Sample records for animal diseases host-pathogen

  1. Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts

    PubMed Central

    2010-01-01

    Background Landscape attributes influence spatial variations in disease risk or incidence. We present a review of the key findings from eight case studies that we conducted in Europe and West Africa on the impact of land changes on emerging or re-emerging vector-borne diseases and/or zoonoses. The case studies concern West Nile virus transmission in Senegal, tick-borne encephalitis incidence in Latvia, sandfly abundance in the French Pyrenees, Rift Valley Fever in the Ferlo (Senegal), West Nile Fever and the risk of malaria re-emergence in the Camargue, and rodent-borne Puumala hantavirus and Lyme borreliosis in Belgium. Results We identified general principles governing landscape epidemiology in these diverse disease systems and geographic regions. We formulated ten propositions that are related to landscape attributes, spatial patterns and habitat connectivity, pathways of pathogen transmission between vectors and hosts, scale issues, land use and ownership, and human behaviour associated with transmission cycles. Conclusions A static view of the "pathogenecity" of landscapes overlays maps of the spatial distribution of vectors and their habitats, animal hosts carrying specific pathogens and their habitat, and susceptible human hosts and their land use. A more dynamic view emphasizing the spatial and temporal interactions between these agents at multiple scales is more appropriate. We also highlight the complementarity of the modelling approaches used in our case studies. Integrated analyses at the landscape scale allows a better understanding of interactions between changes in ecosystems and climate, land use and human behaviour, and the ecology of vectors and animal hosts of infectious agents. PMID:20979609

  2. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactionsmore » is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.« less

  3. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    PubMed

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  4. Host behaviour–parasite feedback: an essential link between animal behaviour and disease ecology

    PubMed Central

    Archie, Elizabeth A.; Craft, Meggan E.; Hawley, Dana M.; Martin, Lynn B.; Moore, Janice; White, Lauren

    2016-01-01

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour–disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour–parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour–parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. PMID:27053751

  5. Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology.

    PubMed

    Ezenwa, Vanessa O; Archie, Elizabeth A; Craft, Meggan E; Hawley, Dana M; Martin, Lynn B; Moore, Janice; White, Lauren

    2016-04-13

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour-disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour-parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour-parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. © 2016 The Author(s).

  6. The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases

    PubMed Central

    Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

    2014-01-01

    Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well. PMID:24476707

  7. Update on host-pathogen interactions in cystic fibrosis lung disease.

    PubMed

    Hector, Andreas; Frey, Nina; Hartl, Dominik

    2016-12-01

    Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new "emerging" pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.

  8. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  9. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    PubMed

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells.

    PubMed

    Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M

    2010-07-23

    Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.

  11. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  12. Assessment of animal hosts of pathogenic Leptospira in northern Tanzania.

    PubMed

    Allan, Kathryn J; Halliday, Jo E B; Moseley, Mark; Carter, Ryan W; Ahmed, Ahmed; Goris, Marga G A; Hartskeerl, Rudy A; Keyyu, Julius; Kibona, Tito; Maro, Venance P; Maze, Michael J; Mmbaga, Blandina T; Tarimo, Rigobert; Crump, John A; Cleaveland, Sarah

    2018-06-01

    Leptospirosis is a zoonotic bacterial disease that affects more than one million people worldwide each year. Human infection is acquired through direct or indirect contact with the urine of an infected animal. A wide range of animals including rodents and livestock may shed Leptospira bacteria and act as a source of infection for people. In the Kilimanjaro Region of northern Tanzania, leptospirosis is an important cause of acute febrile illness, yet relatively little is known about animal hosts of Leptospira infection in this area. The roles of rodents and ruminant livestock in the epidemiology of leptospirosis were evaluated through two linked studies. A cross-sectional study of peri-domestic rodents performed in two districts with a high reported incidence of human leptospirosis found no evidence of Leptospira infection among rodent species trapped in and around randomly selected households. In contrast, pathogenic Leptospira infection was detected in 7.08% cattle (n = 452 [5.1-9.8%]), 1.20% goats (n = 167 [0.3-4.3%]) and 1.12% sheep (n = 89 [0.1-60.0%]) sampled in local slaughterhouses. Four Leptospira genotypes were detected in livestock. Two distinct clades of L. borgpetersenii were identified in cattle as well as a clade of novel secY sequences that showed only 95% identity to known Leptospira sequences. Identical L. kirschneri sequences were obtained from qPCR-positive kidney samples from cattle, sheep and goats. These results indicate that ruminant livestock are important hosts of Leptospira in northern Tanzania. Infected livestock may act as a source of Leptospira infection for people. Additional work is needed to understand the role of livestock in the maintenance and transmission of Leptospira infection in this region and to examine linkages between human and livestock infections.

  13. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host­-pathogen interface

    Treesearch

    A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein

    2013-01-01

    Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...

  14. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection.

    PubMed

    Díaz, Fabián E; Abarca, Katia; Kalergis, Alexis M

    2018-04-01

    The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi , including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models. Copyright © 2018 American Society for Microbiology.

  15. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.

    PubMed

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim

    2013-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.

  16. Host-pathogen dynamics under sterilizing pathogens and fecundity-longevity trade-off in hosts.

    PubMed

    Janoušková, Eva; Berec, Luděk

    2018-08-07

    Infectious diseases are known to regulate population dynamics, an observation that underlies the use of pathogens as control agents of unwanted populations. Sterilizing rather than lethal pathogens are often suggested so as to avoid unnecessary suffering of the infected hosts. Until recently, models used to assess plausibility of pathogens as potential pest control agents have not included a possibility that reduced fecundity of the infected individuals may save their energy expenditure on reproduction and thus increase their longevity relative to the susceptible ones. Here, we develop a model of host-pathogen interaction that builds on this idea. We analyze the model for a variety of infection transmission functions, revealing that the indirect effect of sterilizing pathogens on mortality of the infected hosts, mediated by a fecundity-longevity trade-off, may cause hosts at endemic equilibria to attain densities higher than when there is no effect of pathogens on host mortality. On the other hand, an opposite outcome occurs when the fecundity-longevity trade-off is concave or when the degree of fecundity reduction by the pathogen is high enough. This points to a possibility that using sterilizing pathogens as agents of pest control may actually be less effective than previously thought, the more so since we also suggest that if sexual selection acts on the host species then the presence of sterilizing pathogens may even enhance host densities above the levels achieved without infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Strategic targeting of essential host-pathogen interactions in chlamydial disease.

    PubMed

    Coombes, B K; Johnson, D L; Mahony, J B

    2002-09-01

    The chlamydiae are obligate intracellular gram-negative bacteria that are exquisitely adapted for exploitation of their hosts and contribute to a wide range of acute and chronic human diseases. Acute infections treated with non-cidal antibiotics can lead to the development of persistent, non-replicating bacteria with the corollary that these persistent (yet viable) chlamydiae can resist eradication by further antimicrobial treatment and cause chronic disease. These findings highlight an urgent need for therapeutics that are effective against persistent infections and call for creative approaches to identify potential drug targets. The C. pneumoniae and C. trachomatis genome projects have greatly expanded our knowledge of chlamydial pathogenesis and have provided an enormous potential for the identification and characterization of unknown genes and potential virulence factors in these bacteria. As intracellular pathogens, chlamydiae rely on host cells for all aspects of their survival, from the initial attachment with host cell membranes, to cellular invasion, acquisition of host cell metabolites and intracellular replication. As such, the molecules participating in interactions with the host could be attractive targets for therapeutic intervention. This review describes recent advances in chlamydial genomics, proteomics and cell biology that have cast light on host-pathogen relations that are essential for chlamydial survival. Using this knowledge, we discuss how strategically interfering with essential interactions between chlamydiae and the host cell could be exploited to develop an innovative, and potentially more relevant arsenal of therapeutic compounds.

  18. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  19. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association.

    PubMed

    Zhan, Jiasui; Ericson, Lars; Burdon, Jeremy J

    2018-02-27

    Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change - increasing temperature - on the long-term epidemiology of a natural host-pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host-pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25-year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long-term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April-November) temperature, are markedly influencing the epidemiology of plant disease in this host-pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far-reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future. © 2018 John Wiley & Sons Ltd.

  20. Phaeohyphomycoses, Emerging Opportunistic Diseases in Animals

    PubMed Central

    Seyedmousavi, S.; Guillot, J.

    2013-01-01

    Emerging fungal diseases due to black yeasts and relatives in domestic or wild animals and in invertebrates or cold- and warm-blooded vertebrates are continually being reported, either as novel pathogens or as familiar pathogens affecting new species of hosts. Different epidemiological situations can be distinguished, i.e., occurrence as single infections or as zoonoses, and infection may occur sporadically in otherwise healthy hosts. Such infections are found mostly in mammals but also in cold-blooded animals, are frequently subcutaneous or cerebral, and bear much similarity to human primary disorders. Infections of the nervous system are mostly fatal, and the source and route of infection are currently unknown. A third epidemiological situation corresponds to pseudoepidemics, i.e., infection of a large host population due to a common source. It is often observed and generally hypothesized that the susceptible animals are under stress, e.g., due to poor housing conditions of mammals or to a change of basins in the case of fishes. The descriptions in this article represent an overview of the more commonly reported and recurring black fungi and the corresponding diseases in different types of animals. PMID:23297257

  1. Exploring NAD+ metabolism in host-pathogen interactions.

    PubMed

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  2. Pathogens transmitted in animal feces in low- and middle-income countries.

    PubMed

    Delahoy, Miranda J; Wodnik, Breanna; McAliley, Lydia; Penakalapati, Gauthami; Swarthout, Jenna; Freeman, Matthew C; Levy, Karen

    2018-05-01

    Animals found in close proximity to humans in low-and middle-income countries (LMICs) harbor many pathogens capable of infecting humans, transmissible via their feces. Contact with animal feces poses a currently unquantified-though likely substantial-risk to human health. In LMIC settings, human exposure to animal feces may explain some of the limited success of recent water, sanitation, and hygiene interventions that have focused on limiting exposure to human excreta, with less attention to containing animal feces. We conducted a review to identify pathogens that may substantially contribute to the global burden of disease in humans through their spread in animal feces in the domestic environment in LMICs. Of the 65 potentially pathogenic organisms considered, 15 were deemed relevant, based on burden of disease and potential for zoonotic transmission. Of these, five were considered of highest concern based on a substantial burden of disease for which transmission in animal feces is potentially important: Campylobacter, non-typhoidal Salmonella (NTS), Lassa virus, Cryptosporidium, and Toxoplasma gondii. Most of these have a wide range of animal hosts, except Lassa virus, which is spread through the feces of rats indigenous to sub-Saharan Africa. Combined, these five pathogens cause close to one million deaths annually. More than half of these deaths are attributed to invasive NTS. We do not estimate an overall burden of disease from improperly managed animal feces in LMICs, because it is unknown what proportion of illnesses caused by these pathogens can be attributed to contact with animal feces. Typical water quantity, water quality, and handwashing interventions promoted in public health and development address transmission routes for both human and animal feces; however, sanitation interventions typically focus on containing human waste, often neglecting the residual burden of disease from pathogens transmitted via animal feces. This review compiles evidence on

  3. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions

    PubMed Central

    2018-01-01

    SUMMARY Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. PMID:29695497

  4. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions.

    PubMed

    Lee, Hyun Jae; Georgiadou, Athina; Otto, Thomas D; Levin, Michael; Coin, Lachlan J; Conway, David J; Cunnington, Aubrey J

    2018-06-01

    Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. Copyright © 2018 Lee et al.

  5. The cascading pathogenic consequences of Sarcoptes scabiei infection that manifest in host disease

    PubMed Central

    Fraser, Tamieka A.; Lesku, John A.; Simpson, Kellie; Roberts, Georgia L.; Garvey, Jillian; Polkinghorne, Adam; Burridge, Christopher P.; Carver, Scott

    2018-01-01

    Sarcoptic mange, caused by the parasitic mite Sarcoptes scabiei, causes a substantive burden of disease to humans, domestic animals and wildlife, globally. There are many effects of S. scabiei infection, culminating in the disease which hosts suffer. However, major knowledge gaps remain on the pathogenic impacts of this infection. Here, we focus on the bare-nosed wombat host (Vombatus ursinus) to investigate the effects of mange on: (i) host heat loss and thermoregulation, (ii) field metabolic rates, (iii) foraging and resting behaviour across full circadian cycles, and (iv) fatty acid composition in host adipose, bone marrow, brain and muscle tissues. Our findings indicate that mange-infected V. ursinus lose more heat to the environment from alopecia-affected body regions than healthy individuals. Additionally, mange-infected individuals have higher metabolic rates in the wild. However, these metabolic demands are difficult to meet, because infected individuals spend less time foraging and more time inactive relative to their healthy counterparts, despite being outside of the burrow for longer. Lastly, mange infection results in altered fatty acid composition in adipose tissue, with increased amounts of omega-6 acids, and decreased amounts of omega-3 acids, a consequence of chronic cutaneous inflammation and inhibition of anti-inflammatory responses. These findings highlight the interactions of mange-induced physiological and behavioural changes, and have implications for the treatment and rehabilitation of infected individuals. PMID:29765692

  6. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.

    PubMed

    Gulbudak, Hayriye; Cannataro, Vincent L; Tuncer, Necibe; Martcheva, Maia

    2017-02-01

    Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs and evolution in vector-borne pathogen-host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the [Formula: see text] maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen [Formula: see text], but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.

  7. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  8. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector

    PubMed Central

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-01-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative

  9. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector.

    PubMed

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-08-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative

  10. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  11. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms.

    PubMed

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-03-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  12. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improvingmore » our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers

  13. Pathogen evolution and disease emergence in carnivores.

    PubMed

    McCarthy, Alex J; Shaw, Marie-Anne; Goodman, Simon J

    2007-12-22

    Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.

  14. Disease Risk Assessments Involving Companion Animals: an Overview for 15 Selected Pathogens Taking a European Perspective.

    PubMed

    Rijks, J M; Cito, F; Cunningham, A A; Rantsios, A T; Giovannini, A

    2016-07-01

    companion animals to become infected were identified for eight of the 14 diseases found in Europe or parts of it. RFAs for leptospirosis were most numerous (four studies). The host related risk factor 'age' was identified as significant for dogs in at least two RFAs for cystic echinococcosis and giardiasis. Among husbandry and healthcare related factors, 'eating (uncooked) offal', 'being free roaming' and 'poor deworming practice' were associated with risk for dogs in at least two RFAs for cystic echinococcosis, while 'having received recent veterinary treatment' was identified as a risk factor in at least two studies on infection with extended spectrum beta lactamase-producing bacteria, one in horses and the other in dogs and cats. Finally, although the environmental factors 'season' and 'hydrological density' were identified as significant risk factors for dogs in at least two RFAs for leptospirosis, the inconsistent case definitions used in those studies made comparison of study results problematic. RFAs considering the risk of people becoming infected from companion animals were identified for eight of the 14 diseases found in Europe or parts of it. RFAs for human campylobacteriosis were the most numerous (n = 6). Most studies made an assessment as to whether keeping a pet per se, or keeping a pet with supposed or known risk factors, was a risk factor for people relative to other risks. This allowed some studies to report the population attributable risk or population attributable fraction of the incidence of human disease due to companion animals (for campylobacteriosis, salmonellosis and toxoplasmosis), which is a measure that is easy to perceive for laymen and policy makers. No RFAs were found that dealt with the risk to food animals from companion animals for any of the 15 pathogens investigated. Few risk method-based studies were identified that provided information on risk factors for companion animals and on their role as a source of these 15 selected diseases

  15. The lyme disease pathogen has no effect on the survival of its rodent reservoir host.

    PubMed

    Voordouw, Maarten J; Lachish, Shelly; Dolan, Marc C

    2015-01-01

    Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.

  16. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change.

    PubMed

    Stenlid, Jan; Oliva, Jonàs

    2016-12-05

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host-pathogen interactions when predicting disease impacts. We emphasize the need to consider host-tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host-pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host-pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  17. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes.

    PubMed

    Nakjang, Sirintra; Ndeh, Didier A; Wipat, Anil; Bolam, David N; Hirt, Robert P

    2012-01-01

    The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS

  18. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host.

    PubMed

    Norman, M Ursula; Moriarty, Tara J; Dresser, Ashley R; Millen, Brandie; Kubes, Paul; Chaconas, George

    2008-10-03

    Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens.

  19. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondinglymore » deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.« less

  20. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    PubMed Central

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C.; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-01-01

    The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm. PMID:21285433

  1. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host

    PubMed Central

    Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno

    2012-01-01

    Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656

  2. Host-pathogen interplay of Haemophilus ducreyi.

    PubMed

    Janowicz, Diane M; Li, Wei; Bauer, Margaret E

    2010-02-01

    Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.

  3. Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease.

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Mayer, Wasima; Harnik, Tamar Y; Afzal-Rafli, Zara; Garbelotto, Matteo

    2008-07-01

    Variations in synchronicity between colonization rate by the pathogen and host phenology may account for unexplained spatial distribution of canker disease. The hypothesis that synchronous pathogenicity and host development are necessary for incidence of sudden oak death disease was tested by correlating seasonal variations in host cambial phenology and response to inoculation with Phytophthora ramorum. Response to infection was estimated by inoculating branch cuttings from coast live oak (Quercus agrifolia) trees at nine dates through a full annual cycle in 2003-2004. Host phenology was estimated from measurements of bud burst and cambial activity in spring 2006. Lesions were largest in the spring soon after the cambium resumed activity. A moderate genetic component to lesion size was detected. Variation among trees in date of largest lesions correlated with variation in timing of bud burst and cambial phenology. The data support the hypothesis that active host cambial tissue is a necessary requisite for successful infection with the pathogen that causes sudden oak death canker disease. Genetic variation in host phenology will buffer coast live oak against epidemics of this disease.

  4. A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen.

    PubMed

    Xiao, Sa; Kumar, Manish; Yang, Xiuli; Akkoyunlu, Mustafa; Collins, Peter L; Samal, Siba K; Pal, Utpal

    2011-07-18

    Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (10(8)cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  6. Immune evasion by pathogens of bovine respiratory disease complex.

    PubMed

    Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna

    2007-12-01

    Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.

  7. The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses.

    PubMed

    Day, Brad; Graham, Terry

    2007-10-01

    Perception of pathogens by their hosts is the outcome of a highly coordinated and sophisticated surveillance network, tightly regulated by both host and pathogen elicitors, effectors, and signaling processes. In this article, we focus on two relatively well-studied host-pathogens systems, one involving a bacterial-plant interaction (Pseudomonas syringae-Arabidopsis) and the other involving an oomycete-plant interaction (Phytophthora sojae-soybean). We discuss the status of current research related to events occurring at the host-pathogen interface in these two systems, and how these events influence the organization and activation of resistance responses in the respective hosts. This recent research has revealed that in addition to the previously identified resistance machinery (R-proteins, molecular chaperones, etc.), the dynamics of the cell wall, membrane trafficking, and the actin cytoskeleton are intimately associated with the activation of resistance in plants. Specifically, in Arabidopsis, a possible connection between the actin machinery and R-protein- mediated induction of disease resistance is described. In the case of the P. sojae-soybean interaction, we describe the fact that a classical basal resistance elicitor, the cell wall glucan elicitor from the pathogen, can directly activate host hypersensitive cell death, which is apparently modulated in a race-specific manner by the presence of R genes in the host.

  8. The Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen

    PubMed Central

    Liolios, Konstantinos; Win, Joe; Kanneganti, Thirumala-Devi; Young, Carolyn; Kamoun, Sophien; Haldar, Kasturi

    2006-01-01

    Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences shown to contain a host-targeting (HT) motif centered on an RxLx (E, D, or Q) core: this motif appears to signify a major pathogenic export pathway with hundreds of putative effectors. Here we show that a secretory protein of P. infestans, which is perceived by plant disease resistance proteins and induces hypersensitive plant cell death, contains a leader sequence that is equivalent to the Plasmodium HT-leader in its ability to export fusion of green fluorescent protein (GFP) from the P. falciparum parasite to the host erythrocyte. This export is dependent on an RxLR sequence conserved in P. infestans leaders, as well as in leaders of all ten secretory oomycete proteins shown to function inside plant cells. The RxLR motif is also detected in hundreds of secretory proteins of P. infestans, Phytophthora sojae, and Phytophthora ramorum and has high value in predicting host-targeted leaders. A consensus motif further reveals E/D residues enriched within ~25 amino acids downstream of the RxLR, which are also needed for export. Together the data suggest that in these plant pathogenic oomycetes, a consensus HT motif may reside in an extended sequence of ~25–30 amino acids, rather than in a short linear sequence. Evidence is presented that although the consensus is much shorter in P. falciparum, information sufficient for vacuolar export is contained in a region of ~30 amino acids, which includes sequences flanking the HT core. Finally, positional conservation between Phytophthora RxLR and P. falciparum RxLx (E, D, Q) is consistent with the idea that the context of their

  9. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    PubMed

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  11. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    PubMed

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  12. Pathogen evolution across the agro-ecological interface: implications for disease management.

    PubMed

    Burdon, Jeremy J; Thrall, Peter H

    2008-02-01

    Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for

  13. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  14. Analysis of protein targets in pathogen-host interaction in infectious diseases: a case study on Plasmodium falciparum and Homo sapiens interaction network.

    PubMed

    Saha, Sovan; Sengupta, Kaustav; Chatterjee, Piyali; Basu, Subhadip; Nasipuri, Mita

    2017-09-23

    Infection and disease progression is the outcome of protein interactions between pathogen and host. Pathogen, the role player of Infection, is becoming a severe threat to life as because of its adaptability toward drugs and evolutionary dynamism in nature. Identifying protein targets by analyzing protein interactions between host and pathogen is the key point. Proteins with higher degree and possessing some topologically significant graph theoretical measures are found to be drug targets. On the other hand, exceptional nodes may be involved in infection mechanism because of some pathway process and biologically unknown factors. In this article, we attempt to investigate characteristics of host-pathogen protein interactions by presenting a comprehensive review of computational approaches applied on different infectious diseases. As an illustration, we have analyzed a case study on infectious disease malaria, with its causative agent Plasmodium falciparum acting as 'Bait' and host, Homo sapiens/human acting as 'Prey'. In this pathogen-host interaction network based on some interconnectivity and centrality properties, proteins are viewed as central, peripheral, hub and non-hub nodes and their significance on infection process. Besides, it is observed that because of sparseness of the pathogen and host interaction network, there may be some topologically unimportant but biologically significant proteins, which can also act as Bait/Prey. So, functional similarity or gene ontology mapping can help us in this case to identify these proteins. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Computational prediction of host-pathogen protein-protein interactions.

    PubMed

    Dyer, Matthew D; Murali, T M; Sobral, Bruno W

    2007-07-01

    Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.

  16. Pathogens and host immunity in the ancient human oral cavity

    PubMed Central

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  17. Helminths as vectors of pathogens in vertebrate hosts: a theoretical approach.

    PubMed

    Perkins, Sarah E; Fenton, Andy

    2006-07-01

    Pathogens frequently use vectors to facilitate transmission between hosts and, for vertebrate hosts, the vectors are typically ectoparasitic arthropods. However, other parasites that are intimately associated with their hosts may also be ideal candidate vectors; namely the parasitic helminths. Here, we present empirical evidence that helminth vectoring of pathogens occurs in a range of vertebrate systems by a variety of helminth taxa. Using a novel theoretical framework we explore the dynamics of helminth vectoring and determine which host-helminth-pathogen characteristics may favour the evolution of helminth vectoring. We use two theoretical models: the first is a population dynamic model amalgamated from standard macro- and microparasite models, which serves as a framework for investigation of within-host interactions between co-infecting pathogens and helminths. The second is an evolutionary model, which we use to predict the ecological conditions under which we would expect helminth vectoring to evolve. We show that, like arthropod vectors, helminth vectors increase pathogen fitness. However, unlike arthropod vectors, helminth vectoring increases the pathogenic impact on the host and may allow the evolution of high pathogen virulence. We show that concomitant infection of a host with a helminth and pathogen are not necessarily independent of one another, due to helminth vectoring of microparasites, with profound consequences for pathogen persistence and the impact of disease on the host population.

  18. Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring.

    PubMed

    Bisson, Isabelle-Anne; Ssebide, Benard J; Marra, Peter P

    2015-03-01

    Diseases transmitted between animals and people have made up more than 50% of emerging infectious diseases in humans over the last 60 years and have continued to arise in recent months. Yet, public health and animal disease surveillance programs continue to operate independently. Here, we assessed whether recent emerging zoonotic pathogens (n = 143) are known to cause morbidity or mortality in their animal host and if so, whether they were first detected with an animal morbidity/mortality event. We show that although sick or dead animals are often associated with these pathogens (52%), only 9% were first detected from an animal morbidity or mortality event prior to or concurrent with signs of illness in humans. We propose that an animal morbidity and mortality reporting program will improve detection and should be an essential component of early warning systems for zoonotic diseases. With the use of widespread low-cost technology, such a program could engage both the public and professionals and be easily tested and further incorporated as part of surveillance efforts by public health officials.

  19. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-07

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate. © 2015 The Author(s).

  20. Tools to study pathogen-host interactions in bats.

    PubMed

    Banerjee, Arinjay; Misra, Vikram; Schountz, Tony; Baker, Michelle L

    2018-03-15

    Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research.

    PubMed

    James, Timothy Y; Toledo, L Felipe; Rödder, Dennis; da Silva Leite, Domingos; Belasen, Anat M; Betancourt-Román, Clarisse M; Jenkinson, Thomas S; Soto-Azat, Claudio; Lambertini, Carolina; Longo, Ana V; Ruggeri, Joice; Collins, James P; Burrowes, Patricia A; Lips, Karen R; Zamudio, Kelly R; Longcore, Joyce E

    2015-09-01

    The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

  2. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C.

