Sample records for animal manure bio-solids

  1. Growth of bacterial phytopathogens in animal manures.

    PubMed

    Sledz, Wojciech; Zoledowska, Sabina; Motyka, Agata; Kadziński, Leszek; Banecki, Bogdan

    2017-01-01

    Animal manures are routinely applied to agricultural lands to improve crop yield, but the possibility to spread bacterial phytopathogens through field fertilization has not been considered yet. We monitored 49 cattle, horse, swine, sheep or chicken manure samples collected in 14 Polish voivodeships for the most important plant pathogenic bacteria - Ralstonia solanacearum (Rsol), Xanthomonas campestris pv. campestris (Xcc), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pectobacterium atrosepticum (Pba), Erwinia amylovora (Eam), Clavibacter michiganensis subsp. sepedonicus (Cms) and Dickeya sp. (Dsp). All of the tested animal fertilizers were free of these pathogens. Subsequently, the growth dynamics of Pba, Pcc, Rsol, and Xcc in cattle, horse, swine, sheep and chicken manures sterilized either by autoclaving or filtration was evaluated. The investigated phytopathogens did not exhibit any growth in the poultry manure. However, the manure filtrates originating from other animals were suitable for microbial growth, which resulted in the optical density change of 0.03-0.22 reached within 26 h (48 h Rsol, 120 h Xcc), depending on bacterial species and the manure source. Pcc and Pba multiplied most efficiently in the cattle manure filtrate. These bacteria grew faster than Rsol and Xcc in all the tested manure samples, both the filtrates and the autoclaved semi-solid ones. Though the growth dynamics of investigated strains in different animal fertilizers was unequal, all of the tested bacterial plant pathogens were proven to use cattle, horse, swine and sheep manures as the sources of nutrients. These findings may contribute to further research on the alternative routes of spread of bacterial phytopathogens, especially because of the fact that the control of pectionolytic bacteria is only based on preventive methods.

  2. Gasification of hybrid feedstock using animal manures and hays

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  3. Technologies and logistics for handling, transport and distribution of animal manures

    USDA-ARS?s Scientific Manuscript database

    Organizing and managing the whole manure handling chain from the animal house through transport to the point of use (e.g. in the field) is a challenging task requiring consideration of manure type and operating conditions. Solid and liquid manure must be handled differently, using very different tec...

  4. Fungal Bioconversion of Bio-Solids and Chicken Manure to Increase Soil Quality

    USDA-ARS?s Scientific Manuscript database

    The utilization of agro-chemical products such as pesticides and fertilizers has allowed the increase in food production. Poultry manure and manure from different animals have been used as alternative to improve soil quality, and therefore, helped increase crop production. Nevertheless, removal of t...

  5. Environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Animal manure is traditionally regarded as a valuable resource of plant nutrients. However, there is an increasing environmental concern associated with animal manure utilization due to high and locally concentrated volumes of manure produced in modern intensified animal production. Although conside...

  6. Seasonal variation in methane emission from stored slurry and solid manures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husted, S.

    1994-05-01

    Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less

  7. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Pyrogasification of blended animal manures to produce combustable gas and biochar

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to evaluate the efficiency of a skid-mounted pyrogasificaiton system for producing combustible gas from from animal manures: chicken litter, swine solids, and swine solids blended with rye grass. The skid-mounted pyrolysis system by the US Innovation Group, Inc. (USIG,...

  9. Properties of animal-manure based hydrochars and predictions using published models

    USDA-ARS?s Scientific Manuscript database

    In order to fully utilize hydrothermal carbonization (HTC) to produce value-added hydrochars from animal manures, it is important to understand how process conditions (e.g., temperature, reaction time, solids concentration) influence product characteristics. The effect of process conditions on the e...

  10. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass--animal manure mixtures.

    PubMed

    Ahn, H K; Smith, M C; Kondrad, S L; White, J W

    2010-02-01

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure-switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 degrees C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4/g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.

  11. Overview of the advances in environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    There is an increasing environmental concern over animal manure due to the volumes produced in modern intensified animal production. However, animal manure is traditionally regarded as a valuable resource of plant nutrients. Although research on environmental impacts of animal manure and associated...

  12. Mercury in Animal Manures and Impacts on Environmental Health

    USDA-ARS?s Scientific Manuscript database

    Animal manure is widely used as a cheap source of fertilizer all over the world, and is also used as animal feed. In industrialized countries, tons of animal manures per hectare each year are applied to agricultural lands as an easy means of disposal. Analysis of these manures shows low Hg concentra...

  13. Animal manure application and soil organic carbon stocks: a meta-analysis.

    PubMed

    Maillard, Émilie; Angers, Denis A

    2014-02-01

    The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta-analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure-C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure-C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure-C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure-C input. Finally, this study emphasizes the need to further document the long-term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.

  14. 9 CFR 95.20 - Animal manure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Animal manure. 95.20 Section 95.20 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SANITARY CONTROL OF ANIMAL...

  15. 9 CFR 95.20 - Animal manure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal manure. 95.20 Section 95.20 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SANITARY CONTROL OF ANIMAL...

  16. 9 CFR 95.20 - Animal manure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Animal manure. 95.20 Section 95.20 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SANITARY CONTROL OF ANIMAL...

  17. 9 CFR 95.20 - Animal manure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Animal manure. 95.20 Section 95.20 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SANITARY CONTROL OF ANIMAL...

  18. 9 CFR 95.20 - Animal manure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Animal manure. 95.20 Section 95.20 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SANITARY CONTROL OF ANIMAL...

  19. Release and Removal of Microorganisms from Land-Deposited Animal Waste and Animal Manures: A Review of Data and Models.

    PubMed

    Blaustein, Ryan A; Pachepsky, Yakov A; Shelton, Daniel R; Hill, Robert L

    2015-09-01

    Microbial pathogens present a leading cause of impairment to rivers, bays, and estuaries in the United States, and agriculture is often viewed as the major contributor to such contamination. Microbial indicators and pathogens are released from land-applied animal manure during precipitation and irrigation events and are carried in overland and subsurface flow that can reach and contaminate surface waters and ground water used for human recreation and food production. Simulating the release and removal of manure-borne pathogens and indicator microorganisms is an essential component of microbial fate and transport modeling regarding food safety and water quality. Although microbial release controls the quantities of available pathogens and indicators that move toward human exposure, a literature review on this topic is lacking. This critical review on microbial release and subsequent removal from manure and animal waste application areas includes sections on microbial release processes and release-affecting factors, such as differences in the release of microbial species or groups; bacterial attachment in turbid suspensions; animal source; animal waste composition; waste aging; manure application method; manure treatment effect; rainfall intensity, duration, and energy; rainfall recurrence; dissolved salts and temperature; vegetation and soil; and spatial and temporal scale. Differences in microbial release from liquid and solid manures are illustrated, and the influential processes are discussed. Models used for simulating release and removal and current knowledge gaps are presented, and avenues for future research are suggested. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. ANIMAL MANURES AS FEEDSTUFFS: NUTRIENT CHARACTERISTICS

    EPA Science Inventory

    This study critically evaluates the potential value of animal manure as feedstuffs for livestock and poultry using information in the published literature. The paper provides an assessment of the nutrient and economic value of manures as a function of their composition when compa...

  1. Bio-Product Recovery from Lignocellulosic Materials Derived from Poultry Manure

    ERIC Educational Resources Information Center

    Champagne, Pascale; Li, Caijian

    2008-01-01

    This study examines the hydrolysis of lignocellulose extracted from poultry manure for the purpose of investigating low-cost feedstocks for ethanol production while providing an alternative solid waste management strategy for agricultural livestock manures. Poultry manure underwent various pretreatments to enhance subsequent enzymatic hydrolysis…

  2. Applied and environmental chemistry of animal manure: A review

    USDA-ARS?s Scientific Manuscript database

    Animal manure consists of predominantly urine and feces, but also may contain bedding materials, dropped feed, scurf and other farming wastes. The estimated amount of manure produced in 12 major livestock producing countries is 9 x109 Mg of manure annually. Manures are rich in plant nutrients. Howev...

  3. Applied manure research—looking forward to the benign roles of animal manure in agriculture and the environment

    USDA-ARS?s Scientific Manuscript database

    By definition, animal manure is discarded animal excreta and bedding materials usually applied to soils as a fertilizer for agricultural production. However, the impact of manure generation and disposal is far more than the role of organic fertilizers, even though the fertilizer function of animal m...

  4. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  6. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  7. Short communication: Environmental mastitis pathogen counts in freestalls bedded with composted and fresh recycled manure solids.

    PubMed

    Cole, K J; Hogan, J S

    2016-02-01

    An experiment was conducted to compare bacterial counts of environmental mastitis pathogens in composted recycled manure solids bedding with those in fresh recycled manure solids. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 freestalls included mattresses and was bedded weekly with composted recycled manure solids. The second row of 9 freestalls included mattresses and was bedded weekly with fresh recycled manure solids. The back one-third of stalls toward the alleyway was covered in 25 to 50 mm of bedding. Samples were taken from the back one-third of 4 stalls for both treatments on d 0, 1, 2, and 6 of each week. After 3 wk, bedding treatments were switched between rows, making the total duration 6 wk. Mean total gram-negative bacterial counts were approximately 0.5 log10 cfu/g of dry matter lower in the composted recycled manure solids on d 0 compared with fresh recycled manure solids. Klebsiella species, coliform, and Streptococcus species counts were at least 1.0 log10 cfu/g of dry matter lower in composted compared with fresh recycled manure solids on d 0. Only gram-negative bacterial counts on d 1 were reduced in composted recycled manure solids compared with fresh recycled manure solids. Differences were not observed between treatments in gram-negative bacterial, coliform, Klebsiella species, or Streptococcus species counts on d 2 and 6. Ash content was higher in composted recycled manure solids compared with fresh recycled manure solids on d 0, 1, 2, and 6. Despite the increase in ash after composting, bacterial counts of mastitis pathogens in composted recycled manure solids were comparable with those in fresh recycled manure when used as freestall bedding. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  9. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment

    PubMed Central

    Miao, Max; Wang, Yi; Settles, Matthew; del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard

    2018-01-01

    Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers. PMID:29304047

  10. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewablemore » fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.« less

  11. ANIMAL MANURES AS FEEDSTUFFS: CATTLE MANURE FEEDING TRIALS

    EPA Science Inventory

    The utilization of 'as-collected' and processed beef cattle and dairy cow manure, manure screenings and anaerobically digested cattle manures was evaluated on the basis of the results of feeding trials reported in the literature. The maximum level of incorporating these manures i...

  12. Bedding additives reduce ammonia emission and improve crop N uptake after soil application of solid cattle manure.

    PubMed

    Shah, Ghulam Abbas; Shah, Ghulam Mustafa; Rashid, Muhammad Imtiaz; Groot, Jeroen C J; Traore, Bouba; Lantinga, Egbert A

    2018-03-01

    This study examined the influences of three potential additives, i.e., lava meal, sandy soil top-layer and zeolite (used in animal bedding) amended solid cattle manures on (i) ammonia (NH 3 ), dinitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ) emissions and (ii) maize crop or grassland apparent N recovery (ANR). Diffusion samplers were installed at 20 cm height on grassland surface to measure the concentrations of NH 3 from the manures. A photoacoustic gas monitor was used to quantitate the fluxes of N 2 O, CH 4 and CO 2 after manures' incorporation into the maize-field. Herbage ANR was calculated from dry matter yield and N uptake of three successive harvests, while maize crop ANR was determined at cusp of juvenile stage, outset of grain filling as well as physiological maturity stages. Use of additives decreased the NH 3 emission rates by about two-third from the manures applied on grassland surface than control untreated-manure. Total herbage ANR was more than doubled in treated manures and was 25% from manure amended with farm soil, 26% and 28% from zeolite and lava meal, respectively compared to 11% from control manure. In maize experiment, mean N 2 O and CO 2 emission rates were the highest from the latter treatment but these rates were not differed from zero control in case of manures amended with farm soil or zeolite. However, mean CH 4 emissions was not differed among all treatments during the whole measuring period. The highest maize crop ANR was obtained at the beginning of grain filling stage (11-40%), however ample lower crop recoveries (8-14%) were achieved at the final physiological maturity stage. This phenomenon was occurred due to leaf senescence N losses from maize crop during the period of grains filling. The lowest losses were observed from control manure at this stage. Hence, all additives decreased the N losses from animal manure and enhanced crop N uptake thus improved the agro-environmental worth of animal manure

  13. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Haase, S.; Milward, R.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less

  14. Solids and nutrient removal from flushed swine manure using polyacrylamides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanotti, M.B.; Hunt, P.G.

    1999-12-01

    Most of the organic nutrients and reduced carbon (C) materials in liquid swine manure are contained in fine suspended particles that are not separated by available mechanical separators. Treatment with polyacrylamide (PAM) polymers prior to mechanical removal or gravity settling has the potential for enhancing solids-liquid separation, thus concentrating nitrogen (N), phosphorus (P), and organic C. In this work, the authors determined PAM charge and density characteristics most desirable for swine wastewater applications and established the optimum chemical requirement. Treatments were applied to flushed manure from two swine operations in North Carolina. Cationic PAMs significantly increased solids separation while performancemore » of neutral and anionic types was not different from a control. Cationic PAMs with moderate-charge density (20%) were more effective than polymers with higher charge density. Flocs were large and effectively retained with a 1-mm screen. Optimum PAM rate varied with the amount of total suspended solids (TSS) in the liquid manure; 26 and 79 mg PAM/L for samples containing 1.5 and 4.1 g TSS/L, respectively. Corresponding TSS removal efficiencies were 90 to 94%. In contrast, screening without PAM treatment captured only 5 to 14% of the suspended solids. Polymer usage rate was consistent and averaged 2.0{degree} based on weight of dry solids produced. Volatile suspended solids (VSS) were highly correlated with TSS and comprised 79.5% of TSS. Chemical oxygen demand (COD) and organic nutrient concentrations in the effluent were also significantly decreased by PAM treatment. The decrease of COD concentration, an important consideration for odor control, was linearly related with removal of suspended solids, at a rate of 2.0 g COD/g TSS and 2.6 g COD/g VSS. Removal efficiency of organic N and P followed approximately a 1:1 relationship with removal efficiency of TSS. Chemical cost to capture 90% of the suspended solids was estimated to be $0

  15. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    PubMed Central

    Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah

    2016-01-01

    The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help

  16. Management and characteristics of recycled manure solids used for bedding in Midwest freestall dairy herds.

    PubMed

    Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A

    2012-04-01

    Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts

  17. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-01

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effectivemore » renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been

  18. Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study

    USDA-ARS?s Scientific Manuscript database

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...

  19. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  20. Phosphorus reclamation through hydrothermal carbonization of animal manures

    USDA-ARS?s Scientific Manuscript database

    Projected shortages of global phosphate have prompted investigation of methods that could be employed to capture and recycle phosphate, rather than continue to allow the resource to be essentially irreversibly lost through dilution in surface waters. Hydrothermal carbonization of animal manures from...

  1. Combustible gas and biochar production from co-pyrolysis of agricultural plastic wastes and animal manures

    USDA-ARS?s Scientific Manuscript database

    Researchers report that manure-derived biochar has considerable potential both for improving soil quality and reducing water pollution. One of obstacles in obtaining manure biochar is its high energy requirement for pyrolyzing wet and low-energy-density animal manures. The combustible gas produced f...

  2. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting.

    PubMed

    Qian, Xun; Gu, Jie; Sun, Wei; Wang, Xiao-Juan; Su, Jian-Qiang; Stedfeld, Robert

    2018-02-15

    Aerobic composting is used widely for animal manure recycling, and it may reduce the amount of antibiotic resistance genes (ARGs) that enter the environment. We sampled three types of animal (bovine, chicken, and pig) manure and the corresponding composts from 12 large-scale farms, and tested multiple ARGs and mobile genetic elements (MGEs) by high-throughput qPCR. A total of 109 ARGs were detected in the manure and compost samples, thereby demonstrating that both are important ARG reservoirs. The diversity and abundance of ARGs were significantly higher in chicken and pig manure than bovine manure, but industrial composting was more efficient at reducing the ARGs in chicken manure than pig and bovine manure. Composting universally reduced some ARGs, but inconsistently influenced other ARGs from different types of animal manures. Network analysis detected the widespread co-occurrence of ARGs and MGEs. floR, ermF, catB3, aac(6')-lb(akaaacA4), and aadA were identified as suitable indicator genes for estimating the total abundance of ARGs. Our results suggest that different animal species had significant effects on the diversity, abundance, and persistence of ARGs, where the abundance of transposons, heavy metal concentration, total nitrogen level, and the dosage and duration of exposure to antibiotics may explain these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    PubMed

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines.

  5. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  6. Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water.

    PubMed

    Wang, Y T; Zhang, T Q; Tan, C S; Qi, Z M; Welacky, T

    2018-03-01

    Forms (e.g., liquid and solid) of manure influence the risk of P loss after land application. The objective of this study was to investigate the effects of P-based application of various forms of cattle manure (liquid, LCM; or solid, SCM) or inorganic P as triple superphosphate (IP) on soil P losses in tile drainage water. A 4-yr field experiment was conducted in a clay loam soil with a corn ( L.)-soybean [ (L.) Merr.] rotation in the Lake Erie basin. Over the 4 yr, the dissolved reactive P (DRP) flow-weighted mean concentration (FWMC) in tile drainage water was greater under SCM fertilization than under either IP or LCM fertilization. Despite its lower value on an annual basis, DRP FWMC rose dramatically immediately after LCM application. However, the differences in DRP FWMC did not result in detectable differences in DRP loads. Regarding particulate P and total P losses during the 4 yr, they were 68 and 47%, respectively, lower in the soils amended with SCM than in those with IP, whereas both values were similar between IP and LCM treatments. Overall, the P contained in solid cattle manure was less prone to P loss after land application. Accordingly, the present results can provide a basis for manure storage and application of best management practices designed to reduce P losses and improve crop growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. County-level estimates of nitrogen and phosphorus from animal manure for the conterminous United States, 2002

    USGS Publications Warehouse

    Mueller, David K.; Gronberg, Jo Ann M.

    2013-01-01

    County-level nitrogen and phosphorus inputs from animal manure for the conterminous United States for 2002 were estimated from animal populations from the 2002 Census of Agriculture by using methods described in U.S. Geological Survey Scientific Investigations Report 2006–5012. These estimates of nitrogen and phosphorus from animal manure were compiled in support of the U.S. Geological Survey’s National Water-Quality Assessment Program.

  8. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  9. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  10. Application of Bio-digestion for Capsule Gelatin-- From the Pharmaceutical Wastes to the Manure

    NASA Astrophysics Data System (ADS)

    Pan, C.; Huang, S.; Chang, Y.; Wen, J.

    2013-12-01

    The purpose of this study was to bio-digest the capsule gelatin from the waste of pharmaceutical processes such as cutting and stamping for capsule shells producing. We screened soil bacterial flora for capsule gelatin biolysis, and found the most competent one named Yuntech-7. A 15% (w/w) of capsule gelatin could fully digested by Yuntech-7 for 3 days growth with an N-limited medium in a 37°C incubator. In order to recycle and reuse the gelatin waste, the different percentages of capsule gelatin were co-composted with the vegetable residues to produce manure in an anaerobic fermentation by an extra Yuntech-7 inoculation. After 14 days incubation, we collected the filtrate to examine the contents of N, P, and K. The data shows that the P and K keep the same value by roughly between the blank and the control sets, but the total N values were approximately a 5-fold increase in 20% and a 10-fold increase in 40% of capsule gelatin integrated. We suggested that the capsule gelatin was majorly decomposed by Yuntech-7, because the total N value was no observable change in the capsule gelatin and vegetable residues co-compost with a Yuntech-7-free condition. We also performed some field tests using the capsule gelatin generated liquid manure, and the preliminary test shows the plants got great benefits on culture size and in environmental resistance. In conclusion, the process in bio-digestion of waste capsule gelatin by soil bacteria, Yuntech-7, was produced a valuable manure not only aliment the plants but also complement the soil bacterial populations.

  11. Nitrogen-to-Protein Conversion Factors for Crop Residues and Animal Manure Common in China.

    PubMed

    Chen, Xueli; Zhao, Guanglu; Zhang, Yang; Han, Lujia; Xiao, Weihua

    2017-10-25

    Accurately determining protein content is essential in exploiting biomass as feed and fuel. A survey of biomass samples in China indicated protein contents from 2.65 to 3.98% for crop residues and from 6.07 to 10.24% for animal manure of dry basis. Conversion factors based on amino acid nitrogen (k A ) ranged from 5.42 to 6.00 for the former and from 4.78 to 5.36 for the latter, indicating that the traditional factor of 6.25 is not suitable for biomass samples. On the other hand, conversion factors from Kjeldahl nitrogen (k P ) ranged from 3.97 to 4.57 and from 2.76 to 4.31 for crop residues and animal manure, respectively. Of note, conversion factors were strongly affected by amino acid composition and levels of nonprotein nitrogen. Thus, k P values of 4.23 for crop residues, 4.11 for livestock manure, and 3.11 for poultry manure are recommended to better estimate protein content from total nitrogen.

  12. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  13. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  14. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  15. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    ERIC Educational Resources Information Center

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  16. The economics of energy from animal manure for greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad

    2007-12-01

    Anaerobic digestion (AD) has significant economies of scale, i.e. per unit processing costs decrease with increasing size. The economics of AD to produce biogas and in turn electric power in farm or feedlot based units as well as centralized plants is evaluated for two settings in Alberta: a mixed farming area, Red Deer County, and an area of concentrated beef cattle feedlots, Lethbridge County. A centralized plant drawing manure from 61 sources in the mixed farming area could produce power at a cost of 218 MWh-1 (2005 US). A centralized plant drawing manure from 560,000 beef cattle in Lethbridge County, can produce power at a cost of 138 MWh-1. Digestate processing, if commercially available, shifts the balance in favor of centralized processing. At larger scales, pipelines could be used to deliver manure to a centralized plant and return the processed digestate back to the manure source for spreading. Pipeline transport of beef cattle manure is more economic than truck transport for the manure produced by more than 90,000 animals. Pipeline transport of digestate is more economic when manure from more than 21,000 beef cattle is available and two-way pipelining of manure plus digestate is more economic when manure from more than 29,000 beef cattle is available. The value of carbon credits necessary to make AD profitable in a mixed farming region is also calculated based on a detailed analysis of manure and digestate transport and processing costs at an AD plant. Carbon emission reductions from power generation are calculated for displacement of power from coal and natural gas. The required carbon credit to cover the cost of AD processing of manure is greater than 150 per tonne of CO2. These results show that AD treatment of manure from mixed farming areas is not economic given current values of carbon credits. Power from biogas has a high cost relative to current power prices and to the cost of power from other large scale renewable sources. Power from biogas would

  17. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.).

    PubMed

    Rehman, Kashif Ur; Cai, Minmin; Xiao, Xiaopeng; Zheng, Longyu; Wang, Hui; Soomro, Abdul Aziz; Zhou, Yusha; Li, Wu; Yu, Ziniu; Zhang, Jibin

    2017-07-01

    World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Leaching behavior of veterinary antibiotics in animal manure-applied soils.

