System (ADS)
Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.
2015-09-01
The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.
Secondary Structure of Rat and Human Amylin across Force Fields
Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-cheng; de Pablo, Juan J.
2015-01-01
The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable
Secondary structure of rat and human amylin across force fields
Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele
2015-07-29
The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states
Secondary structure of rat and human amylin across force fields
Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele
2015-07-29
The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable
Secondary Structure of Rat and Human Amylin across Force Fields.
Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-Cheng; de Pablo, Juan J
2015-01-01
The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable
Anharmonic effects in the optical and acoustic bending modes of graphene
NASA Astrophysics Data System (ADS)
Ramírez, R.; Chacón, E.; Herrero, C. P.
2016-06-01
The out-of-plane fluctuations of carbon atoms in a graphene sheet have been studied by means of classical molecular dynamic simulations with an empirical force field as a function of temperature. The Fourier analysis of the out-of-plane fluctuations often applied to characterize the acoustic bending mode of graphene is extended to the optical branch, whose polarization vector is perpendicular to the graphene layer. This observable is inaccessible in a continuous elastic model of graphene but it is readily obtained by the atomistic treatment. Our results suggest that the long-wavelength limit of the acoustic out-of-plane fluctuations of a free layer without stress is qualitatively similar to that predicted by a harmonic model under a tensile stress. This conclusion is a consequence of the anharmonicity of both in-plane and out-of-plane vibrational modes of the lattice. The most striking anharmonic effect is the presence of a linear term, ωA=vAk , in the dispersion relation of the acoustic bending band of graphene at long wavelengths (k →0 ). This term implies a strong reduction of the amplitude of out-of-plane oscillations in comparison to a flexural mode with a k2 dependence in the long-wavelength limit. Our simulations show an increase of the sound velocity associated to the bending mode, as well as an increase of its bending constant, κ , as the temperature increases. Moreover, the frequency of the optical bending mode, ωO(Γ ), also increases with the temperature. Our results are in agreement with recent analytical studies of the bending modes of graphene using either perturbation theory or an adiabatic approximation in the framework of continuous layer models.
Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S
2013-02-12
The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
Force field measurements within the exclusion zone of water.
Chen, Chi-Shuo; Chung, Wei-Ju; Hsu, Ian C; Wu, Chien-Ming; Chin, Wei-Chun
2012-01-01
Water molecules play critical roles in many biological functions, such as protein dynamics, enzymatic activities, and cellular responses. Previous nuclear magnetic resonance and neutron scattering studies have shown that water molecules bind to specific sites on surfaces and form localized clusters. However, most current experimental techniques cannot measure dynamic behaviors of ordered water molecules on cell-size (10 μm) scale. Recently, the long-distance effect of structured water has been demonstrated by Pollack and his colleagues. Namely, there is a structured water layer near the hydrophilic surface that can exclude solutes (Zheng et al, Adv Colloid Interface Sci 127:19-27, 2006; Pollack 2006, Adv Colloid Interface Sci 103:173-196, 2003). The repelling forces of water clusters inside this exclusion region are investigated in this study. With a laser tweezers system, we found the existence of an unexpected force fields inside the solute-free exclusion zone near a Nafion surface. Our results suggest that the water clusters could transduce mechanical signals on the micrometer range within the exclusion zone. This unexpected inhomogeneous force field near the hydrophilic surface would provide a new insight into cellular activities, leading to a potential new physical chemistry mechanism for cell biology. PMID:23277674
Coarse-grained force field; general folding theory
Liwo, Adam; He, Yi; Scheraga, Harold A.
2012-01-01
We review the coarse-grained UNited RESidue (UNRES) force field for the simulations of protein structure and dynamics, which is being developed in our laboratory over the last several years. UNRES is a physics-based force field, the prototype of which is defined as a potential of mean force of polypeptide chains in water, where all the degrees of freedom except the coordinates of α-carbon atoms and side-chain centers have been integrated out. We describe the initial implementation of UNRES to protein-structure prediction formulated as a search for the global minimum of the potential-energy function and its subsequent molecular dynamics and extensions of molecular-dynamics implementation, which enabled us to study protein-folding pathways and thermodynamics, as well as to reformulate the protein-structure prediction problem as a search for the conformational ensemble with the lowest free energy at temperatures below the folding-transition temperature. Applications of UNRES to study biological problems are also described. PMID:21643583
Interfacial Force Field Characterization in a Constrained Vapor Bubble Thermosyphon
NASA Technical Reports Server (NTRS)
DasGupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1995-01-01
Isothermal profiles of the extended meniscus in a quartz cuvette were measured in the earth's gravitational field using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. These profiles are a function of the stress field. Experimentally, the augmented Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces for heptane and pentane menisci on quartz and tetradecane on SFL6. The effects of refractive indices of the solid and liquid on the measurement techniques were demonstrated. Experimentally obtained values of the disjoining pressure and dispersion constants were compared to those predicted from the Dzyaloshinskii - Lifshitz - Pilaevskii theory for an ideal surface and reasonable agreements were obtained. A parameter introduced gives a quantitative measurement of the closeness of the system to equilibrium. The nonequilibrium behavior of this parameter is also presented
Adiabatic coherent control in the anharmonic ion trap: Proposal for the vibrational two-qubit system
Wang Lei; Babikov, Dmitri
2011-05-15
A method for encoding a multiqubit system into the quantized motional states of ion string in an anharmonic linear trap is proposed. Control over this system is achieved by applying oscillatory electric fields (rf) shaped optimally for desired state-to-state transitions. Anharmonicity of the vibrational spectrum of the system plays a key role in this approach to the control and quantum computation, since it allows resolving different state-to-state transitions and addressing them selectively. The anharmonic trap architecture proposed earlier [Phys. Rev. A 83, 022305 (2011)] is explored here and the optimal control theory is used to derive pulses for a set of universal quantum gates. An accurate choice of pulse parameters allows deriving gates that are both accurate and simple. A practical realization of this approach seems to be within the reach of today's technology.
Sodium Chloride, NaCl/ϵ: New Force Field.
Fuentes-Azcatl, Raúl; Barbosa, Marcia C
2016-03-10
A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321
Rigorous force field optimization principles based on statistical distance minimization
Vlcek, Lukas; Chialvo, Ariel A.
2015-10-14
We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.
Deformation field of the soft substrate induced by capillary force
NASA Astrophysics Data System (ADS)
Liu, J. L.; Nie, Z. X.; Jiang, W. G.