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367more » bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.« less

  3. Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations

    PubMed Central

    Allocati, N; Petrucci, A G; Di Giovanni, P; Masulli, M; Di Ilio, C; De Laurenzi, V

    2016-01-01

    Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans. PMID:27551536

  4. Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response

    PubMed Central

    Chung, Lawton K.; Bliska, James B.

    2015-01-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030

  5. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen

    Treesearch

    Stephanie Gervasi; Carmen Gondhalekar; Deanna H. Olson; Andrew R. Blaustein

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal...

  6. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii.

    PubMed

    Jacquet, Maxime; Margos, Gabriele; Fingerle, Volker; Voordouw, Maarten J

    2016-12-16

    Transmission from the vertebrate host to the arthropod vector is a critical step in the life-cycle of any vector-borne pathogen. How the probability of host-to-vector transmission changes over the duration of the infection is an important predictor of pathogen fitness. The Lyme disease pathogen Borrelia afzelii is transmitted by Ixodes ricinus ticks and establishes a chronic infection inside rodent reservoir hosts. The present study compares the temporal pattern of host-to-tick transmission between two strains of B. afzelii. Laboratory mice were experimentally infected via tick bite with one of two strains of B. afzelii: A3 and A10. Mice were repeatedly infested with pathogen-free larval Ixodes ricinus ticks over a period of 4 months. Engorged larval ticks moulted into nymphal ticks that were tested for infection with B. afzelii using qPCR. The proportion of infected nymphs was used to characterize the pattern of host-to-tick transmission over time. Both strains of B. afzelii followed a similar pattern of host-to-tick transmission. Transmission decreased from the acute to the chronic phase of the infection by 16.1 and 29.3% for strains A3 and A10, respectively. Comparison between strains found no evidence of a trade-off in transmission between the acute and chronic phase of infection. Strain A10 had higher lifetime fitness and established a consistently higher spirochete load in nymphal ticks than strain A3. Quantifying the relationship between host-to-vector transmission and the age of infection in the host is critical for estimating the lifetime fitness of vector-borne pathogens.

  7. Modeling vector-borne disease risk in migratory animals under climate change.

    PubMed

    Hall, Richard J; Brown, Leone M; Altizer, Sonia

    2016-08-01

    Recent theory suggests that animals that migrate to breed at higher latitudes may benefit from reduced pressure from natural enemies, including pathogens ("migratory escape"), and that migration itself weeds out infected individuals and lowers infection prevalence ("migratory culling"). The distribution and activity period of arthropod disease vectors in temperate regions is expected to respond rapidly to climate change, which could reduce the potential for migratory escape. However, climate change could have the opposite effect of reducing transmission if differential responses in the phenology and distribution of migrants and disease vectors reduce their overlap in space and time. Here we outline a simple modeling framework for exploring the influence of climate change on vector-borne disease dynamics in a migratory host. We investigate two scenarios under which pathogen transmission dynamics might be mediated by climate change: (1) vectors respond more rapidly than migrants to advancing phenology at temperate breeding sites, causing peak susceptible host density and vector emergence to diverge ("migratory mismatch") and (2) reduced migratory propensity allows increased nonbreeding survival of infected hosts and larger breeding-site epidemics (loss of migratory culling, here referred to as "sedentary amplification"). Our results highlight the need for continued surveillance of climate-induced changes to migratory behavior and vector activity to predict pathogen prevalence and its impacts on migratory animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Interaction of the role of Concentrated Animal Feeding Operations (CAFOs) in Emerging Infectious Diseases (EIDS).

    PubMed

    Hollenbeck, James E

    2016-03-01

    Most significant change in the evolution of the influenza virus is the rapid growth of the Concentrated Animal Feeding Operations (CAFOs) on a global scale. These industrial agricultural operations have the potential of housing thousands of animals in a relatively small area. Emerging Infectious Diseases (EIDs) event can be considered as a shift in the pathogen-host-environment interplay characteristics described by Engering et al. (2013). These changes in the host-environment and the disease ecology are key to creating novel transmission patterns and selection of novel pathogens with a modification of genetic traits. With the development of CAFOs throughout the world, the need for training of animal caretakers to observe, identify, treat, vaccinate and cull if necessary is important to safeguard public health. The best defense against another pandemic of Emerging Infectious Diseases (EIDs) is the constant monitoring of the livestock and handlers of CAFOs and the live animal markets. These are the most likely epicenter of the next pandemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.

    PubMed

    Langwig, Kate E; Frick, Winifred F; Reynolds, Rick; Parise, Katy L; Drees, Kevin P; Hoyt, Joseph R; Cheng, Tina L; Kunz, Thomas H; Foster, Jeffrey T; Kilpatrick, A Marm

    2015-01-22

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome

    PubMed Central

    Langwig, Kate E.; Frick, Winifred F.; Reynolds, Rick; Parise, Katy L.; Drees, Kevin P.; Hoyt, Joseph R.; Cheng, Tina L.; Kunz, Thomas H.; Foster, Jeffrey T.; Kilpatrick, A. Marm

    2015-01-01

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. PMID:25473016

  11. Proteomic analyses of host and pathogen responses during bovine mastitis.

    PubMed

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  12. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    PubMed Central

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  13. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    PubMed

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  14. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts.

    PubMed

    Petit, Elsa; Silver, Casey; Cornille, Amandine; Gladieux, Pierre; Rosenthal, Lisa; Bruns, Emily; Yee, Sarah; Antonovics, Janis; Giraud, Tatiana; Hood, Michael E

    2017-04-01

    Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages. © 2017 John Wiley & Sons Ltd.

  15. Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...

  16. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim

    2017-06-01

    Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  17. Yersinia versus host immunity: how a pathogen evades or triggers a protective response.

    PubMed

    Chung, Lawton K; Bliska, James B

    2016-02-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genetic assignment methods for gaining insight into the management of infectious disease by understanding pathogen, vector, and host movement.

    PubMed

    Remais, Justin V; Xiao, Ning; Akullian, Adam; Qiu, Dongchuan; Blair, David

    2011-04-01

    For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.

  19. Interaction of pathogens with host cholesterol metabolism.

    PubMed

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  20. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders.

    PubMed

    Carter, C J

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E - 05  (ADHD)  to  1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.

  1. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    PubMed Central

    Carter, C. J.

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E − 05  (ADHD)  to  1.22E − 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself. PMID:23533776

  2. Pathogen host switching in commercial trade with management recommendations.

    PubMed

    Picco, Angela M; Karam, Abraham P; Collins, James P

    2010-06-01

    Global wildlife trade exacerbates the spread of nonindigenous species. Pathogens also move with hosts through trade and often are released into naïve populations with unpredictable outcomes. Amphibians are moved commercially for pets, food, bait, and biomedicine, and are an excellent model for studying how wildlife trade relates to pathogen pollution. Ranaviruses are amphibian pathogens associated with annual population die-offs; multiple strains of tiger salamander ranaviruses move through the bait trade in the western United States. Ranaviruses infect amphibians, reptiles, and fish and are of additional concern because they can switch hosts. Tiger salamanders are used as live bait for freshwater fishing and are a potential source for ranaviruses switching hosts from amphibians to fish. We experimentally injected largemouth bass with a bait trade tiger salamander ranavirus. Largemouth bass became infected but exhibited no signs of disease or mortality. Amphibian bait ranaviruses have the potential to switch hosts to infect fish, but fish may act as dead-end hosts or nonsymptomatic carriers, potentially spreading infection as a result of trade.

  3. Deconstructing host-pathogen interactions in Drosophila

    PubMed Central

    Bier, Ethan; Guichard, Annabel

    2012-01-01

    Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host. PMID:21979942

  4. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  5. Mycoplasmas and their host: emerging and re-emerging minimal pathogens.

    PubMed

    Citti, Christine; Blanchard, Alain

    2013-04-01

    Commonly known as mycoplasmas, bacteria of the class Mollicutes include the smallest and simplest life forms capable of self replication outside of a host. Yet, this minimalism hides major human and animal pathogens whose prevalence and occurrence have long been underestimated. Owing to advances in sequencing methods, large data sets have become available for a number of mycoplasma species and strains, providing new diagnostic approaches, typing strategies, and means for comprehensive studies. A broader picture is thus emerging in which mycoplasmas are successful pathogens having evolved a number of mechanisms and strategies for surviving hostile environments and adapting to new niches or hosts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness.

    PubMed Central

    Elliot, Sam L; Blanford, Simon; Thomas, Matthew B

    2002-01-01

    We demonstrate how variable temperatures, mediated by host thermoregulation and behavioural fever, critically affect the interaction between a host (the desert locust, Schistocerca gregaria) and a pathogen (the fungus Metarhizium anisopliae var. acridum). By means of behavioural thermoregulation, infected locusts can raise their body temperatures to fever levels. The adaptive value of this behaviour was examined using three thermal regimes wherein maximum body temperatures achievable were: (i) below, or (ii) at normally preferred temperatures, or were (iii) unrestricted, allowing heightened fever temperatures. All infected locusts ultimately succumbed to disease, with median survival times of 8, 15 and 21 days post-infection, respectively. Crucially, only those locusts able to fever produced viable offspring. This represents, to our knowledge, the first demonstration of the adaptive value of behavioural fever following infection with a naturally occurring pathogen. By contrast, although normal host thermoregulation moderately reduced pathogen reproduction (by 35%), there was no additional negative effect of fever, resulting in an asymmetry in the fitness consequences of fever for the host and the pathogen. The dependency of the host-pathogen interaction upon external abiotic conditions has implications for how virulence and resistance are treated both theoretically and in the management of pests and diseases. PMID:12184830

  7. Copper Homeostasis at the Host-Pathogen Interface*

    PubMed Central

    Hodgkinson, Victoria; Petris, Michael J.

    2012-01-01

    The trace element copper is indispensable for all aerobic life forms. Its ability to cycle between two oxidation states, Cu1+ and Cu2+, has been harnessed by a wide array of metalloenzymes that catalyze electron transfer reactions. The metabolic needs for copper are sustained by a complex series of transporters and carrier proteins that regulate its intracellular accumulation and distribution in both pathogenic microbes and their animal hosts. However, copper is also potentially toxic due in part to its ability to generate reactive oxygen species. Recent studies suggest that the macrophage phagosome accumulates copper during bacterial infection, which may constitute an important mechanism of killing. Bacterial countermeasures include the up-regulation of copper export and detoxification genes during infection, which studies suggest are important determinants of virulence. In this minireview, we summarize recent developments that suggest an emerging role for copper as an unexpected component in determining the outcome of host-pathogen interactions. PMID:22389498

  8. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change

    PubMed Central

    2016-01-01

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host–pathogen interactions when predicting disease impacts. We emphasize the need to consider host–tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host–pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host–pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080981

  9. Prebiotics in food animals, a potential to reduce foodborne pathogens and disease

    USDA-ARS?s Scientific Manuscript database

    Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...

  10. Prebiotics in food animals: A potential to reduce foodborne pathogens and disease

    USDA-ARS?s Scientific Manuscript database

    Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...

  11. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  12. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity.

    PubMed

    Yang, Xiuli; Coleman, Adam S; Anguita, Juan; Pal, Utpal

    2009-03-01

    Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals.

  13. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  14. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  16. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.

    PubMed

    García-Guzmán, Graciela; Heil, Martin

    2014-03-01

    Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  18. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  19. Applications of biological control in resistant host-pathogen systems.

    PubMed

    White, Steven M; White, K A Jane

    2005-09-01

    Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.

  20. Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus.

    PubMed

    Swei, Andrea; Ostfeld, Richard S; Lane, Robert S; Briggs, Cheryl J

    2011-05-01

    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.

  1. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  2. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection

    PubMed Central

    Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  3. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops.

    PubMed

    Linde, Celeste C; Smith, Leon M; Peakall, Rod

    2016-05-12

    highly virulent pathogen types capable of transmission to barley. Management of disease on crops must therefore include management of weedy ancillary hosts, which may harbour disproportionate supplies of virulent pathogen strains.

  4. Host-seeking strategies of mosquito disease vectors.

    PubMed

    Day, Jonathan F

    2005-12-01

    Disease transmission by arthropods normally requires at least 2 host contacts. During the first, a pathogen (nematode, protozoan, or virus) is acquired along with the blood from an infected vertebrate host. The pathogen penetrates the vector's midgut and infects a variety of tissues, where replication may occur during an extrinsic incubation period lasting 3-30, days depending on vector and parasite physiology and ambient temperature. Following salivary-gland infection, the pathogen is usually transmitted to additional susceptible vertebrate hosts during future probing or blood feeding. The host-seeking strategies used by arthropod vectors can, in part, affect the efficiency of disease transmission. Vector abundance, seasonal distribution, habitat and host preference, and susceptibility to infection are all important components of disease-transmission cycles. Examples of 3 mosquito vectors of human disease are presented here to highlight the diversity of host seeking and to show how specific behaviors may influence disease-transmission cycles. In the African tropics, Anopheles gambiae s.s. is an efficient vector of human malaria due to its remarkably focused preference for human blood. Aedes aegypti is the main vector of dengue viruses in the New and Old World tropics and subtropics. This mosquito has evolved a domestic lifestyle and shares human habitations throughout much of its range. It prospers in settings where humans are its main source of blood. In south Florida, Culex nigripalpus is the major vector of St. Louis encephalitis (SLE) and West Nile (WN) viruses. This mosquito is opportunistic and blood feeds on virtually any available vertebrate host. It serves as an arboviral vector, in part, due to its ability to produce large populations in a short period of time. These 3 host-seeking and blood-feeding strategies make the specialist, as well as the opportunist, equally dangerous disease vectors.

  5. Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda

    PubMed Central

    Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931

  6. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Brogaard, Louise; Klitgaard, Kirstine; Heegaard, Peter M H; Hansen, Mette Sif; Jensen, Tim Kåre; Skovgaard, Kerstin

    2015-05-28

    Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation

  7. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  8. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  9. Tick salivary compounds: their role in modulation of host defences and pathogen transmission

    PubMed Central

    Kazimírová, Mária; Štibrániová, Iveta

    2013-01-01

    Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases. PMID

  10. Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response.

    PubMed

    Banerjee, Soumya; Perelson, Alan S; Moses, Melanie

    2017-11-01

    Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially

  11. Intracellular, genetic or congenital immunisation--transgenic approaches to increase disease resistance of farm animals.

    PubMed

    Müller, M; Brem, G

    1996-01-26

    Novel approaches to modify disease resistance or susceptibility in livestock are justified not only by economical reasons and with respect to animal welfare but also by recent advancements in molecular genetics. The control or elimination of infectious pathogens in farm animals is historically achieved by the use of vaccines and drugs and by quarantine safeguards and eradication. Currently, research on the improvement of disease resistance based on nucleic acid technology focuses on two main issues: additive gene transfer and the development of nucleic acid vaccines. The strategies aim at the stable or transient expression of components known to influence non-specific or specific host defence mechanisms against infectious pathogens. Thus, candidates for gene transfer experiments include all genes inducing or conferring innate and acquired immunity as well as specific disease resistance genes. Referring to the site and mode of action and the source of the effective agent the strategies are termed 'intracellular', 'genetic' and 'congenital' immunisation. The targeted disruption (deletive gene transfer) of disease susceptibility genes awaits the establishment of totipotential embryonic cell lineages in farm animals. The cytokine network regulates cellular viability, growth and differentiation in physiological and pathophysiological states. The identification of the JAK-STAT pathway used by many cytokines for their intracellular signal propagation has provided not only new target molecules for modulating the immune response but will also permit the further elucidation of host-pathogen interactions and resistance mechanisms.

  12. Host-Pathogen interactions modulated by small RNAs.

    PubMed

    Islam, Waqar; Islam, Saif Ul; Qasim, Muhammad; Wang, Liande

    2017-07-03

    Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.

  13. Host-Pathogen interactions modulated by small RNAs

    PubMed Central

    Islam, Waqar; Islam, Saif ul; Qasim, Muhammad; Wang, Liande

    2017-01-01

    ABSTRACT Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality. PMID:28430077

  14. Arboviruses pathogenic for domestic and wild animals.

    PubMed

    Hubálek, Zdenek; Rudolf, Ivo; Nowotny, Norbert

    2014-01-01

    The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick

  15. Decontamination of High-risk Animal and Zoonotic Pathogens

    PubMed Central

    Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-01-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents. PMID:23971795

  16. Decontamination of high-risk animal and zoonotic pathogens.

    PubMed

    Frentzel, Hendrik; Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-09-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents.

  17. Loss of competition in the outside host environment generates outbreaks of environmental opportunist pathogens.

    PubMed

    Anttila, Jani; Ruokolainen, Lasse; Kaitala, Veijo; Laakso, Jouni

    2013-01-01

    Environmentally transmitted pathogens face ecological interactions (e.g., competition, predation, parasitism) in the outside-host environment and host immune system during infection. Despite the ubiquitousness of environmental opportunist pathogens, traditional epidemiology focuses on obligatory pathogens incapable of environmental growth. Here we ask how competitive interactions in the outside-host environment affect the dynamics of an opportunist pathogen. We present a model coupling the classical SI and Lotka-Volterra competition models. In this model we compare a linear infectivity response and a sigmoidal infectivity response. An important assumption is that pathogen virulence is traded off with competitive ability in the environment. Removing this trade-off easily results in host extinction. The sigmoidal response is associated with catastrophic appearances of disease outbreaks when outside-host species richness, or overall competition pressure, decreases. This indicates that alleviating outside-host competition with antibacterial substances that also target the competitors can have unexpected outcomes by providing benefits for opportunist pathogens. These findings may help in developing alternative ways of controlling environmental opportunist pathogens.

  18. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages.

    PubMed

    Bruns, Emily; Carson, Martin; May, Georgiana

    2012-08-02

    Adaptation of pathogens to their hosts depends critically on factors affecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the host are not well understood. Untangling these contributions allows us to identify traits with sufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa). We show that both pathogen and host genotype significantly affect total spore production but do so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity. In addition, host genotype affected the relationship between pathogen density and the later life-history traits of latent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions. Our results illustrate mechanisms by which variation in host populations will affect the evolution of pathogen life history. Results show that different pathogen life-history stages have the potential to respond differently to selection by host or pathogen genotype and suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt to host genotypes through increased infection efficiency while their plant hosts may adapt by limiting the later stages of pathogen growth and spore production within the host.

  19. Pathogen trafficking pathways and host phosphoinositide metabolism.

    PubMed

    Weber, Stefan S; Ragaz, Curdin; Hilbi, Hubert

    2009-03-01

    Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.

  20. Highly dynamic animal contact network and implications on disease transmission

    PubMed Central

    Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina

    2014-01-01

    Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241

  1. Pathogens and diseases of freshwater mussels in the United States: Studies on bacterial transmission and depuration

    USGS Publications Warehouse

    Starliper, Clifford E.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Unionid mussels are recognized as important contributors to healthy aquatic ecosystems, as well as bioindicators of environmental perturbations. Because they are sedentary, filter feeding animals and require hosts (i.e., fishes) to transform embryonic glochidia, mussels are susceptible to direct adverse environmental parameters, and indirect parameters that restrict the timely presence of the host(s). Their numbers have declined in recent decades to a point that this fauna is regarded as one of the most imperiled in North America. The most significant threat to populations of native unionids in recent years has been the introduction and spread of zebra mussels Dreissena polymorpha. Many federal and state agencies, and private interests are now engaged in mussel conservation efforts, including collecting selected imperiled species from impacted rivers and lakes and propagating them at refuges for future population augmentations. One essential consideration with mussel propagation and their intensive culture at refugia is the prevention of pathogen introductions and control of diseases. Currently, there are few reports of etiological agents causing diseases among freshwater mussels; however, because of increased observations of mussel die-offs in conjunction with transfers of live animals between natural waters and refugia, disease problems can be anticipated to emerge. This review summarizes research to develop bacterial isolation techniques, study pathogen transmission between fish and mussels, identify causes of seasonal mussel die-offs, and develop non-destructive methods for pathogen detection. These efforts were done to develop disease preventative techniques for use by resource managers to avoid potential large-scale disease problems in restoration and population augmentation efforts among imperiled populations.

  2. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence.

    PubMed

    Frick, Winifred F; Cheng, Tina L; Langwig, Kate E; Hoyt, Joseph R; Janicki, Amanda F; Parise, Katy L; Foster, Jeffrey T; Kilpatrick, A Marm

    2017-03-01

    Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations. © 2016 by the Ecological Society of America.

  3. Host-pathogen interactions: A cholera surveillance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  4. Impacts of an introduced forest pathogen on the risk of Lyme disease in California.

    PubMed

    Swei, Andrea; Briggs, Cheryl J; Lane, Robert S; Ostfeld, Richard S

    2012-08-01

    Global changes such as deforestation, climate change, and invasive species have the potential to greatly alter zoonotic disease systems through impacts on biodiversity. This study examined the impact of the invasive pathogen that causes sudden oak death (SOD) on the ecology of Lyme disease in California. The Lyme disease bacterium, Borrelia burgdorferi, is maintained in the far western United States by a suite of animal reservoirs including the dusky-footed woodrat (Neotoma fuscipes) and deer mouse (Peromyscus maniculatus), and is transmitted by the western black-legged tick (Ixodes pacificus). Other vertebrates, such as the western fence lizard (Sceloporus occidentalis), are important tick hosts but are not reservoirs of the pathogen. Previous work found that higher levels of SOD are correlated with greater abundance of P. maniculatus and S. occidentalis and lower N. fuscipes abundance. Here we model the contribution of these tick hosts to Lyme disease risk and also evaluate the potential impact of SOD on infection prevalence of the tick vector. By empirically parameterizing a static model with field and laboratory data on tick hosts, we predict that SOD reduces an important index of disease risk, nymphal infection prevalence, leading to a reduction in Lyme disease risk in certain coastal woodlands. Direct observational analysis of the impact of SOD on nymphal infection prevalence supports these model results. This study underscores the important direct and indirect impacts of invasive plant pathogens on biodiversity, the transmission cycles of zoonotic diseases, and ultimately human health.

  5. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease.

    PubMed

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.

  6. A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom

    USDA-ARS?s Scientific Manuscript database

    Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...

  7. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.

    PubMed

    Seo, Young-Su; Lim, Jae Yun; Park, Jungwook; Kim, Sunyoung; Lee, Hyun-Hee; Cheong, Hoon; Kim, Sang-Mok; Moon, Jae Sun; Hwang, Ingyu

    2015-05-06

    In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages. We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems. The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other

  8. Graft-versus-host disease is independent of innate signaling pathways triggered by pathogens in host hematopoietic cells.

    PubMed

    Li, Hongmei; Matte-Martone, Catherine; Tan, Hung Sheng; Venkatesan, Srividhya; McNiff, Jennifer; Demetris, Anthony J; Jain, Dhanpat; Lakkis, Fadi; Rothstein, David; Shlomchik, Warren D

    2011-01-01

    Graft-versus-host disease (GVHD) is initiated by APCs that prime alloreactive donor T cells. In antipathogen responses, Ag-bearing APCs receive signals through pattern-recognition receptors, including TLRs, which induce the expression of costimulatory molecules and production of inflammatory cytokines, which in turn mold the adaptive T cell response. However, in allogeneic hematopoietic stem cell transplantation (alloSCT), there is no specific pathogen, alloantigen is ubiquitous, and signals that induce APC maturation are undefined. To investigate APC activation in GVHD, we used recipient mice with hematopoietic cells genetically deficient in pathways critical for APC maturation in models in which host APCs are absolutely required. Strikingly, CD8-mediated and CD4-mediated GVHD were similar whether host APCs were wild-type or deficient in MyD88, TRIF, or MyD88 and TRIF, which excludes essential roles for TLRs and IL-1β, the key product of inflammasome activation. Th1 differentiation was if anything augmented when APCs were MyD88/TRIF(-/-), and T cell production of IFN-γ did not require host IL-12. GVHD was also intact when APCs lacked the type I IFNR, which amplifies APC activation pathways that induce type I IFNs. Thus in GVHD, alloreactive T cells can be activated when pathways critical for antipathogen T cell responses are impaired.

  9. MicroRNAs as mediators of insect host-pathogen interactions and immunity.

    PubMed

    Hussain, Mazhar; Asgari, Sassan

    2014-11-01

    Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host-microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host-pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host-pathogen interactions and provide some insights into this rapidly developing area of research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Arabidopsis Heterotrimeric G-Proteins Play a Critical Role in Host and Nonhost Resistance against Pseudomonas syringae Pathogens

    PubMed Central

    Lee, Seonghee; Rojas, Clemencia M.; Ishiga, Yasuhiro; Pandey, Sona; Mysore, Kirankumar S.

    2013-01-01

    Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae. PMID:24349286

  11. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  12. Animal models of highly pathogenic RNA viral infections: encephalitis viruses.

    PubMed

    Holbrook, Michael R; Gowen, Brian B

    2008-04-01

    The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.