    PubMed

    Pan, Min; Chu, L M

    2017-02-01

    Agricultural fields worldwide are being contaminated by the escalating application of veterinary antibiotics (VAs) via animal manure and biosolids applied as fertilizers or of wastewater for irrigation, resulting in soil degradation and damage to the health of terrestrial environments. This paper describes a series of column studies investigating the leaching behavior of five VAs, tetracycline (TC), sulfamethazine (SMZ), norfloxacin (NOR), erythromycin (ERY) and chloramphenicol (CAP), under different simulated rainfall conditions that could occur in agricultural environments. Our aim was to explore the effects of acid rain and torrential rain on the leaching of different VAs and to determine their leaching behaviors along the soil profile. The results showed that acid rain accelerated the accumulation of VAs from animal manure in surface soil while long rainfall durations promoted the downward migration of VAs in soil. Under acid rain conditions, a higher concentration of VAs remained in the animal manure. More VAs were eluted to deeper soil layers and the leachate under extreme rainfall conditions. The leachability of VAs was higher in sandy soil than in clay or loamy soil. SMZ and ERY posed a higher risk to deeper soil layers and groundwater, while NOR and TC tended to persist in surface soil, which can be explained by their different physicochemical properties in soil. Moreover, the general trends from two model assessments and soil column measurements appeared to be in agreement. SMZ had a high leachability, while NOR tended to accumulate in soils. This study provided vital insight into the persistence mechanisms of VAs in terrestrial environments and their potential risks to soils and groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Water extractable phosphorus in animal manure and manure compost: quantities, characteristics, and temporal changes

    USDA-ARS?s Scientific Manuscript database

    Water extractable phosphorus (WEP) in manure and manure compost is widely used as an indicator of P release to runoff from manures and composts that are land applied. A survey of 600 manures and composts was conducted to assess trends in WEP related to manure and compost types from sources in Pennsy...

  20. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  1. Gasification of blended animal manures to produce synthesis gas and activated charcoal

    USDA-ARS?s Scientific Manuscript database

    Blended swine solids, chicken litter, and hardwood are renewable and expensive sources to produce combined heat and power (CHP), fuels and related chemicals. The therrmochemical pathway to gasify manure has the added advantage of destroying harmful pathogens and pharmaceutically active compounds dur...

  2. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Nutrient Recovery and Emissions of Ammonia, Nitrous Oxide, and Methane from Animal Manure in Europe: Effects of Manure Treatment Technologies.

    PubMed

    Hou, Yong; Velthof, Gerard L; Lesschen, Jan Peter; Staritsky, Igor G; Oenema, Oene

    2017-01-03

    Animal manure contributes considerably to ammonia (NH 3 ) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH 3 , nitrous oxide (N 2 O) and methane (CH 4 ) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH 3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH 3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH 3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH 3 and GHG emission targets set in EU environmental policies.

  4. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices

    PubMed Central

    Huang, Jieying; Yu, Zixuan; Gao, Hongjian; Yan, Xiaoming; Chang, Jiang; Wang, Chengming; Hu, Jingwei

    2017-01-01

    Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different. PMID:28604783

  5. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues.

    PubMed

    Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue

    2018-03-01

    Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessing the effect of different treatments on decomposition rate of dairy manure.

    PubMed

    Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O

    2016-11-01

    Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Efficient use of animal manure on cropland--economic analysis.

    PubMed

    Araji, A A; Abdo, Z O; Joyce, P

    2001-09-01

    Manure contains all the macro- and microelements needed for plant growth; however, it represents one of the most underutilized resources in the US. The major problem with the use of manure on cropland is the direct effect of its composition on application cost. This cost is a function of the mineralization process of organic matter. The mineralization process is influenced by the properties of the manure, properties of the soil, moisture, and temperature. This study evaluates the simultaneous effect of these variables on the optimal use of manure on cropland. The results show that the properties of manure and soil significantly affect the mineralization of organic nitrogen and thus the optimal quantity of manure required to satisfy the nutrient requirement of crops in a given rotation system. Manure application costs range from a low of 18% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 125% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its application cost to the cost of commercial fertilizer, ranges from a high of 35 km (22 miles) for chicken manure applied to one type of soil, to a low of 1 km (0.62 miles) for cow manure applied to another type of soil. For rotation system 2, manure application costs range from a low of 37% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 136% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its cost to the cost of commercial fertilizer, ranges from a high of 20 km (12.5 miles) for chicken manure applied to one type of soil, to a low of 0 km (0 miles) for cow manure applied to another type of soil.

  8. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato.

    PubMed

    Entry, James A; Leytem, April B; Verwey, Sheryl

    2005-11-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.

  9. County-level estimates of nitrogen and phosphorus from animal manure for the conterminous United States, 2007 and 2012

    USGS Publications Warehouse

    Gronberg, JoAnn M.; Arnold, Terri L.

    2017-03-24

    County-level estimates of nitrogen and phosphorus inputs from animal manure for the conterminous United States were calculated from animal population inventories in the 2007 and 2012 Census of Agriculture, using previously published methods. These estimates of non-point nitrogen and phosphorus inputs from animal manure were compiled in support of the U.S. Geological Survey’s National Water-Quality Assessment Project of the National Water Quality Program and are needed to support national-scale investigations of stream and groundwater water quality. The estimates published in this report are comparable with older estimates which can be compared to show changes in nitrogen and phosphorus inputs from manure over time.

  10. Nutrient variations from swine manure to agricultural land

    PubMed Central

    You, Byung-Gu; Shim, Soomin; Choi, Yoon-Seok

    2018-01-01

    Objective Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (ΔP = 0), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and 5.14 L/m2·d for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and 2.7 kg/head·yr. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss. PMID

  11. Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions.

    PubMed

    Zhang, Enlan; Li, Jiajia; Zhang, Keqiang; Wang, Feng; Yang, Houhua; Zhi, Suli; Liu, Guangqing

    2018-03-22

    Sweet potato vine (SPV) is an abundant agricultural waste, which is easy to obtain at low cost and has the potential to produce clean energy via anaerobic digestion (AD). The main objectives of this study were to reveal methane production and process stability of SPV and the mixtures with animal manure under various total solid conditions, to verify synergetic effect in co-digestion of SPV and manure in AD systems, and to determine the kinetics characteristics during the full AD process. The results showed that SPV was desirable feedstock for AD with 200.22 mL/g VS added of methane yield in wet anaerobic digestion and 12.20 L methane /L working volume in dry anaerobic digestion (D-AD). Synergistic effects were found in semi-dry anaerobic digestion and D-AD with each two mixing feedstock. In contrast with SPV mono-digestion, co-digestion with manure increased methane yield within the range of 14.34-49.11% in different AD digesters. The values of final volatile fatty acids to total alkalinity (TA) were below 0.4 and the values of final pH were within the range of 7.4-8.2 in all the reactors, which supported a positive relationship between carbohydrate hydrolysis and methanogenesis during AD process. The mathematical modified first order model was applied to estimate substrate biodegradability and methane production potential well with conversion constant ranged from 0.0003 to 0.0953 1/day, which indicated that co-digestion increased hydrolysis efficiency and metabolic activity. This work provides useful information to improve the utilization and stability of digestion using SPV and livestock or poultry manure as substrates.

  12. Trace elements in feed, manure, and manured soils.

    PubMed

    Sheppard, S C; Sanipelli, B

    2012-01-01

    Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    PubMed

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log K ow ), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production.

    PubMed

    Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan

    2016-10-01

    Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.

  15. Short communication: Bacterial counts in recycled manure solids bedding replaced daily or deep packed in freestalls.

    PubMed

    Sorter, D E; Kester, H J; Hogan, J S

    2014-05-01

    An experiment was conducted to compare bacterial counts of mastitis pathogens in deep-packed manure solids bedding with those in manure solids bedding replaced daily from mattresses. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 stalls was equipped with mattresses topped with bedding. The back one-third of these stalls toward the alleyway was covered in 25 mm of recycled manure solids, which was removed daily for the next 6 d and replaced with bedding from the brisket board and lunge space areas of stalls. The second row of 9 stalls was bedded for 3 wk with 100 to 150 mm of deep-pack recycled manure bedding from which only fecal matter was removed daily. After 3 wk, bedding treatments were changed between rows in a switchback design. Mean total gram-negative bacterial counts did not differ between treatments throughout the experiment. Coliform and Klebsiella spp. bacterial counts were lower in daily replaced bedding compared with deep pack across the experiment and on each of d 0, 1, 2, and 6. Streptococcal counts were reduced in daily replacement stalls compared with deep-pack stalls on d 0 and greater in daily replacement stalls compared with deep-pack stalls on d 1, 2, and 6. Daily replacement of recycled manure bedding from the back one-third of the stalls appeared to be an effective approach to reducing exposure to coliforms, specifically Klebsiella, but not streptococci. However, bacterial counts in bedding from both treatments were elevated throughout the trial and resulted in considerable risk for exposure to teats and development of intramammary infections. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Method development for the analysis of ionophore antimicrobials in dairy manure to assess removal within a membrane-based treatment system.

    PubMed

    Hurst, Jerod J; Wallace, Josh S; Aga, Diana S

    2018-04-01

    Ionophore antimicrobials are heavily used in the livestock industries, both for preventing animal infection by coccidia protozoa and for increasing feed efficiency. Ionophores are excreted mostly unmetabolized and are released into the environment when manure is land-applied to fertilize croplands. Here, an analytical method was optimized to study the occurrences of five ionophore residues (monensin, lasalocid, maduramycin, salinomycin, and narasin) in dairy manure after solid-liquid separation and further treatment of the liquid manure by a membrane-based treatment system. Ionophore residues from the separated solid manure (dewatered manure) and suspended solids of manure slurry samples were extracted using ultrasonication with methanol, followed by sample clean-up using solid phase extraction (SPE) and subsequent analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of an ethyl acetate and methanol (1:1 v:v) mixture as an SPE eluent resulted in higher recoveries and lower method quantitation limits (MQL), when compared to using methanol. Overall recoveries from separated solid manure ranged from 73 to 134%. Liquid manure fractions were diluted with Nanopure™ water and cleaned up using SPE, where recoveries ranged from 51 to 100%. The developed extraction and LC-MS/MS methods were applied to analyze dairy manure samples subjected to an advanced manure treatment process involving a membrane-based filtration step (reverse osmosis). Monensin and lasalocid were detected at higher concentrations in the suspended solid fractions (4.40-420 ng/g for lasalocid and 85-1950 ng/g for monensin) compared to the liquid fractions (manure treated with reverse osmosis where residual concentrations were reduced to near 8 ng/mL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino).

    PubMed

    Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad

    2016-04-27

    Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.

  18. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  19. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  20. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  1. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  2. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... and premises of tick-infested animals; destruction or treating required. The litter and manure removed... which have contained interstate shipments of tick-infested animals, shall be destroyed or treated by the...

  3. [Emission and control of gases and odorous substances from animal housing and manure depots].

    PubMed

    Hartung, J

    1992-02-01

    Agricultural animal production in increasingly regarded as a source of gases which are both aggravating and ecologically harmful. An overview of the origin, number and quantity of trace gases emitted from animal housing and from manure stores is presented and possible means of preventing or reducing them are discussed. Of the 136 trace gases in the air of animal houses, odorous substances, ammonia and methane are most relevant to the environment. The role played by the remaining gases is largely unknown. Quantitative information is available for 23 gases. The gases are emitted principally from freshly deposited and stored faeces, from animal feed and from the animals themselves. Future work should determine sources and quantities of the gases emitted from animal housing more precisely and should aim to investigate the potential of these gases to cause damage in man, animals and environment. Odorous substances have an effect on the area immediately surrounding the animal housing. They can lead to considerable aggravation in humans. For years, VDI1 guidelines (3471/72), which prescribe distances between residential buildings and animal housing, have been valuable in preventing odour problems of this kind. Coverings are suitable for outside stores. The intensity of the odour from animal housing waste air increases from cattle through to hens and pigs; it is also further affected by the type of housing, the age of the animals and the purpose for which they are being kept. Methods of cleaning waste air (scrubbers/biofilters) are available for problematic cases. The need for guidelines to limit emissions from individual outside manure stores (lagoons) is recognised. Total ammonia emissions from animal production in the Federal Republic of Germany (up to 1989) are estimated at approximately 300,000 to 600,000 t/year. There is a shortage of satisfactory and precise research on the extent of emissions, in particular on those from naturally ventilated housing. It is

  4. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    PubMed

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  5. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Optimizing the Logistics of Anaerobic Digestion of Manure

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  7. Detection of Manure-Derived Organic Compounds in Rivers Draining Agricultural Areas of Intensive Manure Spreading

    NASA Astrophysics Data System (ADS)

    Jardé, E.; Gruau, G.

    2006-12-01

    This study presents the potentiality of organic markers to trace the impact of animal manure in soils and rivers draining agricultural watersheds. As described by Gruau et al. (in this session), the analysis of long term records of dissolved organic matter (DOM) in five watersheds in Brittany (western of France) shows divergent trends which can not be explained solely by global changes. One alternative explanation could be that long- term records of DOM in rivers are controlled by human activities, and notably by agricultural practices. In Brittany, the agricultural intensification led to an over-application of animal manures to soils. This practice can strongly increase the amount of soil-water extractable organic matter, thereby leading to an increase of organic matter fluxes in agricultural landscapes and then to a contamination of river waters. Such an hypothesis deserves consideration in view of the massive manure fluxes that are disposed on agricultural land in many parts of the world. In this goal, our study aimed at determining potential sources of organic matter and molecular markers or specific distributions in rivers draining agricultural watersheds. In this study we focused on the analysis of pig slurries because of the importance of pig production in Brittany. The analysis of pig slurry evidenced the presence of coprostanol (5β) as a specific marker, originating from the bio- hydrogenation of cholesterol by anaerobic bacteria. The difference with other animal or human wastes has been evidenced by two ratios: 5β/C27 and C29/C27. After the validation of the ability of coprostanol to be a molecular marker of pig slurry, our analysis has been focused on the OM of watersheds in Brittany showing divergent evolutions. The results show a systematic relation between the C29/C27 and 5β/C27 ratios and the type of animal breeding in each watershed. This study allows us to evidence the impact of animal breeding activities in the analysed rivers. Such a study

  8. An ecoregion-specific ammonia emissions inventory of Ontario dairy farming: Mitigation potential of diet and manure management practices

    NASA Astrophysics Data System (ADS)

    Chai, Lilong; Kröbel, Roland; MacDonald, Douglas; Bittman, Shabtai; Beauchemin, Karen A.; Janzen, H. Henry; McGinn, Sean M.; Vanderzaag, Andrew

    2016-02-01

    The Canadian ammonia (NH3) emissions model and a survey of dairy farm practices were used to quantify effects of management on emissions from dairy farms in Ontario Canada. Total NH3 emissions from dairy farming were 21 Gg NH3-N yr-1 for the four ecoregions of the province. Annual emission rates ranged from 12.8 (for calves in ecoregions of Manitoulin-Lake Simcoe-Frontenac) to 50 kg NH3-N animal-1 yr-1 (for lactating cows in ecoregions of St. Lawrence Lowlands) (mean of 27 kg NH3-N animal-1 yr-1). The St. Lawrence Lowlands ecoregion had the highest emission rate because more dairy manure was managed as solid manure in that ecoregion. Total dairy cattle N intake (diet-N) was 81 Gg N yr-1, 23% of which was retained in animal products (e.g., milk, meat, and fetus), 47% was returned to the land, and 30% was emitted as gas (i.e., NH3-N, N2O-N, NO-N, and N2-N) and nitrate-N leaching/runoff. Ammonia volatilization constituted the largest loss of diet-N (26%), as well as manure-N (34%). Reducing the fraction of solid manure by 50% has the potential to mitigate NH3 emissions by 18% in Ontario ecoregions.

  9. Kinetics of Methane Production from Swine Manure and Buffalo Manure.

    PubMed

    Sun, Chen; Cao, Weixing; Liu, Ronghou

    2015-10-01

    The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.

  10. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    PubMed Central

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  11. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures.

    PubMed

    Xie, Wan-Ying; Yang, Xin-Ping; Li, Qian; Wu, Long-Hua; Shen, Qi-Rong; Zhao, Fang-Jie

    2016-12-01

    The over-use of antibiotics in animal husbandry in China and the concomitant enhanced selection of antibiotic resistance genes (ARGs) in animal manures are of serious concern. Thermophilic composting is an effective way of reducing hazards in organic wastes. However, its effectiveness in antibiotic degradation and ARG reduction in commercial operations remains unclear. In the present study, we determined the concentrations of 15 common veterinary antibiotics and the abundances of 213 ARGs and 10 marker genes for mobile genetic elements (MGEs) in commercial composts made from cattle, poultry and swine manures in Eastern China. High concentrations of fluoroquinolones were found in the poultry and swine composts, suggesting insufficient removal of these antibiotics by commercial thermophilic composting. Total ARGs in the cattle and poultry manures were as high as 1.9 and 5.5 copies per bacterial cell, respectively. After thermophilic composting, the ARG abundance in the mature compost decreased to 9.6% and 31.7% of that in the cattle and poultry manure, respectively. However, some ARGs (e.g. aadA, aadA2, qacEΔ1, tetL) and MGE marker genes (e.g. cintI-1, intI-1 and tnpA-04) were persistent with high abundance in the composts. The antibiotics that were detected at high levels in the composts (e.g. norfloxacin and ofloxacin) might have posed a selection pressure on ARGs. MGE marker genes were found to correlate closely with ARGs at the levels of individual gene, resistance class and total abundance, suggesting that MGEs and ARGs are closely associated in their persistence in the composts under antibiotic selection. Our research shows potential disseminations of antibiotics and ARGs via compost utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pollution characteristics of 23 veterinary antibiotics in livestock manure and manure-amended soils in Jiangsu province, China.

    PubMed

    Guo, Xin Y; Hao, Li J; Qiu, Pan Z; Chen, Rong; Xu, Jing; Kong, Xiang J; Shan, Zheng J; Wang, Na

    2016-01-01

    The aim of this study was to investigate the pollution characteristics of typical veterinary antibiotics in manure and soil of livestock farms in Jiangsu province. This investigation employed solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 53 manure and 50 amended soil samples from 16 livestock farms in Jiangsu province were collected for analysis. In the manure samples, the highest detected frequencies and concentrations were those of tetracyclines (TCs, 54.1 ± 5775.6 μgkg(-1)), followed by fluoroquinolones (FQs, 8.4 ± 435.6 μgkg(-1)), sulphonamides (SAs, 3.2 ± 5.2 μgkg(-1)) and macrolides (MACs, 0.4 ± 110.5 μgkg(-1)). Statistical analysis was used to illuminate the pollution characteristics of 23 veterinary antibiotics for various animal types and different regions in Jiangsu province. The results showed that the pollution level in cow manure was relatively lower compared with pig and chicken manure due to the relative restriction of medication. Furthermore, contamination was serious in amended soil from chicken farms. The pollution level in manure among different regions was higher to the south and north compared with the centre of the region. The same outcome was found for soil. Antibiotic residues in organic fertilizer were also investigated in this study. We found that although the detected concentration was lower in organic fertilizer than in fresh manure, detection frequencies (10-90%) were high, especially for roxithromycin (90%) in MACs (30-90%). This finding suggests attention should be paid to the pollution levels in organic fertilizer. This study is the first extensive investigation of the occurrence and distribution of many kinds of typical veterinary antibiotics in manure and soil from livestock farms of Jiangsu province. This investigation systematically assesses veterinary antibiotics usage and related emissions in southeast China.

  13. [Impact of Thermal Treatment on Biogas Production by Anaerobic Digestion of High-solid-content Swine Manure].

    PubMed

    Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e

    2015-08-01

    Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.

  14. Speciation and transformation of heavy metals during vermicomposting of animal manure.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2016-06-01

    This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting. The total heavy metals in final vermicompost from CD and PM were higher than the initial values and the control without worms. Sequential extraction indicated that vermicomposting decreased the migration and availability of heavy metals, and the earthworm could reduce the mobile fraction, while increase the stable fraction of heavy metals. Furthermore, these results indicated that vermicomposting played a positive role in stabilizing heavy metals in the treatment of animal manure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Occurrence of Veterinary Antibiotics in Swine Manure from Large-scale Feedlots in Zhejiang Province, China.

    PubMed

    Wang, Hua; Chu, Yixuan; Fang, Chengran

    2017-04-01

    The occurrence and distribution of five sulfonamides and three tetracyclines in swine manure sampled from large-scale feedlots in different areas of Zhejiang Province, China were detected using solid-phase extraction and high-performance liquid chromatography. All eight test antibiotics were detected in most of the manure samples. The dominant antibiotics in swine manure were sulfadiazine, sulfamerazine, sulfadimidine, tetracycline, and chlortetracycline. The maximum concentration of residual antibiotic reached up to 57.95 mg/kg (chlortetracycline). The concentrations and distribution of both types of antibiotics in swine manure of different areas varied greatly. Relatively higher concentrations of sulfonamides were found in swine manure from the Zhejiang area in this experiment compared with previous studies. The results revealed that antibiotics were extensively used in feedlots in this district and that animal manure might act as a non-specific source of antibiotic residues in farmlands and aquatic environments.

  16. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  17. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures.

    PubMed

    Lin, Hui; Zhang, Jin; Chen, Hongjin; Wang, Jianmei; Sun, Wanchun; Zhang, Xin; Yang, Yuyi; Wang, Qiang; Ma, Junwei

    2017-12-31

    Animal manure is a main reservoir of antibiotic residues and antibiotic resistance. Here, the effect of temperature on sulfonamide antibiotics (SAs), sulfonamide-resistant (SR) genes/bacteria was investigated by aerobically incubating swine and chicken manures at different temperatures. In swine manure, the SAs concentration declined with increasing temperature, with a minimum at 60°C. In chicken manure, the greatest degradation of SAs was noted at 30°C. The reduction of relative abundance of antibiotic resistance genes (ARGs) and sul-positive hosts in swine manure was more pronounced during thermophilic than mesospheric incubation; neither temperature conditions effectively reduced these parameters in chicken manure. The relationship between the residual levels/distribution profiles of SAs, ARGs (sul1, sul2 and intI1), cultivable SR bacteria and sul-positive hosts was further established. The antibiotic residual profile, rather than antibiotic concentration, acted as an important factor in the prevalence of ARGs and sul-positive hosts in manure. Corynebacterium and Leucobacter from the phylum Actinobacteria tend to be main carriers of sul1 and intI1; the relative abundance of sul2 was significantly correlated with the relative abundance of cultivable SR bacteria. Overall, differences in resistant bacterial communities also constitute a dominant factor affecting ARG variation. This study contributes to management options for reducing the pollution of antibiotics and antibiotic resistance within manure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fixed bed pyrolysis of biomass solid waste for bio-oil

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Nurul; Ali, Mohamed Hairol Md; Haziq, Miftah

    2017-08-01

    Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed stainless steel pyrolysis reactor of 50 mm diameter and 50 cm length. The biomass solid feedstock is prepared prior to pyrolysis. The reactor bed is heated by means of a cylindrical heater of biomass source. A temperature of 500°C is maintained with an apperent vapor residence time of 3-5 sec. The products obtained are liquid bio-oil, solid char and gases. The liquid product yield is found to be 30% by weight of solid biomass feedstock while the solid product yield is found to be 35% by weight of solid biomass feedtock, the rest is gas. The bio-oil is a single-phase brownish color liquid of acrid smell. The heating value of the oil is determined to be 25 MJ/kg. The density and pH value are found to be 1.125 kg/m3 and 3.78 respectively.

  19. Dairy manure biochar as a phosphorus fertilizer

    USDA-ARS?s Scientific Manuscript database

    Future manure management practices will need to remove large amounts of organic waste as well as harness energy to generate value-added products. Manures can be processed using thermochemical conversion technologies to generate a solid product called biochar. Dairy manure biochars contain sufficient...

  20. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  1. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  2. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  3. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  4. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  5. 9 CFR 93.312 - Manure from quarantined horses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined horses. 93.312... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.312 Manure from quarantined horses. No manure shall be removed from the quarantine premises until the release of the horses producing same. ...