2009-05-01
Prediction on the deformation of a soft substrate induced by capillary force has been widely paid attention in the broad range of applications, such as metallurgy, material science, astronavigation, micro/nano-technology, etc., which is also a supplementary result to the classical Young's equation. We quantitatively analyzed the deformation of an elastic substrate under capillary force by means of the energy principle and the continuum mechanics method. The actual drop's morphology was investigated and was compared with that calculated based on the classical spherical shape assumption of the droplet. The displacement field of the substrate was obtained, especially, its singularity at the droplet edge was also discussed. The results are beneficial to engineering application and micro/nano-measurement.
Resonant squeezing and the anharmonic decay of coherent phonons
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murray, Éamonn D.; Reis, David A.
2016-04-01
We show that the anharmonic decay of large-amplitude coherent phonons in a solid generates strongly enhanced squeezing of the phonon modes near points of the Brillouin zone where energy conservation in the three-phonon decay process is satisfied. The squeezing process leads to temporal oscillations of the mean-square displacement of target modes in resonance with the coherent phonon, which are characteristic of coherent phonon decay and do not occur in the decay of a phonon in a well-defined number state. For realistic material parameters of optically excited group-V semimetals, we predict that this squeezing results in strongly enhanced oscillations of the x-ray diffuse scattering intensity at sharply defined values of the x-ray momentum transfer. Numerical simulations of the phonon dynamics and the x-ray diffuse scattering in optically excited bismuth, using harmonic and anharmonic force parameters calculated with constrained density functional theory, demonstrate oscillations of the diffuse scattering intensity of magnitude 10%-20% of the thermal background at points of the Brillouin zone, where resonance occurs. Such oscillations should be observable using time-resolved optical-pump and x-ray-probe facilities available at current x-ray free-electron laser sources.
Pairwise-additive force fields for selected aqueous monovalent ions from adaptive force matching
NASA Astrophysics Data System (ADS)
Li, Jicun; Wang, Feng
2015-11-01
Simple non-polarizable potentials were developed for Na+, K+, Cl-, and Br- using the adaptive force matching (AFM) method with ab initio MP2 method as reference. Our MP2-AFM force field predicts the solvation free energies of the four salts formed by the ions with an error of no more than 5%. Other properties such as the ion-water radial distribution functions, first solvation shell water tilt angle distributions, ion diffusion constants, concentration dependent diffusion constant of water, and concentration dependent surface tension of the solutions were calculated with this potential. Very good agreement was achieved for these properties. In particular, the diffusion constants of the ions are within 6% of experimental measurements. The model predicts bromide to be enriched at the interface in the 1.6M KBr solution but predicts the ion to be repelled for the surface at lower concentration.
NASA Astrophysics Data System (ADS)
MacCready, P.; Bryan, F.; Tseng, Y. H.; Whitney, M. M.
2014-12-01
The coastal ocean accounts for about half of the global fish harvest, but is poorly resolved in global climate models (a one-degree grid barely sees the continental shelf). Moreover, coastal ocean circulation is strongly modified by river freshwater sources, often coming from estuarine systems that are completely unresolved in the coarse grid. River freshwater input in CESM is added in a practical but ad hoc way, by imposing a surface salinity sink over a region of the ocean approximating the plume area of a given river. Here we present results from a series of model experiments using a high-resolution (1.5 km) ROMS model of the NE Pacific, including the Columbia River and the inland waters of Puget Sound. The base model does multi-year hindcasts using the best available sources of atmospheric (MM5/WRF), ocean (NCOM), river (USGS), and tidal forcing. It has been heavily validated against observations of all sorts, and performs well, so it is an ideal test bed for downscaling experiments. The model framework also does biogeochemistry, including oxygen, and carbon chemistry is being added to make forecasts of Ocean Acidification.This high-resolution ROMS model is systematically run in downscaling experiments for the year 2005 with combinations of CESM forcing (CAM, POP, and rivers) swapped in. Skill is calculated using observations. It is found that the runs with CESM forcing generally retain much of the skill of the base model. A compact metric of response to freshwater forcing is used, which is the mechanical energy required to destratify a shallow coastal volume. This, along with the average temperature and salinity of the volume, are used to characterize and compare runs, including the original CESM-POP fields. Finally the model is run with projected CESM simulation forcing at the end of 21st century based on a set of RCP scenarios, and the compact metrics are used to quantify differences from 2005.
Nonlinear gravitational self-force: Field outside a small body
NASA Astrophysics Data System (ADS)
Pound, Adam
2012-10-01
A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.
Continuum Polarizable Force Field within the Poisson-Boltzmann Framework
Tan, Yu-Hong; Tan, Chunhu; Wang, Junmei; Luo, Ray
2008-01-01
We have developed and tested a complete set of nonbonded parameters for a continuum polarizable force field. Our analysis shows that the new continuum polarizable model is consistent with B3LYP/cc-pVTZ in modeling electronic response upon variation of dielectric environment. Comparison with experiment also shows that the new continuum polarizable model is reasonable, with similar accuracy as B3LYP/cc-pVTZ in reproduction of dipole moments of selected organic molecules in the gas phase. We have further tested the validity to interchange the Amber van der Waals parameters between the explicit and continuum polarizable force fields with a series of dimers. It can be found that the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer binding energies less than 0.9 kcal/mol in the aqueous dielectric environment. Finally we have optimized atomic cavity radii with respect to experimental solvation free energies of 177 training molecules. To validate the optimized cavity radii, we have tested these parameters against 176 test molecules. It is found that the optimized PB atomic cavity radii transfer well from the training set to the test set, with an overall root-mean-squared deviation of 1.30 kcal/mol, unsigned average error of 1.07 kacl/mol, and correlation coefficient of 92% for all 353 molecules in both the training and test sets. Given the development documented here, the next natural step is the construction of a full protein/nucleic acid force field within the new continuum polarization framework. PMID:18507452
Micro-gravity: current distributions creating a uniform force field
NASA Astrophysics Data System (ADS)
Vincent-Viry, O.; Mailfert, A.; Colteu, A.; Dael, A.; Gourdin, C.; Quettier, L.
2001-02-01
This paper presents two structures of superconducting coils able to give satisfactory solutions to the problem of generation of uniform field of high magnetic forces. The first structure is modeled by the use of purely surface current densities, whereas the second one can be described with volume current densities. Both of these structures proceed from the study of a particular expression of the complex magnetic potential introduced for structures with two-dimensional geometry. This work is carried out in a research collaboration between the GREEN and the DSM-DAPNIA department of the CEA Saclay.
On the use of quartic force fields in variational calculations
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.
2013-06-01
Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.
Coarse graining of force fields for metal-organic frameworks.