  13. Pathogen transfer through environment-host contact: an agent-based queueing theoretic framework.

    PubMed

    Chen, Shi; Lenhart, Suzanne; Day, Judy D; Lee, Chihoon; Dulin, Michael; Lanzas, Cristina

    2017-11-02

    Queueing theory studies the properties of waiting queues and has been applied to investigate direct host-to-host transmitted disease dynamics, but its potential in modelling environmentally transmitted pathogens has not been fully explored. In this study, we provide a flexible and customizable queueing theory modelling framework with three major subroutines to study the in-hospital contact processes between environments and hosts and potential nosocomial pathogen transfer, where environments are servers and hosts are customers. Two types of servers with different parameters but the same utilization are investigated. We consider various forms of transfer functions that map contact duration to the amount of pathogen transfer based on existing literature. We propose a case study of simulated in-hospital contact processes and apply stochastic queues to analyse the amount of pathogen transfer under different transfer functions, and assume that pathogen amount decreases during the inter-arrival time. Different host behaviour (feedback and non-feedback) as well as initial pathogen distribution (whether in environment and/or in hosts) are also considered and simulated. We assess pathogen transfer and circulation under these various conditions and highlight the importance of the nonlinear interactions among contact processes, transfer functions and pathogen demography during the contact process. Our modelling framework can be readily extended to more complicated queueing networks to simulate more realistic situations by adjusting parameters such as the number and type of servers and customers, and adding extra subroutines. © The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  15. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    PubMed

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Host pathogen relations: exploring animal models for fungal pathogens.

    PubMed

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  17. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2-/- mice.

    PubMed

    Verma, A H; Bueter, C L; Rothenberg, M E; Deepe, G S

    2017-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2 -/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2 -/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.

  18. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor

    DOE PAGES

    Zhang, Li; Yao, Jian; Withers, John; ...

    2015-11-02

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. In this paper, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae,more » for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Finally, our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.« less

  19. Seed diseases and seedborne pathogens of North America

    Treesearch

    Michelle Cram; Stephen Fraedrich

    2010-01-01

    Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...

  20. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    PubMed Central

    Jans, Christoph; Boleij, Annemarie

    2018-01-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system

  1. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.

    PubMed

    Song, Junqi; Bent, Andrew F

    2014-04-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.

  2. The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Day, Jonathan P.; Smith, Sophia C. L.; McGonigle, John E.; Cogni, Rodrigo; Cao, Chuan; Jiggins, Francis M.

    2015-01-01

    Emerging infectious diseases are often the result of a host shift, where the pathogen originates from a different host species. Virulence—the harm a pathogen does to its host—can be extremely high following a host shift (for example Ebola, HIV, and SARs), while other host shifts may go undetected as they cause few symptoms in the new host. Here we examine how virulence varies across host species by carrying out a large cross infection experiment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic variation in virulence, with benign infections in some species and rapid death in others. The change in virulence was highly predictable from the host phylogeny, with hosts clustering together in distinct clades displaying high or low virulence. High levels of virulence are associated with high viral loads, and this may determine the transmission rate of the virus. PMID:25774803

  3. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.

    PubMed

    John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-04-21

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  4. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  5. Biodiversity decreases disease through predictable changes in host community competence.

    PubMed

    Johnson, Pieter T J; Preston, Daniel L; Hoverman, Jason T; Richgels, Katherine L D

    2013-02-14

    Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk, prompting suggestions that biodiversity conservation could promote human and wildlife health. Yet the generality of the diversity-disease linkage remains conjectural, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity-disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.

  6. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    PubMed

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  7. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  8. Protozoa lectins and their role in host-pathogen interactions.

    PubMed

    Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh

    2016-01-01

    Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    PubMed

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  10. Multilocus Sequence Typing of Pathogenic Treponemes Isolated from Cloven-Hoofed Animals and Comparison to Treponemes Isolated from Humans

    PubMed Central

    Carter, Stuart D.; Birtles, Richard J.; Brown, Jennifer M.; Hart, C. Anthony; Evans, Nicholas J.

    2016-01-01

    , coupled with the high level of 16S rRNA gene sequence similarity across hosts and with human treponemes, suggests that the same bacterial species can cause disease in multiple different hosts. This multilocus sequence typing (MLST) study further demonstrates that these bacteria isolated from different hosts are indeed very similar, raising the potential for cross-species transmission. The study also shows that infection spread occurs frequently, both locally and globally, suggesting transmission by routes other than animal-animal transmission alone. These results indicate that on-farm biosecurity is important for controlling disease spread in domesticated species. Continued surveillance and vigilance are important for ascertaining the evolution and tracking any further host range expansion of these important pathogens. PMID:27208135

  11. Multilocus Sequence Typing of Pathogenic Treponemes Isolated from Cloven-Hoofed Animals and Comparison to Treponemes Isolated from Humans.

    PubMed

    Clegg, Simon R; Carter, Stuart D; Birtles, Richard J; Brown, Jennifer M; Hart, C Anthony; Evans, Nicholas J

    2016-08-01

    level of 16S rRNA gene sequence similarity across hosts and with human treponemes, suggests that the same bacterial species can cause disease in multiple different hosts. This multilocus sequence typing (MLST) study further demonstrates that these bacteria isolated from different hosts are indeed very similar, raising the potential for cross-species transmission. The study also shows that infection spread occurs frequently, both locally and globally, suggesting transmission by routes other than animal-animal transmission alone. These results indicate that on-farm biosecurity is important for controlling disease spread in domesticated species. Continued surveillance and vigilance are important for ascertaining the evolution and tracking any further host range expansion of these important pathogens. Copyright © 2016 Clegg et al.

  12. An analysis of the coexistence of two host species with a shared pathogen.

    PubMed

    Chen, Zhi-Min; Price, W G

    2008-06-01

    Population dynamics of two-host species under direct transmission of an infectious disease or a pathogen is studied based on the Holt-Pickering mathematical model, which accounts for the influence of the pathogen on the population of the two-host species. Through rigorous analysis and a numerical scheme of study, circumstances are specified under which the shared pathogen leads to the coexistence of the two-host species in either a persistent or periodic form. This study shows the importance of intrinsic growth rates or the differences between birth rates and death rates of the two host susceptible in controlling these circumstances. It is also demonstrated that the periodicity may arise when the positive intrinsic growth rates are very small, but the periodicity is very weak which may not be observed in an empirical investigation.

  13. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs

    PubMed Central

    Munguia, Jason; Nizet, Victor

    2017-01-01

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies “outside-the-box” of current antibiotic paradigms. PMID:28283200

  14. Social barriers to pathogen transmission in wild animal populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.

    Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviorsmore » may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.« less

  15. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

  16. Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates

    NASA Astrophysics Data System (ADS)

    Wu, Yixiang; Zou, Xingfu

    2018-04-01

    In this paper, we investigate a diffusive host-pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts. We first prove that the solution of the model exists globally and the model system possesses a global attractor. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable; if R0 > 1, the solution of the model is uniformly persistent and there exists a positive (pathogen persistent) steady state. Finally, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Our result suggests that the infected hosts concentrate at certain points which can be characterized as the pathogen's most favoured sites when the mobility of the infected host is limited.

  17. Animal models of Helicobacter-induced disease: methods to successfully infect the mouse.

    PubMed

    Taylor, Nancy S; Fox, James G

    2012-01-01

    Animal models of microbial diseases in humans are an essential component for determining fulfillment of Koch's postulates and determining how the organism causes disease, host response(s), disease prevention, and treatment. In the case of Helicobacter pylori, establishing an animal model to fulfill Koch's postulates initially proved so challenging that out of frustration a human volunteer undertook an experiment to become infected with H. pylori and to monitor disease progression in order to determine if it did cause gastritis. For the discovery of the organism and his fulfillment of Koch's postulates he and a colleague were awarded the Nobel Prize in Medicine. After H. pylori was established as a gastric pathogen, it took several years before a model was developed in mice, opening the study of the organism and its pathogenicity to the general scientific community. However, while the model is widely utilized, there are a number of difficulties that can arise and need to be overcome. The purpose of this chapter is to raise awareness regarding the problems, and to offer reliable protocols for successfully establishing the H. pylori mouse model.

  18. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans.

    PubMed

    Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J

    2017-09-01

    Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust

  19. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    PubMed Central

    2011-01-01

    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243

  20. Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Rubel, Franz; Waldenström, Jonas; Dobler, Gerhard; Chițimia-Dobler, Lidia

    2017-08-01

    Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.

  1. Pathogenic adaptations to host-derived antibacterial copper

    PubMed Central

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  2. Effect of Intermediate Hosts on Emerging Zoonoses.

    PubMed

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  3. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic.

    PubMed

    Brisson, Dustin; Dykhuizen, Daniel E; Ostfeld, Richard S

    2008-01-22

    Emerging zoonotic pathogens are a constant threat to human health throughout the world. Control strategies to protect public health regularly fail, due in part to the tendency to focus on a single host species assumed to be the primary reservoir for a pathogen. Here, we present evidence that a diverse set of species can play an important role in determining disease risk to humans using Lyme disease as a model. Host-targeted public health strategies to control the Lyme disease epidemic in North America have focused on interrupting Borrelia burgdorferi sensu stricto (ss) transmission between blacklegged ticks and the putative dominant reservoir species, white-footed mice. However, B. burgdorferi ss infects more than a dozen vertebrate species, any of which could transmit the pathogen to feeding ticks and increase the density of infected ticks and Lyme disease risk. Using genetic and ecological data, we demonstrate that mice are neither the primary host for ticks nor the primary reservoir for B. burgdorferi ss, feeding 10% of all ticks and 25% of B. burgdorferi-infected ticks. Inconspicuous shrews feed 35% of all ticks and 55% of infected ticks. Because several important host species influence Lyme disease risk, interventions directed at a multiple host species will be required to control this epidemic.

  4. Feeding of ticks on animals for transmission and xenodiagnosis in Lyme disease research.

    PubMed

    Embers, Monica E; Grasperge, Britton J; Jacobs, Mary B; Philipp, Mario T

    2013-08-31

    Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.

  5. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  6. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Host-pathogen interplay in the respiratory environment of Cystic Fibrosis

    PubMed Central

    Hurley, Bryan P.; Bragonzi, Alessandra

    2015-01-01

    Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF. PMID:25800687

  8. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    PubMed

    Munguia, Jason; Nizet, Victor

    2017-05-01

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bartonella entry mechanisms into mammalian host cells.

    PubMed

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  10. Mixed infections reveal virulence differences between host-specific bee pathogens.

    PubMed

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  11. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  12. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  13. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes.

    PubMed

    Spatafora, J W; Sung, G-H; Sung, J-M; Hywel-Jones, N L; White, J F

    2007-04-01

    Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.

  14. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.

    PubMed

    Lorenz, Anne; Pawar, Vinay; Häussler, Susanne; Weiss, Siegfried

    2016-11-01

    Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models. © 2016 Federation of European Biochemical Societies.

  15. Host Identity Matters in the Amphibian-Batrachochytrium dendrobatidis System: Fine-Scale Patterns of Variation in Responses to a Multi-Host Pathogen

    PubMed Central

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H.; Blaustein, Andrew R.

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed “dose-dependent” responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits. PMID:23382904

  16. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  17. Eosinophils Subvert Host Resistance to an Intracellular Pathogen by Instigating Non-Protective IL-4 in CCR2−/− Mice

    PubMed Central

    Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.

    2016-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063

  18. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    PubMed

    Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M

    2007-07-27

    Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  19. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    PubMed

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Host-pathogen interplay in the respiratory environment of cystic fibrosis.

    PubMed

    Yonker, Lael M; Cigana, Cristina; Hurley, Bryan P; Bragonzi, Alessandra

    2015-07-01

    Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis.

    PubMed

    Zimmerli, Laurent; Stein, Mónica; Lipka, Volker; Schulze-Lefert, Paul; Somerville, Shauna

    2004-12-01

    Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.

  2. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  3. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  4. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract

    PubMed Central

    Ferrando, Maria Laura; Schultsz, Constance

    2016-01-01

    ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998

  5. Social and behavioral barriers to pathogen transmission in wild animal populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.S.

    Disease and pathogens have been studied as regulators of animal populations but not really as selective forces. The authors propose that pathogens can be major selective forces influencing social behaviors when these are successful at reducing disease transmission. The behaviors whose evolution could have been influenced by pathogen effects include group size, group isolation, mixed species flocking, migration, seasonal sociality, social avoidance, and dominance behaviors. Mate choice, mating system, and sexual selection are put in a new light when examined in terms of disease transmission. It is concluded that pathogen avoidance is a more powerful selective force than has heretoforemore » been recognized.« less

  6. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat

    USGS Publications Warehouse

    Ip, Hon S.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  7. Dynamics of multiple infection and within-host competition by the anther-smut pathogen.

    PubMed

    Hood, M E

    2003-07-01

    Infection of one host by multiple pathogen genotypes represents an important area of pathogen ecology and evolution that lacks a broad empirical foundation. Multiple infection of Silene latifolia by Microbotryum violaceum was studied under field and greenhouse conditions using the natural polymorphism for mating-type bias as a marker. Field transmission resulted in frequent multiple infection, and each stem of the host was infected independently. Within-host diversity of infections equaled that of nearby inoculum sources by the end of the growing season. The number of diseased stems per plant was positively correlated with multiple infection and with overwintering mortality. As a result, multiply infected plants were largely purged from the population, and there was lower within-host pathogen diversity in the second season. However, among plants with a given number of diseased stems, multiply infected plants had a lower risk of overwintering mortality. Following simultaneous and sequential inoculation, strong competitive exclusion was demonstrated, and the first infection had a significant advantage. Dynamics of multiple infection initially included components of coinfection models for virulence evolution and then components of superinfection models after systemic colonization. Furthermore, there was evidence for an advantage of genotypes with mating-type bias, which may contribute to maintenance of this polymorphism in natural populations.

  8. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression.

    PubMed

    Dobon, Albor; Bunting, Daniel C E; Cabrera-Quio, Luis Enrique; Uauy, Cristobal; Saunders, Diane G O

    2016-05-20

    Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host.

  9. An internal thioester in a pathogen surface protein mediates covalent host binding

    PubMed Central

    Walden, Miriam; Edwards, John M; Dziewulska, Aleksandra M; Bergmann, Rene; Saalbach, Gerhard; Kan, Su-Yin; Miller, Ona K; Weckener, Miriam; Jackson, Rosemary J; Shirran, Sally L; Botting, Catherine H; Florence, Gordon J; Rohde, Manfred; Banfield, Mark J; Schwarz-Linek, Ulrich

    2015-01-01

    To cause disease and persist in a host, pathogenic and commensal microbes must adhere to tissues. Colonization and infection depend on specific molecular interactions at the host-microbe interface that involve microbial surface proteins, or adhesins. To date, adhesins are only known to bind to host receptors non-covalently. Here we show that the streptococcal surface protein SfbI mediates covalent interaction with the host protein fibrinogen using an unusual internal thioester bond as a ‘chemical harpoon’. This cross-linking reaction allows bacterial attachment to fibrin and SfbI binding to human cells in a model of inflammation. Thioester-containing domains are unexpectedly prevalent in Gram-positive bacteria, including many clinically relevant pathogens. Our findings support bacterial-encoded covalent binding as a new molecular principle in host-microbe interactions. This represents an as yet unexploited target to treat bacterial infection and may also offer novel opportunities for engineering beneficial interactions. DOI: http://dx.doi.org/10.7554/eLife.06638.001 PMID:26032562

  10. Effector-triggered versus pattern-triggered immunity: how animals sense virulent pathogens

    PubMed Central

    Stuart, Lynda M.; Paquette, Nicholas; Boyer, Laurent

    2014-01-01

    A fundamental question of any immune system is how it can discriminate between pathogens and non-pathogens. Here, we discuss that this can be mediated by a surveillance system distinct from pattern recognition receptors that recognize conserved microbial patterns and can be based instead on the host’s ability to sense perturbations in host cells induced by bacterial toxins or ‘effectors’ that are exclusively encoded by virulent microorganisms. Such ‘effector-triggered immunity’ was previously thought to be restricted to plants, but recent data indicate that animals also use this strategy. PMID:23411798

  11. Marek’s disease herpesvirus vaccines integrate into chicken host chromosomes yet lack a virus-host phenotype associated with oncogenic transformation

    USDA-ARS?s Scientific Manuscript database

    Marek's disease (MD) is a lymphotrophic and oncogenic disease of chickens that can lead to death in susceptible and unimmunized host birds. The causative pathogen, Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus, integrates into host genome near the telomeres during viral latency an...

  12. Bioluminescent pathogens as a tool to monitor infection in live animals

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.

    2002-05-01

    The study of pathogenic processes is mostly limited to in vitro assays, cell-culture techniques and post mortem examination of infected animals. A better understanding of the infectious process, efficiency of antimicrobial and antibiotic treatment as well as immunomodulatory effects of different food supplements could be achieved by in vivo real-time monitoring of bacterial colonization in live animals. It was proposed recently to use bacterial pathogens with luminescent or fluorescent phenotypes for photonic detection of bacterial cells in living hosts. 14 It was shown that both bacteria transformed with full cassette of luminescent genes from Xenorhabdus luminescens and with Green Fluorescent Protein (GFP) could be visualized in animal using whole-body luminescent or fluorescent imaging techniques with high sensitivity and in real time. We used this approach to investigate the effect of diet on the time-course of infection in mice orally infected with bioluminescent strain of Salmonella enteritidis.

  13. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  14. Genomic Tools and Animal Health.

    PubMed

    Zanella, Ricardo

    2016-09-07

    Animals have been selected to improve their productivity in order to increase the profitability to the producer. In this scenario, not much attention was given to health traits. As a consequence of that, selection was made for animals with higher production and a shortened productive life. In addition to that, the intense production system used in livestock has forced animals to be exposed to higher pathogen loads, therefore predisposing them to infections. Infectious diseases are known to be caused by micro-organisms that are able to infect and colonize the host, affecting their physiological functions and causing problems in their production and on animal welfare. Even with the best management practices, diseases are still the most important cause of economic losses in the animal industry. In this review article we have addressed the new tools that could be used to select animals to better cope with diseases and pathogens.

  15. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation.

    PubMed

    Voyles, Jamie; Woodhams, Douglas C; Saenz, Veronica; Byrne, Allison Q; Perez, Rachel; Rios-Sotelo, Gabriela; Ryan, Mason J; Bletz, Molly C; Sobell, Florence Ann; McLetchie, Shawna; Reinert, Laura; Rosenblum, Erica Bree; Rollins-Smith, Louise A; Ibáñez, Roberto; Ray, Julie M; Griffith, Edgardo J; Ross, Heidi; Richards-Zawacki, Corinne L

    2018-03-30

    Infectious diseases rarely end in extinction. Yet the mechanisms that explain how epidemics subside are difficult to pinpoint. We investigated host-pathogen interactions after the emergence of a lethal fungal pathogen in a tropical amphibian assemblage. Some amphibian host species are recovering, but the pathogen is still present and is as pathogenic today as it was almost a decade ago. In addition, some species have defenses that are more effective now than they were before the epidemic. These results suggest that host recoveries are not caused by pathogen attenuation and may be due to shifts in host responses. Our findings provide insights into the mechanisms underlying disease transitions, which are increasingly important to understand in an era of emerging infectious diseases and unprecedented global pandemics. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  17. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico.

    PubMed

    Sosa-Gutierrez, Carolina G; Vargas-Sandoval, Margarita; Torres, Javier; Gordillo-Pérez, Guadalupe

    2016-09-30

    Tick-borne rickettsial diseases (TBRD) are commonly encountered in medical and veterinary clinical settings. The control of these diseases is difficult, requiring disruption of a complex transmission chain involving a vertebrate host and ticks. The geographical distribution of the diseases is related to distribution of the vector, which is an indicator of risk for the population. A total of 1107 were collected by tick drag from forests, ecotourism parks and hosts at 101 sites in 22 of the 32 states of Mexico. Collected ticks were placed in 1.5 mL cryovials containing 70% ethanol and were identified to species. Ticks were pooled according to location/host of collection, date of collection, sex, and stage of development. A total of 51 ticks were assayed by polymerase chain reaction (PCR) to confirm species identification using morphological methods. A total of 477 pools of ticks were assayed using PCR techniques for selected tick-borne pathogens. Anaplasma phagocytophilum was the most commonly detected pathogen (45 pools), followed by, Ehrlichia (E.) canis (42), Rickettsia (R.) rickettsii (11), E. chaffeensis (8), and R. amblyommii (1). Rhipicephalus sanguineus was the tick most frequently positive for selected pathogens. Overall, our results indicate that potential tick vectors positive for rickettsial pathogens are distributed throughout the area surveyed in Mexico.

  18. Molecular basis of recognition between phytophthora pathogens and their hosts.

    PubMed

    Tyler, Brett M

    2002-01-01

    Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.

  19. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    PubMed Central

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  20. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    PubMed Central

    Heroven, Ann Kathrin; Dersch, Petra

    2014-01-01

    Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets. PMID:25368845

  1. Metabolic traits of pathogenic streptococci.

    PubMed

    Willenborg, Jörg; Goethe, Ralph

    2016-11-01

    Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction. © 2016 Federation of European Biochemical Societies.

  2. Weather, host and vector — their interplay in the spread of insect-borne animal virus diseases

    PubMed Central

    Sellers, R. F.

    1980-01-01

    The spread of insect-borne animal virus diseases is influenced by a number of factors. Hosts migrate, move or are conveyed over long distances: vectors are carried on the wind for varying distances in search of hosts and breeding sites; weather and climate affect hosts and vectors through temperature, moisture and wind. As parasites of host and vector, viruses are carried by animals, birds and insects, and their spread can be correlated with the migration of hosts and the carriage of vectors on winds associated with the movements of the Intertropical Convergence Zone (ITCZ) and warm winds to the north and south of the limits of the ITCZ. The virus is often transmitted from a local cycle to a migratory cycle and back again. Examples of insect-borne virus diseases and their spread are analysed. Japanese, Murray Valley, Western equine, Eastern equine and St Louis encephalitis represent viruses transmitted by mosquito—bird or pig cycles. The areas experiencing infection with these viruses can be divided into a number of zones: A, B, C, D, E and F. In zone A there is a continuous cycle of virus in host and vector throughout the year; in zone B, there is an upsurge in the cycle during the wet season, but the cycle continues during the dry season; there is movement of infected vectors between and within zones A and B on the ITCZ and the virus is introduced to zone C by infected vectors on warm winds; persistence may occur in zone C if conditions are right. In zone D, virus is introduced each year by infected vectors on warm winds and the arrival of the virus coincides with the presence of susceptible nestling birds and susceptible piglets. The disappearance of virus occurs at the time when migrating mosquitoes and birds are returning to warmer climates. The virus is introduced to zone E only on occasions every 5-10 years when conditions are suitable. Infected hosts introduced to zone F do not lead to circulation of virus, since the climate is unsuitable for vectors

  3. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

    PubMed Central

    Contreras, Marinela; Alberdi, Pilar; Mateos-Hernández, Lourdes; Fernández de Mera, Isabel G.; García-Pérez, Ana L.; Vancová, Marie; Villar, Margarita; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Valdés, James J.; Stuen, Snorre; Gortazar, Christian; de la Fuente, José

    2017-01-01

    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens. PMID:28725639

  4. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection.

    PubMed

    Contreras, Marinela; Alberdi, Pilar; Mateos-Hernández, Lourdes; Fernández de Mera, Isabel G; García-Pérez, Ana L; Vancová, Marie; Villar, Margarita; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Valdés, James J; Stuen, Snorre; Gortazar, Christian; de la Fuente, José

    2017-01-01

    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.

  5. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  6. Animal Models for Periodontal Disease

    PubMed Central

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  7. Animal models of disease shed light on Nipah virus pathogenesis and transmission.

    PubMed

    de Wit, Emmie; Munster, Vincent J

    2015-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  9. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin.

    PubMed

    Bernard, Quentin; Jaulhac, Benoit; Boulanger, Nathalie

    2014-05-01

    The skin is a critical barrier between hosts and pathogens in arthropod-borne diseases. It harbors many resident cells and specific immune cells to arrest or limit infections by secreting inflammatory molecules or by directly killing pathogens. However, some pathogens are able to use specific skin cells and arthropod saliva for their initial development, to hide from the host immune system, and to establish persistent infection in the vertebrate host. A better understanding of the initial mechanisms taking place in the skin should allow the development of new strategies to fight these vector-borne pathogens that are spread worldwide and are of major medical importance.

  10. Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica

    PubMed Central

    Vercken, Elodie; Fontaine, Michael C.; Gladieux, Pierre; Hood, Michael E.; Jonot, Odile; Giraud, Tatiana

    2010-01-01

    Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization

  11. Characterization of bacterial knot disease caused by Pseudomonas savastanoi pv. savastanoi on pomegranate (Punica granatum L.) trees: a new host of the pathogen.

    PubMed

    Bozkurt, I A; Soylu, S; Mirik, M; Ulubas Serce, C; Baysal, Ö

    2014-11-01

    This study aimed to isolate and identify the causal organism causing hyperplastic outgrowths (knots) on stems and branches of pomegranate trees in the Eastern Mediterranean region of Turkey. Bacterial colonies were isolated from young knots on plates containing selective nutrient media. Biochemical tests, fatty acid analysis and PCR were performed to identify possible causal disease agent. Representative isolates were identified as Pseudomonas.pv.savastanoi (Psv) using biochemical tests, fatty acid profiling and PCR. Following inoculation of pomegranate plants (cv. hicaz) with bacterial suspensions, 25 of 54 bacterial isolates caused typical knots at the site of inoculation. PCR analysis, using specific primer for Psv, generated a single amplicon from all isolates. The similarity of the sequence of Turkish pomegranate isolate was 99% similar to the corresponding gene sequences of Psv in the databases. Based on symptoms, biochemical, molecular, pathogenicity tests and sequence analyses, the disease agent of knots observed on the pomegranate trees is Psv. To the best of our knowledge, this research has revealed pomegranate as a natural host of Psv, which extends the list of host plant species affected by the pathogen in the world and Turkey. Pomegranate trees were affected by the disease with outgrowths (galls or knot) disease. Currently, there is no published study on disease agent(s) causing the galls or knots on pomegranate trees in worldwide. Bacterial colonies were isolated from young knots. The causal agent of the knot Pseudomonas savastanoi pv.savastanoi (Psv) was identified based on symptoms, biochemical, molecular methods, pathogenicity tests and sequence analysis. To the best of our knowledge, this is the first report of Psv on pomegranate as a natural host, which extends the growing list of plant species affected by this bacterium in the world and Turkey. © 2014 The Society for Applied Microbiology.