  6. Brazilian beef cattle feedlot manure management: a country survey.

    PubMed

    Costa, C; Goulart, R S; Albertini, T Z; Feigl, B J; Cerri, C E P; Vasconcelos, J T; Bernoux, M; Lanna, D P D; Cerri, C C

    2013-04-01

    No information regarding the management of manure from beef cattle feedlots is available for Brazil. To fill this knowledge gap, a survey of 73 feedlots was conducted in 7 Brazilian states. In this survey, questions were asked regarding animal characteristics, their diets, and manure handling management from generation to disposal. These feedlots finished 831,450 animals in 2010. The predominant breed fed was Nellore, with average feeding periods of 60 to 135 d. Corn was the primary source of grain used in the feedlot diets (76% of surveyed animals) with concentrate inclusion levels ranging from 81 to 90% (38% of surveyed animals). The most representative manure management practice was the removal of manure from pens only at the end of the feeding period. Subsequently, the manure was stored in mounds before being applied to crop and pasture lands. Runoff, mainly from rainwater, was collected in retention ponds and used for agriculture. However, the quantity of runoff was not known. Manure was composted for only 20% of the animals in the survey and was treated in anaerobic digesters for only 1% of the animals. Manure from 59% of the cattle surveyed was used as fertilizer, providing a cost savings over the use of synthetic fertilizers. Overall, chemical analysis of the manure before application to fields was conducted for the manure of 56% of the surveyed animals, but the exact quantity applied (per hectare) was unknown for 48%. Feedlots representing 48% of the surveyed animals noted similar or greater crop and pasture yields when using manure, rather than synthetic fertilizers. In addition, 32% mentioned an increase in soil organic matter. Feedlots representing 88% of the surveyed cattle indicated that information concerning management practices that improve manure use efficiency is lacking. Feedlots representing 93% of the animals in the survey reported having basic information regarding the generation of energy and fertilizer with anaerobic digesters. However

  7. ALTERNATE METHODS OF MANURE HANDLING

    EPA Science Inventory

    The objectives of this research project were to (a) construct an inexpensive storage facility for solid dairy cow manure, (b) evaluate its performance and the extent of pollutants in runoff from storage facilities, and (c) determine current manure handling practices in Vermont an...

  8. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture.

    PubMed

    Oenema, O

    2004-01-01

    This paper discusses governmental policies and measures that regulate the use of animal manure in the European Union (EU-15). Systematic intervention by governments with European agriculture in general started at the end of the 19th century. Major changes in governmental policies on agriculture followed after the establishment of the EU and its Common Agricultural Policy (CAP) in 1957. Environmental side effects of the large-scale intensification of agricultural production were addressed following the reform of the CAP and the implementation of various environmental regulations and directives from the beginning of the 1990s. The Nitrate Directive approved in 1991 has exerted, as yet, the strongest influence on intensive livestock production systems. This directive regulates the use of N in agriculture, especially through its mandatory measures to designate areas vulnerable to nitrate leaching and to establish action programs and codes of good agricultural practice for these areas. These measures have to ensure that for each farm the amount of N applied via livestock manure shall not exceed 170 kg x ha(-1) x yr(-1). These measures have large consequences, especially for countries with intensive animal agriculture, including The Netherlands, Belgium, Denmark, and Ireland. The mean livestock density in these countries is between 1.5 and 4 livestock units/ha, and the average amounts of N in animal manure range from 100 to 300 kg/ha of agricultural land. More than 10 yr after approval of the Nitrate Directive, there appears to be a delay in the implementation and enforcement in many member states, which reflects in part the major complications that arise from this directive for intensive livestock farming. It also reflects the fact that environmental policies in agriculture have economic consequences. The slow progress in the enforcement of environmental legislations in agriculture combined with the increasing public awareness of food safety, animal welfare, and

  10. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  11. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  12. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    PubMed

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion.

  14. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    PubMed

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Animal Diet, Manure Application Rate, and Tillage on Transport of Microorganisms from Manure-Amended Fields ▿

    PubMed Central

    Durso, Lisa M.; Gilley, John E.; Marx, David B.; Woodbury, Bryan L.

    2011-01-01

    Manure from cattle fed distillers' grain or corn diets was applied to fields, and the fields were subjected to rainfall simulation tests. Manure was added at three rates on till and no-till plots. Correlations between microbial transport and runoff characteristics were identified. Results indicate that diet affects phage but not bacterial transport from manure-amended fields. PMID:21803913

  16. Effluent Gas Flux Characterization During Pyrolysis of Chicken Manure

    NASA Astrophysics Data System (ADS)

    Clark, S. C.; Ryals, R.; Miller, D. J.; Mullen, C. A.; Pan, D.; Zondlo, M. A.; Boateng, A. A.; Hastings, M. G.

    2017-12-01

    Pyrolysis is a viable option for the production of agricultural resources from diverted organic waste streams and renewable bioenergy. This high temperature thermochemical process yields material with beneficial reuses, including bio-oil and biochar. Gaseous forms of carbon (C) and nitrogen (N) are also emitted during pyrolysis. The effluent mass emission rates from pyrolysis are not well characterized, thus limiting proper evaluation of the environmental benefits or costs of pyrolysis products. We present the first comprehensive suite of C and N mass emission rate measurements of a biomass pyrolysis process using chicken manure as feedstock to produce biochar and bio-oil. Two chicken manure fast pyrolysis experiments were conducted at controlled temperature ranges of 450 - 485 °C and 550 - 585 °C. Mass emission rates of N2O, NO, CO, CO2, CH4 and NH3 were measured using trace gas analyzers. Based on the system mass balance, 23-25% of the total mass of the manure feedstock was emitted as gas, while 52-55% and 23% were converted to bio-oil and biochar, respectively. CO2 and NH3 were the dominant gaseous species by mass, accounting for 58 - 65% of total C mass emitted and 99% of total reactive N mass emitted, respectively. Our gas flux measurements suggest that 1.4 to 2.7 g NH3 -N would be produced from the pyrolysis of one kg of manure. Conservatively scaling up these NH3 pyrolysis emissions in the Chesapeake Bay Watershed, where an estimated 8.64 billion kg of poultry manure is applied to agricultural soils every year, as much as 1.2 x 107 kg of NH3 could be emitted into the atmosphere annually, increasing the potential impact of atmospheric N deposition without a mechanism to capture the gas exhaust during pyrolysis. However, this is considerably less than the potential emissions from NH3 volatilization of raw chicken manure applications, which can be 20-60% of total N applied, and amount to 3.4 x 107 - 1.0 x 108 kg NH3-N yr-1. Pyrolysis has the potential to

  17. Use and environmental occurrence of pharmaceuticals in freestall dairy farms with manured forage fields

    USGS Publications Warehouse

    Watanabe, Naoko; Bergamaschi, Brian A.; Loftin, Keith A.; Meyer, Michael T.; Harter, Thomas

    2010-01-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels.

  18. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields.

    PubMed

    Watanabe, Naoko; Bergamaschi, Brian A; Loftin, Keith A; Meyer, Michael T; Harter, Thomas

    2010-09-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels.

  19. Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields

    PubMed Central

    2010-01-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels. PMID:20698525

  20. Characterization of manure from conventional and phytase transgenic pigs by advanced solid-state NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Non-point phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry is including the enzyme phytase as a component of the cereal grain diet. A very real possibility in the future is the production of transgenic pigs that express phy...

  1. Improved method for recovery of organic solids from diluted swine manure in 3rd generation treatment system

    USDA-ARS?s Scientific Manuscript database

    Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds, which can be used for manufacture of high-quality compost materials. However, t...

  2. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    NASA Astrophysics Data System (ADS)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  3. Association between stall surface and some animal welfare measurements in freestall dairy herds using recycled manure solids for bedding.

    PubMed

    Husfeldt, A W; Endres, M I

    2012-10-01

    The objective of this cross-sectional study was to investigate the association between stall surface and some animal welfare measurements in upper Midwest US dairy operations using recycled manure solids as bedding material. The study included 34 dairy operations with herd sizes ranging from 130 to 3,700 lactating cows. Forty-five percent of the herds had mattresses and 55% had deep-bedded stalls. Farms were visited once between July and October 2009. At the time of visit, at least 50% of the cows in each lactating pen were scored for locomotion, hygiene, and hock lesions. On-farm herd records were collected for the entire year and used to investigate mortality, culling, milk production, and mastitis incidence. Stall surface was associated with lameness and hock lesion prevalence. Lameness prevalence (locomotion score ≥ 3 on a 1 to 5 scale) was lower in deep-bedded freestalls (14.4%) than freestalls with mattresses (19.8%). Severe lameness prevalence (locomotion score ≥ 4) was also lower for cows housed in deep-bedded freestalls (3.6%) than for cows housed in freestalls with mattresses (5.9%). In addition, the prevalence of hock lesions (hock lesion scores ≥ 2 on a 1 to 3 scale, with 1=no lesion, 2=hair loss or mild lesion, and 3=swelling or severe lesion) and severe hock lesions (hock lesion score=3) was lower in herds with deep-bedded freestalls (49.4%; 6.4%) than in herds with mattresses (67.3%; 13.2%). Herd turnover rates were not associated with stall surface; however, the percentage of removals due to voluntary (low milk production, disposition, and dairy) and involuntary (death, illness, injury, and reproductive) reasons was different between deep-bedded and mattress-based freestalls. Voluntary removals averaged 16% of all herd removals in deep-bedded herds, whereas in mattress herds, these removals were 8%. Other welfare measurements such as cow hygiene, mortality rate, mastitis incidence, and milk production were not associated with stall surface

  4. Assessing impacts of land-applied manure from concentrated animal feeding operations on fish populations and communities.

    PubMed

    Leet, Jessica K; Lee, Linda S; Gall, Heather E; Goforth, Reuben R; Sassman, Stephen; Gordon, Denise A; Lazorchak, James M; Smith, Mark E; Jafvert, Chad T; Javfert, Chad T; Sepúlveda, Maria S

    2012-12-18

    Concentrated animal feeding operation (CAFO) manure is a cost-effective fertilizer. In the Midwest, networks of subsurface tile-drains expedite transport of animal hormones and nutrients from land-applied CAFO manure to adjacent waterways. The objective of this study was to evaluate impacts of land-applied CAFO manure on fish populations and communities. Water chemistry including hormone, pesticide, and nutrient concentrations was characterized from study sites along with fish assemblage structure, growth, and endocrine disruption assessed in selected fish species. Although most CAFO water samples had hormone concentrations <1 ng/L, equivalent concentrations for 17β-E2 and 17α-TB peaked at >30 ng/L each during the period of spawning, hatching, and development for resident fishes. CAFO sites had lower fish species richness, and fishes exhibited faster somatic growth and lower reproductive condition compared to individuals from the reference site. Fathead minnows (Pimephales promelas) exposed to CAFO ditchwater during early developmental stages exhibited significantly skewed sex ratios toward males. Maximum observed hormone concentrations were well above the lowest observable effect concentrations for these hormones; however, complexities at the field scale make it difficult to directly relate hormone concentration and impacts on fish. Complicating factors include the consistent presence of pesticides and nutrients, and the difference in temperature and stream architecture of the CAFO-impacted ditches compared to the reference site (e.g., channelization, bottom substrate, shallow pools, and riparian cover).

  5. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  6. Settling characteristics of nursery pig manure and nutrient estimation by the hydrometer method.

    PubMed

    Zhu, Jun; Ndegwa, Pius M; Zhang, Zhijian

    2003-05-01

    The hydrometer method to measure manure specific gravity and subsequently relate it to manure nutrient contents was examined in this study. It was found that this method might be improved in estimation accuracy if only manure from a single growth stage of pigs was used (e.g., nursery pig manure used here). The total solids (TS) content of the test manure was well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.9944 and 0.9873, respectively. Also observed were good linear correlations between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.9836 and 0.9843, respectively). These correlations were much better than those reported by past researchers, in which lumped data for pigs at different growing stages were used. It may therefore be inferred that developing different linear equations for pigs at different ages should improve the accuracy in manure nutrient estimation using a hydrometer. Also, the error of using the hydrometer method to estimate manure TN and TP was found to increase, from +/- 10% to +/- 50%, with the decrease in TN (from 700 ppm to 100 ppm) and TP (from 130 ppm to 30 ppm) concentrations in the manure. The estimation errors for TN and TP may be larger than 50% if the total solids content is below 0.5%. In addition, the rapid settling of solids has long been considered characteristic of swine manure; however, in this study, the solids settling property appeared to be quite poor for nursery pig manure in that no conspicuous settling occurred after the manure was left statically for 5 hours. This information has not been reported elsewhere in the literature and may need further research to verify.

  7. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure.

    PubMed

    Hoffmann, Rebecca A; Garcia, Marcelo L; Veskivar, Mehul; Karim, Khursheed; Al-Dahhan, Muthanna H; Angenent, Largus T

    2008-05-01

    We determined the effect of different mixing intensities on the performance, methanogenic population dynamics, and juxtaposition of syntrophic microbes in anaerobic digesters treating cow manure from a dairy farm. Computer automated radioactive particle tracking in conjunction with computational fluid dynamics was performed to quantify the shear levels locally. Four continuously stirred anaerobic digesters were operated at different mixing intensities of 1,500, 500, 250, and 50 revolutions per min (RPM) over a 260-day period at a temperature of 34 +/- 1 degrees C. Animal manure at a volatile solids (VS) concentration of 50 g/L was fed into the digesters daily at five different organic loading rates between 0.6 and 3.5 g VS/L day. The different mixing intensities had no effect on the biogas production rates and yields at steady-state conditions. A methane yield of 0.241 +/- 0.007 L CH(4)/g VS fed was obtained by pooling the data of all four digesters during steady-state periods. However, digester performance was affected negatively by mixing intensity during startup of the digesters, with lower biogas production rates and higher volatile fatty acids concentrations observed for the 1,500-RPM digester. Despite similar methane production yields and rates, the acetoclastic methanogenic populations were different for the high- and low-intensity mixed digesters with Methanosarcina spp. and Methanosaeta concilii as the predominant methanogens, respectively. For all four digesters, epifluorescence microscopy revealed decreasing microbial floc sizes beginning at week 4 and continuing through week 26 after which no microbial flocs remained. This decrease in size, and subsequent loss of microbial flocs did not, however, produce any long-term upsets in digester performance. Copyright 2007 Wiley Periodicals, Inc.

  8. Greenhouse gas emission from the total process of swine manure composting and land application of compost

    NASA Astrophysics Data System (ADS)

    Zhong, Jia; Wei, Yuansong; Wan, Hefeng; Wu, Yulong; Zheng, Jiaxi; Han, Shenghui; Zheng, Bofu

    2013-12-01

    Greenhouse gas (GHG) emissions from animal manure management are of great concern in China. However, there are still great uncertainties about China's GHG inventory due to the GHG emission factors partly used default values from the Intergovernmental Panel of Climate Change (IPCC) guidelines. The purpose of this study was to use a case study in Beijing to determine the regional GHG emission factors based on the combination of swine manure composting and land application of the compost with both on-site examination and a life cycle assessment (LCA). The results showed that the total GHG emission factor was 240 kgCO2eq tDS-1 (dry solids), including the direct GHG emission factor of 115 kgCO2eq tDS-1 for swine manure composting and 48 kgCO2eq tDS-1 for land application of the compost. Among the total GHG emissions of 5.06 kgCH4 tDS-1 and 0.13 kgN2O tDS-1, the swine manure composting contributed approximately 89% to CH4 emissions while land application accounted for 92% of N2O emission. Meanwhile, the GHG emission profile from the full process in Beijing in 2015 and 2020 was predicted by the scenario analysis. The composting and land application is a cost-effective way for animal manure management in China considering GHG emissions.

  9. Global Cryptosporidium Loads from Livestock Manure

    PubMed Central

    2017-01-01

    Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 1023 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand. PMID:28654242

  10. Global Cryptosporidium Loads from Livestock Manure.

    PubMed

    Vermeulen, Lucie C; Benders, Jorien; Medema, Gertjan; Hofstra, Nynke

    2017-08-01

    Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 10 23 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand.

  11. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    PubMed Central

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID

  12. Manure Spills in Streams: Current Practices and Remediation Methods to Minimize Water Quality Degradation

    USDA-ARS?s Scientific Manuscript database

    Manure spills into streams are an all too common byproduct of animal production. With greater numbers of animals raised on fewer farms, manure spills become greater problems due to the volume of manure spilled into aquatic ecosystems. This book chapter reviews why manure spills occur, and the curren...

  13. HIGHLIGHTS, INSIGHTS, AND PERSPECTIVES ON INFECTIOUS DISEASE AGENTS IN SEWAGE SLUDGE AND ANIMAL MANURE IN THE U.S.

    EPA Science Inventory

    The purpose of this chapter is: 1) Highlight the core principles and findings from the Workshop on Emerging Infectious Disease Agents and Issues Associated With Sewage Sludge, Animal Manures and Other Organic By-Products held June 4-6, 2001, Cincinnati, Ohio, so that all readers,...

  14. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  15. Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures

    USGS Publications Warehouse

    Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.

    2011-01-01

    Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.

  16. EnviroAtlas - Manure application to agricultural lands from confined animal feeding operations by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean livestock manure application to cultivated crop and hay/pasture lands by 12-digit Hydrologic Unit (HUC) in 2006. Livestock manure inputs to cultivated crop and hay/pasture lands were estimated using county-level estimates of recoverable animal manure from confined feeding operations compiled for 2007. Recoverable manure is defined as manure that is collected, stored, and available for land application from confined feeding operations. County-scale data on livestock populations -- needed to calculate manure inputs -- were only available for the year 2007 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We acquired county-level data describing total farm-level inputs (kg N/yr) of recoverable manure to individual counties in 2007 from the International Plant Nutrition Institute (IPNI) Nutrient Geographic Information System (NuGIS; http://www.ipni.net/nugis). These data were converted to per area rates (kg N/ha/yr) of manure N inputs by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture (agricultural) lands within a county as determined from county-level summarization of the 2006 NLCD. We distributed county-specific, per area N inputs rates to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county. Manure data described here represent an average input to a typical agricultural land type within a county, i.e., the

  17. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    NASA Astrophysics Data System (ADS)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  18. Characterization the potential of biochar from cow and pig manure for geoecology application

    NASA Astrophysics Data System (ADS)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  19. Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons.

    PubMed

    Kolz, A C; Moorman, T B; Ong, S K; Scoggin, K D; Douglass, E A

    2005-01-01

    Watershed contamination from antibiotics is becoming a critical issue because of increased numbers of confined animal-feeding operations and the use of antibiotics in animal production. To understand the fate of tylosin in manure before it is land-applied, degradation in manure lagoon slurries at 22 degrees C was studied. Tylosin disappearance followed a biphasic pattern, where rapid initial loss was followed by a slow removal phase. The 90% disappearance times for tylosin, relomycin (tylosin D), and desmycosin (tylosin B) in anaerobically incubated slurries were 30 to 130 hours. Aerating the slurries reduced the 90% disappearance times to between 12 and 26 hours. Biodegradation and abiotic degradation occur, but strong sorption to slurry solids was probably the primary mechanism of tylosin disappearance. Dihydrodesmycosin and an unknown degradate with molecular mass of m/z 934.5 were detected. Residual tylosin remained in slurry after eight months of incubation, indicating that degradation in lagoons is incomplete and that residues will enter agricultural fields.

  20. Evaluation of quick tests for phosphorus determination in dairy manures.

    PubMed

    Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B

    2005-05-01

    Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.

  1. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support

  3. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    PubMed Central

    Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac

    2015-01-01

    Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options

  4. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    PubMed

    Shi, Suan; Li, Jing; Blersch, David M

    2018-06-01

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  5. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management.

    PubMed

    De Vries, Jerke W; Aarnink, André J A; Groot Koerkamp, Peter W G; De Boer, Imke J M

    2013-02-05

    Gaseous emissions from in-house storage of liquid animal manure remain a major contributor to the environmental impact of manure management. Our aim was to assess the life cycle environmental consequences and reduction potential of segregating fattening pig urine and feces with an innovative V-belt system and to compare it to conventional liquid manure management, that is, the reference. Moreover, we aimed at analyzing the uncertainty of the outcomes related to applied emission factors. We compared a reference with two scenarios: segregation with solid, aerobically, stored feces and with liquid, anaerobically, stored feces. Results showed that, compared to the reference, segregation reduced climate change (CC) up to 82%, due to lower methane emission, reduced terrestrial acidification (TA) and particulate matter formation (PMF) up to 49%, through lower ammonia emission, but increased marine eutrophication up to 11% through nitrogen oxide emission from storage and nitrate leaching after field application. Fossil fuel depletion did not change. Segregation with liquid feces revealed lower environmental impact than segregation with solid feces. Uncertainty analysis supported the conclusion that segregating fattening pig urine and feces significantly reduced CC and additionally segregation with liquid feces significantly reduced TA and PMF compared to the reference.

  6. Solid-State NMR Investigation of Bio-chars Produced from Biomass Components and Whole Biomasses

    DOE PAGES

    Ben, Haoxi; Hao, Naijia; Liu, Qian; ...

    2017-08-24

    Bio-char is a by-product from thermochemical treatment of biomass and has been identified as an energy condensed product with a comparable heating value as commercial coal. However, the combustion of such solid product as an energy resource is only a preliminary application. It is highly possible to convert bio-char, which always has a condensed aromatic and porous structure to various high-value products. The investigations of the structures and formation pathways for the bio-char are very important to any future applications. In this study, six different biomass components, including cellulose, lignin, and tannin, and three whole biomasses—pine wood, pine residue, andmore » pine bark—have been used to produce bio-char at 400, 500, and 600 °C. Solid-state NMR and FT-IR have been employed in this study to characterize the structures for the bio-chars. The results indicated that the bio-chars produced from lignin contained some methoxyl groups, and the bio-chars produced from tannin contained significantly higher amount of phenolic hydroxyl groups. Compared to the bio-chars produced from pine wood and residue, the bio-chars produced from pine bark contained more aromatic C–O bonds, and aliphatic C–O and C–C bonds, which may be due to the significantly higher amount of lignin and tannin in the pine bark. Furthermore, the elevated amounts of aromatic C–O and aliphatic C–O and C–C bonds in the bio-chars from pine bark appeared to be completely decomposed at 600 °C.« less

  7. Solid-State NMR Investigation of Bio-chars Produced from Biomass Components and Whole Biomasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, Haoxi; Hao, Naijia; Liu, Qian

    Bio-char is a by-product from thermochemical treatment of biomass and has been identified as an energy condensed product with a comparable heating value as commercial coal. However, the combustion of such solid product as an energy resource is only a preliminary application. It is highly possible to convert bio-char, which always has a condensed aromatic and porous structure to various high-value products. The investigations of the structures and formation pathways for the bio-char are very important to any future applications. In this study, six different biomass components, including cellulose, lignin, and tannin, and three whole biomasses—pine wood, pine residue, andmore » pine bark—have been used to produce bio-char at 400, 500, and 600 °C. Solid-state NMR and FT-IR have been employed in this study to characterize the structures for the bio-chars. The results indicated that the bio-chars produced from lignin contained some methoxyl groups, and the bio-chars produced from tannin contained significantly higher amount of phenolic hydroxyl groups. Compared to the bio-chars produced from pine wood and residue, the bio-chars produced from pine bark contained more aromatic C–O bonds, and aliphatic C–O and C–C bonds, which may be due to the significantly higher amount of lignin and tannin in the pine bark. Furthermore, the elevated amounts of aromatic C–O and aliphatic C–O and C–C bonds in the bio-chars from pine bark appeared to be completely decomposed at 600 °C.« less

  8. Continuous thermochemical conversion process to produce oil from swine manure

    USGS Publications Warehouse

    Ocfemia, K.; Zhang, Y.; Funk, T.; Christianson, L.; Chen, S.

    2004-01-01

    Thermochemical conversion (TCC) of livestock manure is a novel technology that has shown very promising results in treating waste and producing oil. A batch TCC system that was previously developed successfully converted 70% of swine manure volatile solids to oil and reduced manure chemical oxygen demand by ??? 75%. The necessary retention time to achieve an oil product was largely dependent on the operating temperature. The highest oil production efficiency was 80% of the volatile solids (or 70 wt % of the total solids). The average carbon and hydrogen contents were ??? 72 and 9%, respectively. The heating values for 80% of the oil products ranged from 32,000 to 36,700 kJ/kg. This is an abstract of a paper presented at the AWMA 97th Annual Conference and Exhibition (Indianapolis, IN 6/22-25/2004).