Dürholt, Johannes P; Galvelis, Raimondas; Schmid, Rochus
2016-03-14
We have adapted our genetic algorithm based optimization approach, originally developed to generate force field parameters from quantum mechanic reference data, to derive a first coarse grained force field for a MOF, taking the atomistic MOF-FF as a reference. On the example of the copper paddle-wheel based HKUST-1, a maximally coarse grained model, using a single bead for each three and four coordinated vertex, was developed as a proof of concept. By adding non-bonded interactions with a modified Buckingham potential, the resulting MOF-FF-CGNB is able to predict local deformation energies of the building blocks as well as bulk properties like the tbovs.pto energy difference or elastic constants in a semi-quantitative way. As expected, the negative thermal expansion of HKUST-1 is not reproduced by the maximally coarse grained model. At the expense of atomic resolution, substantially larger systems (up to tens of nanometers in size) can be simulated with respect to structural and mechanical properties, bridging the gap to the mesoscale. As an example the deformation of the [111] surface of HKUST-1 by a "tip" could be computed without artifacts from periodic images. PMID:26732756
Development of force field parameters for molecular simulation of polylactide
McAliley, James H.; Bruce, David A.
2011-01-01
Polylactide is a biodegradable polymer that is widely used for biomedical applications, and it is a replacement for some petroleum based polymers in applications that range from packaging to carpeting. Efforts to characterize and further enhance polylactide based systems using molecular simulations have to this point been hindered by the lack of accurate atomistic models for the polymer. Thus, we present force field parameters specifically suited for molecular modeling of PLA. The model, which we refer to as PLAFF3, is based on a combination of the OPLS and CHARMM force fields, with modifications to bonded and nonbonded parameters. Dihedral angle parameters were adjusted to reproduce DFT data using newly developed CMAP dihedral cross terms, and the model was further adjusted to reproduce experimentally resolved crystal structure conformations, melt density, volume expansivity, and the glass transition temperature of PLA. We recommend the use of PLAFF3 in modeling PLA in its crystalline or amorphous states and have provided the necessary input files required for the publicly available molecular dynamics code GROMACS. PMID:22180734
Automated conformational energy fitting for force-field development
Guvench, Olgun; MacKerell, Alexander D.
2010-01-01
We present a general conformational-energy fitting procedure based on Monte Carlo simulated annealing (MCSA) for application in the development of molecular mechanics force fields. Starting with a target potential energy surface and an unparameterized molecular mechanics potential energy surface, an optimized set of either dihedral or grid-based correction map (CMAP) parameters is produced that minimizes the root mean squared error (RMSE) between the parameterized and targeted energies. The fitting is done using an MCSA search in parameter space and consistently converges to the same RMSE irrespective of the randomized parameters used to seed the search. Any number of dihedral parameters can be simultaneously parameterized, allowing for fitting to multi-dimensional potential energy scans. Fitting options for dihedral parameters include non-uniform weighting of the target data, constraining multiple optimized parameters to the same value, constraining parameters to be no greater than a user-specified maximum value, including all or only a subset of multiplicities defining the dihedral Fourier series, and optimization of phase angles in addition to force constants. The dihedral parameter fitting algorithm’s performance is characterized through multi-dimensional fitting of cyclohexane, tetrahydropyran, and hexopyranose monosaccharide energetics, with the latter case having a 30-dimensional parameter space. The CMAP fitting is applied in the context of polypeptides, and is used to develop a parameterization that simultaneously captures the φ, ψ energetics of the alanine dipeptide and the alanine tetrapeptide. Because the dihedral energy term is common to many force fields, we have implemented the dihedral-fitting algorithm in the portable Python scripting language and have made it freely available as Supplementary Material. PMID:18458967
NASA Astrophysics Data System (ADS)
Yokoyama, Toshihiko; Yonamoto, Yoshiki; Ohta, Toshiaki
1996-12-01
We have measured and analyzed the temperature dependence of extended X-ray absorption fine structure (EXAFS) spectra of tetrahedral systems MBr4 ( M=C, Si, Ge). The EXAFS analysis by means of the cumulant expansion technique enables one to obtain information about force constants including the third-order anharmonicity. The second-order cumulants obtained experimentally are in excellent agreement with the values expected by the vibrational data and the third-order cumulants have been determined successfully. For the first nearest neighbor (NN) Br M shells the stretching motions are apparently dominant to describe EXAFS, while for the second NN Br Br shell the bending modes are found to contribute significantly to the cumulants especially for the third-order anharmonicity. The obtained force constants are compared to each other and the origin of observed bending anharmonicity is discussed.
Unified Field Theory and Force Formulas of Interactions
NASA Astrophysics Data System (ADS)
Ma, Tian; Wang, Shouhong
2013-04-01
The main objective of this talk is to drive a unified field model coupling four interactions, based on the principle of interaction dynamics (PID) and the principle of representation invariance (PID). Intuitively, PID takes the variation of the action functional under energy-momentum conservation constraint. PRI requires that physical laws be independent of representations of the gauge groups. One important outcome of this unified field model is a natural duality between the interacting fields (g, A, W^a, S^k), corresponding to graviton, photon, intermediate vector bosons W^± and Z and gluons, and the adjoint bosonic fields (φ,, ^aw, ^ks). This duality predicts two Higgs particles of similar mass with one due to weak interaction and the other due to strong interaction. PID and PRI can be applied directly to individual interactions, leading to 1) modified Einstein equations, giving rise to a unified theory for dark matter and dark energy, 2) three levels of strong interaction potentials for quark, nucleon/hadron, and atom respectively, and 3) a weak interaction potential. These potential/force formulas offer a clear mechanism for both quark confinement and asymptotic freedom.
Adaptation and generalization in acceleration dependent force fields
Hwang, Eun Jung; Smith, Maurice A.; Shadmehr, Reza
2005-01-01
Any passive rigid inertial object that we hold in our hand, e.g., a tennis racquet, imposes a field of forces on the arm that depends on limb position, velocity, and acceleration. A fundamental characteristic of this field is that the forces due to acceleration and velocity are linearly separable in the intrinsic coordinates of the limb. In order to learn such dynamics with a collection of basis elements, a control system would generalize correctly and therefore perform optimally if the basis elements that were sensitive to limb velocity were not sensitive to acceleration, and vice versa. However, in the mammalian nervous system proprioceptive sensors like muscle spindles encode a nonlinear combination of all components of limb state, with sensitivity to velocity dominating sensitivity to acceleration. Therefore, limb state in the space of proprioception is not linearly separable despite the fact that this separation is a desirable property of control systems that form models of inertial objects. In building internal models of limb dynamics, does the brain use a representation that is optimal for control of inertial objects, or a representation that is closely tied to how peripheral sensors measure limb state? Here we show that in humans, patterns of generalization of reaching movements in acceleration dependent fields are strongly inconsistent with basis elements that are optimized for control of inertial objects. Unlike a robot controller that models the dynamics of the natural world and represents velocity and acceleration independently, internal models of dynamics that people learn appear to be rooted in the properties of proprioception, nonlinearly responding to the pattern of muscle activation and representing velocity more strongly than acceleration. PMID:16292640
Towards a force field based on density fitting
Piquemal, Jean-Philip; Cisneros, G. Andrés; Reinhardt, Peter; Gresh, Nohad; Darden, Thomas A.