  12. Ebola: Facing a New Transboundary Animal Disease?

    PubMed Central

    Feldmann, F.; Feldmann, H.

    2016-01-01

    Ebola viruses are zoonotic pathogens with the potential of causing severe viral hemorrhagic fever in humans and nonhuman primates. Bats have been identified as a reservoir for Ebola viruses but it remains unclear if transmission to an end host involves intermediate hosts. Recently, one of the Ebola species has been found in Philippine pigs raising concerns regarding animal health and food safety. Diagnostics have so far focused on human application, but enhanced pig surveillance and diagnostics, particularly in Asia, for Ebola virus infections seem to be needed to establish reasonable guidelines for public and animal health and food safety. Livestock vaccination against Ebola seems currently not justified but proper preparedness may include experimental vaccine approaches. PMID:23689898

  13. Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model.

    PubMed

    Alegado, Rosanna A; Campbell, Marianne C; Chen, Will C; Slutz, Sandra S; Tan, Man-Wah

    2003-07-01

    The soil-borne nematode, Caenorhabditis elegans, is emerging as a versatile model in which to study host-pathogen interactions. The worm model has shown to be particularly effective in elucidating both microbial and animal genes involved in toxin-mediated killing. In addition, recent work on worm infection by a variety of bacterial pathogens has shown that a number of virulence regulatory genes mediate worm susceptibility. Many of these regulatory genes, including the PhoP/Q two-component regulators in Salmonella and LasR in Pseudomonas aeruginosa, have also been implicated in mammalian models suggesting that findings in the worm model will be relevant to other systems. In keeping with this concept, experiments aimed at identifying host innate immunity genes have also implicated pathways that have been suggested to play a role in plants and animals, such as the p38 MAP kinase pathway. Despite rapid forward progress using this model, much work remains to be done including the design of more sensitive methods to find effector molecules and further characterization of the exact interaction between invading pathogens and C. elegans' cellular components.

  14. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease.

    PubMed

    Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O

    2018-03-27

    Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

  15. Land-Use Change Alters Host and Vector Communities and May Elevate Disease Risk.

    PubMed

    Guo, Fengyi; Bonebrake, Timothy C; Gibson, Luke

    2018-04-24

    Land-use change has transformed most of the planet. Concurrently, recent outbreaks of various emerging infectious diseases have raised great attention to the health consequences of anthropogenic environmental degradation. Here, we assessed the global impacts of habitat conversion and other land-use changes on community structures of infectious disease hosts and vectors, using a meta-analysis of 37 studies. From 331 pairwise comparisons of disease hosts/vectors in pristine (undisturbed) and disturbed areas, we found a decrease in species diversity but an increase in body size associated with land-use changes, potentially suggesting higher risk of infectious disease transmission in disturbed habitats. Neither host nor vector abundance, however, changed significantly following disturbance. When grouped by subcategories like disturbance type, taxonomic group, pathogen type and region, changes in host/vector community composition varied considerably. Fragmentation and agriculture in particular benefit host and vector communities and therefore might elevate disease risk. Our results indicate that while habitat disturbance could alter disease host/vector communities in ways that exacerbate pathogen prevalence, the relationship is highly context-dependent and influenced by multiple factors.

  16. Pathogenic and host range determinants of the feline aplastic anemia retrovirus.

    PubMed Central

    Riedel, N; Hoover, E A; Dornsife, R E; Mullins, J I

    1988-01-01

    Feline leukemia virus (FeLV) C-Sarma (or FSC) is a prototype of subgroup C FeLVs, which induce fatal aplastic anemia in outbred specific-pathogen-free (SPF) cats. FeLV C isolates also possess an extended host range in vitro, including an ability, unique among FeLVs, to replicate in guinea pig cells. To identify the viral determinants responsible for the pathogenicity and host range of FSC we constructed a series of proviral DNAs by exchanging gene fragments between FSC and FeLV-61E (or F6A), the latter of which is minimally pathogenic and whose host range in vitro is restricted to feline cells. Transfer of an 886-base-pair (bp) fragment of FSC, encompassing the codons for 73 amino acids at the 3' end of pol (the integrase/endonuclease gene) and the codons for 241 amino acids of the N-terminal portion of env [the extracellular glycoprotein (gp70) gene], into the F6A genome was sufficient to confer onto chimeric viruses the ability to induce fatal aplastic anemia in SPF cats. In contrast, no chimera lacking this sequence induced disease. When assayed in vitro, all chimeric viruses containing the 886-bp fragment of FSC acquired the ability to replicate in heterologous cells, including dog and guinea pig cells. Thus, the pathogenic and the host range determinants of the feline aplastic anemia retrovirus colocalize to a 3' pol-5' env region of the FSC genome and likely reside within a region encoding 241 amino acid residues of the N terminus of the extracellular glycoprotein. Images PMID:2833751

  17. Sequestration of host metabolism by an intracellular pathogen.

    PubMed

    Gehre, Lena; Gorgette, Olivier; Perrinet, Stéphanie; Prevost, Marie-Christine; Ducatez, Mathieu; Giebel, Amanda M; Nelson, David E; Ball, Steven G; Subtil, Agathe

    2016-03-16

    For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

  18. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions.

    PubMed

    Hoyt, Joseph R; Langwig, Kate E; Sun, Keping; Lu, Guanjun; Parise, Katy L; Jiang, Tinglei; Frick, Winifred F; Foster, Jeffrey T; Feng, Jiang; Kilpatrick, A Marm

    2016-03-16

    Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host-pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host-pathogen coevolution. © 2016 The Author(s).

  19. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  20. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    PubMed

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  1. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

    PubMed Central

    Ko, Ya-Ping; Flick, Matthew J.

    2017-01-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  2. Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants

    PubMed Central

    Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew

    2017-01-01

    Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773

  3. From evolutionary advantage to disease agents: forensic re-evaluation of host-microbe interactions and pathogenicity

    PubMed Central

    Rivera-Pérez, Jessica I.; González, Alfredo A.; Toranzos, Gary A.

    2016-01-01

    As the “human microbiome era” continues, there is an increasing awareness of our resident microbiota and its indispensable role in our increased fitness as holobionts. However, the host-microbe relationship is not so clearly defined for some human symbionts. Here we discuss examples of “accidental pathogens”, meaning previously non-pathogenic and/or environmental microbes thought to have inadvertently experienced an evolutionary shift towards pathogenicity. For instance, symbionts such as Helicobacter pylori and JC Polyomavirus have been shown to accompany humans since prehistoric times and are still abundant in extant populations as part of the microbiome. And yet, the relationship between a subgroup of these microbes and their human hosts seems to have changed with time, and they have recently gained notoriety as gastrointestinal and neuropathogens, respectively. On the other hand, environmental microbes such as Legionella spp. have recently experienced a shift in host range and are now a major problem in industrialized countries as a result of artificial ecosystems. Other variables involved in this accidental phenomenon could be the apparent change or reduction in the diversity of human-associated microbiota because of modern medicine and lifestyles. All of this could result in an increased prevalence of “accidental pathogens” in the form of emerging pathogens. PMID:28155809

  4. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes?

    PubMed

    Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T

    2014-10-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

  5. The membrane as the gatekeeper of infection: Cholesterol in host-pathogen interaction.

    PubMed

    Kumar, G Aditya; Jafurulla, Md; Chattopadhyay, Amitabha

    2016-09-01

    The cellular plasma membrane serves as a portal for the entry of intracellular pathogens. An essential step for an intracellular pathogen to gain entry into a host cell therefore is to be able to cross the cell membrane. In this review, we highlight the role of host membrane cholesterol in regulating the entry of intracellular pathogens using insights obtained from work on the interaction of Leishmania and Mycobacterium with host cells. The entry of these pathogens is known to be dependent on host membrane cholesterol. Importantly, pathogen entry is inhibited either upon depletion (or complexation), or enrichment of membrane cholesterol. In other words, an optimum level of host membrane cholesterol is necessary for efficient infection by pathogens. In this overall context, we propose a general mechanism, based on cholesterol-induced conformational changes, involving cholesterol binding sites in host cell surface receptors that are implicated in this process. A therapeutic strategy targeting modulation of membrane cholesterol would have the advantage of avoiding the commonly encountered problem of drug resistance in tackling infection by intracellular pathogens. Insights into the role of host membrane cholesterol in pathogen entry would be instrumental in the development of novel therapeutic strategies to effectively tackle intracellular pathogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    PubMed

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  7. Pathogenic leptospires modulate protein expression and post-translational modifications in response to mammalian host signals

    USDA-ARS?s Scientific Manuscript database

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs and cattle, exhibit little to no signs of disease but shed large numbers of organisms in...

  8. Fear of feces? Trade-offs between disease risk and foraging drive animal activity around raccoon latrines

    USGS Publications Warehouse

    Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.

    2017-01-01

    Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.

  9. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions.

    PubMed

    Kirschner, Denise E; Linderman, Jennifer J

    2009-04-01

    In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.

  10. Molecular mimicry modulates plant host responses to pathogens.

    PubMed

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions

    PubMed Central

    Hoyt, Joseph R.; Langwig, Kate E.; Sun, Keping; Lu, Guanjun; Parise, Katy L.; Jiang, Tinglei; Foster, Jeffrey T.; Feng, Jiang; Kilpatrick, A. Marm

    2016-01-01

    Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution. PMID:26962138

  12. Sequestration of host metabolism by an intracellular pathogen

    PubMed Central

    Gehre, Lena; Gorgette, Olivier; Perrinet, Stéphanie; Prevost, Marie-Christine; Ducatez, Mathieu; Giebel, Amanda M; Nelson, David E; Ball, Steven G; Subtil, Agathe

    2016-01-01

    For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens. DOI: http://dx.doi.org/10.7554/eLife.12552.001 PMID:26981769

  13. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    PubMed Central

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  14. Adaptation of mammalian host-pathogen interactions in a changing arctic environment.

    PubMed

    Hueffer, Karsten; O'Hara, Todd M; Follmann, Erich H

    2011-03-11

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic.

  15. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  16. Within-host competitive exclusion among species of the anther smut pathogen

    PubMed Central

    Gold, Alexander; Giraud, Tatiana; Hood, Michael E

    2009-01-01

    Background Host individuals represent an arena in which pathogens compete for resources and transmission opportunities, with major implications for the evolution of virulence and the structure of populations. Studies to date have focused on competitive interactions within pathogen species, and the level of antagonism tends to increase with the genetic distance between competitors. Anther-smut fungi, in the genus Microbotryum, have emerged as a tractable model for within-host competition. Here, using two pathogen species that are frequently found in sympatry, we investigated whether the antagonism seen among genotypes of the same species cascades up to influence competition among pathogen species. Results Sequential inoculation of hosts showed that a resident infection most often excludes a challenging pathogen genotype, which is consistent with prior studies. However, the challenging pathogen was significantly more likely to invade the already-infected host if the resident infection was a conspecific genotype compared to challenges involving a closely related species. Moreover, when inter-specific co-infection occurred, the pathogens were highly segregated within the host, in contrast to intra-specific co-infection. Conclusion We show evidence that competitive exclusion during infection can be greater among closely related pathogen species than among genotypes within species. This pattern follows from prior studies demonstrating that genetic distance and antagonistic interactions are positively correlated in Microbotryum. Fungal vegetative incompatibility is a likely mechanism of direct competitive interference, and has been shown in some fungi to be effective both within and across species boundaries. For systems where related pathogen species frequently co-occur in the same host populations, these competitive dynamics may substantially impact the spatial segregation of pathogen species. PMID:19422703

  17. Legionella pathogenicity: genome structure, regulatory networks and the host cell response.

    PubMed

    Steinert, Michael; Heuner, Klaus; Buchrieser, Carmen; Albert-Weissenberger, Christiane; Glöckner, Gernot

    2007-11-01

    Legionella spp. the causative agent of Legionnaires' disease is naturally found in fresh water where the bacteria parasitize intracellularly within protozoa. Upon aerosol formation via man-made water systems, Legionella can enter the human lung and cause a severe form of pneumonia. Here we review results from systematic comparative genome analysis of Legionella species with different pathogenic potentials. The complete genomes reveal that horizontal gene transfer has played an important role during the evolution of Legionella and indicate the importance of secretion machineries for the intracellular lifestyle of this pathogen. Moreover, we highlight recent findings on the in vivo transcriptional program of L. pneumophila and the regulatory networks involved in the biphasic life cycle. In order to understand how Legionella effectively subvert host cell functions for its own benefit the transcriptional host cell response upon infection of the model amoeba Dictyostelium discoideum was studied. The use of this model organism made it possible to develop a roadmap of host cell factors which significantly contribute to the uptake of L. pneumophila and the establishment of an ER-associated replicative vacuole.

  18. β-lactam resistance in gram-negative pathogens isolated from animals.

    PubMed

    Trott, Darren

    2013-01-01

    Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.

  19. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  20. Abiotic Versus Biotic Pathogens: Replicative Growth in Host Tissues Key to Discriminating Between Biotoxic Injury and Active Pathogenesis

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Life can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution; a self-bounded, self-replicating, and self-perpetuating entity [1]. This definition should hold for terrestrial as well as extraterrestrial life-forms. Although, it is reasonable to expect that a Mars life-form would be more adaptable to Mars-like conditions than to Earth-like environments, it remains possible that negative ecological or host interactions might occur if Mars microbiota were to be inadvertently released into the terrestrial environment. A biogenic infectious agent can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution and derives its sustenance from a living cell or from the by-products of cell death. Disease can be de-fined as the detrimental alteration of one or more ordered metabolic processes in a living host caused by the continued irritation of a primary causal factor or factors; disease is a dynamic process [2]. In contrast, an injury is due to an instantaneous event; injury is not a dynamic process [2]. A causal agent of disease is defined as a pathogen, and can be either abiotic or biotic in nature. Diseases incited by biotic pathogens are the exceptions, not the norms, in terrestrial host-microbe interactions. Disease induction in a plant host can be conceptually characterized using the Disease Triangle (Fig. 1) in which disease occurs only when all host, pathogen, and environ-mental factors that contribute to the development of disease are within conducive ranges for a necessary minimum period of time. For example, plant infection and disease caused by the wheat leaf rust fungus, Puccinia recondita, occur only if virulent spores adhere to genetically susceptible host tissues for at least 4-6 hours under favorable conditions of temperature and moisture [3]. As long as one or more conditions required for disease initiation are not available, disease symptoms will not develop.

  1. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    PubMed

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  2. Shared and organism-specific host responses to childhood diarrheal diseases revealed by whole blood transcript profiling.

    PubMed

    DeBerg, Hannah A; Zaidi, Mussaret B; Altman, Matthew C; Khaenam, Prasong; Gersuk, Vivian H; Campos, Freddy D; Perez-Martinez, Iza; Meza-Segura, Mario; Chaussabel, Damien; Banchereau, Jacques; Estrada-Garcia, Teresa; Linsley, Peter S

    2018-01-01

    Globally, diarrheal diseases are a leading cause of death in children under five and disproportionately affect children in developing countries. Children who contract diarrheal diseases are rarely screened to identify the etiologic agent due to time and cost considerations associated with pathogen-specific screening and hence pathogen-directed therapy is uncommon. The development of biomarkers to rapidly identify underlying pathogens could improve treatment options and clinical outcomes in childhood diarrheal diseases. Here, we perform RNA sequencing on blood samples collected from children evaluated in an emergency room setting with diarrheal disease where the pathogen(s) present are known. We determine host response gene signatures specific to Salmonella, Shigella and rotavirus, but not E. coli, infections that distinguish them from each other and from healthy controls. Specifically, we observed differential expression of genes related to chemokine receptors or inflammasome signaling in Shigella cases, such as CCR3, CXCR8, and NLRC4, and interferon response genes, such as IFI44 and OASL, in rotavirus cases. Our findings add insight into the host peripheral immune response to these pathogens, and suggest strategies and limitations for the use host response transcript signatures for diagnosing the etiologic agent of childhood diarrheal diseases.

  3. Protein prenylation: a new mode of host-pathogen interaction.

    PubMed

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi

    2016-01-01

    Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274

  5. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    PubMed

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  6. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease

    PubMed Central

    Conlan, Thomas; Jardine, Laura; Tkacz, Claire; Ferrer, Ivana R.; Lomas, Cara; Ward, Sophie; West, Heather; Dertschnig, Simone; Means, Terry K.; Kaplan, Daniel H.; Bennett, Clare L.

    2018-01-01

    Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression. PMID:29515032

  7. Development of a tick-borne pathogen QPCR panel for detection of Anaplasma, Ehrlichia, Rickettsia, and Lyme disease Borrelia in animals.

    PubMed

    Shen, Zhenyu; Zhang, Michael Z; Stich, Roger W; Mitchell, William J; Zhang, Shuping

    2018-05-23

    Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Lyme disease associated Borrelia spp. are the most common tick-borne pathogens reported to infect human beings worldwide and other animals, such as dogs and horses. In the present study, we developed a broad-coverage SYBR Green QPCR panel consisting of four individual assays for the detection and partial differentiation of the aforementioned pathogens. All assays were optimized to the same thermocycling condition and had a detection limit of 10 copies per reaction. The assays remained sensitive when used to test canine and equine blood DNA samples spiked with known amounts of synthetic DNA (gBlock) control template. The assays were specific, as evidenced by lack of cross reaction to non-target gBlock or other pathogens commonly tested in veterinary diagnostic labs. With appropriate Ct cutoff values for positive samples and negative controls and the melting temperature (TM) ranges established in the present study, the QPCR panel is suitable for accurate, convenient and rapid screening and confirmation of tick-borne pathogens in animals. Copyright © 2017. Published by Elsevier B.V.

  8. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.

    PubMed

    Zang, X; Maizels, R M

    2001-03-01

    Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.

  9. Feast or famine: the host-pathogen battle over amino acids.

    PubMed

    Zhang, Yanjia J; Rubin, Eric J

    2013-07-01

    Intracellular bacterial pathogens often rely on their hosts for essential nutrients. Host cells, in turn, attempt to limit nutrient availability, using starvation as a mechanism of innate immunity. Here we discuss both host mechanisms of amino acid starvation and the diverse adaptations of pathogens to their nutrient-deprived environments. These processes provide both key insights into immune subversion and new targets for drug development. © 2013 John Wiley & Sons Ltd.

  10. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    PubMed

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  11. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya

    USDA-ARS?s Scientific Manuscript database

    Animal hosts may vary in their attraction and acceptability as components of the host location process for assessing biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease...

  12. Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and Transmission.

    PubMed

    Rao, Sheila; Schieber, Alexandria M Palaferri; O'Connor, Carolyn P; Leblanc, Mathias; Michel, Daniela; Ayres, Janelle S

    2017-01-26

    Sickness-induced anorexia is a conserved behavior induced during infections. Here, we report that an intestinal pathogen, Salmonella Typhimurium, inhibits anorexia by manipulating the gut-brain axis. Inhibition of inflammasome activation by the S. Typhimurium effector, SlrP, prevented anorexia caused by IL-1β-mediated signaling to the hypothalamus via the vagus nerve. Rather than compromising host defenses, pathogen-mediated inhibition of anorexia increased host survival. SlrP-mediated inhibition of anorexia prevented invasion and systemic infection by wild-type S. Typhimurium, reducing virulence while increasing transmission to new hosts, suggesting that there are trade-offs between transmission and virulence. These results clarify the complex and contextual role of anorexia in host-pathogen interactions and suggest that microbes have evolved mechanisms to modulate sickness-induced behaviors to promote health of their host and their transmission at the expense of virulence. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Imperfect pathogen detection from non-invasive skin swabs biases disease inference

    USGS Publications Warehouse

    DiRenzo, Graziella V.; Grant, Evan H. Campbell; Longo, Ana; Che-Castaldo, Christian; Zamudio, Kelly R.; Lips, Karen

    2018-01-01

    1. Conservation managers rely on accurate estimates of disease parameters, such as pathogen prevalence and infection intensity, to assess disease status of a host population. However, these disease metrics may be biased if low-level infection intensities are missed by sampling methods or laboratory diagnostic tests. These false negatives underestimate pathogen prevalence and overestimate mean infection intensity of infected individuals. 2. Our objectives were two-fold. First, we quantified false negative error rates of Batrachochytrium dendrobatidis on non-invasive skin swabs collected from an amphibian community in El Copé, Panama. We swabbed amphibians twice in sequence, and we used a recently developed hierarchical Bayesian estimator to assess disease status of the population. Second, we developed a novel hierarchical Bayesian model to simultaneously account for imperfect pathogen detection from field sampling and laboratory diagnostic testing. We evaluated the performance of the model using simulations and varying sampling design to quantify the magnitude of bias in estimates of pathogen prevalence and infection intensity. 3. We show that Bd detection probability from skin swabs was related to host infection intensity, where Bd infections < 10 zoospores have < 95% probability of being detected. If imperfect Bd detection was not considered, then Bd prevalence was underestimated by as much as 16%. In the Bd-amphibian system, this indicates a need to correct for imperfect pathogen detection caused by skin swabs in persisting host communities with low-level infections. More generally, our results have implications for study designs in other disease systems, particularly those with similar objectives, biology, and sampling decisions. 4. Uncertainty in pathogen detection is an inherent property of most sampling protocols and diagnostic tests, where the magnitude of bias depends on the study system, type of infection, and false negative error rates. Given that it may

  14. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    PubMed

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  15. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    PubMed

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.

  16. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants.

    PubMed

    Stulemeijer, Iris J E; Joosten, Matthieu H A J

    2008-07-01

    Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.

  17. Symbiont-Induced Changes in Host Actin during the Onset of a Beneficial Animal-Bacterial Association

    PubMed Central

    Kimbell, Jennifer R.; McFall-Ngai, Margaret J.

    2004-01-01

    The influence of bacteria on the cytoskeleton of animal cells has been studied extensively only in pathogenic associations. We characterized changes in host cytoskeletal actin induced by the bacterial partner during the onset of a cooperative animal-bacteria association using the squid-vibrio model. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis revealed that Vibrio fischeri induced a dramatic increase in actin protein abundance in the bacteria-associated host tissues during the onset of the symbiosis. Immunocytochemistry revealed that this change in actin abundance correlated with a two- to threefold increase in actin in the apical cell surface of the epithelium-lined ducts, the route of entry of symbionts into host tissues. Real-time reverse transcriptase PCR and in situ hybridization did not detect corresponding changes in actin mRNA. Temporally correlated with the bacteria-induced changes in actin levels was a two- to threefold decrease in duct circumference, a 20% loss in the average number of cells interfacing with the duct lumina, and dramatic changes in duct cell shape. When considered with previous studies of the biomechanical and biochemical characteristics of the duct, these findings suggest that the bacterial symbionts, upon colonizing the host organ, induce modifications that physically and chemically limit the opportunity for subsequent colonizers to pass through the ducts. Continued study of the squid-vibrio system will allow further comparisons of the mechanisms by which pathogenic and cooperative bacteria influence cytoskeleton dynamics in host cells. PMID:15006763

  18. An overview of animal prion diseases

    PubMed Central

    2011-01-01

    Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases. PMID:22044871

  19. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects.

    PubMed

    Zumla, Alimuddin; Rao, Martin; Wallis, Robert S; Kaufmann, Stefan H E; Rustomjee, Roxana; Mwaba, Peter; Vilaplana, Cris; Yeboah-Manu, Dorothy; Chakaya, Jeremiah; Ippolito, Giuseppe; Azhar, Esam; Hoelscher, Michael; Maeurer, Markus

    2016-04-01

    Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen-host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus

    PubMed Central

    Hily, Jean Michel; García, Adrián; Moreno, Arancha; Plaza, María; Wilkinson, Mark D.; Fereres, Alberto; Fraile, Aurora; García-Arenal, Fernando

    2014-01-01

    Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of

  1. Host specificity in biological control: insights from opportunistic pathogens

    PubMed Central

    Brodeur, Jacques

    2012-01-01

    Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922

  2. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    PubMed

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Natural Pathogens of Laboratory Mice, Rats, and Rabbits and Their Effects on Research

    PubMed Central

    Baker, David G.

    1998-01-01

    Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research. PMID:9564563

  4. Patterns of genome evolution that have accompanied host adaptation in Salmonella

    PubMed Central

    Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.

    2015-01-01

    Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353

  5. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    PubMed Central

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  6. The trans-kingdom identification of negative regulators of pathogen hypervirulence

    PubMed Central

    Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.

    2015-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211

  7. AquaPathogen X--A template database for tracking field isolates of aquatic pathogens

    USGS Publications Warehouse

    Emmenegger, Evi; Kurath, Gael

    2012-01-01

    AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).