  9. The effect of moisture content on solid-state anaerobic digestion of dairy manure from a sawdust-bedded pack barn

    USDA-ARS?s Scientific Manuscript database

    The effect of moisture content on solid-state anaerobic digestion of dairy manure from a Korean sawdust-bedded pack barn was determined using laboratory-scale digesters operated at three moisture levels (70, 76, and 83% on a wet basis) at 37 C for 85 days. Results showed that digesters containing m...

  10. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs.

    PubMed

    Zhu, Jun; Ndegwa, Pius M; Zhang, Zhijian

    2004-05-01

    Three manure agitation procedures were examined in this study (vertical mixing, horizontal mixing, and no mixing) to determine the efficacy of producing a representative manure sample. The total solids content for manure from gestation pigs was found to be well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.988 and 0.994, respectively. Linear correlations were observed between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.991 and 0.987, respectively). Therefore, it may be inferred that the nutrients in pig manure can be estimated with reasonable accuracy by measuring the liquid manure specific gravity. A rapid testing method for manure nutrient contents (TN and TP) using a soil hydrometer was also evaluated. The results showed that the estimating error increased from +/-10% to +/-30% with the decrease in TN (from 1000 to 100 ppm) and TP (from 700 to 50 ppm) concentrations in the manure. Data also showed that the hydrometer readings had to be taken within 10 s after mixing to avoid reading drift in specific gravity due to the settling of manure solids.

  11. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming.

    PubMed

    Zhang, Haibo; Luo, Yongming; Wu, Longhua; Huang, Yujuan; Christie, Peter

    2015-04-01

    Veterinary antibiotics (VAs) are emerging contaminants and enter into soil principally by agricultural application of organic fertilizer. A total of 33 solid animal manures and 17 compost samples from protected vegetable farms in nine areas of China were analyzed for the antibiotic classes of tetracyclines, fluoroquinolones, sulfonamides, and macrolides (17 substances in total). Oxytetracycline was found as a dominant compound in the samples, and its highest concentration reached 416.8 mg kg(-1) in a chicken manure sample from Shouguang, Shandong Province. Among the samples, animal manures (especially pig manure) contained higher VA residues than composts. However, fluoroquinolones exhibited higher persistence in the compost samples than other antibiotic classes. This is particularly the case in the rice husk compost, which contained the highest level of ofloxacin and ciprofloxacin (1334.5 and 1717.4 μg kg(-1) on average, respectively). The veterinary antibiotic profile in the risk husk compost had a good relationship with that in the corresponding manures. The refined commercial compost had the lowest VA residues among the compost samples in general. This implied that composting process might be important to reduce the antibiotic residue. High residue of antibiotics in soil was assumed to be a hazard to ecosystem. This is especially noticeable under current application rates (150 t ha(-1) a(-1)) in protected vegetable farming because over half of the samples exhibited a risk quotient (RQ) >1 for one or more antibiotics.

  12. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. An assessment of nitrogen-based manure application rates on 39 U.S. swine operations.

    PubMed

    Lory, John A; Massey, Raymond E; Zulovich, Joseph M; Hoehne, John A; Schmidt, Amy M; Carlson, Marcia S; Fulhage, Charles D

    2004-01-01

    Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations.

  14. Turning schedules influence final composition of composted swine manure

    USDA-ARS?s Scientific Manuscript database

    Liquid swine (Sus scrofa domesticus) manure is a high-moisture, low-nutrient product that limits economical transport to areas in proximity of its source, possibly contributing to localized high soil nutrient levels. Composting swine manure converts liquid slurries to solids at lower moisture conten...

  15. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition.

    PubMed

    Van Weelden, M B; Andersen, D S; Kerr, B J; Trabue, S L; Pepple, L M

    2016-02-01

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 μm) or coarse (631 μm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 μm), and a greater biological activity/potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  17. Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD).

    PubMed

    Sensai, P; Thangamani, A; Visvanathan, C

    2014-01-01

    Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate.

  18. What we feed dairy cows impacts manure chemistry and the environment

    USDA-ARS?s Scientific Manuscript database

    During the last part of the 20th century, animal manure management became an environmental concern. In response to these concerns, legislation was enacted to control manure management and the emission of undesirable gasses (e.g., ammonia and methane) from animal production systems. The purpose of th...

  19. 9 CFR 93.212 - Manure from quarantined poultry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined poultry. 93... OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS...

  20. Calorific values and combustion chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Combustion chemistry and calorific value analyses are the fundamental information for evaluating different biomass waste-to-energy conversion operations. Specific chemical exergy of manure and other biomass feedstock will provide a measure for the theoretically maximum attainable energy. The specifi...

  1. Co-pyrolyzing plastic mulch waste with animal manures

    USDA-ARS?s Scientific Manuscript database

    Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...

  2. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  3. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  5. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  6. Bio-sheet graft therapy for artificial gastric ulcer after endoscopic submucosal dissection: an animal feasibility study.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Ko, Kwang Hyun; Jung, Yunho; Chung, Il-Kwun; Jeong, Seok; Lee, Don Haeng; Hong, Sung Pyo; Hahm, Ki Baik

    2015-04-01

    Various bio-sheet grafts have been attempted either to accelerate healing of artificial ulcers or to prevent adverse events after endoscopic submucosal dissection (ESD), but neither prospective nor mechanistic studies were available. To evaluate the substantial effect of a bio-sheet graft on artificial ulcer healing and its feasibility as an endoscopic treatment modality. Preclinical, in vivo animal experiment and proof-of-concept study. Animal laboratory. Three mini-pigs, Sus scrofa, mean age 14 months. Multiple ulcers sized 2.5 cm in diameter were generated by ESD in 3 mini-pigs and were assigned randomly into the following 3 groups; control group, bio-sheet group, or combination (bio-sheet plus drug) group. Bio-sheet grafts or bio-sheet plus drug combinations were applied on the artificial ulcers immediately after the ESD. Feasibility and efficacy of endoscopic bio-sheet graft therapy for the management of artificial ulcers and the evaluation of healing conditions based on histology changes in the remaining gastric bed tissues harvested from the stomachs. Thirty-three ESD specimens were obtained. On an image analysis of the ratio of healed area in the remaining gastric bed tissue compared with the matched dissected gastric mucosa, the control group showed the most significant improvement in healing activity among the 3 groups (P < .05), whereas the severity of inflammation in the remaining ulcer tissue was significantly attenuated in bio-sheet and combination groups (P < .05). Animal model. Although the bio-sheet grafts provided physical protection from gastric acid attack as reflected in the attenuated inflammation on the ulcer beds, unexpected delayed ulcer healing was noted in the bio-sheet graft group because of its physical hindrance of the healing process. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  7. SketchBio: a scientist's 3D interface for molecular modeling and animation.

    PubMed

    Waldon, Shawn M; Thompson, Peter M; Hahn, Patrick J; Taylor, Russell M

    2014-10-30

    Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.

  8. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-04-18

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  9. Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio.

    PubMed

    Jin, Hongmei; Xu, Caiyun; Du, Jing; Wu, Huashan; Huang, Hongying; Chang, Zhizhou; Xu, Yueding; Zhou, Lixiang

    2017-02-01

    The effects of hydraulic retention time (20 and 15 days) and swine manure to rice straw ratios on distribution of sulfonamides (SAs) in liquid and solid anaerobic digestates were studied using bench-scale completely stirred tank reactors at (37 ± 1) °C. Results showed that anaerobic digestion (AD) treatment exhibited a good removal effect on sulfadiazine (SDZ), sulfadimidine (SM2) and sulfachloropyridazine (SCP), especially at HRT = 20 days and co-digestion with swine manure and rice straw. The removal rates of SDZ and SM2 were more than 90%, but only 72.8% for SCP. The residual SAs were mainly remained in solid digestates, with residual rates ranging from 28.8% to 71.3%, 40.6% to 88.0, and 82.7% to 97.0% for SDZ, SM2 and SCP, respectively. Due to lower pKa and higher log K ow of SCP, its residue in solid digestates was far more than SDZ and SM2. Higher HRT and co-digestion could improve the degradation of SAs, which can also be put down to the occurrence of cometabolism of SAs and COD.

  10. Dairy manure nutrient analysis using quick tests.

    PubMed

    Singh, A; Bicudo, J R

    2005-05-01

    Rapid on-farm assessment of manure nutrient content can be achieved with the use of quick tests. These tests can be used to indirectly measure the nutrient content in animal slurries immediately before manure is applied on agricultural fields. The objective of this study was to assess the reliability of hydrometers, electrical conductivity meter and pens, and Agros N meter against standard laboratory methods. Manure samples were collected from 34 dairy farms in the Mammoth Cave area in central Kentucky. Regression equations were developed for combined and individual counties located In the area (Barren, Hart and Monroe). Our results indicated that accuracy in nutrient estimation could be improved if separate linear regressions were developed for farms with similar facilities in a county. Direct hydrometer estimates of total nitrogen were among the most accurate when separate regression equations were developed for each county (R2 = 0.61, 0.93, and 0.74 for Barren, Hart and Monroe county, respectively). Reasonably accurate estimates (R2 > 0.70) were also obtained for total nitrogen and total phosphorus using hydrometers, either by relating specific gravity to nutrient content or to total solids content. Estimation of ammoniacal nitrogen with Agros N meter and electrical conductivity meter/pens correlated well with standard laboratory determinations, especially while using the individual data sets from Hart County (R2 = 0.70 to 0.87). This study indicates that the use of quick test calibration equations developed for a small area or region where farms are similar in terms of manure handling and management, housing, and feed ration are more appropriate than using "universal" equations usually developed with combined data sets. Accuracy is expected to improve if individual farms develop their own calibration curves. Nevertheless, we suggest confidence intervals always be specified for nutrients estimated through quick testing for any specific region, county, or farm.

  11. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  12. Composting of animal manures and chemical criteria for compost maturity assessment. A review.

    PubMed

    Bernal, M P; Alburquerque, J A; Moral, R

    2009-11-01

    New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting. In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.

  13. Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran.

    PubMed

    Alavi, Nadali; Babaei, Ali Akbar; Shirmardi, Mohammad; Naimabadi, Abolfazl; Goudarzi, Gholamreza

    2015-11-01

    Tetracyclines (TCs), a class of antibiotics with a broad spectrum, are the most frequently used antibiotics in animal production. The major concern is that the widespread use of the antibiotics may lead to the emergence of new strains of bacteria that are resistant to these antibiotics. The objective of this study was to determine the residual levels of oxytetracycline and tetracycline in 80 animal manure samples that were collected from the livestock and poultry feedlots in Khuzestan Province. The residual levels of the antibiotics in the samples were extracted by using solid-phase extraction (SPE) method and subsequently were measured by liquid chromatography. Recoveries from the spiked poultry manure samples ranged from 65 to 113% for tetracycline and 86 to 132% for oxytetracycline. Relative standard deviations of the recoveries were less than 5.7% within the same day. Method detection limit (MDL) measured for oxytetracycline and tetracycline in the manure were 0.011 and 0.01 mg/kg, respectively. Analysis of the collected 50 chickens and 30 cow manure samples showed that the highest concentration of tetracycline was related to Behbahan City (5.36 mg/kg) and the lowest concentration was detected for Ramhormoz (0.05 mg/kg). The highest and lowest concentrations of oxytetracycline were respectively observed for Behbahan (13.77 mg/kg) and Ramhormoz (0.047 mg/kg). Based on the results, in chicken manure, there was significant statistical difference between the residual TC concentrations among five cities (p(value) < 0.05). However, no significant relationship was observed between oxytetracyclin (OTC) residual concentrations among five cities (p(value) > 0.05).

  14. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    PubMed

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  15. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less

  16. Influence of pig rearing system on animal performance and manure composition.

    PubMed

    Dourmad, J Y; Hassouna, M; Robin, P; Guingand, N; Meunier-Salaün, M C; Lebret, B

    2009-04-01

    A total of 200 crossbred pigs (castrated males and females) were used in five replicates to evaluate the influence of rearing conditions for fattening pigs on growth performance, manure production and gaseous emissions. Approximately at 36 kg body weight (BW), littermates were allocated to either a conventional (fully slatted floor, 0.65 m2/pig, considered as control, CON) or an alternative (sawdust bedding, 1.3 m2/pig, with free access to an outdoor area 1.1 m2/pig, OUT) system, until slaughter at approximately 115 kg BW. Pigs had free access to standard growing and finishing diets. Manure was stored as slurry below the slatted floor in the CON system and as litter, for the inside area, or slurry and liquid, for the outside area, in the OUT system. The amount and composition of manure were determined at the end of each replicate. Ammonia emission from the rooms was measured continuously. Dust and odour concentrations were measured in replicates 1 and 2, and CH4, N2O and CO2 emissions were measured in replicate 3. Compared with the CON, the OUT pigs exhibited a faster growth rate (+8%, P < 0.001) due to their greater feed intake (+0.21 kg/day, P < 0.01), resulting in a heavier BW (+7.3 kg, P < 0.001) and a lower lean meat content (-1.6% points, P < 0.001) at slaughter. The total amount of manure produced per pig was similar in both systems (380 kg/pig), but because of the contribution of sawdust, dry matter (DM) content was higher (P < 0.001) and concentrations in N, P, K, Cu and Zn in DM were lower (P < 0.001) in manure from the OUT than from the CON system. In the OUT system, most of the manure DM (70%) was collected indoor, corresponding mostly to the contribution of the sawdust, and most of the manure water (70%) was collected outdoor. Pigs excreted indoor about 60% and 40% of urine and faeces, respectively. Ammonia emission from the room was lower for the OUT system, whereas total NH3 emissions, including the outdoor area, tended to be higher (12.0 and 14.1 g

  17. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bio-charcoal production from municipal organic solid wastes

    NASA Astrophysics Data System (ADS)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  19. Characterization of antibiotic resistance genes in representative organic solid wastes: Food waste-recycling wastewater, manure, and sewage sludge.

    PubMed

    Lee, Jangwoo; Shin, Seung Gu; Jang, Hyun Min; Kim, Young Beom; Lee, Joonyeob; Kim, Young Mo

    2017-02-01

    In this research, the distribution of antibiotic resistance genes (ARGs) was characterized in representative organic solid waste (OSW) in Korea: food waste-recycling wastewater (FRW), manure, and sewage sludge. The amounts of total ARG (gene copies/16S rRNA gene copies) was greatest in manure followed by sewage sludge and FRW. Interestingly, there were significantly different patterns in the diversity and mechanisms of ARGs. For example, a significant proportion of ARGs were tetracycline resistant genes in all the OSW (40.4-78.2%). β-lactam antibiotics resistant genes were higher in the FRW samples than in other types of OSW but sulfonamides resistant genes represented the greatest proportion in sludge. Regarding the characteristics of antibiotic resistance mechanisms, there was a relatively higher proportion of the ribosomal protection mechanism to tetracycline observed in the FRW and manure samples. However, tetracycline resistant genes with direct interaction were relatively higher in the sewage sludge samples. sul1 was the dominant subtype in all the OSW types and detection of ermB was observed although there was no ermC detected in sewage sludge. There were significant correlations between the occurrences of ARG subtypes: tetB and tetG in all OSW (P<0.01); tetE and tetQ only in sludge (P<0.01). The Class 1 integron-integrase gene (intI1) was significantly correlated with total ARGs only in manure and sludge (P<0.05), revealing potential horizontal gene transfer in these OSW. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  1. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure.

    PubMed

    Myers, Heidi M; Tomberlin, Jeffery K; Lambert, Barry D; Kattes, David

    2008-02-01

    Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.

  2. Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers.

    PubMed

    Wang, Zhaozhi; Zhang, T Q; Tan, C S; Vadas, P; Qi, Z M; Wellen, C

    2018-05-22

    While applied manure/fertilizer is an important source of P loss in surface runoff, few models simulate the direct transfer of phosphorus (P) from soil-surface-applied manure/fertilizer to surface runoff. The SurPhos model was tested with 2008-2010 growing season daily surface runoff data from clay loam experimental plots subject to different manure/fertilizer applications. Model performance was evaluated on the basis of the coefficient of determination (R 2 ), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the ratio of the root mean square error to the standard deviation of observed values (RSR). The model offered an acceptable performance in simulating soil labile P dynamics (R 2  = 0.75, NSE = 0.55, PBIAS = 10.43%, and RSR = 0.67) and dissolved reactive P (DRP) loss in surface runoff (R 2  ≥ 0.74 and NSE ≥ 0.69) for both solid and liquid cattle manure, as well as inorganic fertilizer. Simulated direct P loss in surface runoff from solid and liquid cattle manure accounted for 39% and 40% of total growing season DRP losses in surface runoff. To compensate for the unavailability of daily surface runoff observations under snow melt condition, the whole four years' (2008-2011) daily surface runoff predicted by EPIC (Environmental Policy Integrated Climate) was used as SurPhos input. The accuracy of simulated DRP loss in surface runoff under the different manure/fertilizer treatments was acceptable (R 2  ≥ 0.55 and NSE ≥ 0.50). For the solid cattle manure treatment, of all annual DRP losses, 19% were derived directly from the manure. Beyond offering a reliable prediction of manure/fertilizer P loss in surface runoff, SurPhos quantified different sources of DRP loss and dynamic labile P in soil, allowing a better critical assessment of different P management measures' effectiveness in mitigating DRP losses. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Rainfall Driven Sorting of Soils and Manure in Beef Feedlot Pens, Implications for Steroid Hormone Transport

    NASA Astrophysics Data System (ADS)

    Bryson, R.; Harter, T.

    2009-12-01

    Previous research has documented elevated estrogenic and androgenic activity in surface waters receiving cattle feedlot effluent, while current research shows that significant concentrations of hydrophobic steroid hormones are transported in the solid phase of feedlot pen surface runoff. Accumulated manure in beef feedlot pens includes organic matter ranging from colloidal particles to partially digested feed, forming a complex soil-manure conglomerate at the pen surface. We hypothesized that the transport of solid phase particles in rainfall runoff on beef feedlots would be influenced but not limited by shield layer development. Soils and manure at a beef feedlot were evaluated before and after rainfall-runoff events to determine changes in soil composition and structure. Runoff samples were also collected during an hour of runoff and analyzed for suspended solids. Results indicate that rainfall actively sorts the soil and manure components through raindrop impact, depression storage and runoff. However, transport of solid phase constituents was found to be elevated throughout the hydrograph. This suggests that the surface shield layer conceptualization applied to other soils should be modified before application to the soil-manure conglomerate found in beef feedlot pens.

  4. Impact of narasin on manure composition, microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets.

    PubMed

    Kerr, Brian J; Trabue, Steven L; van Weelden, Mark B; Andersen, Daniel S; Pepple, Laura M

    2018-04-14

    An experiment was conducted to determine the effect of feeding finishing pigs a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30% dried distillers grains with solubles (DDGS), in combination with or without a growth-promoting ionophore (0 or 30 mg narasin/kg of diet), has on manure composition, microbial ecology, and gas emissions. Two separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates that allowed for total but separate collection of feces and urine during the 48-d collection period. After each of the twice-daily feedings, feces and urine from each crate was collected and added to its assigned enclosed manure storage tank. Each tank contained an individual fan system that pulled a constant stream of air over the manure surface for 2 wk prior to air (day 52) and manure sampling (day 53). After manure sampling, the manure in the tanks was dumped and the tanks cleaned for the second group of pigs. Except for total manure Ca and P output as a percent of intake and for manure methane product rate and biochemical methane potential (P ≤ 0.08), there were no interactions between diet composition and narasin supplementation. Narasin supplementation resulted in increased manure C (P = 0.05), increased manure DM, C, S, Ca, and phosphorus as a percent of animal intake (P ≤ 0.07), and increased manure volatile solids and foaming capacity (P ≤ 0.09). No effect of narasin supplementation was noted on manure VFA concentrations or any of the gas emission parameters measured (P ≥ 0.29). In contrast, feeding finishing pigs a diet containing DDGS dramatically affected manure composition as indicated by increased concentration of DM, C, ammonia, N, and total and volatile solids (P = 0.01), increased manure DM, N, and C as a percent of animal intake (P = 0.01), increased manure total VFA and phenols (P ≤ 0.05), decreased gas emissions of ammonia and volatile sulfur compounds (VSC; P = 0.01), increased

  5. Field scale manure born animal waste management : GIS application

    USDA-ARS?s Scientific Manuscript database

    Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...

  6. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    NASA Astrophysics Data System (ADS)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  7. Outbreak of E. coli O157:H7 Infections Associated with Exposure to Animal Manure in a Rural Community - Arizona and Utah, June-July 2017.

    PubMed

    Luna, Sarah; Krishnasamy, Vikram; Saw, Louise; Smith, Lori; Wagner, Jennifer; Weigand, Jenna; Tewell, Mackenzie; Kellis, Marilee; Penev, Roumen; McCullough, Laine; Eason, Jeffrey; McCaffrey, Keegan; Burnett, Cindy; Oakeson, Kelly; Dimond, Melissa; Nakashima, Allyn; Barlow, Deidre; Scherzer, Anna; Sarino, Melanie; Schroeder, Morgan; Hassan, Rashida; Basler, Colin; Wise, Matthew; Gieraltowski, Laura

    2018-06-15

    On June 26, 2017, a hospital in southern Utah notified the Utah Department of Health of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infections in two children from a small community on the Arizona-Utah border. Both children developed hemolytic uremic syndrome, characterized by hemolytic anemia, acute kidney failure, and thrombocytopenia and died within a few days of illness onset. Over the next few days, several more STEC-associated illnesses were reported in residents of the community. A joint investigation by local and state health agencies from Arizona and Utah and CDC was initiated to identify the outbreak source and prevent additional cases; a total of 12 cases were identified, including the two children who died. Investigators initially explored multiple potential sources of illness; epidemiologic and environmental information revealed cow manure contact as the likely initial cause of the outbreak, which was followed by subsequent person-to-person transmission. One of the outbreak strains was isolated from bull and horse manure collected from a yard near a community household with two ill children. Local health agencies made recommendations to the public related to both animal contact and hand hygiene to reduce the risk for STEC transmission. Animal or animal manure contact should be considered a potential source of STEC O157:H7 during outbreaks in communities where ruminants are kept near the home.

  8. Persistence of Escherichia coli in manure-amended soil in Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    Potential for pathogen transfer from soils amended with untreated animal manure to crops and the frequent occurrence of foodborne illness outbreaks involving Escherichia coli O157:H7 prompted the FDA proposal requiring a 9-month waiting period before harvesting produce from manure-amended fields. A...

  9. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    EPA Science Inventory

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)

    was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Method

    performance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  10. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  11. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  12. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure.

    PubMed

    Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin

    2011-06-01

    The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Comparison of varying operating parameters on heavy metals ecological risk during anaerobic co-digestion of chicken manure and corn stover.