2007-01-01
Total intermolecular interaction energies are determined with a first version of the Gaussian electrostatic model (GEM-0), a force field based on a density fitting approach using s-type Gaussian functions. The total interaction energy is computed in the spirit of the sum of interacting fragment ab initio (SIBFA) force field by separately evaluating each one of its components: electrostatic (Coulomb), exchange repulsion, polarization, and charge transfer intermolecular interaction energies, in order to reproduce reference constrained space orbital variation (CSOV) energy decomposition calculations at the B3LYP/aug-cc-pVTZ level. The use of an auxiliary basis set restricted to spherical Gaussian functions facilitates the rotation of the fitted densities of rigid fragments and enables a fast and accurate density fitting evaluation of Coulomb and exchange-repulsion energy, the latter using the overlap model introduced by Wheatley and Price [Mol. Phys. 69, 50718 (1990)]. The SIBFA energy scheme for polarization and charge transfer has been implemented using the electric fields and electrostatic potentials generated by the fitted densities. GEM-0 has been tested on ten stationary points of the water dimer potential energy surface and on three water clusters (n=16,20,64). The results show very good agreement with density functional theory calculations, reproducing the individual CSOV energy contributions for a given interaction as well as the B3LYP total interaction energies with errors below kBT at room temperature. Preliminary results for Coulomb and exchange-repulsion energies of metal cation complexes and coupled cluster singles doubles electron densities are discussed. PMID:16542062
Echoes from anharmonic normal modes in model glasses.
Burton, Justin C; Nagel, Sidney R
2016-03-01
Glasses display a wide array of nonlinear acoustic phenomena at temperatures T ≲ 1 K. This behavior has traditionally been explained by an ensemble of weakly coupled, two-level tunneling states, a theory that is also used to describe the thermodynamic properties of glasses at low temperatures. One of the most striking acoustic signatures in this regime is the existence of phonon echoes, a feature that has been associated with two-level systems with the same formalism as spin echoes in NMR. Here we report the existence of a distinctly different type of acoustic echo in classical models of glassy materials. Our simulations consist of finite-ranged, repulsive spheres and also particles with attractive forces using Lennard-Jones interactions. We show that these echoes are due to anharmonic, weakly coupled vibrational modes and perhaps provide an alternative explanation for the phonon echoes observed in glasses at low temperatures. PMID:27078434
Anharmonic lattice interactions in improper ferroelectrics for multiferroic design.
Young, Joshua; Stroppa, Alessandro; Picozzi, Silvia; Rondinelli, James M
2015-07-22
The design and discovery of new multiferroics, or materials that display both ferroelectricity and long-range magnetic order, is of fundamental importance for new electronic technologies based on low-power consumption. Far too often, however, the mechanisms causing these properties to arise are incompatible or occur at ordering temperatures below room temperature. One design strategy which has gained considerable interest is to begin with a magnetic material, and find novel ways to induce a spontaneous electric polarization within the structure. To this end, anharmonic interactions coupling multiple lattice modes have been used to lift inversion symmetry in magnetic dielectrics. Here we provide an overview of the microscopic mechanisms by which various types of cooperative atomic displacements result in ferroelectricity through anharmonic multi-mode coupling, as well as the types of materials most conducive to these lattice instabilities. The review includes a description of the origins of the displacive modes, a classification of possible non-polar lattice modes, as well as how their coupling can produce spontaneous polarizations. We then survey the recent improper ferroelectric literature, and describe how the materials discussed fall within a proposed classification scheme, offering new directions for the theoretical design of magnetic ferroelectrics. Finally, we offer prospects for the future discovery of new magnetic improper ferroelectrics, as well as detail remaining challenges and open questions facing this exciting new field. PMID:26125654
Anharmonic Vibrational Spectroscopy on Metal Transition Complexes
NASA Astrophysics Data System (ADS)
Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2014-06-01
Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.
Validating empirical force fields for molecular-level simulation of cellulose dissolution
Technology Transfer Automated Retrieval System (TEKTRAN)
The calculations presented here, which include dynamics simulations using analytical force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of thes...
NASA Astrophysics Data System (ADS)
Bock, Charles W.; Trachtman, Mendel; George, Philip
1981-11-01
The CO bond length and the quadratic, cubic and quartic stretching force constants, calculated ab initio using the unscaled 4-31G basis set with full geometry optimization, are reported for three series of monosubstituted carbonyl compounds in which the atom directly bonded to the carbonyl carbon is another carbon, a nitrogen, or an oxygen atom, respectively. The data are analyzed in terms of the In ƒ versus In re relationship, and also the generalized power functions and exponential functions proposed by Herschbach and Laurie. Not only does the atom directly bonded to the carbonyl carbon affect the magnitude of re and the force constants, but the rest of the substituent group is found to be capable of exerting an even greater influence. Within each series of compounds the overall progression from the shortest to the longest CO bonds is tentatively attributed to a diminishing electron density in the bonding region.
Molecular dynamics simulations of methane hydrate using polarizable force fields
Jiang, H.N.; Jordan, K.D.; Taylor, C.E.
2007-03-01
Molecular dynamics simulations of methane hydrate have been carried out using the AMOEBA and COS/G2 polarizable force fields. Properties examined include the temperature dependence of the lattice constant, the OC and OO radial distribution functions and the vibrational spectra. Both the AMOEBA and COS/G2 models are found to successfully account for the available experimental data, with overall slightly better agreement with experiment being found for the AMOEBA model. Several properties calculated using the AMOEBA and COS/G2 models differ appreciable from the corresponding results obtained previously using the polarizable TIP4P-FQ model. This appears to be due to the inadequacy of the treatment of polarization, especially, the restriction of polarization to in-plane only, in the TIP4P-FQ model.