  8. Common and emerging infectious diseases in the animal shelter.

    PubMed

    Pesavento, P A; Murphy, B G

    2014-03-01

    The beneficial role that animal shelters play is unquestionable. An estimated 3 to 4 million animals are cared for or placed in homes each year, and most shelters promote public health and support responsible pet ownership. It is, nonetheless, inevitable that shelters are prime examples of anthropogenic biological instability: even well-run shelters often house transient, displaced, and mixed populations of animals. Many of these animals have received minimal to no prior health care, and some have a history of scavenging or predation to survive. Overcrowding and poor shelter conditions further magnify these inherent risks to create individual, intraspecies, and interspecies stress and provide an environment conducive to exposure to numerous potentially collaborative pathogens. All of these factors can contribute to the evolution and emergence of new pathogens or to alterations in virulence of endemic pathogens. While it is not possible to effectively anticipate the timing or the pathogen type in emergence events, their sites of origin are less enigmatic, and pathologists and diagnosticians who work with sheltered animal populations have recognized several such events in the past decade. This article first considers the contribution of the shelter environment to canine and feline disease. This is followed by summaries of recent research on the pathogenesis of common shelter pathogens, as well as research that has led to the discovery of novel or emerging diseases and the methods that are used for their diagnosis and discovery. For the infectious agents that commonly affect sheltered dogs and cats, including canine distemper virus, canine influenza virus, Streptococcus spp, parvoviruses, feline herpesvirus, feline caliciviruses, and feline infectious peritonitis virus, we present familiar as well as newly recognized lesions associated with infection. Preliminary studies on recently discovered viruses like canine circovirus, canine bocavirus, and feline norovirus

  9. Cryptic disease-induced mortality may cause host extinction in an apparently stable host-parasite system.

    PubMed

    Valenzuela-Sánchez, Andrés; Schmidt, Benedikt R; Uribe-Rivera, David E; Costas, Francisco; Cunningham, Andrew A; Soto-Azat, Claudio

    2017-09-27

    The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host-parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii - Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality. © 2017 The Author(s).

  10. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-05-25

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.

  11. Agroterrorism: Minimizing the Consequences of Intentionally Introduced Foreign Animal Disease

    DTIC Science & Technology

    2010-04-01

    responsibility and dedicate fewer resources to mitigate the threat. Unless they are zoonotic , animal and plant diseases do not 2 Ibid., 157. 3...of the United States and current FAD policies are inadequate. 4 Zoonotic diseases or...pathogens that can be transmitted from animals to people. Specifically, a zoonotic disease normally exists in animals can infect humans. 5 John Brogan

  12. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Treesearch

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  13. Effects of Simulated Microgravity on a Host-Pathogen System

    NASA Technical Reports Server (NTRS)

    Gilbert, Rachel; Lo, Rachel; Bhattacharya, Sharmila

    2017-01-01

    While it has been shown that decades of astronauts and cosmonauts can suffer from illnesses both during and after spaceflight, the underlying causes are still poorly understood, due in part to the fact that there are so many variables to consider when investigating the human immune system in a complex environment. Invertebrates have become popular models for studying human disease because they are cheap, highly amenable to experimental manipulation, and have innate immune systems with a high genetic similarity to humans. Fruit flies (Drosophila melanogaster) have been shown to experience a dramatic shift in immune gene expression following spaceflight, but are still able to fight off infections when exposed to bacteria. However, the common bacterial pathogen Serratia marcescens was shown to become more lethal to fruit flies after being cultured in space, suggesting that not only do we need to consider host changes in susceptibility, but also changes in the pathogen itself after spaceflight conditions. Being able to simulate spaceflight conditions in a controlled environment on the ground gives us the ability to not only evaluate the effects of microgravity on the host immune system, but also how the microorganisms that cause immune disorders are being affected by these drastic environmental shifts. In this study, I use a ground-based simulated microgravity environment to examine the genetic changes associated with increased S. marcescens virulence in order to understand how microgravity is affecting this pathogen, as well as how these genetic changes influence and interact with the host immune system. This study will provide us with more directed approaches to studying the effects of spaceflight on human beings, with the ultimate goal of being able to counteract immune dysfunction in future space exploration.

  14. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    PubMed

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Sea fan immunity and disease is influenced by metal pollution, host demography, and multiple stressors

    NASA Astrophysics Data System (ADS)

    Tracy, A. M.; Weil, E.; Harvell, C. D.

    2016-02-01

    Organisms in natural populations experience an onslaught of stressful conditions that may compromise their ability to fight pathogens, particularly if multiple stressors impact a host at the same time. Environmental stressors can also influence the pathogens. Despite the clear importance of environmental factors for coral host-pathogen interactions and the potential for population-level consequences, there is relatively little research to date on multiple stressors. The population of Caribbean sea fans, Gorgonia ventalina, in Parguera, Puerto Rico is a tractable system in which to study the effects of multiple stressors on two pathogens. Sea fans are dominant members of reefs that provide food and habitat for diverse reef inhabitants. In addition, there is already a foundation of research on sea fan disease and immunity. We first conducted field surveys of 15 sites to assess the effects of demographic and environmental factors on the prevalence and severity of multifocal purple spots (MFPS) and a Labyrinthulid stramenopile pathogen, as well as the host's cellular immune response to each pathogen. We complemented the field survey with a fully factorial, clonally replicated experiment on the separate and combined effects of thermal stress and copper pollution on both the host and the pathogen. Although water quality has been linked to coral disease, there are no studies investigating the role of metal or chemical pollutants, which are high at some of our study sites. Preliminary results show that the sea fan immune response to the Labyrinthulid depends on interactive effects of copper and thermal stress. The field survey identifies colony size as the main driver of MFPS. This in-depth perspective on sea fan disease speaks to the immune capabilities of cnidarians, highlights factors that modify those capabilities, and reflects the complex interaction of host, pathogens, and environment in this ecologically important coral.

  16. Bacterial pathogen manipulation of host membrane trafficking.

    PubMed

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  17. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  18. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  19. Risks to farm animals from pathogens in composted catering waste containing meat.

    PubMed

    Gale, P

    2004-07-17

    Uncooked meat may contain animal pathogens, including bovine spongiform encephalopathy, foot-and-mouth disease virus, African swine fever virus and classical swine fever virus, and to prevent outbreaks of these diseases in farm animals, the disposal of meat from catering waste is controlled under the Animal By-Products Regulations. This paper estimates the risks to farm animals of grazing land on to which compost, produced by the composting of catering waste containing meat, has been applied. The factors controlling the level of risk are the separation of the meat at source, the efficiency of the composting process, and the decay and dilution of the pathogens in soil. The net pathogen destruction by the composting process is determined largely by the degree of bypass, and to accommodate the possibility of large joints or even whole carcases being discarded uncooked to catering waste, a time/temperature condition of 60 degrees C for two days is recommended. Where data are lacking, worst-case assumptions have been applied. According to the model, classical swine fever virus constitutes the highest risk, but the assessment shows that a two-barrier composting approach, together with a two-month grazing ban, reduces the risk to one infection in pigs every 190 years in England and Wales. This work defined the operational conditions for the composting of catering waste as set out in the Animal By-Products Regulations 2003 (SI 1482).

  20. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions.

    PubMed

    Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques

    2017-01-01

    Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.

  1. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity

    PubMed Central

    Fischer, Gregory J.; Keller, Nancy P.

    2016-01-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived non-enzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions. PMID:26920885

  2. Tick-borne infections in human and animal population worldwide

    PubMed Central

    Brites-Neto, José; Duarte, Keila Maria Roncato; Martins, Thiago Fernandes

    2015-01-01

    The abundance and activity of ectoparasites and its hosts are affected by various abiotic factors, such as climate and other organisms (predators, pathogens and competitors) presenting thus multiples forms of association (obligate to facultative, permanent to intermittent and superficial to subcutaneous) developed during long co-evolving processes. Ticks are ectoparasites widespread globally and its eco epidemiology are closely related to the environmental conditions. They are obligatory hematophagous ectoparasites and responsible as vectors or reservoirs at the transmission of pathogenic fungi, protozoa, viruses, rickettsia and others bacteria during their feeding process on the hosts. Ticks constitute the second vector group that transmit the major number of pathogens to humans and play a role primary for animals in the process of diseases transmission. Many studies on bioecology of ticks, considering the information related to their population dynamics, to the host and the environment, comes possible the application and efficiency of tick control measures in the prevention programs of vector-borne diseases. In this review were considered some taxonomic, morphological, epidemiological and clinical fundamental aspects related to the tick-borne infections that affect human and animal populations. PMID:27047089

  3. Animal migration and risk of spread of viral infections: Chapter 9

    USGS Publications Warehouse

    Prosser, Diann J.; Nagel, Jessica; Takekawa, John Y.; Edited by Singh, Sunit K.

    2013-01-01

    The potential contribution of migration towards the spread of disease is as varied as the ecology of the pathogens themselves and their host populations. This chapter outlines multiple examples of viral diseases in animal populations and their mechanisms of viral spread. Many species of insects, mammals, fish, and birds exhibit migratory behavior and have the potential to disperse diseases over long distances. The majority of studies available on viral zoonoses have focused on birds and bats, due to their highly migratory life histories. A number of studies have reported evidence of changes in the timing of animal migrations in response to climate change. The majority indicate an advancement of spring migration, with few or inconclusive results for fall migration. Predicting the combined effects of climate change on migratory patterns of host species and epidemiology of viral pathogens is complex and not fully realistic.

  4. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    USGS Publications Warehouse

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  5. Host gene-microbiome interactions: molecular mechanisms in inflammatory bowel disease.

    PubMed

    Chu, Hiutung

    2017-07-24

    Recent studies have identified links between host genetic variants and microbial recognition of the microbiome. Defects in host-microbiome interactions in individuals harboring inflammatory bowel disease risk alleles may result in imbalances of the microbial community, impaired pathogen clearance, and failure to sense beneficial commensal microbes. These findings highlight the importance of maintaining bi-directional communication at the mucosal interface during intestinal homeostasis.

  6. Modulation of host cell biology by plant pathogenic microbes.

    PubMed

    Le Fevre, Ruth; Evangelisti, Edouard; Rey, Thomas; Schornack, Sebastian

    2015-01-01

    Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.

  7. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  8. Synanthropic Mammals as Potential Hosts of Tick-Borne Pathogens in Panama.

    PubMed

    Bermúdez, Sergio E; Gottdenker, Nicole; Krishnvajhala, Aparna; Fox, Amy; Wilder, Hannah K; González, Kadir; Smith, Diorene; López, Marielena; Perea, Milixa; Rigg, Chystrie; Montilla, Santiago; Calzada, José E; Saldaña, Azael; Caballero, Carlos M; Lopez, Job E

    2017-01-01

    Synanthropic wild mammals can be important hosts for many vector-borne zoonotic pathogens. The aim of this study was determine the exposure of synanthropic mammals to two types of tick-borne pathogens in Panama, spotted fever group Rickettsia (SFGR) and Borrelia relapsing fever (RF) spirochetes. One hundred and thirty-one wild mammals were evaluated, including two gray foxes, two crab-eating foxes (from zoos), four coyotes, 62 opossum and 63 spiny rats captured close to rural towns. To evaluate exposure to SFGR, serum samples from the animals were tested by indirect immunofluorescence assay (IFA) using Rickettsia rickettsii and Candidatus Rickettsia amblyommii antigen. Immunoblotting was performed using Borrelia turicatae protein lysates and rGlpQ, to assess infection caused by RF spirochetes. One coyote (25%) and 27 (43%) opossums showed seroreactivity to SFGR. Of these opossums, 11 were seroreactive to C. R. amblyommii. Serological reactivity was not detected to B. turicatae in mammal samples. These findings may reflect a potential role of both mammals in the ecology of tick-borne pathogens in Panama.

  9. Synanthropic Mammals as Potential Hosts of Tick-Borne Pathogens in Panama

    PubMed Central

    Bermúdez, Sergio E.; Gottdenker, Nicole; Krishnvajhala, Aparna; Fox, Amy; Wilder, Hannah K.; González, Kadir; Smith, Diorene; López, Marielena; Perea, Milixa; Rigg, Chystrie; Montilla, Santiago; Calzada, José E.; Saldaña, Azael; Caballero, Carlos M.

    2017-01-01

    Synanthropic wild mammals can be important hosts for many vector-borne zoonotic pathogens. The aim of this study was determine the exposure of synanthropic mammals to two types of tick-borne pathogens in Panama, spotted fever group Rickettsia (SFGR) and Borrelia relapsing fever (RF) spirochetes. One hundred and thirty-one wild mammals were evaluated, including two gray foxes, two crab-eating foxes (from zoos), four coyotes, 62 opossum and 63 spiny rats captured close to rural towns. To evaluate exposure to SFGR, serum samples from the animals were tested by indirect immunofluorescence assay (IFA) using Rickettsia rickettsii and Candidatus Rickettsia amblyommii antigen. Immunoblotting was performed using Borrelia turicatae protein lysates and rGlpQ, to assess infection caused by RF spirochetes. One coyote (25%) and 27 (43%) opossums showed seroreactivity to SFGR. Of these opossums, 11 were seroreactive to C. R. amblyommii. Serological reactivity was not detected to B. turicatae in mammal samples. These findings may reflect a potential role of both mammals in the ecology of tick-borne pathogens in Panama. PMID:28060928

  10. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits

    PubMed Central

    Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh

    2017-01-01

    Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773

  11. PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity

    PubMed Central

    Hall, Matthew; Ratmann, Oliver; Bonsall, David; Golubchik, Tanya; de Cesare, Mariateresa; Gall, Astrid; Cornelissen, Marion; Fraser, Christophe

    2018-01-01

    Abstract A central feature of pathogen genomics is that different infectious particles (virions and bacterial cells) within an infected individual may be genetically distinct, with patterns of relatedness among infectious particles being the result of both within-host evolution and transmission from one host to the next. Here, we present a new software tool, phyloscanner, which analyses pathogen diversity from multiple infected hosts. phyloscanner provides unprecedented resolution into the transmission process, allowing inference of the direction of transmission from sequence data alone. Multiply infected individuals are also identified, as they harbor subpopulations of infectious particles that are not connected by within-host evolution, except where recombinant types emerge. Low-level contamination is flagged and removed. We illustrate phyloscanner on both viral and bacterial pathogens, namely HIV-1 sequenced on Illumina and Roche 454 platforms, HCV sequenced with the Oxford Nanopore MinION platform, and Streptococcus pneumoniae with sequences from multiple colonies per individual. phyloscanner is available from https://github.com/BDI-pathogens/phyloscanner. PMID:29186559

  12. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel

    2017-02-28

    Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression

  13. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?

    USGS Publications Warehouse

    Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.

    2005-01-01

    In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are

  14. Sex-biased avian host use by arbovirus vectors.

    PubMed

    Burkett-Cadena, Nathan D; Bingham, Andrea M; Unnasch, Thomas R

    2014-11-01

    Prevalence of arthropod-borne parasites often differs drastically between host sexes. This sex-related disparity may be related to physiological (primarily hormonal) differences that facilitate or suppress replication of the pathogen in host tissues. Alternately, differences in pathogen prevalence between host sexes may be owing to differential exposure to infected vectors. Here, we report on the use of PCR-based assays recognizing bird sex chromosomes to investigate sex-related patterns of avian host use from field-collected female mosquitoes from Florida, USA. Mosquitoes took more bloodmeals from male birds (64.0% of 308 sexed samples) than female birds (36.0%), deviating significantly from a hypothetical 1:1 sex ratio. In addition, male-biased host use was consistent across mosquito species (Culex erraticus (64.4%); Culex nigripalpus (61.0%) and Culiseta melanura (64.9%)). Our findings support the hypothesis that sex-biased exposure to vector-borne pathogens contributes to disparities in parasite/pathogen prevalence between the sexes. While few studies have yet to investigate sex-biased host use by mosquitoes, the methods used here could be applied to a variety of mosquito-borne disease systems, including those that affect health of humans, domestic animals and wildlife. Understanding the mechanisms that drive sex-based disparities in host use may lead to novel strategies for interrupting pathogen/parasite transmission.

  15. Scaling up complexity in host-pathogens interaction models. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra

    2015-12-01

    Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].

  16. Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation

    PubMed Central

    Glidden, Caroline K.; Beechler, Brianna; Buss, Peter Erik; Charleston, Bryan; de Klerk-Lorist, Lin-Mari; Maree, Francois Frederick; Muller, Timothy; Pérez-Martin, Eva; Scott, Katherine Anne; van Schalkwyk, Ockert Louis; Jolles, Anna

    2018-01-01

    Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimental study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI remain elevated after viral clearance and; (3) how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was indicative of

  17. DNA Mutations Mediate Microevolution between Host-Adapted Forms of the Pathogenic Fungus Cryptococcus neoformans

    PubMed Central

    Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander

    2012-01-01

    The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925

  18. Climate change: effects on animal disease systems and implications for surveillance and control.

    PubMed

    de La Rocque, S; Rioux, J A; Slingenbergh, J

    2008-08-01

    Climate driven and other changes in landscape structure and texture, plus more general factors, may create favourable ecological niches for emerging diseases. Abiotic factors impact on vectors, reservoirs and pathogen bionomics and their ability to establish in new ecosystems. Changes in climatic patterns and in seasonal conditions may affect disease behaviour in terms of spread pattern, diffusion range, amplification and persistence in novel habitats. Pathogen invasion may result in the emergence of novel disease complexes, presenting major challenges for the sustainability of future animal agriculture at the global level. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and host population dynamics and distribution are complex to assess, and different approaches are used to describe the underlying epidemiological processes and the availability of ecological niches for pathogens and vectors. The invasion process can disrupt the long-term co-evolution of species. Pathogens adhering to an r-type strategy (e.g. RNA viruses) may be more inclined to encroach on a novel niche resulting from climate change. However, even when linkage between disease dynamics and climate change are relatively strong, there are other factors changing disease behaviour, and these should be accounted for as well. Overall vulnerability of a given ecosystem is a key variable in this regard. The impact of climate-driven changes varies in different parts of the world and in the different agro-climatic zones. Perhaps priority should go to those geographical areas where the integrity of the ecosystem is most severely affected and the adaptability, in terms of robustness and sustainability of response, relatively low.

  19. Dual RNA-seq of the plant pathogen phytophthora ramorum and its tanoak host

    Treesearch

    Katherine J. Hayden; Matteo Garbelotto; Brian J. Knaus; Richard C. Cronn; Hardeep Rai; Jessica W. Wright

    2014-01-01

    Emergent diseases are an ever-increasing threat to forests and forest ecosystems and necessitate the development of research tools for species that often may have few preexisting resources. We sequenced the mRNA expressed by the sudden oak death pathogen Phytophthora ramorum and its most susceptible forest host, tanoak, within the same tissue at two time points after...

  20. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens.

    PubMed

    Sparagano, Olivier; George, David; Giangaspero, Annunziata; Špitalská, Eva

    2015-09-30

    Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    PubMed

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  2. Modeling the combined influence of host dispersal and waterborne fate and transport on pathogen spread in complex landscapes

    PubMed Central

    Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.

    2012-01-01

    Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675

  3. Bonamia parasites: a rapidly changing perspective on a genus of important mollusc pathogens.

    PubMed

    Engelsma, Marc Y; Culloty, Sarah C; Lynch, Sharon A; Arzul, Isabelle; Carnegie, Ryan B

    2014-07-24

    Organisms of the genus Bonamia are intracellular protistan parasites of oysters. To date, 4 species have been described (B. ostreae, B. exitiosa, B. perspora and B. roughleyi), although the status of B. roughleyi is controversial. Introduction especially of B. ostreae and B. exitiosa to naïve host populations has been shown to cause mass mortalities in the past and has had a dramatic impact on oyster production. Both B. ostreae and B. exitiosa are pathogens notifiable to the World Organisation for Animal Health (OIE) and the European Union. Effective management of the disease caused by these pathogens is complicated by the extensive nature of the oyster production process and limited options for disease control of the cultured stocks in open water. This review focuses on the recent advances in research on genetic relationships between Bonamia isolates, geographical distribution, susceptible host species, diagnostics, epizootiology, host-parasite interactions, and disease resistance and control of this globally important genus of oyster pathogens.

  4. Host mating system and the spread of a disease-resistant allele in a population

    USGS Publications Warehouse

    DeAngelis, D.L.; Koslow, Jennifer M.; Jiang, J.; Ruan, S.

    2008-01-01

    The model presented here modifies a susceptible-infected (SI) host-pathogen model to determine the influence of mating system on the outcome of a host-pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.

  5. Behavioural defences in animals against pathogens and parasites: parallels with the pillars of medicine in humans

    PubMed Central

    Hart, Benjamin L.

    2011-01-01

    No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants. PMID:22042917

  6. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    PubMed Central

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  7. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease.

    PubMed

    Cohen, Jeremy M; Venesky, Matthew D; Sauer, Erin L; Civitello, David J; McMahon, Taegan A; Roznik, Elizabeth A; Rohr, Jason R

    2017-02-01

    Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold- and warm-adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature-dependent susceptibility of cold- and warm-adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold- and warm-adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species-level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change. © 2017 John Wiley & Sons Ltd/CNRS.

  8. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  9. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    PubMed

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  10. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

    PubMed

    Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2015-05-01

    Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.

  11. Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP.

    PubMed

    Colombo, Arnaldo L; Janini, Mario; Salomão, Reinaldo; Medeiros, Eduardo A S; Wey, Sergio B; Pignatari, Antonio C C

    2009-09-01

    Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.

  12. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    PubMed Central

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  13. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    PubMed

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  14. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection

    PubMed Central

    Fanning, Saranna; Hall, Lindsay J.; Cronin, Michelle; Zomer, Aldert; MacSharry, John; Goulding, David; O'Connell Motherway, Mary; Shanahan, Fergus; Nally, Kenneth; Dougan, Gordon; van Sinderen, Douwe

    2012-01-01

    Bifidobacteria comprise a significant proportion of the human gut microbiota. Several bifidobacterial strains are currently used as therapeutic interventions, claiming various health benefits by acting as probiotics. However, the precise mechanisms by which they maintain habitation within their host and consequently provide these benefits are not fully understood. Here we show that Bifidobacterium breve UCC2003 produces a cell surface-associated exopolysaccharide (EPS), the biosynthesis of which is directed by either half of a bidirectional gene cluster, thus leading to production of one of two possible EPSs. Alternate transcription of the two opposing halves of this cluster appears to be the result of promoter reorientation. Surface EPS provided stress tolerance and promoted in vivo persistence, but not initial colonization. Marked differences were observed in host immune response: strains producing surface EPS (EPS+) failed to elicit a strong immune response compared with EPS-deficient variants. Specifically, EPS production was shown to be linked to the evasion of adaptive B-cell responses. Furthermore, presence of EPS+ B. breve reduced colonization levels of the gut pathogen Citrobacter rodentium. Our data thus assigns a pivotal and beneficial role for EPS in modulating various aspects of bifidobacterial–host interaction, including the ability of commensal bacteria to remain immunologically silent and in turn provide pathogen protection. This finding enforces the probiotic concept and provides mechanistic insights into health-promoting benefits for both animal and human hosts. PMID:22308390

  15. Host group formation decreases exposure to vector-borne disease: a field experiment in a 'hotspot' of West Nile virus transmission.

    PubMed

    Krebs, Bethany L; Anderson, Tavis K; Goldberg, Tony L; Hamer, Gabriel L; Kitron, Uriel D; Newman, Christina M; Ruiz, Marilyn O; Walker, Edward D; Brawn, Jeffrey D

    2014-12-07

    Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease

    PubMed Central

    Kong, Eric F.; Kucharíková, Sona; Peters, Brian M.; Shirtliff, Mark E.

    2014-01-01

    The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV+ and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals. PMID:25422264

  17. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  18. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  19. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  20. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  1. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk.

    PubMed

    Adalsteinsson, Solny A; Shriver, W Gregory; Hojgaard, Andrias; Bowman, Jacob L; Brisson, Dustin; D'Amico, Vincent; Buler, Jeffrey J

    2018-01-23

    Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks. In the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species. Understory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in

  2. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  4. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    USDA-ARS?s Scientific Manuscript database

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  5. Worldwide risks of animal diseases: introduction.

    PubMed

    Pearson, J E

    2006-01-01

    Animal diseases impact food supplies, trade and commerce, and human health and well-being in every part of the world. Outbreaks draw the attention of those in agriculture, regulatory agencies, and government, as well as the general public. This was demonstrated by the 2000-2001 foot and mouth disease (FMD) outbreaks that occurred in Europe, South America, Asia and Africa and by the recent increased occurrence of emerging diseases transmitted from animals to humans. Examples of these emerging zoonotic diseases are highly pathogenic avian influenza, bovine spongiform encephalopathy, West Nile virus and severe acute respiratory syndrome. There is also the risk of well-known and preventable zoonotic diseases, such as rabies, brucellosis, leishmaniasis, and echinococcosis/hydatidosis, in certain countries; these diseases have a high morbidity with the potential for a very high mortality. Animal agriculturalists should have a global disease awareness of disease risks and develop plans of action to deal with them; in order to better respond to these diseases, they should develop the skills and competencies in politics, media interactions, and community engagement. This issue of Veterinaria Italiana presents information on the risk of animal diseases; their impact on animals and humans at the international, national, industry, and societal levels; and the responses to them. In addition, specific information is provided on national and international disease monitoring, surveillance and reporting, the risk of spread of disease by bioterrorism and on import risk analysis.

  6. Analysis of host-pathogen modulators of autophagy during Mycobacterium Tuberculosis infection and therapeutic repercussions.

    PubMed

    Khan, Arshad; Jagannath, Chinnaswamy

    2017-09-03

    Mycobacterium tuberculosis is one of the most deadly human pathogens known today in modern world, responsible for about 1.5 million deaths annually. Development of TB disease occurs only in 1 out of 10 individuals exposed to the pathogen which indicates that the competent host defense mechanisms exist in majority of the hosts to control the infection. In the last decade, autophagy has emerged as a key host immune defense mechanism against intracellular M. tuberculosis infection. Autophagy has been demonstrated not only as an effective antimicrobial mechanism for the clearance of M. tuberculosis, but the process has also been suggested to prevent excessive inflammation to avoid the adverse effects of infection on host. Nevertheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to compromise the optimal functioning of host autophagic machinery. This review describes an overview of the various host signaling pathways such as pattern recognition receptors, cytokines, nutrient starvation and other cellular stress that have been implicated in induction of autophagy during M. tuberculosis infection. The review also chalk out the complex interplay of several bacterial factors of M. tuberculosis that are known to be involved in compromising autophagy mediated defense of the host. A comprehensive understanding of the interaction of bacterial and host factors at the intersections of autophagic pathways could provide integrative insights for the development of autophagy-based prophylactics and novel therapeutic interventions for TB.