    PubMed

    Yan, Yilong; Zhang, Liqiu; Feng, Li; Sun, Dezhi; Dang, Yan

    2018-01-01

    In this study, the potential ecological risk of heavy metals (Mn, Zn, Cu, Ni, As, Cd, Pb, Cr) accumulation from anaerobic co-digestion of chicken manure (CM) and corn stover (CS) was evaluated by comparing different initial substrate concentrations, digestion temperatures, and mixture ratios. Results showed that the highest volumetric methane yield of 20.3±1.4L/L reactor was achieved with a CS:CM ratio of 3:1 (on volatile solid basis) in mesophilic solid state anaerobic digestion (SS-AD). Although co-digestion increased the concentrations of all tested heavy metals and the direct toxicity of some heavy metals, the potential ecological risk index indicated that the digestates were all classified as low ecological risk. The biogasification and risk variation of heavy metals were affected by the operating parameters. These results are significant and should be taken into consideration when optimizing co-digestion of animal manure and crop residues during full-scale projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Developing methodologies for estimation of manure across livestock systems using agricultural census data

    NASA Astrophysics Data System (ADS)

    Khalil, Mohammad I.; Muldowney, John; Osborne, Bruce

    2017-04-01

    Livestock production and management-induced emissions of greenhouse gases (GHGs), comprising 18% of total global anthropogenic emissions together with air pollutants, have major atmospheric and ecosystem-related impacts. Identification of categorical/sub-categorical hotspots associated with these emissions and the estimation of emissions factors (EFs), including the use of the Intergovernmental Panel on Climate Change defaults (Tier 1), are key objectives in the preparation of reasonable, and transparent national reporting inventories (Tier 2). They also provide a basis for assessment of technological/management approaches for emissions reduction. For this, data on manure (solid/FYM and slurry/liquid) production across livestock categories, housing types and periods, storage types and application methodologies are required. However, relevant agricultural activity data are not sufficient to quantify the proportion and timing of the amounts of manure applied to major land use types and for different seasons. We have used the recent Census of Agriculture survey data 2010, collected by the Central Statistics Office, Ireland. Based on the compiled datasheets, several steps have been taken to generate missing information (e.g., number of individual livestock categories/subcategories) and to develop methodologies for calculating the proportion of slurry and manure production and application across farm categories. Among livestock categories, the proportion (%) of slurry over solids was higher for pigs (99:1) than the proportion derived from cattle (61:39). Solid manure production from other livestock systems derived mostly from loose-bedded houses. There were large differences between the proportions estimated using the number of farms and the livestock population. A major proportion of the slurry was applied to grassland (97 vs. 73) and the amounts applied in spring and summer were similar (40-42 vs. 36-39), but significantly higher than the autumn application (18 vs. 24

  15. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    PubMed

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    PubMed

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Examination of Salmonella and Escherichia coli translocation from hog manure to forage, soil, and cattle grazed on the hog manure-treated pasture.

    PubMed

    Holley, Richard; Walkty, Joël; Blank, Gregory; Tenuta, Mario; Ominski, Kimberly; Krause, Denis; Ng, Lai-King

    2008-01-01

    Use of hog (Sus scrofa) manure as a fertilizer is a practical solution for waste re-utilization, however, it may serve as a vehicle for environmental and domestic animal contamination. Work was conducted to determine whether pathogens, naturally present in hog manure could be detected in cattle (Bos taurus) grazed on the manure-treated pasture, and whether forage contamination occurred. During two 3 mo summer trials manure was applied to yield < or = 124 kg available N per hectare in a single spring or split spring and fall application. Samples of hog manure, forage, soil, and cattle feces were analyzed for naturally occurring Salmonella, Yersinia enterocolitica, and Escherichia coli. To follow movement of Salmonella in the environment isolates were identified to serovar and serotyped. Transfer of E. coli from hog manure to soil and cattle was examined by randomly amplified polymorphic DNA (RAPD) analysis of >600 E. coli isolates. While Y. enterocolitica was absent from all samples, in both years S. enterica Derby and S. enterica Krefeld were found in most hog manure samples, but were only on forage samples in the second year. Salmonella enterica Typhimurium, absent from hog manure was present on some forage in the first year. Cattle feces and soil samples were consistently Salmonella negative. These contaminations could not be traced to manure application. During this study, Salmonella and E. coli found in hog manure had different RAPD genomic profiles from those found in the feces of cattle grazing on manure-treated pasture.

  18. Leachate water quality from soils amended with swine manure based biochars

    USDA-ARS?s Scientific Manuscript database

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure applicatio...

  19. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie

    2014-07-01

    Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  1. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    PubMed

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  2. Characterization of antibiotic resistant (AR) fecal indicators in runoff from fields amended with swine manure

    USDA-ARS?s Scientific Manuscript database

    The application of animal manures to agricultural soil is a widespread practice. One concern associated with food animal manures is the introduction of antibiotic drugs, AR bacteria, and AR genes that may be spread through and across agroecosystems, with the potential to adversely impact the treatm...

  3. Divergence of compost extract and bio-organic manure effects on lucerne plant and soil

    PubMed Central

    Hu, Jian; Hu, Yifei; Yang, Gaowen; Zhang, Yingjun

    2017-01-01

    Aim Application of organic materials into agricultural systems enhances plant growth and yields, and improves soil fertility and structure. This study aimed to examine the effects of “compost extract (CE)”, a soil conditioner, and bio-organic manure (BOM) on the growth of lucerne (Medicago sativa), and compare the efficiency between BOM (including numbers of microorganisms) and CE (including no added microorganisms). Method A greenhouse experiment was conducted with four soil amendment treatments (control, BOM, CE and CEBOM), and was arranged in a completely randomized design with 10 replicates for each treatment. Plant biomass, nutritive value and rhizobia efficacy as well as soil characteristics were monitored. Result CE rather than BOM application showed a positive effect on plant growth and soil properties when compared with the control. Lucerne nodulation responded equally to CE addition and rhizobium inoculation. CE alone and in combination with BOM significantly increased plant growth and soil microbial activities and improved soil structure. The synergistic effects of CE and BOM indicate that applying CE and BOM together could increase their efficiency, leading to higher economic returns and improved soil health. However, CE alone is more effective for legume growth since nodulation was suppressed by nitrogen input from BOM. CE had a higher efficiency than BOM for enriching soil indigenous microorganisms instead of adding microorganisms and favouring plant nodulation. PMID:28894647

  4. Chemical P recovery from dairy manure using the Quick Wash process and use of low-P washed manure solids as soil amendments.

    USDA-ARS?s Scientific Manuscript database

    Large volumes of manure generated by intensive dairy production and their final land disposal is a significant environmental problem. Due to the imbalance of nitrogen (N) and phosphorus (P) (4:1), emendation of soils with dairy manure entails a raise in available soil P levels beyond the crops' capa...

  5. Origins and identities of key manure odor components

    USDA-ARS?s Scientific Manuscript database

    Odor is just one of many environmental issues associated with animal manures. Odor arises from a number of different locations in animal production systems, but the chemistry and biochemical origin is similar across sites. A complex mixture of volatile organic compounds (VOC) and inorganic compoun...

  6. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    PubMed

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. What dairy cows are fed impacts manure chemistry and the environment

    USDA-ARS?s Scientific Manuscript database

    Over the past 20 years or so there has been increasing evidence and concern that nutrients contained in animal manures can adversely impact water and air quality. Research has demonstrated that the diets fed to dairy cows can be modified to reduce nutrient excretions in manure and environmental impa...

  8. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Leachate water quality of soils amended with different swine manure-based amendments

    USDA-ARS?s Scientific Manuscript database

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure applicatio...

  10. Final Report: Conceptual Design of an Electron Accelerator for Bio-Solid Waste Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Charles

    Several studies have identified electron beam (EB) irradiation of municipal wastewater and bio-solids as an effective and promising approach to the environmental remediation of the enormous quantities of human waste created by a growing world-wide population and increased urbanization. However, despite the technical success of experimental and pilot programs over the last several decades, the technique is still not in commercial use anywhere in the world. In addition, the report also identifies the need for “Financial and infrastructure participation from a utility for demonstration project” and “Education and awareness of safety of utilizing electron beam technology” as two additional roadblocksmore » preventing technology adoption of EB treatment for bio-solids. In this concept design, we begin to address these barriers by working with Metropolitan Water Reclamation District of Greater Chicago (MWRD) and by the applying the latest accelerator technologies developed at Fermilab and within the DOE Office of Science laboratory complex.« less

  11. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette.

    PubMed

    Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan

    2018-02-01

    In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    PubMed

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  13. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencingmore » the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.« less

  14. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  15. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    USDA-ARS?s Scientific Manuscript database

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  16. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.

    PubMed

    Motoyama, Miki; Nakagawa, Shuhei; Tanoue, Rumi; Sato, Yuri; Nomiyama, Kei; Shinohara, Ryota

    2011-07-01

    In recent years, sludge generated in sewage treatment plants (STPs) and solid waste from livestock being utilized is useful for circulation of nourishment in farmlands as recycled organic manure (ROM). In this study, we determined the residue levels and patterns of 12 pharmaceutical products generated by human activity in the ROMs produced from human waste sludge (HWS), sewage sludge (SS), cattle manure (CM), poultry manure (PM), swine manure (SM) and horse manure (HM). The kind and number of pharmaceutical products detected in ROMs were different. Fluoroquinolones (FQs) were detected at high levels in HWS and SS samples. In addition, the detection frequency and concentration levels of sulfonamides (SAs) in PM and SM were high. Moreover, high concentrations of chlortetracycline (CTC) were found in only SM. These differences reflect specific adherence adsorption of the pharmaceutical products to different livestock and humans. Moreover, it was found that the concentrations of pharmaceutical products and fermentation levels of ROMs had significant positive correlation (r=0.41, p=0.024). When the fermentation test of ROM was conducted in a rotary fermentor in a lab scale test, the residue levels of pharmaceutical products decreased effectively except carbamazepine (CBZ). The rates of decrease were in the case of tetracyclines (TCs): 85-92%, FQs: 81-100%, erythromycine: 67%, SAs: 79-95%, trimethoprim: 86% and CBZ: 37% by 30 d. Pharmaceutical products that can be decomposed by fermentation process at the lowest impact of residual antibiotic activities may therefore be considered as environmentally friendly medicines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Manure-derived biochars for use as a phosphorus fertilizer in cotton production

    USDA-ARS?s Scientific Manuscript database

    Biochars made from animal manure feedstocks appear to be a potential P fertilizer source. Our objective was to assess five different manure-derived biochars, pyrolyzed at two different temperatures (350 and 700 °C), for their potential as a Phosphorus (P) fertilizer for cotton (Gossypium hirsutum L....

  19. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment.

    PubMed

    Zhang, Renchuan; Anderson, Erik; Addy, Min; Deng, Xiangyuan; Kabir, Fayal; Lu, Qian; Ma, Yiwei; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2017-11-01

    Intermittent-vacuum stripping (IVS) was developed as a pretreatment for thermophilic anaerobic digestion (TAD) to improve methanogenesis and hydrolysis activity through preventing free ammonia and hydrogen sulfide (H 2 S) inhibition from liquid swine manure (LSM). Over 98% of ammonia and 38% organic nitrogen were removed in 60min from 55°C to 85°C with vacuum pressure (from 100.63±3.79mmHg to 360.91±7.39mmHg) at initial pH 10.0 by IVS. Thermophilic methanogenesis and hydrolysis activity of pretreated LSM increased 52.25% (from 11.56±1.75% to 17.60±0.49%) in 25days and 40% (from 10days to 6days) in bio-methane potential assay. Over 80% H 2 S and total nitrogen were removed by IVS assistance, while around 70% nitrogen was recycled as ammonium sulfate. Therefore, IVS-TAD combination could be an effective strategy to improve TAD efficiency, whose elution is more easily utilized in algae cultivation and/or hydroponic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    PubMed

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure

    PubMed Central

    Sun, Minxia; Xu, Defu; Ji, Yuefei; Liu, Juan; Ling, Wanting; Li, Shunyao; Chen, Mindong

    2016-01-01

    The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H2O2 dosage of 2.56 mmol/g, a Fe(II) to H2O2 molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety. PMID:27649223

  2. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  3. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China.

    PubMed

    Hou, Jie; Wan, Weining; Mao, Daqing; Wang, Chong; Mu, Quanhua; Qin, Songyan; Luo, Yi

    2015-03-01

    A feasible and rapid analysis for the simultaneous determination of sulfonamides (SAs), tetracyclines (TCs), fluoroquinolones (FQs), macrolides (MACs) and nitrofurans (NFs) in livestock manure and soils was established by solid-phase extraction (SPE)-ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). A total of 32 manure and 17 amended soil samples from the Liaoning and Tianjin areas in Northern China were collected for analysis. The largest detected frequencies and concentrations in manure samples were those of TCs (3326.6 ± 12,302.6 μg/kg), followed by FQs (411.3 ± 1453.4 μg/kg), SAs (170.6 ± 1060.2 μg/kg), NFs (85.1 ± 158.1 μg/kg), and MACs (1.4 ± 4.8 μg/kg). In general, veterinary antibiotics (VAs) were detected with higher concentrations in swine and chicken manure than in cattle manure, reflecting the heavy usage of VAs in swine and chicken husbandry in the studied area. Furthermore, higher residues of antibiotics were found in piglet and fattening swine manure than in sow manure. In addition, TCs were the most frequently (100%) detected antibiotics in amended soil with higher concentrations (up to 10,967.1 μg/kg) than any other VAs. The attenuation of SAs was more obvious than TCs in amended soil after fertilization, which can most likely be attributed to the stronger sorption of TCs than SAs to soil organic matter through cation exchange. This study illustrated the prevalence of TCs detected in both animal manure and fertilized agricultural soils in Northern China, which may increase the risk to human health through the food chain. Thus, TCs should be given more attention in the management of veterinary usage in livestock husbandry.

  4. Transport of microorganisms in the presence and absence of manure suspensions

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Tadassa, Y.; Bettahar, M.

    2004-12-01

    Wash water and storm water runoff from Concentrated Animal Feeding Operations (CAFOs) frequently contain manure and a variety of viral, bacterial, and protozoan parasite pathogens. Column experiments were conducted to elucidate the transport behavior of representative microbes (coliphage, Escherichia coli O157:H7, and Giardia cysts) through several aquifer sands in the presence and absence of manure suspensions. Specific factors that were considered include the soil grain size distribution, the presence and absence of manure suspensions, and manure size distribution. Effluent concentration curves and the final spatial distributions of microorganisms and manure particles were measured. Increasing the microbe size and decreasing the median grain size of the sand resulted in low effluent concentrations and increased retention of the microbes, especially in the sand near the column inlet. Similar transport trends were observed for the manure suspensions in these sands. The spatial distributions of retained microbes and manure were generally not consistent with predictions from conventional attachment, detachment, and blocking models; but rather with straining. The transport potential of the microbes was sometimes enhanced in the presence of manure suspensions. This observation, as well transport and retention data for manure suspensions, suggest that manure components filled straining sites and inhibited microbe retention. Differences in the surface charge properties of clean and manure equilibrated microbes (presumably due to adsorption of organic components from the suspension) may also influence transport behavior.

  5. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-06-30

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  7. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    PubMed Central

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  8. Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.

    PubMed

    Weyers, Eva; Strawn, Daniel G; Peak, Derek; Baker, Leslie L

    2017-10-01

    In confined animal feeding operations, such as dairies, manure is amended to soils at high rates leading to increases in P and organic matter in the soils. Phosphorus reacts with soil-Ca to form Ca-P minerals, which controls P availability for leaching and transport through the watershed. In this research, the effects of manure sourced dissolved organic matter (DOM) on P sorption on calcite were measured at different reaction times and concentrations. Reactions were monitored in 1% and 10% manure-to-water extract solutions spiked with P. When manure-DOM was present, a significant reduction in P sorption occurred (2-90% absolute decrease) compared to samples without manure-DOM. The greatest decrease occurred in the samples reacted in the 10% manure solution. XANES spectroscopic analysis showed that at 1% manure solution, a Ca-P phase similar to hydroxyapatite formed. In the calcite samples reacted in the 10% manure solution, K-edge XANES spectroscopy revealed that P occurred as a Ca-Mg-P phase instead of the less soluble hydroxyapatite-like phase. Results from this study suggest that in manure-amended calcareous soils, increased DOM from manure will decrease P sorption capacity and increase the overall P concentration in solution, which will increase the mobility of P and subsequently pose greater risks for impairment of surface water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A model for phosphorus transformation and runoff loss for surface-applied manures.

    PubMed

    Vadas, P A; Gburek, W J; Sharpley, A N; Kleinman, P J A; Moore, P A; Cabrera, M L; Harmel, R D

    2007-01-01

    Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.

  10. Nitrous oxide and methane emissions following application of animal manures to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E.

    2000-02-01

    Nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions were measured from grassland following manure applications at three times of the year. Pig (Sus scrofa) slurry and dairy cow (Bos taurus) slurry were applied in April, at equal rates of ammoniacal-N (NH{sub 4}{sup +}-N), and in July, at equal volumetric rates (50 m{sup 3}ha{sup {minus}1}). In October, five manure types were applied to grassland plots at typical application rates: pig slurry, dilute diary cow effluent, pig farm yard manure (FYM), beef FYM and layer manure. Emissions were measured for 20, 22, and 24 d, respectively. In April, greater cumulative emissionsmore » of N{sub 2}O-N were measured following application of dairy cow slurry (1.51 kg ha{sup {minus}1}) than pig slurry (90.77 kg ha{sup {minus}1}). Cumulative CH{sub 4} emissions following application in April were significantly greater from the dairy cow slurry treatment (0.58 kg ha{sup {minus}1}) than the pig slurry treatment (0.13 kg ha{sup {minus}1}) (P < 0.05). In July, significantly greater N{sub 2}O-N emissions resulted from pig slurry-treated plots (0.57 kg ha{sup {minus}1}) than dairy cow slurry-treated plots (0.34 kg ha{sup {minus}1}). Cumulative net CH{sub 4} emissions were very low following July applications (<10 g ha{sup {minus}1}). In October, the lowest N{sub 2}O-N emission resulted from application of dilute dairy effluent, 0.15 kg ha{sup {minus}1}, with the greatest net emission from the application of pig slurry, 0.74 kg ha{sup {minus}1}. Methane emissions were greatest from the plots that received pig FYM, resulting in a mean cumulative net emission of 2.39 kg ha{sup {minus}1}.« less

  11. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days).

  12. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming

    2008-12-01

    To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).

  13. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  14. Reuse of Concentrated Animal Feeding Operating Wastewater on Agricultural Lands

    EPA Science Inventory

    Concentrated animal feeding operations (CAFOs) generate large volumes of manure and manure-contaminated wash and runoff water. Transportation, storage, and treatment of manure and manure-contaminated water are costly. The large volume of waste generated, and the lack of disposal ...

  15. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure

    USDA-ARS?s Scientific Manuscript database

    Animal manures are commonly used to enhance soil fertility, but there are growing concerns over the impact of this practice on the development and dissemination of antibiotic resistance. The aim of this study was to determine the effect of annual dairy manure applications on the occurrence and abund...

  16. Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie

    2017-11-01

    Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.

  17. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.

    PubMed

    Xing, Yan; Li, Zhuo; Fan, Yaoting; Hou, Hongwei

    2010-02-01

    clean and readily usable biologic energy but also cleans up simultaneously the environment in a sustainable fashion. Prior to use, the dairy manures as natural hydrogen-producing microflora/feedstock were pretreated by infrared radiation/boiling heat by 0.2% HCl, respectively. The batch experiments were preformed with 250 mL serum vials as batch reactors filled with 100 mL mixtures, comprising the inoculum from the pre-incubated dairy manures and the feedstock from acid pretreated dairy manures as stated in Sections 2.1 and 2.2. No extra nutrients were added into the serum vials. The scale-up test was performed in a 5-L continuous stirred anaerobic bioreactor. The concentration of hydrogen, carbon dioxide, and VFAs were measured by gas chromatograph equipped with a thermal conductivity detector and a flame ionization detector, respectively. All the experiments were carried out independently in triplicates. Dairy manures with acidification pretreatment had a maximum H(2) yield of 31.5 ml/g-TVS treating 70 g/L of substrate at operating pH 5.0. Meanwhile, the oxidation-reduction potential (ORP) value stayed stable at around -500 to -520 mV during the optimal hydrogen-producing period. The effluent was composed mostly of acetate and butyrate, which accounted for 78.2-81.4% of total VFAs. There was no significant methane observed in the tests. Experimental results indicated that the acidification pretreatment of dairy manure, substrate concentration, and operating pH and ORP level all had an individual significant influence on bio-H(2) production. The feasibility of H(2) generation utilizing dairy manures as feedstock by anaerobic fermentation was demonstrated in this study. Biohydrogen production was found most effective utilizing acid pretreated dairy manures as feedstock at operating pH of 5.0 and substrate concentration of 70.0 g-TVS/L using pre-incubated dairy manures as inoculum. The maximal hydrogen yield of 31.5 mL H(2)/g-TVS and corresponding hydrogen content of 38

  18. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample

    PubMed Central

    Leclercq, Sébastien Olivier; Wang, Chao; Zhu, Yaxin; Wu, Hai; Du, Xiaochen; Liu, Zhipei

    2016-01-01

    ABSTRACT Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302. IMPORTANCE Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness. PMID:27565618

  19. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample.

    PubMed

    Leclercq, Sébastien Olivier; Wang, Chao; Zhu, Yaxin; Wu, Hai; Du, Xiaochen; Liu, Zhipei; Feng, Jie

    2016-11-01

    Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302 IMPORTANCE: Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Size distributions of manure particles released under simulated rainfall.

    PubMed

    Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W

    2009-03-01

    Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the

  1. Data for Figures in Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots

    EPA Pesticide Factsheets

    ? Figure 1. Ratio of cumulative released cells to cells initially present in the manure at Week 0 as they vary by time, manure type and age, microbe, and Event (i.e., season). The 95% confidence intervals of the observed median number of cells in microbial runoff are shown as the shaded area.? Figure 2. Typical observed and simulated cumulative microbial runoff for Plots A403 and C209 with individual plot calibration.? Figure 3. Observed versus simulated microbial runoff associated with the Approach 1, adjusted for cumulative results by manure type and Event. Results accounted for counts associated with field monitoring time intervals described in Section 2.1 Field method. NS=Nash-Sutcliffe modeling efficiency, EC=E. coli, En=enterococci, FC= fecal coliforms.? Figure 4. Ratio of cumulative released cells/mass to cells/mass initially present in the aged manure by time and component (e.g., microbe) for solid manure (a) and (b), and amended, dry litter, and slurry manure (c). Solid lines (Equation (11) correspond to values in Table 3 for solid manure, and dry litter and slurry manure, respectively: (a) uses individual b values, and (b) and (c) use the combined values for b. Bounds of first and third quartiles associated with the present study??s results for cattle. Bounds of first and third quartiles associated with the present study??s results for poultry and swine. The full color versions of all figures are available in the online version of this paper, at ht

  2. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure

    USDA-ARS?s Scientific Manuscript database

    Antibiotics used in animal feeding operations have been detected in the environment. There is a growing concern about the impact of these pharmaceutical compounds in the manure and the effect they may have on aquatic and terrestrial organisms, and the potential development of antibiotic resistant m...

  3. Torrefaction of Durian peel and bagasse for bio-briquette as an alternative solid fuel

    NASA Astrophysics Data System (ADS)

    Haryati, S.; Rahmatullah; Putri, R. W.

    2018-03-01

    Biomass waste of durian (Durio zibethinus) peel and bagasse could be used as solid fuel by a toreffaction process. Durian peel and bagasse were washed and crushed into small sizes then dryed in order to remove water content. The treated biomass was burned at varied temperature of 200 – 350 °C and a residence time of 30 min prior to producing torrified charcoal as intermediate product. Torrified charcoal was ground into a powder blended with tapioca glue followed by casting into a cylinder to form a bio-briqquette. The bio-briquette was characterized by determining its calorific value via bomb carolimeter analysis. The key parameter of bio-briquette are calorific value and combustion rate. The result that as the burning temperature was increased the calorific value of bio-briquettes also increased. The maximum calorific value was achieved at 350°C whereas the maximum calorific value of durian (6,157 cal/gr) is higher than bagasse (6,109 cal/gr). The minimum combustion rate was attained in durian peel torrefaction at 350 °C with the rate 0.0398 g/s. The result showed that bio-briquette of durian peel and bagasse have calorific values equivalent to that of subbituminus coal in the range of 4,900 - 6,800 cal/gr.

  4. AFO Manure Management - Michigan: Manure Transfer Requirements

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  5. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    PubMed

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  6. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers

    PubMed Central

    Gather, Malte C.; Yun, Seok Hyun

    2015-01-01

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850

  7. Winter and growing season nitrogen mineralization from fall-applied composted or stockpiled solid dairy manure

    USDA-ARS?s Scientific Manuscript database

    Adequate characterization of nitrogen (N) mineralization with time from manure and other organic sources is needed to maximize manure N use efficiency, decrease producer costs, and protect groundwater quality. The objective of our two-year field study at Parma, ID, was to quantify in situ N mineral...