The harmonic force field and rz structure of HNCO
NASA Astrophysics Data System (ADS)
Fusina, Luciano; Mills, Ian M.
1981-04-01
The presently available microwave, millimeter wave, and far-infrared data of five isotopic species of isocyanic acid, namely, HNCO, H 15NCO, HN 13CO, HNC 18O, and DNCO, have been used to obtain improved values of the ground-state rotational constants, the five quartic distortion constants, and some higher-order distortion constants in the IrS reduced Hamiltonian of Watson. The appropriate planarity relation among the quartic centrifugal distortion constants has been imposed in the fitting procedure. The general harmonic force field of isocyanic acid has been determined using all existing data, and assuming a trans bent equilibrium geometry of the molecule with an NCO angle of 170°. Finally an rz structure has been obtained using the Az, Bz, and Cz rotational constants of five isotopic species. The bending of the NCO chain is found to be 8° in the trans configuration.
On the Use of Quartic Force Fields in Variational Calculations
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.
2013-01-01
The use of quartic force fields (QFFs) has been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this paper we outline and discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine(-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can effectively describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods. Cases are referenced where variational computations coupled with transformed QFFs produce accuracies compared to experiment for fundamental frequencies on the order of 5 cm(exp -1) and often as good as 1 cm(exp -1).
Derivation of a Molecular Mechanics Force Field for Cholesterol
Cournia, Zoe; Vaiana, Andrea C.; Smith, Jeremy C.; Ullmann, G. Matthias M.
2004-01-01
As a necessary step toward realistic cholesterol:biomembrane simulations, we have derived CHARMM molecular mechanics force-field parameters for cholesterol. For the parametrization we use an automated method that involves fitting the molecular mechanics potential to both vibrational frequencies and eigenvector projections derived from quantum chemical calculations. Results for another polycyclic molecule, rhodamine 6G, are also given. The usefulness of the method is thus demonstrated by the use of reference data from two molecules at different levels of theory. The frequency-matching plots for both cholesterol and rhodamine 6G show overall agreement between the CHARMM and quantum chemical normal modes, with frequency matching for both molecules within the error range found in previous benchmark studies.
Force field development and simulations of senior dialkyl sulfoxides.
Chaban, Vitaly V
2016-04-21
Thermodynamics, structure, and dynamics of diethyl sulfoxide (DESO) and ethyl methyl sulfoxide (EMSO) were investigated using ab initio calculations and non-polarizable potential based molecular dynamics (MD) simulations. The additive pairwise force field (FF) for EMSO and DESO was proposed for the first time, preserving explicit compatibility with their most known homologue, DMSO. The simulations reveal similar structures and thermodynamic properties of DMSO, DESO and EMSO. However, the transport properties are significantly different: DESO and DMSO are less mobile and an order of magnitude more viscous. Furthermore, dipole reorientation in DESO and EMSO occurs ca. 2-4 times slower than in DMSO at room temperature. This observation favors applications of higher sulfoxides as cryoprotectants and provides a microscopic interpretation of the earlier experimental data. PMID:27031577
Development of the CHARMM Force Field for Lipids
Pastor, R.W.; MacKerell, A.D.
2011-01-01
The development of the CHARMM additive all-atom lipid force field (FF) is traced from the early 1990’s to the most recent version (C36) published in 2010. Though simulations with early versions yielded useful results, they failed to reproduce two important quantities: a zero surface tension at the experimental bilayer surface area, and the signature splitting of the deuterium order parameters in the glycerol and upper chain carbons. Systematic optimization of parameters based on high level quantum mechanical data and free energy simulations have resolved these issues, and bilayers with a wide range of lipids can be simulated in tensionless ensembles using C36. Issues associated with other all-atom lipid FFs, success and limitations in the C36 FF and ongoing developments are also discussed. PMID:21760975
Quantum Stabilization in Anharmonic Crystals
NASA Astrophysics Data System (ADS)
Albeverio, Sergio; Kondratiev, Yuri; Kozitsky, Yuri; Röckner, Michael
2003-04-01
For a model of interacting quantum particles of mass m oscillating in a double-well crystalline field, a mechanism of its stabilization by quantum effects is described. In particular, a stability condition involving m, the interaction intensity, and the parameters of the crystalline field is given. It is independent of the temperature and is satisfied if m is small enough and/or the tunneling frequency is big enough. It is shown that under this condition the infinite-volume free energy density is an analytic function of the external field and the displacement-displacement correlation function decays exponentially; hence, no phase transitions can arise at all temperatures. This gives a complete and rigorous answer to the question about the influence of quantum effects on structural phase transitions, the discussion of which was initiated in [
ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces
Henson, Neil Jon; Waldher, Benjamin; Kuta, Jadwiga; Clark, Aurora; Clark, Aurora E
2009-01-01
The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design
Vanommeslaeghe, K.
2014-01-01
Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274
The Space Structure, Force Fields and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Krasnoholovets, Volodymyr; Chung, Ding-Yu
2006-06-01
It is proposed that the cosmic digital code consists of 1 and 0 for an attachment space and a detachment space, respectively. The attachment space attaches to an object, while the detachment space detaches from the object. The cosmic digital code relates to the reduction of > 4D space-time into 4D space-time and the derivation of the space structure. Through the detachment space, > 4D space-time is sliced into infinitely many 4D slices surrounding the 4D core attachment space. The space structurally is a partition space, or a lattice space. The lattice space consists of repetitive units of alternative attachment space and detachment space and provides for a coherent wave function and gauge force fields, while the partition space consists of separated continuous phases of attachment space and detachment space providing the space structure for the collapse of wave function and the permanent detachment or attachment of gauge bosons. Thus, the wave function and gauge bosons become pure physical fields. The mechanism for the emergence of the space structure is varying dimension numbers, ensuring the metric for the slicing of > 4D space-time.
Critical Casimir forces in the presence of random surface fields
NASA Astrophysics Data System (ADS)
Maciołek, A.; Vasilyev, O.; Dotsenko, V.; Dietrich, S.
2015-03-01
We study critical Casimir forces (CCFs) fC for films of thickness L which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSFs) on both surfaces. We consider the case in which, in the absence of RSFs, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder, CCFs still exhibit scaling, acquiring a random field scaling variable w that is zero for pure systems. We confirm these analytic predictions by Monte Carlo (MC) simulations. Moreover, our MC data show that fC varies as fC(w →0 ) -fC(w =0 ) ˜w2 . Asymptotically, for large L , w scales as w ˜L-0.26→0 , indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that w ≃1 , we find that the presence of RSFs with vanishing mean value increases significantly the strength of CCFs, as compared to systems without them, and it shifts the extremum of the scaling function of fC toward lower temperatures. But fC remains attractive.