  7. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  8. Reservoir-host amplification of disease impact in an endangered amphibian.

    PubMed

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  9. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis

    PubMed Central

    Rohmer, Laurence; Hocquet, Didier; Miller, Samuel I.

    2011-01-01

    It is interesting to speculate that the evolutionary drive of microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Environments in animals that pathogens colonize have also driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, some genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained in some circumstances by loss of function due to mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies. PMID:21600774

  10. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches

    PubMed Central

    Argôlo-Filho, Ronaldo Costa; Loguercio, Leandro Lopes

    2013-01-01

    Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. PMID:26462580

  11. Inhibiting host-pathogen interactions using membrane-based nanostructures.

    PubMed

    Bricarello, Daniel A; Patel, Mira A; Parikh, Atul N

    2012-06-01

    Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Shared influence of pathogen and host genetics on a trade-off between latent period and spore production capacity in the wheat pathogen, Puccinia triticina.

    PubMed

    Pariaud, Bénédicte; Berg, Femke; Bosch, Frank; Powers, Stephen J; Kaltz, Oliver; Lannou, Christian

    2013-02-01

    Crop pathogens are notorious for their rapid adaptation to their host. We still know little about the evolution of their life cycles and whether there might be trade-offs between fitness components, limiting the evolutionary potential of these pathogens. In this study, we explored a trade-off between spore production capacity and latent period in Puccinia triticina, a fungal pathogen causing leaf rust on wheat. Using a simple multivariate (manova) technique, we showed that the covariance between the two traits is under shared control of host and pathogen, with contributions from host genotype (57%), pathogen genotype (18.4%) and genotype × genotype interactions (12.5%). We also found variation in sign and strength of genetic correlations for the pathogen, when measured on different host varieties. Our results suggest that these important pathogen life-history traits do not freely respond to directional selection and that precise evolutionary trajectories are contingent on the genetic identity of the interacting host and pathogen.

  13. Are disease reservoirs special? Taxonomic and life history characteristics

    PubMed Central

    Burgess, Tristan L.; Eskew, Evan A.; Roth, Tara M.; Stephenson, Nicole; Foley, Janet E.

    2017-01-01

    Pathogens that spill over between species cause a significant human and animal health burden. Here, we describe characteristics of animal reservoirs that are required for pathogen spillover. We assembled and analyzed a database of 330 disease systems in which a pathogen spills over from a reservoir of one or more species. Three-quarters of reservoirs included wildlife, and 84% included mammals. Further, 65% of pathogens depended on a community of reservoir hosts, rather than a single species, for persistence. Among mammals, the most frequently identified reservoir hosts were rodents, artiodactyls, and carnivores. The distribution among orders of mammalian species identified as reservoirs did not differ from that expected by chance. Among disease systems with high priority pathogens and epidemic potential, we found birds, primates, and bats to be overrepresented. We also analyzed the life history traits of mammalian reservoir hosts and compared them to mammals as a whole. Reservoir species had faster life history characteristics than mammals overall, exhibiting traits associated with greater reproductive output rather than long-term survival. Thus, we find that in many respects, reservoirs of spillover pathogens are indeed special. The described patterns provide a useful resource for studying and managing emerging infectious diseases. PMID:28704402

  14. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.

    PubMed

    Huo, Tong; Liu, Wei; Guo, Yu; Yang, Cheng; Lin, Jianping; Rao, Zihe

    2015-03-26

    Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by 'interolog' method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host.

  15. Estimating the Delay between Host Infection and Disease (Incubation Period) and Assessing Its Significance to the Epidemiology of Plant Diseases

    PubMed Central

    Leclerc, Melen; Doré, Thierry; Gilligan, Christopher A.; Lucas, Philippe; Filipe, João A. N.

    2014-01-01

    Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and

  16. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.

    PubMed

    Leclerc, Melen; Doré, Thierry; Gilligan, Christopher A; Lucas, Philippe; Filipe, João A N

    2014-01-01

    Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and

  17. Using a Bayesian network to clarify areas requiring research in a host-pathogen system.

    PubMed

    Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L

    2017-12-01

    Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for

  18. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  19. What is a pathogen? Toward a process view of host-parasite interactions

    PubMed Central

    Méthot, Pierre-Olivier; Alizon, Samuel

    2014-01-01

    Until quite recently and since the late 19th century, medical microbiology has been based on the assumption that some micro-organisms are pathogens and others are not. This binary view is now strongly criticized and is even becoming untenable. We first provide a historical overview of the changing nature of host-parasite interactions, in which we argue that large-scale sequencing not only shows that identifying the roots of pathogenesis is much more complicated than previously thought, but also forces us to reconsider what a pathogen is. To address the challenge of defining a pathogen in post-genomic science, we present and discuss recent results that embrace the microbial genetic diversity (both within- and between-host) and underline the relevance of microbial ecology and evolution. By analyzing and extending earlier work on the concept of pathogen, we propose pathogenicity (or virulence) should be viewed as a dynamical feature of an interaction between a host and microbes. PMID:25483864

  20. Prion disease tempo determined by host-dependent substrate reduction

    PubMed Central

    Mays, Charles E.; Kim, Chae; Haldiman, Tracy; van der Merwe, Jacques; Lau, Agnes; Yang, Jing; Grams, Jennifer; Di Bari, Michele A.; Nonno, Romolo; Telling, Glenn C.; Kong, Qingzhong; Langeveld, Jan; McKenzie, Debbie; Westaway, David; Safar, Jiri G.

    2014-01-01

    The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains. PMID:24430187

  1. Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk.

    PubMed

    Baddal, Buket; Muzzi, Alessandro; Censini, Stefano; Calogero, Raffaele A; Torricelli, Giulia; Guidotti, Silvia; Taddei, Anna R; Covacci, Antonello; Pizza, Mariagrazia; Rappuoli, Rino; Soriani, Marco; Pezzicoli, Alfredo

    2015-11-17

    pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease. Copyright © 2015 Baddal et al.

  2. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.

    PubMed

    Lowder, Bethan V; Guinane, Caitriona M; Ben Zakour, Nouri L; Weinert, Lucy A; Conway-Morris, Andrew; Cartwright, Robyn A; Simpson, A John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J Ross

    2009-11-17

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.

  3. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus

    PubMed Central

    Lowder, Bethan V.; Guinane, Caitriona M.; Ben Zakour, Nouri L.; Weinert, Lucy A.; Conway-Morris, Andrew; Cartwright, Robyn A.; Simpson, A. John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J. Ross

    2009-01-01

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens. PMID:19884497

  4. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...objective of this project is to examine the evolutionary consequences of introducing a tetravalent live- attenuated dengue virus vaccine into children in

  5. Laboratory containment practices for arthropod vectors of human and animal pathogens.

    PubMed

    Tabachnick, Walter J

    2006-03-01

    Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.

  6. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  7. IFN-β: A Contentious Player in Host-Pathogen Interaction in Tuberculosis.

    PubMed

    Sabir, Naveed; Hussain, Tariq; Shah, Syed Zahid Ali; Zhao, Deming; Zhou, Xiangmei

    2017-12-16

    Tuberculosis (TB) is a major health threat to the human population worldwide. The etiology of the disease is Mycobacterium tuberculosis (Mtb), a highly successful intracellular pathogen. It has the ability to manipulate the host immune response and to make the intracellular environment suitable for its survival. Many studies have addressed the interactions between the bacteria and the host immune cells as involving many immune mediators and other cellular players. Interferon-β (IFN-β) signaling is crucial for inducing the host innate immune response and it is an important determinant in the fate of mycobacterial infection. The role of IFN-β in protection against viral infections is well established and has been studied for decades, but its role in mycobacterial infections remains much more complicated and debatable. The involvement of IFN-β in immune evasion mechanisms adopted by Mtb has been an important area of investigation in recent years. These advances have widened our understanding of the pro-bacterial role of IFN-β in host-pathogen interactions. This pro-bacterial activity of IFN-β appears to be correlated with its anti-inflammatory characteristics, primarily by antagonizing the production and function of interleukin 1β (IL-1β) and interleukin 18 (IL-18) through increased interleukin 10 (IL-10) production and by inhibiting the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome. Furthermore, it also fails to provoke a proper T helper 1 (Th1) response and reduces the expression of major histocompatibility complex II (MHC-II) and interferon-γ receptors (IFNGRs). Here we will review some studies to provide a paradigm for the induction, regulation, and role of IFN-β in mycobacterial infection. Indeed, recent studies suggest that IFN-β plays a role in Mtb survival in host cells and its downregulation may be a useful therapeutic strategy to control Mtb infection.

  8. Immunological Response to Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex: An RNA-Sequence Analysis of the Bronchial Lymph Node Transcriptome.

    PubMed

    Tizioto, Polyana C; Kim, JaeWoo; Seabury, Christopher M; Schnabel, Robert D; Gershwin, Laurel J; Van Eenennaam, Alison L; Toaff-Rosenstein, Rachel; Neibergs, Holly L; Taylor, Jeremy F

    2015-01-01

    Susceptibility to bovine respiratory disease (BRD) is multi-factorial and is influenced by stress in conjunction with infection by both bacterial and viral pathogens. While vaccination is broadly used in an effort to prevent BRD, it is far from being fully protective and cases diagnosed from a combination of observed clinical signs without any attempt at identifying the causal pathogens are usually treated with antibiotics. Dairy and beef cattle losses from BRD are profound worldwide and genetic studies have now been initiated to elucidate host loci which underlie susceptibility with the objective of enabling molecular breeding to reduce disease prevalence. In this study, we employed RNA sequencing to examine the bronchial lymph node transcriptomes of controls and beef cattle which had individually been experimentally challenged with bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Pasteurella multocida, Mannheimia haemolytica or Mycoplasma bovis to identify the genes that are involved in the bovine immune response to infection. We found that 142 differentially expressed genes were located in previously described quantitative trait locus regions associated with risk of BRD. Mutations affecting the expression or amino acid composition of these genes may affect disease susceptibility and could be incorporated into molecular breeding programs. Genes involved in innate immunity were generally found to be differentially expressed between the control and pathogen-challenged animals suggesting that variation in these genes may lead to a heritability of susceptibility that is pathogen independent. However, we also found pathogen-specific expression profiles which suggest that host genetic variation for BRD susceptibility is pathogen dependent.

  9. Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease.

    PubMed

    Kong, Eric F; Kucharíková, Sona; Van Dijck, Patrick; Peters, Brian M; Shirtliff, Mark E; Jabra-Rizk, Mary Ann

    2015-02-01

    The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV(+) and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interactions of Salmonella with animals and plants.

    PubMed

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  12. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  13. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally

  14. Mechanisms of nuclear suppression of host immunity by effectors from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa).

    PubMed

    Caillaud, M-C; Wirthmueller, L; Fabro, G; Piquerez, S J M; Asai, S; Ishaque, N; Jones, J D G

    2012-01-01

    Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria additional to their more characterized role of suppressing plant defense. Recent studies suggest that effectors may manipulate host transcription or other nuclear regulatory components for the benefit of pathogen development. However, the specific mechanisms by which these effectors promote susceptibility remain unclear. Of two recent screenings, we identified 15 nuclear-localized Hpa effectors (HaRxLs) that interact directly or indirectly with host nuclear components. When stably expressed in planta, nuclear HaRxLs cause diverse developmental phenotypes highlighting that nuclear effectors might interfere with fundamental plant regulatory mechanisms. Here, we report recent advances in understanding how a pathogen can manipulate nuclear processes in order to cause disease.

  15. Strategies for new and improved vaccines against ticks and tick-borne diseases.

    PubMed

    de la Fuente, J; Kopáček, P; Lew-Tabor, A; Maritz-Olivier, C

    2016-12-01

    Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission. © 2016 John Wiley & Sons Ltd.

  16. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    PubMed

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  17. Warming and fertilization alter the dilution effect of host diversity on disease severity.

    PubMed

    Liu, Xiang; Lyu, Shengman; Zhou, Shurong; Bradshaw, Corey J A

    2016-07-01

    An essential ecosystem service is the dilution effect of biodiversity on disease severity, yet we do not fully understand how this relationship might change with continued climate warming and ecosystem degradation. We designed removal experiments in natural assemblages of Tibetan alpine meadow vegetation by manipulating plot-level plant diversity to investigate the relationship between different plant biodiversity indices and foliar fungal pathogen infection, and how artificial fertilization and warming affect this relationship. Although pathogen group diversity increased with host species richness, disease severity decreased as host diversity rose (dilution effect). The dilution effect of phylogenetic diversity on disease held across different levels of host species richness (and equal abundances), meaning that the effect arises mainly in association with enhanced diversity itself rather than from shifting abundances. However, the dilution effect was weakened by fertilization. Among indices, phylogenetic diversity was the most parsimonious predictor of infection severity. Experimental warming and fertilization shifted species richness to the most supported predictor. Compared to planting experiments where artificial communities are constructed from scratch, our removal experiment in natural communities more realistically demonstrate that increasing perturbation adjusts natural community resistance to disease severity. © 2016 by the Ecological Society of America.

  18. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man

    PubMed Central

    Zapata, Juan C; Salvato, Maria S

    2015-01-01

    Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease. PMID:25844088

  19. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic.

    PubMed

    Salkeld, Daniel J; Padgett, Kerry A; Jones, James Holland

    2013-05-01

    Zoonotic pathogens are significant burdens on global public health. Because they are transmitted to humans from non-human animals, the transmission dynamics of zoonoses are necessarily influenced by the ecology of their animal hosts and vectors. The 'dilution effect' proposes that increased species diversity reduces disease risk, suggesting that conservation and public health initiatives can work synergistically to improve human health and wildlife biodiversity. However, the meta-analysis that we present here indicates a weak and highly heterogeneous relationship between host biodiversity and disease. Our results suggest that disease risk is more likely a local phenomenon that relies on the specific composition of reservoir hosts and vectors, and their ecology, rather than patterns of species biodiversity. © 2013 Blackwell Publishing Ltd/CNRS.

  20. Host surveys, ixodid tick biology and transmission scenarios as related to the tick-borne pathogen, Ehrlichia canis

    PubMed Central

    Stich, R. W.; Schaefer, John J.; Bremer, William G.; Needham, Glen R.; Jittapalapong, Sathaporn

    2008-01-01

    The ehrlichioses have been subject to increasing interest from veterinary and public health perspectives, but experimental studies of these diseases and their etiologic agents can be challenging. Ehrlichia canis, the primary etiologic agent of canine monocytic ehrlichiosis, is relatively well characterized and offers unique advantages and opportunities to study interactions between a monocytotropic pathogen and both its vertebrate and invertebrate hosts. Historically, advances in tick-borne disease control strategies have typically followed explication of tick-pathogen-vertebrate interactions, thus it is reasonable to expect novel, more sustainable approaches to control of these diseases as the transmission of their associated infections are investigated at the molecular through ecological levels. Better understanding of the interactions between E. canis and its canine and tick hosts would also elucidate similar interactions for other Ehrlichia species as well as the potential roles of canine sentinels, reservoirs and models of tick-borne zoonoses. This article summarizes natural exposure studies and experimental investigations of E. canis in the context of what is understood about biological vectors of tick-borne Anaplasmataceae. PMID:18963493

  1. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Targeting the host-pathogen interface for treatment of Staphylococcus aureus infection.

    PubMed

    Park, Bonggoo; Liu, George Y

    2012-03-01

    Recent emergence of methicillin-resistant Staphylococcus aureus both within and outside healthcare settings has accelerated the use of once reserved last line antibiotics such as vancomycin. With increased use of antibiotics, there has been a rapid rise in the rate of resistance development to the anti-MRSA drugs. As the antibiotic pipeline becomes strained, alternative strategies are being sought for future treatment of S. aureus. Here, we review several novel anti-staphylococcal strategies that, unlike conventional antibiotics, do not target essential gene products elaborated by the pathogen. The approaches seek instead to weaken the S. aureus defense by neutralizing its virulence factors or boosting host immunity. Other strategies target commensal bacteria that naturally colonize the human host to inhibit S. aureus colonization. Ultimately, the aim is to shift the balance between host defense and pathogen virulence in favor of inhibition of S. aureus pathogenic activities.

  3. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors

    PubMed Central

    Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  4. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    PubMed Central

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  5. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    PubMed

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  6. Amoeba provide insight into the origin of virulence in pathogenic fungi.

    PubMed

    Casadevall, Arturo

    2012-01-01

    Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.

  7. Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus.

    PubMed

    Schwanz, Lisa E; Voordouw, Maarten J; Brisson, Dustin; Ostfeld, Richard S

    2011-02-01

    The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on one of its most important reservoir hosts, the white-footed mouse, Peromyscus leucopus. We mimic natural infections in mice using the vector (Black-legged ticks, Ixodes scapularis) and examine the immunological and behavioral responses of mouse hosts. Despite producing antibodies against B. burgdorferi, infected mice did not have elevated white blood cells compared with uninfected mice. In addition, infected and uninfected mice did not differ in their wheel-running activity. Our results suggest that infection with the spirochete B. burgdorferi has little impact on the field activity of white-footed mice. Lyme disease transmission appears to be uncomplicated by pathogen-altered behavior of this reservoir host.

  8. Global impact of Torque teno virus infection in wild and domesticated animals.

    PubMed

    Manzin, Aldo; Mallus, Francesca; Macera, Lisa; Maggi, Fabrizio; Blois, Sylvain

    2015-07-04

    Infection with Torque teno viruses (TTVs) is not restricted to humans. Different domestic and wild animal species are naturally infected with species-specific TTVs worldwide. Due to the global spread of the infection, it is likely that essentially all animals are naturally infected with species-specific TTVs, and that co-evolution of TTVs with their hosts probably occurred. Although TTVs are potentially related to many diseases, the evidence of the widespread infection in healthy human and nonhuman hosts raised doubts about their pathogenic potential. Nonetheless, their role as superimposed agents of other diseases or as triggers for impairment of immune surveillance is currently under debate. The possible contribution of animal TT viruses to interspecies transmission and their role as zoonotic agents are currently topics of discussion.

  9. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.

    PubMed

    Dong, Yanhan; Li, Ying; Qi, Zhongqiang; Zheng, Xiaobo; Zhang, Zhengguang

    2016-02-01

    Plant diseases cause extensive yield loss of crops worldwide, and secretory 'warfare' occurs between plants and pathogenic organisms all the time. Filamentous plant pathogens have evolved the ability to manipulate host processes and facilitate colonization through secreting effectors inside plant cells. The stresses from hosts and environment can drive the genome dynamics of plant pathogens. Remarkable advances in plant pathology have been made owing to these adaptable genome regions of several lineages of filamentous phytopathogens. Characterization new effectors and interaction analyses between pathogens and plants have provided molecular insights into the plant pathways perturbed during the infection process. In this mini-review, we highlight promising approaches of identifying novel effectors based on the genome plasticity. We also discuss the interaction mechanisms between plants and their filamentous pathogens and outline the possibilities of effector gene expression under epigenetic control that will be future directions for research.

  10. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?

    PubMed

    Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R

    2018-03-16

    Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.

  11. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  12. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  13. Prevention and control strategies for ticks and pathogen transmission.

    PubMed

    de La Fuente, J; Kocan, K M; Contreras, M

    2015-04-01

    Ticks and tick-borne pathogens have evolved together, resulting in a complex relationship in which the pathogen's life cycle is perfectly coordinated with the tick's feeding cycle, and the tick can harbour high pathogen levels without affecting its biology. Tick-borne diseases (TBDs) continue to emerge and/or spread, and pose an increasing threatto human and animal health. The disruptive impacts of global change have resulted in ecosystem instability and the future outcomes of management and control programmes for ticks and TBDs are difficult to predict. In particular, the selection of acaricide-resistant ticks has reduced the value of acaricides as a sole means of tick control. Vaccines provide an alternative control method, but the use of tick vaccines has not advanced since the first vaccines were registered in the early 1990s. An understanding of the complex molecular relationship between hosts, ticks and pathogens and the use of systems biology and vaccinomics approaches are needed to discover proteins with the relevant biological function in tick feeding, reproduction, development, immune response, the subversion of host immunity and pathogen transmission, all of which mediate tick and pathogen success. The same approaches will also be required to characterise candidate protective antigens and to validate vaccine formulations. Tick vaccines with a dual effect on tick infestations and pathogen transmission could reduce both tick infestations and their vector capacity for humans, animals and reservoir hosts. The development of integrated tick control strategies, including vaccines and synthetic and botanical acaricides, in combination with managing drug resistance and educating producers, should lead to the sustainable control of ticks and TBDs.

  14. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life

    PubMed Central

    Weßling, Ralf; Epple, Petra; Altmann, Stefan; He, Yijian; Yang, Li; Henz, Stefan R.; McDonald, Nathan; Wiley, Kristin; Bader, Kai Christian; Gläßer, Christine; Mukhtar, M. Shahid; Haigis, Sabine; Ghamsari, Lila; Stephens, Amber E.; Ecker, Joseph R.; Vidal, Marc; Jones, Jonathan D. G.; Mayer, Klaus F. X.; van Themaat, Emiel Ver Loren; Weigel, Detlef; Schulze-Lefert, Paul; Dangl, Jeffery L.; Panstruga, Ralph; Braun, Pascal

    2014-01-01

    SUMMARY While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this dataset with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intra- and interspecies convergence and several altered immune response phenotypes. The effectors and most heavily targeted host protein co-localized in sub-nuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets. PMID:25211078

  15. Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota

    PubMed Central

    Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas

    2013-01-01

    Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845

  16. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space.

    PubMed

    Suzán, Gerardo; García-Peña, Gabriel E; Castro-Arellano, Ivan; Rico, Oscar; Rubio, André V; Tolsá, María J; Roche, Benjamin; Hosseini, Parviez R; Rizzoli, Annapaola; Murray, Kris A; Zambrana-Torrelio, Carlos; Vittecoq, Marion; Bailly, Xavier; Aguirre, A Alonso; Daszak, Peter; Prieur-Richard, Anne-Helene; Mills, James N; Guégan, Jean-Francois

    2015-02-01

    The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche-based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.

  17. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    PubMed Central

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  18. Prioritization of Companion Animal Transmissible Diseases for Policy Intervention in Europe.

    PubMed

    Cito, F; Rijks, J; Rantsios, A T; Cunningham, A A; Baneth, G; Guardabassi, L; Kuiken, T; Giovannini, A

    2016-07-01

    A number of papers have been published on the prioritization of transmissible diseases in farm animals and wildlife, based either on semiquantitative or truly quantitative methods, but there is no published literature on the prioritization of transmissible diseases in companion animals. In this study, available epidemiological data for diseases transmissible from companion animals to man were analysed with the aim of developing a procedure suitable for their prioritization within a European framework. A new method and its associated questionnaire and scoring system were designed based on methods described by the World Organisation for Animal Health (OIE). Modifications were applied to allow for the paucity of specific information on companion animal transmissible diseases. The OIE method was also adapted to the subject and to the regional scope of the interprofessional network addressing zoonotic diseases transmitted via companion animals in Europe: the Companion Animals multisectoriaL interprofessionaL Interdisciplinary Strategic Think tank On zoonoses (CALLISTO). Adaptations were made based on information collected from expert groups on viral, bacterial and parasitic diseases using a structured questionnaire, in which all questions were closed-ended. The expert groups were asked to select the most appropriate answer for each question taking into account the relevance and reliability of the data available in the scientific literature. Subsequently, the scoring of the answers obtained for each disease covered by the questionnaire was analysed to obtain two final overall scores, one for human health impact and one for agricultural economic impact. The adapted method was then applied to select the 15 most important pathogens (five for each pathogen group: viral, bacterial and parasitic) on the basis of their overall impact on public health and agriculture. The result of the prioritization exercise was a joint priority list (available at www.callistoproject.eu) of

  19. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    PubMed

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    PubMed

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of predation on community resilience to disease.

    PubMed

    Al-Shorbaji, Farah; Roche, Benjamin; Britton, Robert; Andreou, Demetra; Gozlan, Rodolphe

    2017-09-01

    resilience to this generalist pathogen in the host community was low, this could be increased using management interventions. The results suggest that this model has high utility for predicting community resilience to disease and thus can be applied to other generalist parasites to determine risks of disease emergence. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  2. Interaction effects of different drivers of wild bee decline and their influence on host-pathogen dynamics.

    PubMed

    Meeus, Ivan; Pisman, Matti; Smagghe, Guy; Piot, Niels

    2018-04-01

    Wild bee decline is a multi-factorial problem, yet it is crucial to understand the impact of a single driver. Hereto the interaction effects of wild bee decline with multiple natural and anthropogenic stressors need to be clear. This is also true for the driver 'pathogens', as stressor induced disturbances of natural host-pathogen dynamics can unbalance settled virulence equilibria. Invasive species, bee domestication, habitat loss, climate changes and insecticides are recognized drivers of wild bee decline, but all influence host-pathogen dynamics as well. Many wild bee pathogens have multiple hosts, which relaxes the host-density limitation of virulence evolution. In conclusion, disturbances of bee-pathogen dynamics can be compared to a game of Russian roulette. Copyright © 2018. Published by Elsevier Inc.

  3. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  4. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  6. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  7. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  8. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    PubMed

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  9. Host phylogeny determines viral persistence and replication in novel hosts.