  8. Use of mammal manure by nesting burrowing owls: a test of four functional hypotheses

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2007-01-01

    Animals have evolved an impressive array of behavioural traits to avoid depredation. Olfactory camouflage of conspicuous odours is a strategy to avoid depredation that has been implicated only in a few species of birds. Burrowing owls, Athene cunicularia, routinely collect dried manure from mammals and scatter it in their nest chamber, in the tunnel leading to their nest and at the entrance to their nesting burrow. This unusual behaviour was thought to reduce nest depredation by concealing the scent of adults and juveniles, but a recent study suggests that manure functions to attract arthropod prey. However, burrowing owls routinely scatter other materials in the same way that they scatter manure, and this fact seems to be at odds with both of these hypotheses. Thus, we examined the function of this behaviour by testing four alternative hypotheses. We found no support for the widely cited olfactory-camouflage hypothesis (manure did not lower the probability of depredation), or for the mate-attraction hypothesis (males collected manure after, not before, pair formation). Predictions of the burrow-occupied hypothesis (manure indicates occupancy to conspecifics and thereby reduces agonistic interactions) were supported, but results were not statistically significant. Our results also supported several predictions of the prey-attraction hypothesis. Pitfall traps at sampling sites with manure collected more arthropod biomass (of taxa common in the diet of burrowing owls) than pitfall traps at sampling sites without manure. Scattering behaviour of burrowing owls appears to function to attract arthropod prey, but may also signal occupancy of a burrow to conspecifics. ?? 2006 The Association for the Study of Animal Behaviour.

  9. Manure management effects on phosphorus biotransformations and losses in animal production

    USDA-ARS?s Scientific Manuscript database

    The bioactivity of manure P is highly dynamic and dependent on interactions with the reactive soil surface and biologically mediated transformations. Biological tools that combine ligand exchange and enzyme-mediated mineralization of organic P can mimic plants and microorganisms in their ways of acq...

  10. Phosphorus recovery from pig manure solids prior to land application

    USDA-ARS?s Scientific Manuscript database

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  11. Differential responses in yield of pumpkin (Cucurbita maxima L.) and nightshade (Solanum retroflexum Dun.) to the application of three animal manures.

    PubMed

    Azeez, J O; Van Averbeke, W; Okorogbona, A O M

    2010-04-01

    Crop responses to different manures differs considerably, however, the factors responsible for it have not been conclusively elucidated. Consequently, this study examined the biomass response of Cucurbita maxima and Solanum retroflexum to application rates of chicken and kraal manures of cattle and goat, and soil factors related to salinity. The crops' biomass yield increased linearly with increase in application rates of kraal and chicken manures, but steeper in the latter. Results showed that significant decline in biomass yield in chicken manure at rates above 8.5 tons ha(-1) were not due to salinity. The crops' response to cattle and goat kraal manures was linear but polynomial (cubic) in layer chicken manure. It was concluded that the yield decline in chicken manure was due to other manure factors except salinity, probably toxicity effect of the manure fatty acids. Further research was however, recommended to elucidate this claim. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Ammonia and greenhouse gas concentrations at surfaces of simulated beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    Bedding is used in livestock operations to facilitate manure management and provide comfort for the animal. The research objective was to determine differences in ammonia (NH3), carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) concentrations from simulated beef cattle bedded manure packs ...

  13. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hygienisation and Nutrient Conservation of Sewage Sludge or Cattle Manure by Lactic Acid Fermentation

    PubMed Central

    Scheinemann, Hendrik A.; Dittmar, Katja; Stöckel, Frank S.; Müller, Hermann; Krüger, Monika E.

    2015-01-01

    Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15–57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production. PMID:25786255

  15. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  16. Plant-available and water-soluble phosphorus in soils amended with separated manure solids.

    PubMed

    Gasser, M-O; Chantigny, M H; Angers, D A; Bittman, S; Buckley, K E; Rochette, P; Massé, D

    2012-01-01

    Physical, chemical, or biological treatment of animal liquid manure generally produces a dry-matter rich fraction (DMF) that contains most of the initial phosphorus (P). Our objective was to assess the solubility and plant availability of P from various DMFs as a function of soil P status. Eight different DMFs were obtained from liquid swine (LSM) and dairy cattle (LDC) manures treated by natural decantation, anaerobic digestion, chemical flocculation, composting, or mechanical separation. The DMFs were compared with mineral P fertilizer in a pot experiment with oat ( L.) grown in four soils with varied P-fixing capacities and P saturation levels. The DMFs were added at a rate of 50 mg P kg soil and incubated 14 d before seeding. Soil water-extractable P (P) at all water:soil extraction ratios (2:1, 20:1, and 200:1) was slightly higher when DMFs were derived from LDC rather than LSM. Soil P at the 2:1 ratio was lower with anaerobically digested LSM. At the 2:1 extraction ratio, DMF P was less soluble than mineral P as P saturation in soils increased. In soils with a lower P-fixing capacity, DMF P appeared less water soluble than mineral P under 20:1 and 200:1 extraction ratios. After 72 d of plant growth, DMFs produced yields comparable to mineral P fertilizer. Although the plant availability of P from DMFs was comparable to mineral P fertilizer, P from DMFs could be less vulnerable to leaching or runoff losses in soils with a high P saturation level or low P-fixing capacity. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    PubMed

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands.

    PubMed

    Li, Yan-xia; Xiong, Xiong; Lin, Chun-ye; Zhang, Feng-song; Wei, Li; Wei, Han

    2010-05-15

    A random sample of pairs of animal feeds and manures were collected from 215 animal barns in Beijing and Fuxin regions of China. The concentrations of Cd in manures and feeds ranged from non-detectable to 129.8 mg/kg dry weight and non-detectable to 31 mg/kg dry weight, respectively. The concentrations of Cd in pig, dairy cow and chicken manures were positively correlated to those in their feeds. About 30% of the manure samples contained Cd concentrations higher than the upper limit for use in farmlands, and pig and chicken manures might be the primary contributors of Cd to farmlands. The farmlands in Beijing and around the Fuxin Downtown areas would exceed the soil quality criteria within several decades according to current manure Cd loading rates. Undoubtedly, more scientific animal production and manure management practices to minimize soil pollution risks are necessary for the two regions. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    PubMed

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  20. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure.

    PubMed

    McKinney, Chad W; Dungan, Robert S; Moore, Amber; Leytem, April B

    2018-03-01

    Animal manures are commonly used to enhance soil fertility, but there are growing concerns over the impact of this practice on the development and dissemination of antibiotic resistance. The aim of this field study was to determine the effect of annual dairy manure applications on the occurrence and abundance of antibiotic resistance genes (ARGs) in an agricultural soil during four years of crop production. Treatments included (i) control (no fertilizer or manure), (ii) inorganic fertilizer and (iii) dairy manure at three application rates. Quantitative PCR was used to determine absolute (per g dry soil) and relative (per 16S rRNA gene) abundances of ARGs in DNA extracted from soils. Six ARGs and one class 1 integron were targeted. This study found that (i) manure application increases ARG abundances above background soil levels; (ii) the higher the manure application rate, the higher the ARG abundance in soil; (iii) the amount of manure applied is more important than reoccurring annual applications of the same amount of manure; (iv) absolute abundance and occurrence of ARGs decreases with increasing soil depth, but relative abundances remained constant. This study demonstrated that dairy manure applications to soil significantly increase the abundance of clinically relevant ARGs when compared to control and inorganic fertilized plots.

  1. Composition of whole and water extractable organic matter of cattle manure affected by management practices

    USDA-ARS?s Scientific Manuscript database

    Organic matter (OM) is a major component of animal manure. In this chapter, we present two case studies on the multiple spectral features of whole and water extractable organic matter (WEOM) of cattle (beef and dairy) manure affected by differing management practices. Using wet chemistry and Fourie...

  2. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  3. A review of regulations and guidelines related to winter manure application

    USDA-ARS?s Scientific Manuscript database

    Application of animal manure to frozen and snow-covered soils can increase the risk of nutrient losses and impairment of water quality in regions with hardy winters. In conjunction with global distributions of animal densities, we reviewed world-wide regulatory and voluntary guidelines on winter man...

  4. Bio-solid-State processes for synthesis of Li-Fe-phosphate.

    PubMed

    Kim, Hyoung-Bum; Park, Byungno; Lee, Insung; Roh, Yul

    2008-10-01

    Lithium-Fe-phosphates have become of great interest as storage cathodes for rechargeable Li-batteries because of their high density, environmental friendliness, and safety. The objective of this study was to examine bio-solid-state synthesis of LiFePO4 by microbial processes at room temperature. The microbial reduction of Fe(III)-citrate using an organic carbon, glucose, as an electron donor in the presence of NaHPO4 and lithium that resulted in the formation of Li-substituted iron phosphate. Our studies showed that bacteria enriched from inter-tidal flat sediments, designated as Haejae-1, synthesized Li-substituted iron phosphate. Characterization by X-ray diffraction showed the reduction of Fe(III)-citrate in the presence of NaHPO4 and LiCl2 resulted in the precipitation of Li-substituted vivianite [Li(x)Fe(3-x)(PO4)2 x 8H2O]. SEM-EDX, FTIR, and ESCA analyses showed the chemical composition of the synthesized phases was Li, Fe, P, C, and O. Based on the chemical and physical structure of the mineral, the novel bio-nano-material may be potentially useful to the development of energy storage materials.

  5. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation.

    PubMed

    Petersen, Søren O

    2017-12-07

    to potential for N 2 O emissions, which is not represented in existing prediction models. Manure treatment and management options for GHG mitigation are discussed with emphasis on effects on manure volatile solids and N availability. Anaerobic digestion and acidification represent treatment technologies that are relevant for GHG mitigation on dairy farms. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods.

    PubMed

    Wallace, Joshua S; Garner, Emily; Pruden, Amy; Aga, Diana S

    2018-05-01

    Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed

  8. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics.

    PubMed

    Zhang, Yu-Jing; Hu, Hang-Wei; Gou, Min; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2017-12-01

    Land application of animal manure is a common agricultural practice potentially leading to dispersal and propagation of antibiotic resistance genes (ARGs) in environmental settings. However, the fate of resistome in agro-ecosystems over time following application of different manure sources has never been compared systematically. Here, soil microcosm incubation was conducted to compare effects of poultry, cattle and swine manures spiked with or without the antibiotic tylosin on the temporal changes of soil ARGs. The high-throughput quantitative PCR detected a total of 185 unique ARGs, with Macrolide-Lincosamide-Streptogramin B resistance as the most frequently encountered ARG type. The diversity and abundance of ARGs significantly increased following application of manure and manure spiked with tylosin, with more pronounced effects observed in the swine and poultry manure treatments than in the cattle manure treatment. The level of antibiotic resistance gradually decreased over time in all manured soils but was still significantly higher in the soils treated with swine and poultry manures than in the untreated soils after 130 days' incubation. Tylosin-amended soils consistently showed higher abundances of ARGs than soils treated with manure only, suggesting a strong selection pressure of antibiotic-spiked manure on soil ARGs. The relative abundance of ARGs had significantly positive correlations with integrase and transposase genes, indicative of horizontal transfer potential of ARGs in manure and tylosin treated soils. Our findings provide evidence that application of swine and poultry manures might enrich more soil ARGs than cattle manure, which necessitates the appropriate treatment of raw animal manures prior to land application to minimise the spread of environmental ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.

    PubMed

    Wu, Sarah Xiao; Chen, Lide; Zhu, Jun; Walquist, McKenzie; Christian, David

    2018-04-30

    Insufficient denitrification in biological treatment is often a result of the lack of a carbon source. In this study, use of the volatile fatty acids (VFAs) generated via pre-digestion as a carbon source to improve denitrification in sequencing batch reactor (SBR) treatment of liquid swine manure was investigated. The pre-digestion of swine manure was realized by storing the manure in a sealed container in room temperature and samples were taken periodically from the container to determine the VFA levels. The results showed that after 14 days of pre-digestion, the VFA level in the digested liquid was increased by 200%. A polynomial relationship for the VFA level in the digested manure with the digestion time was observed with a correlation coefficient being 0.9748. Two identical SBRs were built and operated on 8-h cycles in parallel, with one fed with pre-digested and the other raw swine manure. There were five phases included in each cycle, i.e., anaerobic (90 min), anoxic (150 min), anoxic/anaerobic (90 min), anoxic/aerobic (120 min), and settle/decant (30 min), and the feeding was split to 600 mL/200 mL and performed at the beginning of and 240 min into the cycle. The SBR fed on pre-digested swine manure achieved successful denitrification with only 0.35 mg/L nitrate left in the effluent, compared to 15.9 mg/L found in the effluent of the other SBR. Nitrite was not detected in the effluent from both SBRs. The results also indicated that there was no negative impact of feeding SBRs with the pre-digested liquid swine manure for treatment on the removal of other constituents such as total solids (TS), volatile solids (VS), suspended solids (SS), volatile suspended solids (VSS), and soluble chemical oxygen demand (COD). Therefore, anaerobic digestion as a pretreatment can be an effective way to condition liquid swine manure for SBR treatment to achieve sufficient nitrate removal.

  10. Effects of dairy manure storage conditions on the survival of E. coli O157:H7 and listeria

    USDA-ARS?s Scientific Manuscript database

    Dairy manure is regularly applied to crop fields as a solid or liquid to improve the soil nutrient status. However, pathogens may survive during manure storage and enter the environment during application. In this study, three storage practices were evaluated to understand the survival patterns of E...

  11. Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by vegetables.

    PubMed

    Huang, Lianxi; Yao, Lixian; He, Zhaohuan; Zhou, Changmin; Li, Guoliang; Yang, Baomei; Deng, Xiancai

    2014-04-01

    Roxarsone is an organoarsenic feed additive which can be finally degraded to other higher toxic metabolites after excreted by animal. In this work, the uptake of As species by vegetables treated with chicken manure bearing roxarsone and its metabolites was investigated. It was showed that more than 96% of roxarsone added in chicken feed was degraded and converted to arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, 4-hydroxyphenylarsonic acid and other unknown As species. Arsenite and arsenate could be found in roots of vegetables but only arsenite transported up to shoots. Chicken manure bearing roxarsone and its metabolites increased 33-175% of arsenite and 28% ∼ seven times of arsenate in vegetable roots, 68-175% of arsenite in edible vegetable shoots. Arsenite, the most toxic As form, was the major extractable As species in vegetables accounted for 79-98%. The results reflected that toxic element As could be absorbed by vegetables via the way: roxarsone in feed → animalanimal manure → soil → crop and the uptake of As species would be enhanced by using chicken manure bearing roxarsone and its metabolites as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    PubMed

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  13. Diet, tillage and soil moisture effects on odorous emissions following land application of beef manure

    USDA-ARS?s Scientific Manuscript database

    Beef manure from animals fed diets containing different amounts of wet distillers grain with solubles (WDGS) was applied to soil as a fertilizer to plot located across the slope. The applied manure and soil were either tilled or not tilled. The odor emissions were measured for 24 hours. Then a sing...

  14. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire,R.; Hesterberg, D.; Gernat, A.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH){sub 2} for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH){sub 2} at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed formore » microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL{sup -1}. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.« less

  16. Effect of temperature on continuous dry fermentation of swine manure.

    PubMed

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model.

    PubMed

    De la Cruz Quiroz, Reynaldo; Roussos, Sevastianos; Hernández, Daniel; Rodríguez, Raúl; Castillo, Francisco; Aguilar, Cristóbal N

    2015-01-01

    In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.

  18. Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.

    PubMed

    Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D

    2003-01-01

    Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.

  19. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline.

    PubMed

    Yin, Fubin; Dong, Hongmin; Zhang, Wanqin; Zhu, Zhiping; Shang, Bin

    2018-02-01

    Anaerobic digestion (AD) has been applied to animal manure stabilization, and antibiotics is frequently found in animal manure. However, antibiotic degradation and microbial community structures during two-stage AD (acidification and methanogenesis) remain poorly understood. This experiments on two-stage anaerobic swine manure digesters were performed to investigate the degradation mechanisms and effects of chlortetracycline (CTC) and oxytetracycline (OTC) on microbial community structures. Results showed that acidification and methanogenesis showed good degradation performance for manure containing CTC and OTC at 60 and 40 mg/kg·TS, respectively. CTC and OTC were degraded by 59.8% and 41.3% in the acidogenic stage and by 76.3% and 78.3% in the methanogenic stage, respectively. CTC and OTC negatively affected bacterial community in methanogenic and acidogenic stages, respectively. They also adversely influenced the archaeal species in the methanogenic stage. Two-stage AD was proposed to treat manure containing antibiotics and to reduce the negative effects of antibiotics on AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  1. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates.

  3. Estrogen transport in surface runoff from agricultural fields treated with two different application methods of dairy manure

    USDA-ARS?s Scientific Manuscript database

    While the land-application of animal manure provides many benefits, concerns exist regarding the subsequent transport of hormones and potential effects on aquatic ecosystems. This study compares two methods of dairy manure application, surface broadcasting and shallow disk injection, on the fate and...

  4. Ammonia volatilization loss from surface applied livestock manure.

    PubMed

    Paramasivam, S; Jayaraman, K; Wilson, Takela C; Alva, Ashok K; Kelson, Luma; Jones, Leandra B

    2009-03-01

    Ammonia (NH(3)) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH(3)emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg(-1)) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg(-1)) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha(-1) in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH(3) volatilization. Results indicated a greater NH(3) loss from soils amended with SM compared to that with PL. The cumulative NH(3)volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH(3) was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH(3) from soils. A significant portion (> 50%) of cumulative NH(3) emission over 19 d occurred during the first 5-7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (< or = 5.60 Mg ha(-1)) is recommended to minimize NH(3) emissions.

  5. Persistence of Mycobacterium avium subsp. paratuberculosis and Other Zoonotic Pathogens during Simulated Composting, Manure Packing, and Liquid Storage of Dairy Manure

    PubMed Central

    Grewal, Sukhbir K.; Rajeev, Sreekumari; Sreevatsan, Srinand; Michel, Frederick C.

    2006-01-01

    Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M

  6. Evolution of composition of dairy manure supernatant in a controlled dung pit.

    PubMed

    Rico, C; García, H; Rico, J L; Fernández, J; Renedo, J

    2009-12-01

    Anaerobic conversion of dairy manure into biogas is an attractive way of managing this waste. It is well known that the hydrolysis of large molecules into small, directly biodegradable ones is the rate limiting step of the overall anaerobic process. The present work studies the development of the hydrolytic and acidogenic stages of dairy manure with different solid concentrations (40, 60 and 80 g VS/L) at ambient temperature (20 degrees C). The purpose was to determine the operational conditions that provide a liquid fraction with a high soluble chemical oxygen demand (COD) and a high volatile fatty acids (VFA) content in manure before the methanogenic stage starts up. At 20 degrees C, the evolution of the studied parameters showed that, in a controlled plug-flow dung pit, the hydrolytic and acidogenic stages progressed moderately in a continuous way during the 25 days that the experimentation lasted, whereas no methanization was observed. Supernatant COD and VFA concentrations increased 30% and 107%, respectively, for the 60 g VS/L samples. Manure was also operated at 35 degrees C with a similar increase in supernatant COD but a higher increase in VFA, 154%. For both operational temperatures, the predominant VFAs were, in this order, acetic, propionic and butyric acids. During the operation at 35 degrees C, the methanogenic stage started between days 20 and 25 for the samples with lower solids content, i.e. 40 and 60 g VS/L.

  7. Inactivation of dairy manure-borne pathogens by anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of animal manure has the potential to inactivate enteric pathogens, thereby reducing exposures to livestock and humans when the products of digestion are disposed by land-spreading or irrigation or returned to livestock uses such as bedding. Data on digester effectiv...

  8. Phosphorus and nitrogen losses from winter stacking of manure

    USDA-ARS?s Scientific Manuscript database

    Appropriate management of animal manure including storage is essential for minimizing nutrient losses and guaranteeing good water quality. A field lysimeter study was carried out at the Susquehanna River Basin, northeastern USA to investigate phosphorus (P) and nitrogen (N) losses in leachate and ru...

  9. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    PubMed Central

    Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates. PMID:29420605

  10. Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia

    2017-04-01

    Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per

  11. Nutrient production from dairy cattle manure and loading on arable land

    PubMed Central

    You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346

  12. Nutrient production from dairy cattle manure and loading on arable land.

    PubMed

    Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

  13. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijian; Shen, Jianguo; Wang, Hang; Liu, Meng; Wu, Longhua; Ping, Fan; He, Qiang; Li, Hongyi; Zheng, Changfeng; Xu, Xinhua

    2014-10-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m-2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting.

  14. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  15. Salmonella survival in manure-treated soils during simulated seasonal temperature exposure.

    PubMed

    Holley, Richard A; Arrus, Katia M; Ominski, Kimberly H; Tenuta, Mario; Blank, Gregory

    2006-01-01

    Addition of animal manure to soil can provide opportunity for Salmonella contamination of soil, water, and food. This study examined how exposure of hog manure-treated loamy sand and clay soils to different simulated seasonal temperature sequences influenced the length of Salmonella survival. A six-strain cocktail of Salmonella serovars (Agona, Hadar, Heidelberg, Montevideo, Oranienburg, and Typhimurium) was added to yield 5 log cfu/g directly to about 5 kg of the two soils and moisture adjusted to 60 or 80% of field capacity (FC). Similarly, the Salmonella cocktail was mixed with fresh manure slurry from a hog nursery barn and the latter added to the two soils at 25 g/kg to achieve 5 log cfu/g Salmonella. Manure was mixed either throughout the soil or with the top kilogram of soil and the entire soil volume was adjusted to 60 or 80% FC. Soil treatments were stored 180 d at temperature sequences representing winter to summer (-18, 4, 10, 25 degrees C), spring to summer (4, 10, 25, 30 degrees C), or summer to winter (25, 10, 4, -18 degrees C) seasonal periods with each temperature step lasting 45 d. Samples for Salmonella recovery by direct plating or enrichment were taken at 0, 7, and 15 d post-inoculation and thereafter at 15-d intervals to 180 d. Salmonella numbers decreased during application to soil and the largest decreases occurred within the first week. Higher soil moisture, manure addition, and storage in the clay soil increased Salmonella survival. Salmonella survived longest (> or = 180 d) in both soils during summer-winter exposure but was not isolated after 160 d from loamy sand soil exposed to other seasonal treatments. For all but one treatment decimal reduction time (DRT45d) values calculated from the first 45 d after application were < or = 30 d and suggested that a 30-d delay between field application of manure in the spring or fall and use of the land would provide reasonable assurance that crop and animal contamination by Salmonella would be

  16. Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population.

    PubMed

    Maguire, R O; Hesterberg, D; Gernat, A; Anderson, K; Wineland, M; Grimes, J

    2006-01-01

    Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.

  17. Mitigation of Nitrogen Emissions from Animal Agriculture in Europe

    NASA Astrophysics Data System (ADS)

    Oenema, O.

    2011-12-01

    More than 70% of the utilized agricultural area (187 Mha) in the 27 Member States of the European Union (EU-27) is used for animal production. In addition, a considerable amount of animal feed is imported. Dairy and beef cattle, pigs, and poultry are the dominant animal species. Total livestock density is highest in the Netherlands, Belgium, Ireland, Denmark and some regions in France, Germany and Italy. The mean nitrogen (N) retention in animal products in EU-27 in 2005 was 20% for milk, 8% for beef, 25% for pork, 38% for poultry and 28% for egg production. This indicates that dairy cows excreted on average 80% of the N intake, beef cattle 92%, pigs 75%, poultry 62% and layers 72%. There was a large variation in N retention between countries. Animal manures and nitrogen (N) fertilizers are main sources of N emissions. In 2005, mean N excretion by animals ranged from less than 25 kg per ha per year in Bulgaria to nearly 250 kg per ha in The Netherlands. On average 25% of the total amount of N excreted was lost as ammonia (NH3) to the atmosphere, though with a considerable variation between countries. About 10% was lost as NH3-N from housing systems, 9% from manure application to land, 4% from manure storage and treatment facilities, and 3% from grazing. Nitrogen leaching was in the same order of magnitude. Animal production also had a considerable share in the total emissions of greenhouse gases to the atmosphere (range 5-25%). Especially dairy cattle and beef cattle contribute to the emissions of methane (CH4) and nitrous oxide (N2O) to the atmosphere. Considerable efforts are being made to decrease N emissions from agriculture in EU-27. Good agricultural practices and mandatory emission mitigation measures are enforced through EU environmental policies, including Nitrates Directive, National Emissions Ceiling Directive, and Water Framework Directive. Some countries have succeeded to decrease the NH3 emissions to air and N leaching losses to groundwater and

  18. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    PubMed

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.