Jiang, Jun; Park, G. Barratt; Field, Robert W.
2016-04-14
A new quartic force field for the SO2 C~1B2 state has been derived, based on high resolution data from S16O2 and S18O2. Included are eight b2 symmetry vibrational levels of S16O2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C~ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C~ state are strongly coupled via Fermi-133more » interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm–1. Based on our force field, the structure of the Coriolis interactions in the C~ state of SO2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme).« less
Jiang, Jun; Park, G Barratt; Field, Robert W
2016-04-14
A new quartic force field for the SO2 C̃(1)B2 state has been derived, based on high resolution data from S(16)O2 and S(18)O2. Included are eight b2 symmetry vibrational levels of S(16)O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C̃ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C̃ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C̃ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm(-1). Based on our force field, the structure of the Coriolis interactions in the C̃ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme). PMID:27083726
NASA Astrophysics Data System (ADS)
Jiang, Jun; Park, G. Barratt; Field, Robert W.
2016-04-01
A new quartic force field for the SO2 C ˜ 1B2 state has been derived, based on high resolution data from S16O2 and S18O2. Included are eight b2 symmetry vibrational levels of S16O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ˜ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C ˜ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C ˜ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm-1. Based on our force field, the structure of the Coriolis interactions in the C ˜ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme).
Lorentz force electrical impedance tomography using magnetic field measurements
NASA Astrophysics Data System (ADS)
Zengin, Reyhan; Güneri Gençer, Nevzat
2016-08-01
In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies
Lorentz force electrical impedance tomography using magnetic field measurements.
Zengin, Reyhan; Gençer, Nevzat Güneri
2016-08-21
In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d
Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding.
Huang, Wei; Lin, Zhixiong; van Gunsteren, Wilfred F
2011-05-10
The recently developed GROMOS 54A7 force field, a modification of the 53A6 force field, is validated by simulating the folding equilibrium of two β-peptides which show different dominant folds, i.e., a 314-helix and a hairpin, using three different force fields, i.e., GROMOS 45A3, 53A6, and 54A7. The 54A7 force field stabilizes both folds, and the agreement of the simulated NOE atom-atom distances with the experimental NMR data is slightly improved when using the 54A7 force field, while the agreement of the (3)J couplings with experimental results remains essentially unchanged when varying the force field. The 54A7 force field developed to improve the stability of α-helical structures in proteins can thus be safely used in simulations of β-peptides. PMID:26610119
Novel concepts in near-field optics: from magnetic near-field to optical forces
NASA Astrophysics Data System (ADS)
Yang, Honghua
Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic
Addou, Touria; Krouchev, Nedialko I; Kalaska, John F
2015-01-15
To elucidate how primary motor cortex (M1) neurons contribute to the performance of a broad range of different and even incompatible motor skills, we trained two monkeys to perform single-degree-of-freedom elbow flexion/extension movements that could be perturbed by a variety of externally generated force fields. Fields were presented in a pseudorandom sequence of trial blocks. Different computer monitor background colors signaled the nature of the force field throughout each block. There were five different force fields: null field without perturbing torque, assistive and resistive viscous fields proportional to velocity, a resistive elastic force field proportional to position and a resistive viscoelastic field that was the linear combination of the resistive viscous and elastic force fields. After the monkeys were extensively trained in the five field conditions, neural recordings were subsequently made in M1 contralateral to the trained arm. Many caudal M1 neurons altered their activity systematically across most or all of the force fields in a manner that was appropriate to contribute to the compensation for each of the fields. The net activity of the entire sample population likewise provided a predictive signal about the differences in the time course of the external forces encountered during the movements across all force conditions. The neurons showed a broad range of sensitivities to the different fields, and there was little evidence of a modular structure by which subsets of M1 neurons were preferentially activated during movements in specific fields or combinations of fields. PMID:25339714
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan
2016-05-01
We investigate the quantum phase fluctuations of input coherent light involving two quartic anharmonic oscillators coupled through a linear one. The analytical expressions for various phase fluctuation parameters due to Carruthers and Nieto are expressed as functions of coupling constant, anharmonic constant, initial excitation numbers, and the initial phase of the input coherent field. By using some numerical estimates of the analytical expressions, the effects of anharmonic and coupling constants are clearly indicated. In one of the two anharmonic modes (say mode a1), it is found that the presence of coupling causes the reduction of phase fluctuation parameters U1, and S1, compared to their counterparts at t=0. In sharp contrast to these results, the increase and the decrease (at least in the axis range of kt) of the phase fluctuation parameters U1, S1 and Q1 compared to their initial value counterpart are attributed by the strong field and hence the nonlinearity. We establish that the signature of anharmonicity (β ≠ 0) is realized only for intense field situations. It corroborates the fact that the nonlinearity of the medium is invoked only if the field strength is quite strong. Interestingly, for significantly strong field situation, the reduction of the phase fluctuation parameters compared to their initial values is exhibited for the harmonic mode. These reductions are attributed partly by the strong field and partly by the coupling between the oscillators. In spite of the modes corresponding to two anharmonic oscillators which are in vacuum, we report the generation of excitation for nonzero coupling constant with β=0. It may be attributed by the quantum state transfer through the chain of harmonic oscillators.
Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan
2016-01-01
The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum
Solution of Dirac equation with spin and pseudospin symmetry for an anharmonic oscillator
Goudarzi, H.; Sohbati, M.; Zarrin, S.
2011-01-15
We present the exact solutions of Dirac equation with anharmonic oscillator potential using the Nikiforov-Uvarov method. Taking into account potentials of vector field V(r) and scalar field S(r) in Dirac Hamiltonian, the bound state energy eigenvalues and the corresponding upper and lower two-component spinors of fermion are obtained. These solutions are considered in the framework of the spin and pseudospin symmetry concept.
Automation of AMOEBA polarizable force field parameterization for small molecules
Wu, Johnny C.; Chattree, Gaurav
2012-01-01
A protocol to generate parameters for the AMOEBA polarizable force field for small organic molecules has been established, and polarizable atomic typing utility, Poltype, which fully automates this process, has been implemented. For validation, we have compared with quantum mechanical calculations of molecular dipole moments, optimized geometry, electrostatic potential, and conformational energy for a variety of neutral and charged organic molecules, as well as dimer interaction energies of a set of amino acid side chain model compounds. Furthermore, parameters obtained in gas phase are substantiated in liquid-phase simulations. The hydration free energy (HFE) of neutral and charged molecules have been calculated and compared with experimental values. The RMS error for the HFE of neutral molecules is less than 1 kcal/mol. Meanwhile, the relative error in the predicted HFE of salts (cations and anions) is less than 3% with a correlation coefficient of 0.95. Overall, the performance of Poltype is satisfactory and provides a convenient utility for applications such as drug discovery. Further improvement can be achieved by the systematic study of various organic compounds, particularly ionic molecules, and refinement and expansion of the parameter database. PMID:22505837
Searching the Force Field Electrostatic Multipole Parameter Space.