    PubMed

    Longdon, Ben; Hadfield, Jarrod D; Webster, Claire L; Obbard, Darren J; Jiggins, Francis M

    2011-09-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  10. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  11. Climate change and animal diseases in South America.

    PubMed

    Pinto, J; Bonacic, C; Hamilton-West, C; Romero, J; Lubroth, J

    2008-08-01

    Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming trends predicted in the 2007 Intergovernmental Panel on Climatic Change (IPCC) report for South America are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as bluetongue, West Nile fever, vesicular stomatitis and New World screwworm. Changes in distribution will be partially modulated by El Niño Southern Oscillation events, which will become more frequent and lead to a greater frequency of droughts and floods. Active disease surveillance for animal diseases in South America, particularly for vector-borne diseases, is very poor. Disease reporting is often lacking, which affects knowledge of disease distribution and impact, and preparedness for early response. Improved reporting for animal diseases that may be affected by climate change is needed for better prevention and intervention measures in susceptible livestock, wildlife and vectors in South America. This requires contributions from multidisciplinary experts, including meteorologists, epidemiologists, biologists and ecologists, and from local communities.

  12. Fungi in healthy and diseased sea fans ( Gorgonia ventalina): is Aspergillus sydowii always the pathogen?

    NASA Astrophysics Data System (ADS)

    Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.

    2008-09-01

    Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an

  13. Viruses in Marine Animals: Discovery, Detection, and Characterization

    NASA Astrophysics Data System (ADS)

    Fahsbender, Elizabeth

    Diseases in marine animals are emerging at an increasing rate. Disease forecasting enabled by virus surveillance presents a proactive solution for managing emerging diseases. Broad viral surveys aid in disease forecasting by providing baseline data on viral diversity associated with various hosts, including many that are not associated with disease. However, these viruses can become pathogens due to expansion in host or geographic range, as well as when changing conditions shift the balance between commensal viruses and the host immune system. Therefore, it is extremely valuable to identify and characterize viruses present in many different hosts in a variety of environments, regardless of whether the hosts are symptomatic or not. The lack of a universal gene shared by all viruses makes virus surveillance difficult, because no single assay exists that can detect the enormous diversity of viruses. Viral metagenomics circumvents this issue by purifying viral particles directly from host tissues and sequencing the nucleic acids, allowing for virus identification. However, virus identification is only the first step, which should ideally be followed by complete sequencing of the viral genome to identify genes of interest and develop assays to reveal viral prevalence, tropism, ecology, and pathogenicity. This dissertation focuses on the discovery of novel viruses in marine animals, characterization of complete viral genomes, and the development of subsequent diagnostic assays for further analysis of virus ecology. First, viral metagenomics was used to explore the viruses present in the healthy Weddell seal (Leptonychotes weddellii) population in Antarctica, which led to the discovery of highly prevalent small, circular single-stranded DNA (ssDNA) viruses. The lack of knowledge regarding the viruses of Antarctic wildlife warrants this study to determine baseline viral communities in healthy animals that can be used to survey changes over time. From the healthy Weddell

  14. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?

    PubMed Central

    Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.

    2017-01-01

    Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896

  15. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    PubMed

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    of chemical fungicides and the implementation of new alternative strategies, blue mold remains a critical disease of these stored fruits worldwide. Actual trends are focused on acquiring the knowledge of the host-pathogen interactions because it may help on finding new rational and environmentally friendly control alternatives. Despite the economic importance of some postharvest diseases, proteomics has only been applied in a few cases to study fruit-pathogen interactions. On the one hand, this is the first study that monitored changes at the proteome and oxi-proteome level in 'Golden Smoothee' apple fruits in response to P. expansum (compatible) and P. digitatum (non-host) pathogens. On the other hand, the main technological innovation of the reported research is the detection and quantification of oxidized (carbonylated) proteins to assess protein oxidative damage, avoiding the immunoblotting technique. The importance of the biological process investigated lies in the different mechanisms induced in fruit in response to P. expansum and P. digitatum. Results revealed that fruit recognizes and reacts to P. expansum in a similar manner to wounding, while its response to P. digitatum exhibits few differences in the protein profile. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. It also provides new biomarkers for oxidative damage mainly caused by the oxidative response occurring in fruit tissue in response to a host and a non-host pathogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Commensal or pathogen – a challenge to fulfil Koch’s Postulates

    PubMed Central

    Hess, M.

    2017-01-01

    ABSTRACT 1. Infectious diseases have a large impact on poultry health and economics. Elucidating the pathogenesis of a certain disease is crucial to implement control strategies. 2. Multiplication of a pathogen and its characterisation in vitro are basic requirements to perform experimental studies. However, passaging of the pathogen in vitro can influence the pathogenicity, a process targeted for live vaccine development, but limits the reproduction of clinical signs. 3. Numerous factors can influence the outcome of experimental infections with some importance on the pathogen, application route and host as exemplarily outlined for Histomonas meleagridis, Gallibacterium anatis and fowl aviadenoviruses (FAdVs). 4. In future, more comprehensive and detailed settings are needed to obtain as much information as possible from animal experiments. Processing of samples with modern diagnostic tools provides the option to closely monitor the host–pathogen interaction. PMID:27724044

  17. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum.

    PubMed

    Kasuga, Takao; Bui, Mai; Bernhardt, Elizabeth; Swiecki, Tedmund; Aram, Kamyar; Cano, Liliana M; Webber, Joan; Brasier, Clive; Press, Caroline; Grünwald, Niklaus J; Rizzo, David M; Garbelotto, Matteo

    2016-05-20

    Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environments conducive to the generation of aneuploids, the underlying genetic mechanisms, and the contribution of aneuploidy to invasiveness are underexplored. We studied phenotypic diversification and associated genome changes in Phytophthora ramorum, a highly destructive oomycete pathogen with a wide host-range that causes Sudden Oak Death in western North America and Sudden Larch Death in the UK. Introduced populations of the pathogen are exclusively clonal. In California, oak (Quercus spp.) isolates obtained from trunk cankers frequently exhibit host-dependent, atypical phenotypes called non-wild type (nwt), apparently without any host-associated population differentiation. Based on a large survey of genotypes from different hosts, we previously hypothesized that the environment in oak cankers may be responsible for the observed phenotypic diversification in P. ramorum. We show that both normal wild type (wt) and nwt phenotypes were obtained when wt P. ramorum isolates from the foliar host California bay (Umbellularia californica) were re-isolated from cankers of artificially-inoculated canyon live oak (Q. chrysolepis). We also found comparable nwt phenotypes in P. ramorum isolates from a bark canker of Lawson cypress (Chamaecyparis lawsoniana) in the UK; previously nwt was not known to occur in this pathogen population. High-throughput sequencing-based analyses identified major genomic alterations including partial aneuploidy and copy-neutral loss of heterozygosity predominantly in nwt isolates. Chromosomal breakpoints were located at or near transposons. This work demonstrates that major genome alterations of a pathogen can be induced by its host species. This is an

  18. Antimicrobial peptides in marine invertebrate health and disease

    PubMed Central

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-01-01

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as ‘marine invertebrates’. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160602

  19. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  20. Emerging fungal diseases: the importance of the host.

    PubMed

    Procop, Gary W; Roberts, Glenn D

    2004-09-01

    More yeasts and molds are now recognized to cause more human disease than ever before. This development is not due to a change in the virulence of these fungi, but rather to changes in the human host. These changes include immunosuppression secondary to the pandemic of HIV, the use of life-saving advances in chemotherapy and organ transplantation, and the use of corticosteroids and other immunosuppressive agents to treat a variety of diseases. Fungi that were once considered common saprophytes are now recognized as potential pathogens in these patients. This situation necessitates better communication than ever between the clinician, pathologist, and clinical mycologist to ensure the prompt and accurate determination of the cause of fungal diseases.

  1. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  2. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems.

    PubMed

    Karavolos, Michail H; Winzer, Klaus; Williams, Paul; Khan, C M Anjam

    2013-02-01

    The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication. © 2012 Blackwell Publishing Ltd.

  3. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.

    PubMed

    Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas

    2016-05-12

    Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically

  4. Evolution of pathogen virulence across space during an epidemic

    USGS Publications Warehouse

    Osnas, Erik; Hurtado, Paul J.; Dobson, Andrew P.

    2015-01-01

    We explore pathogen virulence evolution during the spatial expansion of an infectious disease epidemic in the presence of a novel host movement trade-off, using a simple, spatially explicit mathematical model. This work is motivated by empirical observations of the Mycoplasma gallisepticum invasion into North American house finch (Haemorhous mexicanus) populations; however, our results likely have important applications to other emerging infectious diseases in mobile hosts. We assume that infection reduces host movement and survival and that across pathogen strains the severity of these reductions increases with pathogen infectiousness. Assuming these trade-offs between pathogen virulence (host mortality), pathogen transmission, and host movement, we find that pathogen virulence levels near the epidemic front (that maximize wave speed) are lower than those that have a short-term growth rate advantage or that ultimately prevail (i.e., are evolutionarily stable) near the epicenter and where infection becomes endemic (i.e., that maximize the pathogen basic reproductive ratio). We predict that, under these trade-offs, less virulent pathogen strains will dominate the periphery of an epidemic and that more virulent strains will increase in frequency after invasion where disease is endemic. These results have important implications for observing and interpreting spatiotemporal epidemic data and may help explain transient virulence dynamics of emerging infectious diseases.

  5. A review of domestic animal diseases within the Pacific Islands region.

    PubMed

    Brioudes, Aurélie; Warner, Jeffrey; Hedlefs, Robert; Gummow, Bruce

    2014-04-01

    The Pacific Island countries and territories (PICTs) are reported to be free of the most serious infectious livestock diseases which are prevalent in other parts of the globe, such as Highly Pathogenic Avian Influenza, Foot and Mouth Disease or Rabies. Yet there is a lack of scientifically based evidence to confirm this animal health status. This paper reviews what has been published on diseases of domestic animals in the Pacific Islands region with a particular focus on data from the last 20 years (1992-2012). Relevant published papers were identified by a computerized literature search of two electronic databases (PubMed and Web of Knowledge). The latest reports on the animal health situation submitted by the PICTs to the World Organisation for Animal Health (OIE) were accessed on the World Animal Health Information Database (WAHID) interface and included in this review. Additionally, paper searches of resources were undertaken at the library of the Secretariat of the Pacific Community (SPC) in Fiji to retrieve any relevant grey literature for this review. The study eligibility criteria included qualitative or quantitative information on any disease (bacterial, viral, parasitic and other health disorders) affecting domestic terrestrial animals (mammals, reptiles, birds and bees) in any of the 22 PICTs members of the SPC. A total of 158 eligible references were retrieved of which only 77 (48.7%) were published since 1992 and analysed in more details. One hundred and one diseases and pathogens were reported on for bee, bird, carabao, cat, cattle, crocodile, deer, dog, donkey, goat, horse, pig, pigeon, poultry and sheep in the Oceania region and in 17 PICTs in particular. The paper gives information about known animal diseases, their reported prevalence and diseases not reported within the Pacific Islands region. The study found retrieved literature on animal diseases in PICTs was scarce and no longer up to date. There is a need to improve the published knowledge on

  6. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii.

    PubMed

    Jacquet, Maxime; Durand, Jonas; Rais, Olivier; Voordouw, Maarten J

    2015-12-01

    Cross-reactive acquired immunity in the vertebrate host induces indirect competition between strains of a given pathogen species and is critical for understanding the ecology of mixed infections. In vector-borne diseases, cross-reactive antibodies can reduce pathogen transmission at the vector-to-host and the host-to-vector lifecycle transition. The highly polymorphic, immunodominant, outer surface protein C (OspC) of the tick-borne spirochete bacterium Borrelia afzelii induces a strong antibody response in the vertebrate host. To test how cross-immunity in the vertebrate host influences tick-to-host and host-to-tick transmission, mice were immunized with one of two strain-specific recombinant OspC proteins (A3, A10), challenged via tick bite with one of the two B. afzelii ospC strains (A3, A10), and infested with xenodiagnostic ticks. Immunization with a given rOspC antigen protected mice against homologous strains carrying the same major ospC group allele but provided little or no cross-protection against heterologous strains carrying a different major ospC group allele. There were cross-immunity effects on the tick spirochete load but not on the probability of host-to-tick transmission. The spirochete load in ticks that had fed on mice with cross-immune experience was reduced by a factor of two compared to ticks that had fed on naive control mice. In addition, strain-specific differences in mouse spirochete load, host-to-tick transmission, tick spirochete load, and the OspC-specific IgG response revealed the mechanisms that determine variation in transmission success between strains of B. afzelii. This study shows that cross-immunity in infected vertebrate hosts can reduce pathogen load in the arthropod vector with potential consequences for vector-to-host pathogen transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. ANIMAL PATHOGENS THAT MAY CAUSE HUMAN DISEASE THAT ORIGINATE FROM FARM OPERATIONS

    EPA Science Inventory

    The recent increase in concentrated animal feeding operations in the United States has caused renewed concern regarding the infectious diseases that may be passed from farm animals to humans via the environment. It is also known that more than 20 recent epidemics among humans cou...

  8. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  9. Fluorescence imaging host pathogen interactions: fifteen years benefit of hindsight….

    PubMed

    Aulner, Nathalie; Danckaert, Anne; Fernandes, Julien; Nicola, Marie-Anne; Roux, Pascal; Salles, Audrey; Tinevez, Jean-Yves; Shorte, Spencer L

    2018-03-19

    We consider in review current state-of-the-art fluorescence microscopy for investigating the host-pathogen interface. Our perspective is honed from years with literally thousands of microbiologists using the variety of imaging technologies available within our dedicated BSL2/BSL3 optical imaging research service facilities at the Institut Pasteur Paris founded from scratch in 2001. During fifteen years learning from the success and failures of introducing different fluorescence imaging technologies, methods, and technical development strategies we provide here a synopsis review of our experience to date and a synthesis of how we see the future in perspective for fluorescence imaging at the host-pathogen interface. Copyright © 2018. Published by Elsevier Ltd.

  10. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  11. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    NASA Astrophysics Data System (ADS)

    Halloran, Siobhan; Ristenpart, William

    2013-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in pathogen transmission between the animals, to date the infectious disease community has paid little attention to the effect of airspeed or turbulent intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of an axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We show that for fan-generated turbulence the plume width is invariant with the mean airspeed and, close to the point source, increases linearly with downstream position. Importantly, the turbulent dispersivity is insensitive to the presence of meshes placed downstream from the point source, indicating that the fan length scale dictates the turbulent intensity and corresponding dispersivity.

  12. Streptococcus iniae, a Human and Animal Pathogen: Specific Identification by the Chaperonin 60 Gene Identification Method

    PubMed Central

    Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.

    1998-01-01

    It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992

  13. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    PubMed

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  14. Pathogen perception by NLRs in plants and animals: Parallel worlds.

    PubMed

    Duxbury, Zane; Ma, Yan; Furzer, Oliver J; Huh, Sung Un; Cevik, Volkan; Jones, Jonathan D G; Sarris, Panagiotis F

    2016-08-01

    Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function. © 2016 WILEY Periodicals, Inc.

  15. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species.

    PubMed

    Thongkongkaew, Tawatchai; Ding, Wei; Bratovanov, Evgeni; Oueis, Emilia; Garcı A-Altares, Marı A; Zaburannyi, Nestor; Harmrolfs, Kirsten; Zhang, Youming; Scherlach, Kirstin; Müller, Rolf; Hertweck, Christian

    2018-05-18

    Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.

  16. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    PubMed

    Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J

    2018-01-01

    Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  17. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. Targeting the C-type lectins-mediated host-pathogen interactions with dextran.

    PubMed

    Pustylnikov, Sergey; Sagar, Divya; Jain, Pooja; Khan, Zafar K

    2014-01-01

    Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen-lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin-glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran-lectin interactions may also be important for development of future dextran applications in biological research and medicine.

  19. A new pathogen spillover from domestic to wild animals: Plasmodium juxtanucleare infects free-living passerines in Brazil.

    PubMed

    Ferreira-Junior, Francisco C; de Angeli Dutra, Daniela; Silveira, Patrícia; Pacheco, Richard Campos; Witter, Rute; de Souza Ramos, Dirceu Guilherme; Pacheco, M Andreína; Escalante, Ananias A; Braga, Érika M

    2018-05-09

    Habitat modification may facilitate the emergence of novel pathogens, and the expansion of agricultural frontiers make domestic animals important sources of pathogen spillover to wild animals. We demonstrate for the first time that Plasmodium juxtanucleare, a widespread parasite from domestic chickens, naturally infects free-living passerines. We sampled 68 wild birds within and at the border of conservation units in central Brazil composed by Cerrado, a highly threatened biome. Seven out of 10 passerines captured in the limits of a protected area with a small farm were infected by P. juxtanucleare as was confirmed by sequencing a fragment of the parasite's cytochrome b. Blood smears from these positive passerines presented trophozoites, meronts and gametocytes compatible with P. juxtanucleare, meaning these birds are competent hosts for this parasite. After these intriguing results, we sampled 30 backyard chickens managed at the area where P. juxtanucleare-infected passerines were captured, revealing one chicken infected by the same parasite lineage. We sequenced the almost complete mitochondrial genome from all positive passerines, revealing that Brazilian and Asian parasites are closely related. P. juxtanucleare can be lethal to non-domestic hosts under captive and rehabilitation conditions, suggesting that this novel spillover may pose a real threat to wild birds.

  20. Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development

    PubMed Central

    Delwart, Eric

    2012-01-01

    The characterization of viral genomes has accelerated due to improvement in DNA sequencing technology. Sources of animal samples and molecular methods for the identification of novel viral pathogens and steps to determine their pathogenicity are listed. The difficulties for predicting future cross-species transmissions are highlighted by the wide diversity of known viral zoonoses. Recent surveys of viruses in wild and domesticated animals have characterized numerous viruses including some closely related to those infecting humans. The detection of multiple genetic lineages within viral families infecting a single host species, phylogenetically interspersed with viruses found in other host species, reflects frequent past cross-species transmissions. Numerous opportunities for the generation of novel vaccines will arise from a better understanding of animal viromes. PMID:22463981

  1. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species

    PubMed Central

    MacKenzie, Keith D.; Palmer, Melissa B.; Köster, Wolfgang L.; White, Aaron P.

    2017-01-01

    Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens. PMID:29159172

  2. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  3. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  4. Copper transport and trafficking at the host-bacterial pathogen interface.

    PubMed

    Fu, Yue; Chang, Feng-Ming James; Giedroc, David P

    2014-12-16

    CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other

  5. Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity

    PubMed Central

    Fabro, Georgina; Steinbrenner, Jens; Coates, Mary; Ishaque, Naveed; Baxter, Laura; Studholme, David J.; Körner, Evelyn; Allen, Rebecca L.; Piquerez, Sophie J. M.; Rougon-Cardoso, Alejandra; Greenshields, David; Lei, Rita; Badel, Jorge L.; Caillaud, Marie-Cecile; Sohn, Kee-Hoon; Van den Ackerveken, Guido; Parker, Jane E.; Beynon, Jim; Jones, Jonathan D. G.

    2011-01-01

    Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate

  6. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    USDA-ARS?s Scientific Manuscript database

    Non-host adapted Salmonella serovars are opportunistic pathogens that can colonize food-producing animals without causing overt disease, including the frequent foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Interventions against Salmonella need to both enhance food safe...

  7. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    PubMed

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  8. Smoking and periodontal disease: discrimination of antibody responses to pathogenic and commensal oral bacteria.

    PubMed

    Hayman, L; Steffen, M J; Stevens, J; Badger, E; Tempro, P; Fuller, B; McGuire, A; Al-Sabbagh, Mohanad; Thomas, M V; Ebersole, J L

    2011-04-01

    Smoking is an independent risk factor for the initiation, extent and severity of periodontal disease. This study examined the ability of the host immune system to discriminate commensal oral bacteria from pathogens at mucosal surfaces, i.e. oral cavity. Serum immunoglobulin (Ig)G antibody reactive with three pathogenic and five commensal oral bacteria in 301 current smokers (age range 21-66 years) were examined by enzyme-linked immunosorbent assay. Clinical features of periodontal health were used as measures of periodontitis. Antibody to the pathogens and salivary cotinine levels were related positively to disease severity; however, the antibody levels were best described by the clinical disease unrelated to the amount of smoking. The data showed a greater immune response to pathogens than commensals that was related specifically to disease extent, and most noted in black males. Significant correlations in individual patient responses to the pathogens and commensals were lost with an increasing extent of periodontitis and serum antibody to the pathogens. Antibody to Porphyromonas gingivalis was particularly distinct with respect to the discriminatory nature of the immune responses in recognizing the pathogens. Antibody responses to selected pathogenic and commensal oral microorganisms differed among racial groups and genders. The antibody response to the pathogens was related to disease severity. The level of antibody to the pathogens, and in particular P. gingivalis, was correlated with disease severity in black and male subsets of patients. The amount of smoking did not appear to impact directly serum antibody levels to these oral bacteria. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  9. Experimental evidence of a pathogen invasion threshold

    PubMed Central

    Krkošek, Martin

    2018-01-01

    Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876

  10. Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

    PubMed Central

    Bevins, Sarah N.; Carver, Scott; Boydston, Erin E.; Lyren, Lisa M.; Alldredge, Mat; Logan, Kenneth A.; Riley, Seth P. D.; Fisher, Robert N.; Vickers, T. Winston; Boyce, Walter; Salman, Mo; Lappin, Michael R.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the

  11. How pathogens use linear motifs to perturb host cell networks.

    PubMed

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama.

    PubMed

    Kilburn, Vanessa L; Ibáñez, Roberto; Green, David M

    2011-12-06

    Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.

  13. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in central China.

    PubMed

    Chen, Zhuo; Liu, Qin; Liu, Ji-Qi; Xu, Bian-Li; Lv, Shan; Xia, Shang; Zhou, Xiao-Nong

    2014-05-22

    Ticks can transmit a number of pathogens to humans and domestic animals. Tick borne diseases (TBDs), which may lead to organ failure and death have been recently reported in China. 98.75% of the total cases (>1000) in Henan provinces have been reported in Xinyang city. Therefore, the aims of this study were to investigate the fauna of ticks and detect the potential pathogens in ticks in Xinyang, the region of central China. Ticks were collected from 10 villages of Xinyang from April to December 2012, from domestic animals including sheep, cattle and dogs. Then identification of ticks and detection of tick-borne pathogens, including Babesia spp., Theileria spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., tick-borne encephalitis virus (TBEV), Borrelia burgdorferi sensu lato, Leishmania infantum, were undertaken by using polymerase chain reaction assay (PCR) and sequence analysis. Moreover, the co-infection patterns of various pathogens were compared among locations where ticks were collected. A total of 308 ticks were collected. Two species of Ixodidae were found, namely Haemaphysalis longicornis (96.75%) and Rhipicephalus microplus (3.25%). Five genera of pathogens, namely Theileria spp. (3.25%), Anaplasma spp. (2.92%), Babesia spp. (1.95%), Ehrlichia spp. (2.92%) and Rickettsia spp. (0.65%), were detected in 7 villages. Co-infections by two pathogens were diagnosed in 11.11% of all infected ticks. Both human and animal pathogens were abundant in ticks in the study areas. Humans and animals in these regions were at a high risk of exposure to piroplasmosis, since piroplasm had the highest rates of infection and co-infection in positive ticks.

  14. Defining dysbiosis and its influence on host immunity and disease

    PubMed Central

    Petersen, Charisse; Round, June L

    2014-01-01

    Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis

  15. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C G; Gonzales, A D; Choi, M W

    2004-05-20

    Yersinia pestis, the etiological agent of plague, is of concern to human health both from an infectious disease and a civilian biodefense perspective. While Y. pestis and Y. pseudotuberculosis share more than 90% DNA homology, they have significantly different clinical manifestations. Plague is often fatal if untreated, yet Y. pseudotuberculosis causes severe intestinal distress and is rarely fatal. A better understanding of host response to these closely related pathogens may help explain the different mechanisms of virulence and pathogenesis that result in such different clinical outcomes. The aim of this study was to characterize host protein expression changes in humanmore » monocyte-like U937 cells after exposure to Y. pestis and Y. pseudotuberculosis. In order to gain global proteomic coverage of host response, proteins from cytoplasmic, nuclear and membrane fractions of host cells were studied by 2-dimensional differential gel electrophoresis (2-D DIGE) and relative protein expression differences were quantitated. Differentially expressed proteins, with at least 1.5 fold expression changes and p values of 0.01 or less, were identified by MALDI-MS or LC/MS/MS. With these criteria, differential expression was detected in 16 human proteins after Y. pestis exposure and 13 human proteins after Y. pseudotuberculosis exposure, of which only two of the differentially expressed proteins identified were shared between the two exposures. Proteins identified in this study are reported to be involved in a wide spectrum of cellular functions and host defense mechanisms including apoptosis, cytoskeletal rearrangement, protein synthesis and degradation, DNA replication and transcription, metabolism, protein folding, and cell signaling. Notably, the differential expression patterns observed can distinguish the two pathogen exposures from each other and from unexposed host cells. The functions of the differentially expressed proteins identified provide insight on the

  16. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    PubMed

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  17. First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus.

    PubMed

    Ye, Luona; Guo, Mengpei; Ren, Pengfei; Wang, Gangzheng; Bian, Yinbing; Xiao, Yang; Zhou, Yan

    2018-03-01

    Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Graft-versus-host disease

    MedlinePlus

    GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...

  19. Prevention of infectious diseases in aquaculture

    USGS Publications Warehouse

    Ahne, W.; Winton, J.R.; Kimura, T.