    PubMed

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  20. Degradation of Insecticides in Poultry Manure: Determining the Insecticidal Treatment Interval for Managing House Fly (Diptera: Muscidae) Populations in Poultry Farms.

    PubMed

    Ong, Song-Quan; Ab Majid, Abdul Hafiz; Ahmad, Hamdan

    2016-04-01

    It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.

  1. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology

    PubMed Central

    Nussey, Daniel H.; Froy, Hannah; Lemaitre, Jean-François; Gaillard, Jean-Michel; Austad, Steve N.

    2014-01-01

    That senescence is rarely, if ever, observed in natural populations is an oft-quoted fallacy within bio-gerontology. We identify the roots of this fallacy in the otherwise seminal works of Medawar and Comfort, and explain that under antagonistic pleiotropy or disposable soma explanations for the evolution of senescence there is no reason why senescence cannot evolve to be manifest within the life expectancies of wild organisms. The recent emergence of long-term field studies presents irrefutable evidence that senescence is commonly detected in nature. We found such evidence in 175 different animal species from 340 separate studies. Although the bulk of this evidence comes from birds and mammals, we also found evidence for senescence in other vertebrates and insects. We describe how high-quality longitudinal field data allow us to test evolutionary explanations for differences in senescence between the sexes and among traits and individuals. Recent studies indicate that genes, prior environment and investment in growth and reproduction influence aging rates in the wild. We argue that – with the fallacy that wild animals do not senesce finally dead and buried – collaborations between bio-gerontologists and field biologists can begin to test the ecological generality of purportedly ‘public’ mechanisms regulating aging in laboratory models. PMID:22884974

  2. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Ungerfeld, Emilio

    2012-03-01

    Biogas production from anaerobic digestion of chicken feathers with swine manure or slaughterhouse sludge was assessed in two separate experiments. Ground feathers without any pre-treatment were added to 42-L digesters inoculated with swine manure or slaughterhouse sludge, representing 37% and 23% of total solids, respectively and incubated at 25°C in batch mode. Compared to the control without feather addition, total CH(4) production increased by 130% (P<0.001) and 110% (P=0.09) in the swine manure and the slaughterhouse sludge digesters, respectively. Mixed liquor NH(4)N concentration increased (P<0.001) from 4.8 and 3.1g/L at the beginning of the digestion to 6.9 and 3.5 g/L at the end of digestion in the swine manure and the slaughterhouse sludge digesters, respectively. The fraction of proteolytic microorganisms increased (P<0.001) during the digestion from 12.5% to 14.5% and 11.3% to 13.0% in the swine manure and the slaughterhouse sludge digesters with feather addition, respectively, but decreased in the controls. These results are reflective of feather digestion. Feather addition did not affect CH(4) yields of the swine manure digesters (P=0.082) and the slaughterhouse sludge digesters (P=0.21), indicating that feathers can be digested together with swine manure or slaughterhouse sludge without negatively affecting the digestion of swine manure and slaughterhouse sludge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Animal and industrial waste anaerobic digestion: USA status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.D.

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond themore » farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.« less

  4. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  5. BCVA: Can recycled manure make a safe bed for cattle?

    PubMed

    Jarvis, Suzanne

    2014-11-15

    The use of recycled manure solids for cattle bedding was among the subjects considered at the British Cattle Veterinary Association's congress last month. Both cattle and sheep vets gathered in Hinckley, Leicestershire, from October 16 to 18 to discuss a range of clinical and political issues. Suzanne Jarvis reports. British Veterinary Association.

  6. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation.

    PubMed

    Bekoe, Dominic; Wang, Lijun; Zhang, Bo; Scott Todd, Matthew; Shahbazi, Abolghasem

    2018-02-01

    Aerobic treatment of swine manure was coupled with anaerobic digestion and microalgal cultivation. A 14-day aerobic treatment reduced the total solid content of swine manure by >15%. Ammonia and carbon dioxide were stripped by the air supplied, and this off-gas was further used to aerate the culture of Chlorella vulgaris. The microalgal growth rates in Bristol medium and the wastewater with the off-gas increased from 0.08 to 0.22 g/L/d and from 0.15 to 0.24 g/L/d, respectively. Meanwhile, the aerobically treated swine manure showed a higher methane yield during anaerobic digestion. The experimental results were used to establish a demonstration unit consisting of a 100 L composter, a 200 L anaerobic digester, a 60 L tubular photobioreactor, and a 300 L micro-open raceway pond.

  7. Effect of manure and plants spacing on yield and flavonoid content of Elephantopus scaber L.

    NASA Astrophysics Data System (ADS)

    Riyana, D.; Widiyastuti, Y.; Widodo, H.; Purwanto, E.; Samanhudi

    2018-03-01

    This experiment is aimed to observe the growth and flavonoid contain of Tapak Liman (Elephantopus scaber L.) with different manure types and plants spacing treatment. This experiment is conducted at Tegal Gede Village, Karanganyar District on June until August 2016. The analysis of secondary metabolism was done in B2P2TOOT, Tawangamangu. This experiment is conducted with Randomized Complete Block Design (RCBD) with two treatment factors, those are manure and plants spacing. Animal manure treatment had 3 levels, those are without manure, cow manure with 20 ton/ha dose, and chicken manure with 20 ton/ha dose. Plants spacing treatment had 3 phrase, those are 20 cm × 20 cm; 30 × 30 cm; 40 cm × 40 cm. The result of this experiment shows that chicken manure with 20 ton/ha dosage increase the development of leaves’ lengthiness, header’s diameter, plant’s fresh weight, and plant’s dry weight. Plants spacing 40 cm × 40 cm increase for the development of leaves’ lengthiness, header’s diameter, plant’s wet weight, and plant’s dry weight. The combination between chicken manure with 20 ton/ha dose and plants spacing 40 cm × 40cm treatments show the highest amount of tapak liman extract and alleged having the biggest amount of flavonoid substance.

  8. Degradation and dissipation of the veterinary ionophore lasalocid in manure and soil.

    PubMed

    Žižek, Suzana; Dobeic, Martin; Pintarič, Štefan; Zidar, Primož; Kobal, Silvestra; Vidrih, Matej

    2015-11-01

    Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It is excreted from the treated animals mostly in its active form and enters the environment with the use of contaminated manure on agricultural land. To properly assess the risk that lasalocid poses to the environment, it is necessary to know its environmental concentrations as well as the rates of its degradation in manure and dissipation in soil. These values are still largely unknown. A research was undertaken to ascertain the rate of lasalocid degradation in manure under different storage conditions (aging in a pile or composting) and on agricultural soil after using lasalocid-contaminated manure. The results have shown that there is considerable difference in lasalocid degradation between aging manure with no treatment (t1/2=61.8±1.7 d) and composting (t1/2=17.5±0.8 d). Half-lives in soil are much shorter (on average 3.1±0.4 d). On the basis of the measured concentrations of lasalocid in soil after manure application, we can conclude that it can potentially be harmful to soil organisms (PEC/PNEC ratio of 1.18), but only in a worst-case scenario of using the maximum permissible amount of manure and immediately after application. To make certain that no harmful effects occur, composting is recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Operator Exposure to Hydrogen Sulfide from Dairy Manure Storages Containing Gypsum Bedding.

    PubMed

    Fabian-Wheeler, Eileen E; Hile, Michael L; Murphy, Dennis J; Hill, Davis E; Meinen, Robert; Brandt, Robin C; Elliott, Hershel A; Hofstetter, Daniel

    2017-01-26

    Dairy manure storages containing gypsum-based bedding have been linked anecdotally with injury and death due to presumed dangerous levels of gases released. Recycled gypsum products are used as a cost-effective bedding alternative to improve animal welfare and provide agronomic benefits to manure recycled back to the land. Sulfur contained in gypsum (calcium sulfate) can contribute to hydrogen sulfide (H2S) gas formation under the anaerobic storage conditions typical of dairy manure slurry. Disturbance of stored manure during agitation releases a burst of volatile gases. On-farm monitoring was conducted to document conditions during manure storage agitation relative to gas concentration and operator safety. One objective was to document operator exposure to H2S levels; therefore, each operator wore a personal gas monitor while performing tasks associated with manure storage agitation. Data from three dairy bedding management categories on ten farms were compared: (1) traditional organic bedding, (2) gypsum bedding, and (3) gypsum bedding plus a manure additive thought to reduce H2S formation and/or release. Portable meters placed around the perimeter of dairy manure storages recorded H2S concentrations prior to and during 19 agitation events. Results show that farms using gypsum bedding produced higher H2S concentrations during manure storage agitation than farms using traditional bedding. In most cases, gypsum-containing manure storages produced H2S levels above recognized safe thresholds for both livestock and humans. Farm operators were most at risk during activities in close proximity to the manure storage during agitation, and conditions 10 m away from the storage were above the 20 ppm H2S threshold on some farms using gypsum bedding. Although H2S concentrations rose to dangerous levels, only two of 18 operators were exposed to >50 ppm H2S during the first 60 min of manure storage agitation. Operators who are aware of the risk of high H2S concentrations near

  10. Optimization of the co-digestion of catch crops with manure using a central composite design and reactor operation.

    PubMed

    Molinuevo-Salces, Beatriz; Ahring, Birgitte K; Uellendahl, Hinrich

    2015-02-01

    This study investigates the effect of catch crops as co-substrate on manure-based anaerobic digestion. Batch experiments were carried out for two catch crops, namely Italian ryegrass (IR) and oil seed radish (OSR), in co-digestion with manure. Methane yields in the range of 271-558 and 216-361 ml CH4/g volatile solids (VS) were obtained for OSR and IR in co-digestion, respectively. OSR co-digestion was chosen for semi-continuous reactor experiments. The addition of 50 % of OSR to manure (on VS basis) in semi-continuous anaerobic digestion resulted in a methane yield of 348 ml CH4/g VS, an improvement of 1.46 times compared to manure alone. Adaptation to OSR was observed, and no ammonia or volatile fatty acid-mediated inhibition was detected. The results prove that it is feasible to use catch crops as co-substrate for manure-based biogas production, obtaining a stable process with significantly higher methane yields than that of manure alone.

  11. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions.

    PubMed

    Beskin, Kelly V; Holcomb, Chelsea D; Cammack, Jonathan A; Crippen, Tawni L; Knap, Anthony H; Sweet, Stephen T; Tomberlin, Jeffery K

    2018-04-01

    Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure

  12. Animal Feeding Operations

    MedlinePlus

    ... are transformed from nitrogen in manure or from fertilizers, are the most commonly found contaminant in drinking ... of harmful algal blooms, and contaminate drinking water. Organic Matter Animal waste, vegetable matter, etc. Pathogens Include ...

  13. [Progress in bio-based polyamides].

    PubMed

    Huang, Zhengqiang; Cui, Zhe; Zhang, Heming; Fu, Peng; Zhao, Qingxiang; Liu, Minying

    2016-06-25

    Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.

  14. Biodegradation of Pig Manure by the Housefly, Musca domestica: A Viable Ecological Strategy for Pig Manure Management

    PubMed Central

    Čičková, Helena; Pastor, Berta; Kozánek, Milan; Martínez-Sánchez, Anabel; Rojo, Santos; Takáč, Peter

    2012-01-01

    The technology for biodegradation of pig manure by using houseflies in a pilot plant capable of processing 500–700 kg of pig manure per week is described. A single adult cage loaded with 25,000 pupae produced 177.7±32.0 ml of eggs in a 15-day egg-collection period. With an inoculation ratio of 0.4–1.0 ml eggs/kg of manure, the amount of eggs produced by a single cage can suffice for the biodegradation of 178–444 kg of manure. Larval development varied among four different types of pig manure (centrifuged slurry, fresh manure, manure with sawdust, manure without sawdust). Larval survival ranged from 46.9±2.1%, in manure without sawdust, to 76.8±11.9% in centrifuged slurry. Larval development took 6–11 days, depending on the manure type. Processing of 1 kg of wet manure produced 43.9–74.3 g of housefly pupae and the weight of the residue after biodegradation decreased to 0.18–0.65 kg, with marked differences among manure types. Recommendations for the operation of industrial-scale biodegradation facilities are presented and discussed. PMID:22431982

  15. Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.

    PubMed

    Dere, Ashlee L; Stehouwer, Richard C; Aboukila, Emad; McDonald, Kirsten E

    2012-01-01

    Two environmental problems in Pennsylvania are degraded mined lands and excess manure nutrients from intensive animal production. Manure could be used in mine reclamation, but the large application rates required for sustained biomass production could result in significant nutrient discharge. An abandoned mine site in Schuylkill County, Pennsylvania, was used to test manure nutrient stabilization by composting and by mixing with primary paper mill sludge (PMS). Reclamation treatments were lime and fertilizer, composted poultry manure (78 and 156 Mg ha), and poultry manure (50 Mg ha) mixed with PMS (103 and 184 Mg ha) to achieve C-to-N ratios of 20 and 29. Leachates were collected with zero-tension lysimeters, and during 3 yr following amendment application, <1% of added N leached from the compost treatments. The manure+PMS C:N 29 treatment leached more N than any other treatment (393 kg N ha during 3 yr, 12.4 times more N than compost treatments), mostly as pulses of NO in the first two fall seasons following reclamation. The manure+PMS C:N 20 treatment leached 107 kg N ha during 3 yr. Three years after amendment application, most of the N and P added with the manure-based amendments was retained in the mine soil even though net immobilization of N by PMS appeared to be limited to 3 mo following application. Composting or mixing PMS with manure to achieve a C-to-N ratio of 20 can effectively minimize N leaching, retain added N in mine soil, and provide greater improvement in soil quality than lime and fertilizer amendment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    PubMed Central

    Zhang, ZhiJian; Shen, JianGuo; Wang, Hang; Liu, Meng; Wu, LongHua; Ping, Fan; He, Qiang; Li, HongYi; Zheng, ChangFeng; Xu, XinHua

    2014-01-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m−2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting. PMID:25354896

  17. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  18. Removal of Suspended Solids in Anaerobically Digested Slurries of Livestock and Poultry Manure by Coagulation Using Different Dosages of Polyaluminum Chloride

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhang, C. J.; Zhao, T. K.; Zhong, H.

    2017-01-01

    In this study, anaerobically digested slurries of livestock and poultry manure were pretreated by coagulation-sedimentation using an inorganic polymer coagulant, polyaluminum chloride (PAC). The effect of different PAC dosages on suspended solids (SS) removal and pH in the biogas slurries was assessed to provide reference values for reducing the organic load of biogas slurry in the coagulation-sedimentation process and explore the feasibility of reducing the difficulty in subsequent utilization or processing of biogas slurry. The results showed that for the pig slurry containing approximately 5000 mg/L SS, the removal rate of SS reached up to 81.6% with the coagulant dosage of 0.28 g/L PAC. For the chicken slurry containing approximately 2600 mg/L SS, the removal rate of SS was 30.2% with the coagulant dosage of 0.33 g/L PAC. The removal rate of SS in both slurries of livestock and poultry manure exhibited a downward trend with high PAC dosage. Therefore, there is a need to control the PAC dosage in practical use. The pH changed little in the two types of biogas slurries after treatment with different PAC dosages and both were in line with the standard values specified in the “Standards for Irrigation Water Quality”.

  19. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations.

    PubMed

    Li, Kun; Liu, Ronghou; Sun, Chen

    2015-12-01

    Anaerobic digestions of pig manure (PM), dairy manure (DM), chicken manure (CM) and rabbit manure (RM) at initial volatile solid loading (VSL) of 8 g VS/L, 16 g VS/L, 32 g VS/L, 64 g VS/L were investigated under mesophilic conditions. The maximum methane yields of 410, 270, 377 and 323 mL CH4/g VSadded for PM, DM, CM and RM were all obtained at initial VSL of 8 g VS/L, respectively. The improvement of substrate concentration to 64 g VS/L not only decreased the methane yield and biodegradability both by 22.4%, 37.3%, 49.1% and 34.6% for PM, DM, CM and RM respectively, but also reduced the methane content in final biogas production. The Cone model (R(2): 0.9910-0.9974) showed a better fit to the experiment data and the calculated parameters indicated that anaerobic digestion of manures at higher loading has longer lag phase and lower hydrolysis rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland.

    PubMed

    Burkhardt, Michael; Stamm, Christian; Waul, Christopher; Singer, Heinz; Müller, Stephan

    2005-01-01

    Despite their common use in animal production the environmental fate of the veterinary sulfonamide antibiotics after excretion is only poorly understood. We performed irrigation experiments to investigate the transport of these substances with surface runoff on grassland. Liquid manure from pigs treated with sulfadimidine was spiked with sulfadiazine, sulfathiazole, the herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the conservative tracer bromide and spread onto eight plots. Four plots received the same amounts of the spiked substances in aqueous solution (controls). Apart from the application matrix we varied the time between application and irrigation. Manure increased the runoff volume up to six times compared with the controls. It seemed that manure enhanced the runoff by sealing the soil surface. On manured plots the relative antibiotic concentrations in runoff were higher than on the controls, reaching an average of 0.3% (sulfadiazine), 0.8% (sulfathiazole), and 1.4% (sulfadimidine) of the input concentrations after a 1-d contact time. The corresponding values on the controls were 0.16% for sulfadiazine and 0.08% for sulfathiazole. After 3 d, the maximum values on the manured plots were even higher, whereas they had fallen below the limit of quantification on the controls. As a consequence, the sulfonamide losses were 10 to 40 times larger on the manured plots. The relative mobility of the sulfonamides on the control plots followed the trend expected from their chromatographic separation but the opposite was found on the manured plots. Hence it is important to consider explicitly the physical and chemical effects of manure when assessing the environmental fate of sulfonamides.

  1. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    PubMed

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2x after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Transformation of organic matters in animal wastes during composting.

    PubMed

    Wang, Ke; He, Chao; You, Shijie; Liu, Weijie; Wang, Wei; Zhang, Ruijun; Qi, Huanhuan; Ren, Nanqi

    2015-12-30

    The transformation of organic matters in swine, cow and chicken manures was compared and evaluated using elemental analysis, FTIR, (13)C NMR, pyrolysis/GC/MS, Biolog and multiple fluorochrome over 60 days composting. The results revealed that cow manure exhibited the greatest C/N and aromaticity, whereas chicken manure exhibited the highest nitrogen and sulfur contents. O-alkyl-C was predominant carbon structure in the three manures. Alkyl-C and carboxyl-C were decomposed dramatically in initial 10 days, and mineralization of O-alkyl-C dominated the curing stage. During pyrolysis of chicken, cow, and swine manures, the majority products were fatty acids, phenols and cholestene derivatives, respectively, however, phenols and cholestene derivatives were strongly reduced in the mature manures. Furthermore, microorganisms in the raw cow, chicken and swine manure demonstrated the highest degradation capabilities for carbohydrates, lipids and amino acids, respectively. Spatial differences in the contents of solid organics in the manure particles were negligible through detection by multiple staining methods during composting. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    PubMed

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  4. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields

    USDA-ARS?s Scientific Manuscript database

    Manure generated from concentrated animal feeding operations (CAFOs) represents one of the major sources of steroid hormones found in surface water. This paper presents results of a study conducted near Concord, NE to determine the effects of manure handling (compost vs. stockpile), tillage (no-till...

  5. Antibiotic losses from unprotected manure stockpiles.

    PubMed

    Dolliver, Holly A S; Gupta, Satish C

    2008-01-01

    Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.

  6. Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers.

    PubMed

    Toumi, Jihen; Miladi, Baligh; Farhat, Amel; Nouira, Said; Hamdi, Moktar; Gtari, Maher; Bouallagui, Hassib

    2015-12-01

    The anaerobic co-digestion of dairy wastewater (DW) and cattle manure (CM) was examined and associated with microbial community's structures using Denaturing Gradient Gel Electrophoresis (DGGE). The highest volatile solids (VS) reduction yield of 88.6% and biogas production of 0.87 L/g VS removed were obtained for the C/N ratio of 24.7 at hydraulic retention time (HRT) of 20 days. The bacterial DGGE profile showed significant abundance of Uncultured Bacteroidetes, Firmicutes and Synergistetes bacterium. The Syntrophomonas strains were discovered in dependent association to H2-using bacteria such as Methanospirillum sp., Methanosphaera sp. and Methanobacterium formicicum. These syntrophic associations are essential in anaerobic digesters allow them to keep low hydrogen partial pressure. However, high concentrations of VFA produced from dairy wastes acidification allow the growth of Methanosarcina species. The application of the stabilised anaerobic effluent on the agriculture soil showed significant beneficial effects on the forage corn and tomato plants growth and crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production.

    PubMed

    Li, Qing; Zheng, Longyu; Qiu, Ning; Cai, Hao; Tomberlin, Jeffery K; Yu, Ziniu

    2011-06-01

    Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.

    PubMed

    Inoue, Kengo; Ito, Toshihiro; Kawano, Yoshihiro; Iguchi, Atsushi; Miyahara, Morio; Suzuki, Yoshihiro; Watanabe, Kazuya

    2013-11-01

    Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  10. Ammonia and greenhouse gases losses from mechanically turned cattle manure windrows: A regional composting network.

    PubMed

    Arriaga, Haritz; Viguria, Maialen; López, Diana M; Merino, Pilar

    2017-12-01

    An on-farm composting network operates in the Basque Country (northern Spain), in which solid manure produced in livestock farms (mostly dairy and beef cattle) is composted through windrow turning. This network aims to produce a valuable resource (compost) for the farmers whereas the volume of the solid manure was reduced at farm level The objective of the study was to assess the gaseous losses (NH 3 and GHG) from 6 on-farm composting windrows (either deep litter systems or solid fraction after slurry separation) after turning operations. Monitored turning events occurred 1 to 4 months after establishing the heaps on the field. Ammonia and greenhouse gas (GHG) losses were estimated by the open and close chamber techniques, respectively. Results showed overall low emission rates related to the long degradation period of the windrows. Maximum NH 3 release was at 2.0 mg m -2 d -1 after the second/third turning events. Baseline N 2 O losses were below 50 mg m -2 d -1 , with maximum rates close to 500 mg m -2 d -1 some days after turning works. Methane emissions were mostly below 100 mg m -2 d -1 , while CO 2 losses were lower than 25 g m -2 d -1 . Carbon dioxide peaks (≈250 g m -2 d -1 ) were reached after the second/third turnings. Overall, gaseous N and C losses accounted for 0.1 and 1% of the initial N and C content of the windrows, respectively. The present study concluded that two/three turning operations in aged solid manure-derived compost windrows do not have significant effects on NH 3 and GHG losses. The magnitude of the gaseous losses from on-farm composting systems is dependent on the manure management practices at farm level (e.g. moment of windrow stacking). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Utilization and environmental management of residues from intensive animal production

    USDA-ARS?s Scientific Manuscript database

    Animal manures are traditional sources of nutrients in agriculture. Under proper management, manures provide nutrients to soil, reducing or eliminating the use of commercial fertilizers, as well as organic carbon that improves soil physical properties and soil health. However, excessive application ...

  12. Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment.