Jakobsen, Sofie; Jensen, Frank
2016-04-12
We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations. PMID:26925529
Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
2014-01-01
The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn2+, Zn2+, Mg2+, and Ca2+, as well as providing new parameters for Ni2+, Co2+, and Fe2+. In all the cases, we are able to reproduce both M2+–O distances and experimental solvation free energies, which has not been achieved to date for transition metals using any other model. The parameters have also been tested using two different water models and show consistent performance. Therefore, our parameters are easily transferable to any force field that describes nonbonded interactions using Coulomb and Lennard-Jones potentials. Finally, we demonstrate the stability of our parameters in both the human and Escherichia coli variants of the enzyme glyoxalase I as showcase systems, as both enzymes are active with a range of transition metals. The parameters presented in this work provide a valuable resource for the molecular simulation community, as they extend the range of metal ions that can be studied using classical approaches, while also providing a starting point for subsequent parametrization of new metal centers. PMID:24670003
The FoldX web server: an online force field
Schymkowitz, Joost; Borg, Jesper; Stricher, Francois; Nys, Robby; Rousseau, Frederic; Serrano, Luis
2005-01-01
FoldX is an empirical force field that was developed for the rapid evaluation of the effect of mutations on the stability, folding and dynamics of proteins and nucleic acids. The core functionality of FoldX, namely the calculation of the free energy of a macromolecule based on its high-resolution 3D structure, is now publicly available through a web server at . The current release allows the calculation of the stability of a protein, calculation of the positions of the protons and the prediction of water bridges, prediction of metal binding sites and the analysis of the free energy of complex formation. Alanine scanning, the systematic truncation of side chains to alanine, is also included. In addition, some reporting functions have been added, and it is now possible to print both the atomic interaction networks that constitute the protein, print the structural and energetic details of the interactions per atom or per residue, as well as generate a general quality report of the pdb structure. This core functionality will be further extended as more FoldX applications are developed. PMID:15980494
Force field independent metal parameters using a nonbonded dummy model.
Duarte, Fernanda; Bauer, Paul; Barrozo, Alexandre; Amrein, Beat Anton; Purg, Miha; Aqvist, Johan; Kamerlin, Shina Caroline Lynn
2014-04-24
The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn(2+), Zn(2+), Mg(2+), and Ca(2+), as well as providing new parameters for Ni(2+), Co(2+), and Fe(2+). In all the cases, we are able to reproduce both M(2+)-O distances and experimental solvation free energies, which has not been achieved to date for transition metals using any other model. The parameters have also been tested using two different water models and show consistent performance. Therefore, our parameters are easily transferable to any force field that describes nonbonded interactions using Coulomb and Lennard-Jones potentials. Finally, we demonstrate the stability of our parameters in both the human and Escherichia coli variants of the enzyme glyoxalase I as showcase systems, as both enzymes are active with a range of transition metals. The parameters presented in this work provide a valuable resource for the molecular simulation community, as they extend the range of metal ions that can be studied using classical approaches, while also providing a starting point for subsequent parametrization of new metal centers. PMID:24670003
Force Fields for Carbohydrate-Divalent Cation Interactions.
Chen, Hsieh; Cox, Jason R; Panagiotopoulos, Athanassios Z
2016-06-16
We report molecular dynamics simulations to study intermolecular interactions for carbohydrate-divalent cation complexes. We observed that common force fields from literature with standard Lorentz-Berthelot combining rules are unable to reproduce the experimental stability constants for model carbohydrate monomer (α-d-Allopyranose) and alkali earth metal cation (Mg(2+), Ca(2+), Sr(2+), or Ba(2+)) complexes. A modified combining rule with rescaled effective cross-interaction radius between cations and the hydroxyl oxygens on the carbohydrates was introduced to reproduce the experimental stability constants, which the preferential carbohydrate-cation complexing structures through the ax-eq-ax sequence of O-1, O-2, and O-3 on α-d-Allopyranose were also observed. The effective radius scaling factor obtained from (α-d-Allopyranose)-Ca(2+) complexes was directly transferrable to the similar six-membered ring (α-d-Ribopyranose)-Ca(2+) complexes; however, reparameterization for the scaling factor may be necessary for the five-membered ring (α-d-Ribofuranose)-Ca(2+) complexes. PMID:27210229
Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin
2014-03-01
In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant. PMID:24375394
Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He
2016-07-01
We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.
Quantum dissipative effect of one dimension coupled anharmonic oscillator
Sulaiman, A.; Zen, Freddy P.
2015-04-16
Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.
Franck-Condon factors based on anharmonic vibrational wave functions of polyatomic molecules
NASA Astrophysics Data System (ADS)
Rodriguez-Garcia, Valerie; Yagi, Kiyoshi; Hirao, Kimihiko; Iwata, Suehiro; Hirata, So
2006-07-01
Franck-Condon (FC) integrals of polyatomic molecules are computed on the basis of vibrational self-consistent-field (VSCF) or configuration-interaction (VCI) calculations capable of including vibrational anharmonicity to any desired extent (within certain molecular size limits). The anharmonic vibrational wave functions of the initial and final states are expanded unambiguously by harmonic oscillator basis functions of normal coordinates of the respective electronic states. The anharmonic FC integrals are then obtained as linear combinations of harmonic counterparts, which can, in turn, be evaluated by established techniques taking account of the Duschinsky rotations, geometry displacements, and frequency changes. Alternatively, anharmonic wave functions of both states are expanded by basis functions of just one electronic state, permitting the FC integral to be evaluated directly by the Gauss-Hermite quadrature used in the VSCF and VCI steps [Bowman et al., Mol. Phys. 104, 33 (2006)]. These methods in conjunction with the VCI and coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] method have predicted the peak positions and intensities of the vibrational manifold in the X˜B12 photoelectron band of H2O with quantitative accuracy. It has revealed that two weakly visible peaks are the result of intensity borrowing from nearby states through anharmonic couplings, an effect explained qualitatively by VSCF and quantitatively by VCI, but not by the harmonic approximation. The X˜B22 photoelectron band of H2CO is less accurately reproduced by this method, likely because of the inability of CCSD(T)/cc-pVTZ to describe the potential energy surface of open-shell H2CO+ with the same high accuracy as in H2O+.
Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng
2015-08-15
We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams. PMID:26274660
ERIC Educational Resources Information Center
Gamble, Reed
1989-01-01
Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)
Power counting for nuclear forces in chiral effective field theory
NASA Astrophysics Data System (ADS)
Long, Bingwei
2016-02-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Acoustic mode vibrational anharmonicity of hexahelometallate crystals
NASA Astrophysics Data System (ADS)
Jain, Sanjeev Kumar; Goyal, R. P.; Gupta, B. R. K.
1992-11-01
The vibrational anharmonicity and Grüneisen parameters of hexahelometallate A 2MX 6 single crystals have been determined theoretically by making use of phonon lattice theory. The potential model employed to calculate these properties consists of long range coulomb, three body interactions, short range overlap repulsion effective upto the nearest neighbour ions and phonon-lattice interactions. These antifluorite structure compounds contain large MX 2-6- ions and as the interionic spacings are much greater than those of the alkaline-earth fluorite structure halides, their elastic constants are correspondingly smaller. The hydrostatic pressure derivatives of the second order elastic constants (SOEC) calculated for K 2SnCl 6, K 2ReCl 6, (NH 4) 2SnCl 6, (NH 4) 2TeCl 6, (NH 4) 2SnBr 6, and (NH 4) 2TeBr 6, are found to be positive and close to the experimental values. The vibrational anharmonicities of the long-wavelength modes are explained in terms of the acoustic mode Grüneisen parameters.
A turbulent nonisothermal jet in an Archimedean force field
NASA Astrophysics Data System (ADS)
Elemasov, V. E.; Glebov, G. A.; Kozlov, A. P.
An integral method for calculating a vertical nonisothermal jet is presented which allows for the effects of Archimedean forces and nonisothermality. The method can be extended to the calculation of axisymmetric and plane jets in a slipstream and also to the case of jets issuing into a medium of a different concentration. It is shown that the consideration of Archimedean forces and nonisothermality results in a better agreement between calculations and experimental data.
Stability of excited states of a Bose-Einstein condensate in an anharmonic trap
NASA Astrophysics Data System (ADS)
Zezyulin, Dmitry A.; Alfimov, Georgy L.; Konotop, Vladimir V.; Pérez-García, Víctor M.
2008-07-01
We analyze the stability of nonground nonlinear states of a Bose-Einstein condensate in the mean-field limit in effectively one-dimensional (“cigar-shape”) traps for various types of confining potentials. We find that nonlinear states become, in general, more stable when switching from a harmonic potential to an anharmonic one. We discuss the relation between this fact and the specifics of the harmonic potential which has an equidistant spectrum.
Analytic calculations of anharmonic infrared and Raman vibrational spectra.
Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth
2016-02-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
Cell Separation by Non-Inertial Force Fields in Microfluidic Systems
Tsutsui, Hideaki; Ho, Chih-Ming
2009-01-01
Cell and microparticle separation in microfluidic systems has recently gained significant attention in sample preparations for biological and chemical studies. Microfluidic separation is typically achieved by applying differential forces on the target particles to guide them into different paths. This paper reviews basic concepts and novel designs of such microfluidic separators with emphasis on the use of non-inertial force fields, including dielectrophoretic force, optical gradient force, magnetic force, and acoustic primary radiation force. Comparisons of separation performances with discussions on physiological effects and instrumentation issues toward point-of-care devices are provided as references for choosing appropriate separation methods for various applications. PMID:20046897
Quantum field theory of the Casimir force for graphene
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.
2016-01-01
We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.
Optimized regulator for the quantized anharmonic oscillator
NASA Astrophysics Data System (ADS)
Kovacs, J.; Nagy, S.; Sailer, K.
2015-04-01
The energy gap between the first excited state and the ground state is calculated for the quantized anharmonic oscillator in the framework of the functional renormalization group method. The compactly supported smooth regulator is used which includes various types of regulators as limiting cases. It was found that the value of the energy gap depends on the regulator parameters. We argue that the optimization based on the disappearance of the false, broken symmetric phase of the model leads to the Litim's regulator. The least sensitivity on the regulator parameters leads, however, to an IR regulator being somewhat different of the Litim's one, but it can be described as a perturbatively improved, or generalized Litim's regulator and provides analytic evolution equations, too.
The lift forces acting on a submarine composite pipeline in a wave-current coexisting field
Li, Y.C.; Zhang, N.C.
1994-12-31
The composite pipeline is defined as a main big pipe composed with one or several small pipes. The flow behavior around a submarine composite pipeline is more complicated than that around a single submarine pipeline. A series model test of composite pipelines in a wave-current coexisting field was conducted by the authors. Both in-line and lift forces were measured, and the resultant forces are also analyzed. The results of lift forces and resultant forces are reported in this paper. It is found that the lift force coefficients for composite pipelines are well related to the KC number. The lift force coefficients in an irregular wave-current coexisting field are smaller than those in regular wave-current coexisting field. The frequency of lift force is usually the twice or higher than the wave frequency. It is indicated by the authors` test that the resultant forces are larger than in-line forces (horizontal forces) about 10 to 20 percent. The effect of water depth was analyzed. Finally, the relationship between lift force coefficient C{sub l} and KC number, the statistical characteristics of lift and resultant forces, are given in this paper, which may be useful for practical engineering application.
Axial acoustic radiation force on a sphere in Gaussian field
Wu, Rongrong; Liu, Xiaozhou Gong, Xiufen
2015-10-28
Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.
Communication: Multiple atomistic force fields in a single enhanced sampling simulation
NASA Astrophysics Data System (ADS)
Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.
2015-07-01
The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.
Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory
NASA Astrophysics Data System (ADS)
McDaniel, Jesse G.; Schmidt, J. R.
2016-05-01
Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.
Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.
McDaniel, Jesse G; Schmidt, J R
2016-05-27
Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT. PMID:27070322
Communication: Multiple atomistic force fields in a single enhanced sampling simulation
Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.
2015-07-14
The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.
Lucas, Timothy R.; Bauer, Brad A.; Patel, Sandeep
2014-01-01
With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for lipids and lipid bilayers. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration (CHEQ) method for lipid molecules. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields. Application areas include DPPC-water monolayers, potassium ion permeation free energetics in the gramicidin A bacterial channel, and free energetics of permeation of charged amino acid analogues across the water-bilayer interface. PMID:21967961
Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M
2016-06-21
We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942