    1989-01-01

    Infectious diseases remain one of the most important limitations to the successful propagation of aquatic animals. Most of the losses caused by pathogens in aquaculture could be prevented by health inspection, adequate environment and sound management practices. Effective control measures, mainly based upon 1) avoidance of pathogens 2) modification of the environment 3) improvement of host resistance 4) vaccination and 5) chemoprophylaxis are described.

  20. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    PubMed

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  1. Host Jumps and Radiation, Not Co-Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae.

    PubMed

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups.

  2. Host Jumps and Radiation, Not Co‐Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae

    PubMed Central

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups. PMID:26230508

  3. Molecular profiling of the Phytophthora plurivora secretome: a step towards understanding the cross-talk between plant pathogenic oomycetes and their hosts.

    PubMed

    Severino, Valeria; Farina, Annarita; Fleischmann, Frank; Dalio, Ronaldo J D; Di Maro, Antimo; Scognamiglio, Monica; Fiorentino, Antonio; Parente, Augusto; Osswald, Wolfgang; Chambery, Angela

    2014-01-01

    The understanding of molecular mechanisms underlying host-pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.

  4. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance

    PubMed Central

    Samir, Mohamed; Vaas, Lea A. I.; Pessler, Frank

    2016-01-01

    The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models. PMID:27800484

  5. Infectious diseases of marine molluscs and host responses as revealed by genomic tools

    PubMed Central

    Ford, Susan E.

    2016-01-01

    More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance. PMID:26880838

  6. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions.

    PubMed

    Choera, Tsokyi; Zelante, Teresa; Romani, Luigina; Keller, Nancy P

    2017-01-01

    Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia-the initial inoculum produced by A. fumigatus -which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host's lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate-chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.

  7. Integrated Detection of Pathogens and Host Biomarkers for Wounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C

    2012-03-19

    The increasing incidence and complications arising from combat wounds has necessitated a reassessment of methods for effective treatment. Infection, excessive inflammation, and incidence of drug-resistant organisms all contribute toward negative outcomes for afflicted individuals. The organisms and host processes involved in wound progression, however, are incompletely understood. We therefore set out, using our unique technical resources, to construct a profile of combat wounds which did or did not successfully resolve. We employed the Lawrence Livermore Microbial Detection Array and identified a number of nosocomial pathogens present in wound samples. Some of these identities corresponded with bacterial isolates previously cultured, whilemore » others were not obtained via standard microbiology. Further, we optimized proteomics protocols for the identification of host biomarkers indicative of various stages in wound progression. In combination with our pathogen data, our biomarker discovery efforts will provide a profile corresponding to wound complications, and will assist significantly in treatment of these complex cases.« less

  8. Associated disease risk from the introduced generalist pathogen Sphaerothecum destruens: management and policy implications.

    PubMed

    Andreou, Demetra; Gozlan, Rodolphe Elie

    2016-08-01

    The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.

  9. [Correlation between genetic differences of mates and pathogenicity of Schistosoma japonicum in definitive host].

    PubMed

    Wen-Qiao, Huang; Yuan-Jian, Zhu; Da-Bing, Lv; Xia, Zhou; Ying-Nan, Yang; Hong-Xiang, Zhu-Ge

    2016-05-24

    To explore the correlation between the genetic dissimilarity and heterozygosity of mates and the pathogenicity of Schistosoma japonicum in the definitive host. By using seven microsatellite loci markers, S. japonicum genotyping of sixteen pairs randomly mated was performed, the genetic dissimilarity and heterozygosity were calculated between the mates, and the correlation between the genetic dissimilarity and heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host was evaluated. There was a significant correlation between the genetic similarity of S. japonicum mates and the mean number of eggs per worm pair in the liver and intestinal tissue ( r = 0.501 6, P < 0.05; r = 0.796 5, P < 0.01, respectively) and the hatching rate of deposited eggs in the liver ( r = 0.508 3, P < 0.05), respectively. There was no correlation between the genetic similarity of the mates and hepatosplenomegaly per worm pair ( r = 0.109 5, P > 0.05; r = 0.265 3, P > 0.05, respectively) and the average diameter of granuloma in the liver ( r = -0.272 7, P > 0.05), respectively. There was no correlation between the heterozygosity of the mates and all the pathological parameters of S. japonicum in the definitive host ( P > 0.05). There is the correlation between the genetic dissimilarity of the mates and the pathogenicity of S. japonicum in the definitive host, and the genetic dissimilarity is greater, pathogenicity is weaker. There is no correlation between heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host.

  10. Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts.

    PubMed

    Hajishengallis, George; Lamont, Richard J

    2016-06-01

    Many diseases that originate on mucosal membranes ensue from the action of polymicrobial communities of indigenous organisms working in concert to disrupt homeostatic mechanisms. Multilevel physical and chemical communication systems among constituent organisms underlie polymicrobial synergy and dictate the community's pathogenic potential or nososymbiocity, that is, disease arising from living together with a susceptible host. Functional specialization of community participants, often originating from metabolic codependence, has given rise to several newly appreciated designations within the commensal-to-pathogen spectrum. Accessory pathogens, while inherently commensal in a particular microenvironment, nonetheless enhance the colonization or metabolic activity of pathogens. Keystone pathogens (bacterial drivers or alpha-bugs) exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts (or bacterial passengers) exploit disrupted host homeostasis to flourish and promote inflammatory disease. In this review we discuss how commensal or pathogenic properties of organisms are not intrinsic features, and have to be considered within the context of both the microbial community in which they reside and the host immune status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Is the pathogenic ergot fungus a conditional defensive mutualist for its host grass?

    PubMed

    Wäli, Pauliina P; Wäli, Piippa R; Saikkonen, Kari; Tuomi, Juha

    2013-01-01

    It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation.

  12. Microbiome influences on insect host vector competence

    PubMed Central

    Weiss, Brian

    2011-01-01

    Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014

  13. How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer.

    PubMed

    Dhar, Poshmaal; Ng, Garrett Z; Sutton, Philip

    2016-09-01

    The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies. Copyright © 2016 the American Physiological Society.

  14. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease.

    PubMed

    Biemans, Floor; de Jong, Mart C M; Bijma, Piter

    2017-06-30

    Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual's disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited. We present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each

  15. Neuroendocrine host factors and inflammatory disease susceptibility.

    PubMed Central

    Ligier, S; Sternberg, E M

    1999-01-01

    The etiology of autoimmune diseases is multifactorial, resulting from a combination of genetically predetermined host characteristics and environmental exposures. As the term autoimmune implies, immune dysfunction and dysregulated self-tolerance are key elements in the pathophysiology of all these diseases. The neuroendocrine and sympathetic nervous systems are increasingly recognized as modulators of the immune response at the levels of both early inflammation and specific immunity. As such, alterations in their response represent a potential mechanism by which pathologic autoimmunity may develop. Animal models of autoimmune diseases show pre-existing changes in neuroendocrine responses to a variety of stimuli, and both animal and human studies have shown altered stress responses in the setting of active immune activation. The potential role of the neuroendocrine system in linking environmental exposures and autoimmune diseases is 2-fold. First, it may represent a direct target for toxic compounds. Second, its inadequate function may result in the inappropriate response of the immune system to an environmental agent with immunogenic properties. This article reviews the relationship between autoimmune diseases and the neuroendocrine system and discusses the difficulties and pitfalls of investigating a physiologic response that is sensitive to such a multiplicity of environmental exposures. PMID:10502534

  16. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere

    PubMed Central

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment. PMID:25071740

  17. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    PubMed

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  18. A seed bank pathogen causes seedborne disease: Pyrenophora semeniperda on undispersed grass seeds in western North America

    Treesearch

    Susan E. Meyer; Julie Beckstead; Phil S. Allen; Duane C. Smith

    2008-01-01

    The generalist pathogen Pyrenophora semeniperda is abundant in seed banks of the exotic winter annual grass Bromus tectorum in semiarid western North America and is also found in the seed banks of co-occurring native grasses. In this study, we examined natural incidence of disease caused by this pathogen on undispersed host seeds,...

  19. Metagenomics: A New Way to Illustrate the Crosstalk between Infectious Diseases and Host Microbiome

    PubMed Central

    Zhang, Yinfeng; Lun, Cheuk-Yin; Tsui, Stephen Kwok-Wing

    2015-01-01

    Microbes have co-evolved with human beings for millions of years. They play a very important role in maintaining the health of the host. With the advancement in next generation sequencing technology, the microbiome profiling in the host can be obtained under different circumstances. This review focuses on the current knowledge of the alteration of complex microbial communities upon the infection of different pathogens, such as human immunodeficiency virus, hepatitis B virus, influenza virus, and Mycobacterium tuberculosis, at different body sites. It is believed that the increased understanding of the correlation between infectious disease and the alteration of the microbiome can contribute to better management of disease progression in the future. However, future studies may need to be more integrative so as to establish the exact causality of diseases by analyzing the correlation between microorganisms within the human host and the pathogenesis of infectious diseases. PMID:26540050

  20. Impact of biodiversity and seasonality on Lyme-pathogen transmission.

    PubMed

    Lou, Yijun; Wu, Jianhong; Wu, Xiaotian

    2014-11-28

    Lyme disease imposes increasing global public health challenges. To better understand the joint effects of seasonal temperature variation and host community composition on the pathogen transmission, a stage-structured periodic model is proposed by integrating seasonal tick development and activity, multiple host species and complex pathogen transmission routes between ticks and reservoirs. Two thresholds, one for tick population dynamics and the other for Lyme-pathogen transmission dynamics, are identified and shown to fully classify the long-term outcomes of the tick invasion and disease persistence. Seeding with the realistic parameters, the tick reproduction threshold and Lyme disease spread threshold are estimated to illustrate the joint effects of the climate change and host community diversity on the pattern of Lyme disease risk. It is shown that climate warming can amplify the disease risk and slightly change the seasonality of disease risk. Both the "dilution effect" and "amplification effect" are observed by feeding the model with different possible alternative hosts. Therefore, the relationship between the host community biodiversity and disease risk varies, calling for more accurate measurements on the local environment, both biotic and abiotic such as the temperature and the host community composition.

  1. Pathogenic Leptospira interrogans Exoproteins Are Primarily Involved in Heterotrophic Processes

    PubMed Central

    Eshghi, Azad; Pappalardo, Elisa; Hester, Svenja; Thomas, Benjamin; Pretre, Gabriela

    2015-01-01

    Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins. PMID:25987703

  2. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    PubMed Central

    Lamichhane, Jay Ram; Venturi, Vittorio

    2015-01-01

    Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management. PMID:26074945

  3. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    PubMed

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  4. Host Responses to the Pathogen Mycobacterium avium subsp. paratuberculosis and Beneficial Microbes Exhibit Host Sex Specificity

    PubMed Central

    McMahon, K. Wyatt; Chang, David; Brashears, Mindy M.

    2014-01-01

    Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes—a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51—and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n = 5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M. avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) between the sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-γ) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex. PMID:24814797

  5. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alterationmore » of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.« less

  6. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip.

    PubMed

    Lin, Hong; Gudmestad, Neil C

    2013-06-01

    An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.

  7. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    PubMed

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome.

    PubMed

    Becker, C G; Longo, A V; Haddad, C F B; Zamudio, K R

    2017-08-30

    Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome- Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle. © 2017 The Author(s).

  9. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals.

    PubMed

    Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J

    2017-01-01

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p < 0.05, fold change >1.25 or < -1.25) across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D

  10. Evaluating the risk of pathogen transmission from wild animals to domestic pigs in Australia.

    PubMed

    Pearson, Hayley E; Toribio, Jenny-Ann L M L; Lapidge, Steven J; Hernández-Jover, Marta

    2016-01-01

    Wild animals contribute to endemic infection in livestock as well as the introduction, reintroduction and maintenance of pathogens. The source of introduction of endemic diseases to a piggery is often unknown and the extent of wildlife contribution to such local spread is largely unexplored. The aim of the current study was to quantitatively assess the probability of domestic pigs being exposed to different pathogens from wild animals commonly found around commercial piggeries in Australia. Specifically, this study aims to quantify the probability of exposure to the pathogens Escherichia coli, Salmonella spp. and Campylobacter spp. from European starlings (Sturnus vulgarus); Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella spp. from rats (Rattus rattus and Rattus norvegicus); and Mycoplasma hyopneumoniae, Leptospira spp., Brucella suis and L. intracellularis from feral pigs (Sus scrofa). Exposure assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and calculate the probabilities of these pathways occurring. Input parameters were estimated from a national postal survey of commercial pork producers and from disease detection studies conducted for European starlings, rats and feral pigs in close proximity to commercial piggeries in Australia. Based on the results of the exposure assessments, rats presented the highest probability of exposure of pathogens to domestic pigs at any point in time, and L. intracellularis (median 0.13, 5% and 95%, 0.05-0.23) and B. hyodysenteriae (median 0.10, 0.05-0.19) were the most likely pathogens to be transmitted. Regarding European starlings, the median probability of exposure of domestic pigs to pathogenic E. coli at any point in time was estimated to be 0.03 (0.02-0.04). The highest probability of domestic pig exposure to feral pig pathogens at any point in time was found to be for M. hyopneumoniae (median 0.013, 0

  11. Zoonoses of occupational health importance in contemporary laboratory animal research.

    PubMed

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  12. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    PubMed

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection.

    PubMed

    Sabaté Brescó, Marina; Harris, Llinos G; Thompson, Keith; Stanic, Barbara; Morgenstern, Mario; O'Mahony, Liam; Richards, R Geoff; Moriarty, T Fintan

    2017-01-01

    Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus . This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.

  14. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  15. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model*

    PubMed Central

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-01-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen

  16. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model.

    PubMed

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-04-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen

  17. Is the Pathogenic Ergot Fungus a Conditional Defensive Mutualist for Its Host Grass?

    PubMed Central

    Wäli, Pauliina P.; Wäli, Piippa R.; Saikkonen, Kari; Tuomi, Juha

    2013-01-01

    It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation. PMID:23874924

  18. Ten years' work on the World Organisation for Animal Health (OIE) Worldwide Animal Disease Notification System.

    PubMed

    Jebara, Karim Ben; Cáceres, Paula; Berlingieri, Francesco; Weber-Vintzel, Laure

    2012-12-01

    This article gives an overview of the World Organisation for Animal Health (OIE) Worldwide Animal Disease Notification System and highlights the major achievements during the past decade. It describes the different types of disease notification reports received and processed by the OIE. It also evaluates the three strategies implemented by the OIE in the recent years aimed at improving disease notification: introduction and use of a secure online notification system World Animal Health Information System (WAHIS) and its database interface World Animal Health Information Database (WAHID); implementation of active search and verification procedures for non-official information; and enhanced building of capacity for animal disease notification to the OIE by Members Countries. The improvements are evidenced by the increasing number of reports submitted on an annual basis and the reduction in submission time together with an improvement in the quality and quantity of the immediate notifications and follow-up reports, six-monthly and annual reports submitted by Veterinary Authorities. In the recent years, the OIE's notification system provides an early warning system more sensitive and global. Consequently, there is a greater knowledge of animal diseases' distribution worldwide. As a result, it is possible to ensure better prevention, more accurate risk assessment and evaluation by diminishing the spread of known or newly emerging pathogens. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    PubMed

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  20. Classic and new animal models of Parkinson's disease.

    PubMed

    Blesa, Javier; Phani, Sudarshan; Jackson-Lewis, Vernice; Przedborski, Serge

    2012-01-01

    Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.

  1. Host genetics affect microbial ecosystems via host immunity.

    PubMed

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  2. Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks.

    PubMed

    Anttila, Jani; Kaitala, Veijo; Laakso, Jouni; Ruokolainen, Lasse

    2015-01-01

    Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens.

  3. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-02-01

    Fluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season. We used 16S rRNA amplicon sequencing to quantify changes in bacterial richness and phylogenetic diversity, and identified operational taxonomic units (OTUs) that became overrepresented or suppressed as a consequence of Bd infection. During the warm-wet season, frogs limited Bd infections, recruited putatively beneficial bacteria and returned to pre-infection levels of richness and phylogenetic diversity. In contrast, during the cool-dry season, Bd infections kept increasing through time, and bacterial diversity remained constant. Our findings confirm that infection outcome not only depends on abiotic factors, but also on biotic interactions between hosts and their associated bacterial communities.

  4. Animal production food safety: priority pathogens for standard setting by the World Organisation for Animal Health.

    PubMed

    Knight-Jones, T J D; Mylrea, G E; Kahn, S

    2010-12-01

    In this short study, expert opinion and a literature review were used to identify the pathogens that should be prioritised by the World Organisation for Animal Health (OIE) for the development of future standards for animal production food safety. Prioritisation was based on a pathogen's impact on human health and amenability to control using on-farm measures. As the OIE mandate includes alleviation of global poverty, the study focused on developing countries and those with 'in-transition' economies. The regions considered were Eastern Europe, Asia, the Middle East, Africa and South America. Salmonella (from species other than poultry) and pathogenic Escherichia coli were considered to be top priorities. Brucella spp., Echinococcus granulosus and Staphylococcus aureus were also mentioned by experts. As Salmonella, and to a lesser extent pathogenic E. coli, can be controlled by on-farm measures, these pathogens should be considered for prioritisation in future standard setting. On-farm control measures for Brucella spp. will be addressed in 2010-2011 in a review of the OLE Terrestrial Animal/Health Code chapter on brucellosis. In Africa, E. granulosus, the causative agent of hydatidosis, was estimated to have the greatest impact of all pathogens that could potentially be transmitted by food (i.e. via contamination). It was also listed for the Middle East and thought to be of importance by both South American experts consulted. Taenia saginata was thought to be of importance in South America and Africa and by one expert in the Middle East.

  5. The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment.

    PubMed

    Graham, Jay P; Leibler, Jessica H; Price, Lance B; Otte, Joachim M; Pfeiffer, Dirk U; Tiensin, T; Silbergeld, Ellen K

    2008-01-01

    Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.

  6. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  7. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States

    USGS Publications Warehouse

    Carver, Scott; Bevins, Sarah N.; Lappin, Michael R.; Boydston, Erin E.; Lyren, Lisa M.; Alldredge, Mathew W.; Logan, Kenneth A.; Sweanor, Linda L.; Riley, Seth P.D.; Serieys, Laurel E.K.; Fisher, Robert N.; Vickers, T. Winston; Boyce, Walter M.; McBride, Roy; Cunnigham, Mark C.; Jennings, Megan; Lewis, Jesse S.; Lunn, Tamika; Crooks, Kevin R.; VandeWoude, Sue

    2016-01-01

    Understanding how landscape, host, and pathogen traits contribute to disease exposure requires systematic evaluations of pathogens within and among host species and geographic regions. The relative importance of these attributes is critical for management of wildlife and mitigating domestic animal and human disease, particularly given rapid ecological changes, such as urbanization. We screened >1,000 samples from sympatric populations of puma (Puma concolor), bobcat (Lynx rufus) and domestic cat (Felis catus) across urban gradients in six sites, representing three regions, in North America for exposure to a representative suite of bacterial, protozoal and viral pathogens (Bartonella sp., Toxoplasma gondii, feline herpesvirus-1, feline panleukopenea virus, feline calicivirus, feline immunodeficiency virus). We evaluated prevalence within each species, and examined host trait and land cover determinants of exposure-providing an unprecedented analysis of factors relating to potential for infections in domesticated and wild felids. Prevalence differed among host species (highest for puma and lowest for domestic cat) and was greater for indirectly transmitted pathogens. Sex was inconsistently predictive of exposure to directly transmitted pathogens only, and age infrequently predictive of both direct and indirectly transmitted pathogens. Determinants of pathogen exposure were widely divergent between the wild felid species. For puma, suburban landuse predicted increased exposure to Bartonella sp. in southern California, and FHV-1 exposure increased near urban edges in Florida. This may suggest inter-specific transmission with domestic cats via flea vectors (California) and direct contact (Florida) around urban boundaries. Bobcats captured near urban areas had increased exposure to T. gondii in Florida, suggesting an urban source of prey. Bobcats captured near urban areas in Colorado and Florida had higher FIV exposure, possibly suggesting increased intra

  8. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host

    PubMed Central

    Konrad, Matthias; Grasse, Anna V.; Tragust, Simon; Cremer, Sylvia

    2015-01-01

    The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. PMID:25473011

  9. A review of vaccine development and research for industry animals in Korea

    PubMed Central

    Lee, Nak-Hyung; Lee, Jung-Ah; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo

    2012-01-01

    Vaccination has proven to be the most cost-effective strategy for controlling a wide variety of infectious diseases in humans and animals. For the last decade, veterinary vaccines have been substantially developed and demonstrated their effectiveness against many diseases. Nevertheless, new vaccines are greatly demanded to effectively control newly- and re-emerging pathogens in livestock. However, development of veterinary vaccines is a challenging task, in part, due to a variety of pathogens, hosts, and the uniqueness of host-susceptibility to each pathogen. Therefore, novel concepts of vaccines should be explored to overcome the limitation of conventional vaccines. There have been greatly advanced in the completion of genomic sequencing of pathogens, the application of comparative genomic and transcriptome analysis. This would facilitate to open opportunities up to investigate a new generation of vaccines; recombinant subunit vaccine, virus-like particle, DNA vaccine, and vector-vehicle vaccine. Currently, such types of vaccines are being actively explored against various livestock diseases, affording numerous advantages over conventional vaccines, including ease of production, immunogenicity, safety, and multivalency in a single shot. In this articles, the authors present the current status of the development of veterinary vaccines at large as well as research activities conducted in Korea. PMID:23596575

  10. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review

    PubMed Central

    Baldacchino, Frédéric; Muenworn, Vithee; Desquesnes, Marc; Desoli, Florian; Charoenviriyaphap, Theeraphap; Duvallet, Gérard

    2013-01-01

    Stomoxys flies are mechanical vectors of pathogens present in the blood and skin of their animal hosts, especially livestock, but occasionally humans. In livestock, their direct effects are disturbance, skin lesions, reduction of food intake, stress, blood loss, and a global immunosuppressive effect. They also induce the gathering of animals for mutual protection; meanwhile they favor development of pathogens in the hosts and their transmission. Their indirect effect is the mechanical transmission of pathogens. In case of interrupted feeding, Stomoxys can re-start their blood meal on another host. When injecting saliva prior to blood-sucking, they can inoculate some infected blood remaining on their mouthparts. Beside this immediate transmission, it was observed that Stomoxys may keep some blood in their crop, which offers a friendly environment for pathogens that could be regurgitated during the next blood meal; thus a delayed transmission by Stomoxys seems possible. Such a mechanism has a considerable epidemiological impact since it allows inter-herd transmission of pathogens. Equine infectious anemia, African swine fever, West Nile, and Rift Valley viruses are known to be transmitted by Stomoxys, while others are suspected. Rickettsia (Anaplasma, Coxiella), other bacteria and parasites (Trypanosoma spp., Besnoitia spp.) are also transmitted by Stomoxys. Finally, Stomoxys was also found to act as an intermediate host of the helminth Habronema microstoma and may be involved in the transmission of some Onchocerca and Dirofilaria species. Being cosmopolite, Stomoxys calcitrans might have a worldwide and greater impact than previously thought on animal and human pathogen transmission. PMID:23985165

  11. Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei

    PubMed Central

    Pasricha, Shivani; MacRae, James I.; Chua, Hwa H.; Chambers, Jenny; Boyce, Kylie J.; McConville, Malcolm J.; Andrianopoulos, Alex

    2017-01-01

    Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast. PMID:28861398

  12. Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei.

    PubMed

    Pasricha, Shivani; MacRae, James I; Chua, Hwa H; Chambers, Jenny; Boyce, Kylie J; McConville, Malcolm J; Andrianopoulos, Alex

    2017-01-01

    Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13 C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo -inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.

  13. Epidemiology and disease control in everyday beef practice.

    PubMed

    Larson, R L

    2008-08-01

    It is important for food animal veterinarians to understand the interaction among animals, pathogens, and the environment, in order to implement herd-specific biosecurity plans. Animal factors such as the number of immunologically protected individuals influence the number of individuals that a potential pathogen is able to infect, as well as the speed of spread through a population. Pathogens differ in their virulence and contagiousness. In addition, pathogens have various methods of transmission that impact how they interact with a host population. A cattle population's environment includes its housing type, animal density, air quality, and exposure to mud or dust and other health antagonists such as parasites and stress; these environmental factors influence the innate immunity of a herd by their impact on immunosuppression. In addition, a herd's environment also dictates the "animal flow" or contact and mixing patterns of potentially infectious and susceptible animals. Biosecurity is the attempt to keep infectious agents away from a herd, state, or country, and to control the spread of infectious agents within a herd. Infectious agents (bacteria, viruses, or parasites) alone are seldom able to cause disease in cattle without contributing factors from other infectious agents and/or the cattle's environment. Therefore to develop biosecurity plans for infectious disease in cattle, veterinarians must consider the pathogen, as well as environmental and animal factors.

  14. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Wang, Zhibin; Gmitter, Frederick G; Wang, Yu

    2018-02-07

    Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.

  15. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    PubMed

    Sharma, Kalpana; Goss, Erica M; Dickstein, Ellen R; Smith, Matthew E; Johnson, Judith A; Southwick, Frederick S; van Bruggen, Ariena H C

    2014-01-01

    Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  16. Exserohilum rostratum: Characterization of a Cross-Kingdom Pathogen of Plants and Humans

    PubMed Central

    Sharma, Kalpana; Goss, Erica M.; Dickstein, Ellen R.; Smith, Matthew E.; Johnson, Judith A.; Southwick, Frederick S.; van Bruggen, Ariena H. C.

    2014-01-01

    Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen. PMID:25285444

  17. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    PubMed Central

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  18. Parallels in amphibian and bat declines from pathogenic fungi.

    PubMed

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  19. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  20. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283