    PubMed

    Theegala, Chandra S; Midgett, Jason S

    2012-03-01

    A bench scale hydrothermal liquefaction (HTL) system was tested using dairy manure to explore biooil production and waste treatment potential. Carbon monoxide was used as the process gas and sodium carbonate (Na(2)CO(3)) as catalyst. At a 350°C process temperature, the HTL unit produced 3.45 g (± 0.21) of acetone soluble oil fractions (ASF), with an average Higher Heating Value of 32.16 (± 0.23) MJ kg(-1). A maximum ASF yield of 4.8 g was produced at a process temperature of 350°C and 1g of catalyst. The best ASF yield corresponded to 67.6% of energy contained in the raw manure. GC-MS analysis of ASF indicated that the highest quantities of phenolic compounds were formed when 1g catalyst was used. Chemical Oxygen Demand (COD) reduction in the dischargeable slurry was as high as 75%. The results point to an alternative dairy waste treatment technology with a potential to generate transportable biooils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    USDA-ARS?s Scientific Manuscript database

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  14. Electromagnetic Processing as a Way of Increasing Microbiological Safety of Animal Waste

    NASA Astrophysics Data System (ADS)

    Soboleva, O. M.; Kolosova, M. M.; Filipovich, L. A.; Aksenov, V. A.

    2017-05-01

    The article shows the possibility of using the electromagnetic field of ultrahigh frequency (EMF UHF) for drying and disinfecting of such animal waste as pig manure and poultry droppings. The studied modes included the following options: processing exposure of 60, 90, 120 sec, the capacity of 60 kW, the frequency of 915 MHz. The method of UHF processing of manure and poultry droppings is environmentally safe and effective in neutralizing the pathogenic microflora, as well as larvae and eggs of worms. The following processing mode of animal waste in the electromagnetic field of ultrahigh frequency was recognized as optimal: exposure of 90 seconds, the capacity of 60 kW, the frequency of 915 MHz. This option leads to the complete destruction of pathogenic and conditionally pathogenic microorganisms, as well as the eggs and larvae of worms. As a result of this processing, a high level of microbiological safety of pig manure and poultry droppings is achieved that allows using them as organic fertilizers. The peculiarities of some species of pathogenic fungi developing on the surface of the wheat grain are shown. Pre-processed animal waste (pig manure and and poultry droppings) were applied in experimental variants. Used organic fertilizers underwent electromagnetic processing of ultra-high frequency. The qualitative composition of the microflora on the surface of the grain depends on the type of animal waste (manure or droppings) and used dose. The safest part of the microflora of grain was marked with the application of the UHF-processed pig manure and poultry droppings in doses of 10 t/ha.

  15. Transport of lincomycin to surface and ground water from manure-amended cropland.

    PubMed

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  16. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  17. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  18. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  19. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  20. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition

    USDA-ARS?s Scientific Manuscript database

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure age on foaming characteristics. Animals were f...

  1. Leachate water quality of soils amended with different swine manure-based amendments

    EPA Science Inventory

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to dire...

  2. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    USDA-ARS?s Scientific Manuscript database

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  3. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables.

    PubMed

    Yang, Qingxiang; Ren, Siwei; Niu, Tianqi; Guo, Yuhui; Qi, Shiyue; Han, Xinkuan; Liu, Dong; Pan, Feng

    2014-01-01

    Veterinary manure is an important pollution reservoir of antibiotics and antibiotic-resistant bacteria (ARB). However, little is known of the distribution of ARB in plant endophytic bacteria and the number/types of ARB in chicken manure. In this study, 454-pyrosequencing was used to investigate the distribution and composition of ARBs in chicken manure and fertilized vegetables. The prevalence of ARB in the samples of the chicken manure compost recovered from farms on which amoxicillin, kanamycin, gentamicin, and cephalexin were used was 20.91-65.9% for ARBs and 8.24-20.63% simultaneously resistant to two or more antibiotics (multiple antibiotic resistant bacteria (MARB)). Antibiotic-resistant endophytic bacteria were widely detected in celery, pakchoi, and cucumber with the highest rate of resistance to cephalexin. The pyrosequencing indicated that the chicken manure dominantly harbored Firmicutes, Bacteroidetes, Synergistetes, and Proteobacteria and that Bacteroidetes was significantly enhanced in farms utilizing antibiotics. In the total cultivable colonies, 62.58-89.43% ARBs and 95.29% MARB were clustered in Bacteroidetes with the dominant species (Myroides ordoratimimus and Spningobacterium spp., respectively) related to human clinical opportunistic pathogens.

  4. Geographic variations of soil phosphorus induced by long-term land and manure nutrient management practices

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2014-05-01

    Most natural and agricultural ecosystems are deficient in phosphorus (P), and supplemental P must be provided to attain optimal levels of agronomic production. Animal manure is often used to supply needed plant nutrients to enhance production of feed and fiber crops for human and livestock consumption. Soils have been treated with large amounts of P-enriched manure, and have shown elevated P levels in watersheds where there is a high density of intensive confined animal agriculture. Long-term additions can have lasting effects on the geographic distribution of soil microbes associated with the turnover of major soil nutrients, in particular non-mobile one such as P. We determined the distribution of soil P forms in a 10-ha no-till field that received annual additions of dairy manure at 0, 15, and 30 kg P ha-1 at the field scale for 16 consecutive years. Spectroscopic analyses of the near-surface zone were performed by X-ray fluorescence in soil cores taken to a depth of 0.2 m. Geostatistical methods were used to determine the spatial structure of the soil compositional data. Soil X-ray fluorescence spectral attributes were obtained based on a set of five parallel transects established across five experimental blocks, i.e., a 5 × 5 rectangular grid pattern. Three subsets of each soil attribute were identified for the three rates of manure addition. Long-term manure addition, albeit liquid manure, resulted in significant variability in soil P distribution in the near surface zone. The heterogeneity persisted over years of continuous no-tillage management. Therefore, a high density of geo-referenced soil measurements must be made to estimate the status of a required plant nutrient, especially a non-mobile nutrient in soil. A large number of timely measurements would require a rapid geo-referenced soil sensing spectroscopic method such as X-ray fluorescence to manage in near real-time the observed spatial variability of manure-treated fields.

  5. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012.

    PubMed

    Yang, Qichun; Tian, Hanqin; Li, Xia; Ren, Wei; Zhang, Bowen; Zhang, Xuesong; Wolf, Julie

    2016-01-15

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.8 9 ± 0.64 Tg N yr.(-1) (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg Pyr.(-1) (1 Tg = 10(12)g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global

  6. Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions.

    PubMed

    Clark, O Grant; Moehn, Soenke; Edeogu, Ike; Price, Jason; Leonard, Jeremy

    2005-01-01

    Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.

  7. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  8. Attrition-free pyrolysis to produce bio-oil and char.

    PubMed

    Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé

    2009-12-01

    Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.

  9. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    PubMed

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    PubMed

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  12. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  13. Dry anaerobic co-digestion of cow dung with pig manure for methane production.

    PubMed

    Li, Jianzheng; Jha, Ajay Kumar; Bajracharya, Tri Ratna

    2014-07-01

    The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35 ± 1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10-18.01 % higher methane yields, 2.03-12.95 % greater VS removals, 2.98-12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls.

  14. CONTEMPORARY PERSPECTIVES ON INFECTIOUS DISEASE AGENTS IN SEWAGE SLUDGE AND MANURE

    EPA Science Inventory

    The USEPA and the USDA convened a three-day Workshop on Emerging Infectious Disease Agents and Issues Associated with Sewage Sludge, Animal Manures, and Other Organic By-Products on June 4-6, 2001 in Cincinnati, Ohio. The purpose of the workshop was to review and discuss the effe...

  15. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure.

    PubMed

    Yin, Fubin; Dong, Hongmin; Ji, Chao; Tao, Xiuping; Chen, Yongxing

    2016-10-01

    Manure containing antibiotics is considered a hazardous substance that poses a serious health risk to the environment and to human health. Anaerobic digestion (AD) could not only treatment animal waste but also generate valuable biogas. However, the interaction between antibiotics in manure and the AD process has not been clearly understood. In this study, experiments on biochemical methane potential (BMP) were conducted to determine the inhibition of the AD process from antibiotics and the threshold of complete antibiotic removal. The thresholds of the complete antibiotic removal were 60 and 40mg/kg·TS for CTC and OTC, respectively. CTC and OTC with concentrations below thresholds could increase the BMP of manure. When the CTC and OTC concentrations exceeded the thresholds, they inhibited manure fermentation, and the CTC removal rate declined exponentially with concentration (60-500mg/kg·TS). The relationship between OTC antibiotic concentration and its removal rate in AD treatment was described with exponential (40-100mg/kg·TS) and linear equations (100-500mg/kg·TS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Transfer of oxytetracycline from swine manure to three different aquatic plants: implications for human exposure.

    PubMed

    Boonsaner, Maliwan; Hawker, Darryl W

    2015-03-01

    Little is known regarding the potential for pharmaceuticals including antibiotics to be accumulated in edible aquatic plants and enter the human food chain. This work investigates the transfer of a widely used veterinary antibiotic, oxytetracycline (OTC), from swine manure to aquatic plants by firstly characterizing desorption from swine manure to water and fitting data to both nonlinear and linear isotherms. Bioconcentration of OTC from water was then quantified with aquatic plants of contrasting morphology and growth habit viz. watermeal (Wolffia globosa Hartog and Plas), cabomba (Cabomba caroliniana A. Gray) and water spinach (Ipomoea aquatica Forsk.). Watermeal and water spinach are widely consumed in Southeast Asia. The OTC desorption and bioconcentration data were used to provide the first quantitative estimates of human exposure to OTC from a manure-water-aquatic plant route. Results show that under certain conditions (plants growing for 15d in undiluted swine manure effluent (2% w/v solids) and an initial OTC swine manure concentration of 43mgkg(-1) (dry weight)), this pathway could provide a significant fraction (>48%) of the acceptable daily intake (ADI) for OTC. While effluent dilution, lower OTC manure concentrations and not all plant material consumed being contaminated would be expected to diminish the proportion of the ADI accumulated, uptake from aquatic plants should not be ignored when determining human exposure to antibiotics such as OTC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Tian, Hanqin; Li, Xia

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.89 +/- 0.64 Tg N yr.(-1) (Mean +/- Standard Deviation) and 1.73 +/- 0.29 Tg P yr.(-1) (1 Tg=10(12) g), and increased by 46% and 92% from 1930 to 2012, respectively. Priormore » to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs inmanure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context

  18. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    PubMed

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less

  20. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil-manure systems.

    PubMed

    Wang, Na; Guo, Xinyan; Xu, Jing; Hao, Lijun; Kong, Deyang; Gao, Shixiang

    2015-01-01

    Animal manure application is a main spreading route of veterinary antibiotics in soil and groundwater. The sorption and leaching behavior of five commonly used sulfonamides in five typical soil and soil/manure mixtures from China were investigated in this study. Results showed that the empirical Freundlich equation fits well the sorption behavior of selected sulfonamides (r(2) was between 0.803 and 0.999, 1/n was between 0.68 and 1.44), and pH and soil organic carbon (OC) were the key impact factors to sorption and leaching. Addition of manure was found to increase the Kd values of sulfonamides in five different soils, following the rules that the more polar substances, the more increased extent of sorption after manure amendment (5.87 times for sulfadiazine with Log Kow = -0.09, and 2.49 times for sulfamethoxazole with Log Kow = 0.89). When the simulated rainfall amount reached 300 mL (180 mm), sulfonamides have high migration potential to the groundwater, especially in the soil with low OC and high pH. However, manure amendment increased the sorption capacity of sulfonamides in the top layer, thus it might play a role in decreasing the mobility of sulfonamides in soils. The systematic study would be more significant to assess the ecological risks and suggest considering the influence of manure amendment for the environmental fate of antibiotics.

  1. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes.

    PubMed

    Dai, Xiaorong; Karring, Henrik

    2014-01-01

    Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production.

  2. A Determination and Comparison of Urease Activity in Feces and Fresh Manure from Pig and Cattle in Relation to Ammonia Production and pH Changes

    PubMed Central

    Dai, Xiaorong; Karring, Henrik

    2014-01-01

    Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production. PMID:25397404

  3. Bio-Security Proficiencies Project for Beginning Producers in 4-H

    ERIC Educational Resources Information Center

    Smith, Martin H.; Meehan, Cheryl L.; Borba, John A.

    2014-01-01

    Improving bio-security practices among 4-H members who raise and show project animals is important. Bio-security measures can reduce the risk of disease spread and mitigate potential health and economic risks of disease outbreaks involving animal and zoonotic pathogens. Survey data provided statistical evidence that the Bio-Security Proficiencies…

  4. Assessing Nutrient Removal Kinetics in Flushed Manure Using Chlorella vulgaris Biomass Production

    PubMed Central

    Pandey, Pramod; Shi, Jun

    2017-01-01

    The utilization of dairy wastewater for producing algal biomass is seen as a two-fold opportunity to treat wastewater and produce algae biomass, which can be potentially used for production of biofuels. In animal agriculture system, one of the major waste streams is dairy manure that contains high levels of nitrogen and phosphorus. Furthermore, it is produced abundantly in California’s dairy industry, as well as many other parts of the world. We hypothesized that flushed manure, wastewater from a dairy farm, can be used as a potential feedstock after pretreatment to grow Chlorella vulgaris biomass and to reduce nutrients of manure. In this study, we focused on investigating the use of flushed manure, produced in a dairy farm for growing C. vulgaris biomass. A series of batch-mode experiments, fed with manure feedstock and synthetic medium, were conducted and corresponding C. vulgaris production was analyzed. Impacts of varying levels of sterilized manure feedstock (SMF) and synthetic culture medium (SCM) (20–100%) on biomass production, and consequential changes in total nitrogen (TN) and total phosphorus (TP) were determined. C. vulgaris production data (Shi et al., 2016) were fitted into a model (Aslan and Kapdan, 2006) for calculating kinetics of TN and TP removal. Results showed that the highest C. vulgaris biomass production occurs, when SMF and SCM were mixed with ratio of 40%:60%. With this mixture, biomass on Day 9 was increased by 1,740% compared to initial biomass; and on Day 30, it was increased by 2,456.9%. The production was relatively low, when either only SCM or manure feedstock medium (without pretreatment, i.e., no sterilization) was used as a culture medium. On this ratio, TN and TP were reduced by 29.9 and 12.3% on Day 9, and these reductions on Day 30 were 76 and 26.9%, respectively. PMID:28798913

  5. The development in beef cattle manure of Petriedllidium boydii (Shear) Malloch, a potential pathogen for man and cattle.

    PubMed

    Bell, R G

    1976-04-01

    Petriellidium boydii (Allescheria boydii) dominated the mycoflora of manure samples form three beef cattle feedlots after incubation at room temperature for 4 months. The possible dangers associated with this pathogenic fungus, which causes mycotic abortion in livestock, pulmonary allescheriasis in man, and mycetomas in both man and animals, are discussed. This fungus could create a health hazard in feedlots where in situ manure decompostion is encouraged.

  6. Opportunities for optimization: fate of manure-borne pathogens during anaerobic digestion and solids separation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion can inactivate zoonotic pathogens present in cattle manure, which reduces transmission of these pathogens from farms to humans through the environment. However, the variability in extent of inactivation across farms and over time is unknown because most studies have examined pat...

  7. Co-addition of manure increases the dissipation rates of tylosin A and the numbers of resistance genes in laboratory incubation experiments.

    PubMed

    Li, Qian; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Xin, Wen; Wu, Yin-Bao

    2015-09-15

    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil. Copyright © 2015. Published by Elsevier B.V.

  8. Borax and Octabor Treatment of Stored Swine Manure: Reduction in Hydrogen Sulfide Emissions and Phytotoxicity to Agronomic Crops

    USDA-ARS?s Scientific Manuscript database

    Gaseous emissions from stored manure have become environmental and health issues for humans and animals as the livestock industry becomes specialized and concentrated. Of particular concern is hydrogen sulfide, which is being targeted for regulatory control in concentrated animal farm operations. ...

  9. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions

    PubMed Central

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed. PMID:25970266

  10. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.

  11. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.

    PubMed

    Ravindran, B; Mnkeni, P N S

    2016-09-01

    The main objective of the present study was to determine the optimum C/N ratio for converting waste paper and chicken manure to nutrient-rich manure with minimum toxicity. Six treatments of C/N ratio 20, 30, 40, 50, 60, and 70 (T1, T2, T3, T4, T5, and T6, respectively) achieved by mixing chicken manure with shredded paper were used. The study involved a composting stage for 20 days followed by vermicomposting with Eisenia fetida for 7 weeks. The results revealed that 20 days of composting considerably degraded the organic waste mixtures from all treatments and a further 7 weeks of vermiculture significantly improved the bioconversion and nutrient value of all treatments. The C/N ratio of 40 (T3) resulted in the best quality vermicompost compared to the other treatments. Earthworm biomass was highest at T3 and T4 possibly due to a greater reduction of toxic substances in these waste mixtures. The total N, total P, and total K concentrations increased with time while total carbon, C/N ratio, electrical conductivity (EC), and heavy metal content gradually decreased with time during the vermicomposting process. Scanning electron microscopy (SEM) revealed the intrastructural degradation of the chicken manure and shredded paper matrix which confirmed the extent of biodegradation of treatment mixtures as result of the composting and vermicomposting processes. Phytotoxicity evaluation of final vermicomposts using tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota), and onion (Allium cepa) as test crops showed the non-phytotoxicity of the vermicomposts to be in the order T3 > T4 > T2 > T1 > T5 > T6. Generally, the results indicated that the combination of composting and vermicomposting processes is a good strategy for the management of chicken manure/paper waste mixtures and that the ideal C/N ratio of the waste mixture is 40 (T3).

  12. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers

    USGS Publications Warehouse

    Hristov, Alexander N.; Zaman, S.; Vander Pol, M.; Ndegwa, P.; Campbell, L.; Silva, S.

    2009-01-01

    Ammonia is an important air and water pollutant, but the spatial variation in its concentrations presents technical difficulties in accurate determination of ammonia emissions from animal feeding operations. The objectives of this study were to investigate the relationship between ammonia volatilization and ??15N of dairy manure and the feasibility of estimating ammonia losses from a dairy facility using chemical markers. In Exp. 1, the N/P ratio in manure decreased by 30% in 14 d as cumulative ammonia losses increased exponentially. Delta 15N of manure increased throughout the course of the experiment and ??15N of emitted ammonia increased (p < 0.001) quadratically from -31??? to -15 ???. The relationship between cumulative ammonia losses and ??15N of manure was highly significant (p < 0.001; r2 = 0.76). In Exp. 2, using a mass balance approach, approximately half of the N excreted by dairy cows (Bos taurus) could not be accounted for in 24 h. Using N/P and N/K ratios in fresh and 24-h manure, an estimated 0.55 and 0.34 (respectively) of the N excreted with feces and urine could not be accounted for. This study demonstrated that chemical markers (P, K) can be successfully used to estimate ammonia losses from cattle manure. The relationship between manure ??15N and cumulative ammonia loss may also be useful for estimating ammonia losses. Although promising, the latter approach needs to be further studied and verified in various experimental conditions and in the field. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    PubMed

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Yang, Gaihe; Wang, Xiaojiao; Feng, Yongzhong; Ren, Guangxin

    2014-08-01

    Anaerobic digestion (AD) with livestock manure is a promising way for biogas production. This work presents the influence of photo-dark fermentation on biogas production of pig manure (PM) and dairy manure (DM). All sets were conducted with temperature 35 ± 2 °C and total solid concentrations 8%: PM₁ and DM₁ in transparent reactor under sunlight for photo-dark fermentation, and PM₂ and DM₂ in non-transparent reactor for dark fermentation. DM₂ had the best cumulative biogas production (CBP) of 15,447.5 mL, followed by PM₁ (15,020 mL) with stable pH and low total ammonium nitrogen (TAN) concentration (1384.99 mg/L), and DM₁ and PM₂. The CBP of DM₂ was 5.77 times as much as PM₂. The relationship between CBP and four factors including volatile fatty acid (VFA), TAN, total alkalinity and pH was analyzed. pH gained the maximum determination coefficient with the CBP among all sets and total alkalinity showed negative correlation with CBP of PM₁ and DM₁. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Improved biogas production from whole stillage by co-digestion with cattle manure.

    PubMed

    Westerholm, Maria; Hansson, Mikael; Schnürer, Anna

    2012-06-01

    Whole stillage, as sole substrate or co-digested with cattle manure, was evaluated as substrate for biogas production in five mesophilic laboratory-scale biogas reactors, operating semi-continuously for 640 days. The process performance was monitored by chemical parameters and by quantitative analysis of the methanogenic and acetogenic population. With whole stillage as sole substrate the process showed clear signs of instability after 120 days of operation. However, co-digestion with manure clearly improved biogas productivity and process stability and indicated increased methane yield compared with theoretical values. The methane yield at an organic loading rate (OLR) at 2.8 g VS/(L×day) and a hydraulic retention time (HRT) of 45 days with a substrate mixture 85% whole stillage and 15% manure (based on volatile solids [VS]) was 0.31 N L CH(4)/gVS. Surprisingly, the abundance of the methanogenic and acetogenic populations remained relatively stable throughout the whole operation and was not influenced by process performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Temporal changes in the bacterial community of animal feces and their correlation with stable fly oviposition, larval development, and adult fitness

    PubMed Central

    Albuquerque, Thais A.; Zurek, Ludek

    2014-01-01

    Stable flies are blood-feeding insects with a great negative impact on animals world wide. Larvae develop primarily in animal manure and bacteria are essential for larval development; however, the principle of this dependence is not understood. We hypothesized that as the microbial community of animal manure changes over time, it plays an important role in stable fly fitness. Two-choice bioassays were conducted using 2 week old horse manure (control) and aging horse manure (fresh to 5 week old) to evaluate the effect of manure age on stable fly oviposition. Our data showed that fresh feces did not stimulate oviposition and that the attractiveness increased as manure aged but started to decline after 3 weeks. Bioassays assessing the effect of manure age at the time of oviposition on larval development demonstrated that 1–3 week old manure supported larval development significantly better than fresh, 4, and 5 week old manure. In addition, adult fitness (body size) was significantly higher in flies from 1 and 2 week old manure comparing to that of all other treatments. Analysis of the bacterial community of aging horse manure by 454-pyrosequencing of 16S rDNA revealed a great reduction in bacterial diversity and richness from fresh to 1–5 week old manure and a major shift from strict anaerobes in fresh manure to facultative anaerobes and strict aerobes in aged manure. Overall, the microbial community of 2 and 3 week old horse manure with its dominant bacterial taxa Rhizobium, Devosia, and Brevundimonas stimulated stable fly oviposition the most and provided a suitable habitat for larval development. These bacteria represent the candidates for studies focused on better understanding of stable fly – microbial interactions. PMID:25426108

  17. Sorption of Lincomycin by Manure-Derived Biochars from Water

    PubMed Central

    Liu, Cheng-Hua; Chuang, Ya-Hui; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.; Gonzalez, Javier M.; Johnston, Cliff T.; Lehmann, Johannes; Zhang, Wei

    2018-01-01

    The presence of antibiotics in agroecosystems raises concerns about the proliferation of antibiotic-resistant bacteria and adverse effects to human health. Soil amendment with biochars pyrolized from manures may be a win-win strategy for novel manure management and antibiotics abatement. In this study, lincomycin sorption by manure-derived biochars was examined using batch sorption experiments. Lincomycin sorption was characterized by two-stage kinetics with fast sorption reaching quasi-equilibrium in the first 2 d, followed by slow sorption over 180 d. The fast sorption was primarily attributed to surface adsorption, whereas the long-term slow sorption was controlled by slow diffusion of lincomycin into biochar pore structures. Two-day sorption experiments were performed to explore effects of biochar particle size, solid/water ratio, solution pH, and ionic strength. Lincomycin sorption to biochars was greater at solution pH 6.0 to 7.5 below the dissociation constant of lincomycin (7.6) than at pH 9.9 to 10.4 above its dissociation constant. The enhanced lincomycin sorption at lower pH likely resulted from electrostatic attraction between the positively charged lincomycin and the negatively charged biochar surfaces. This was corroborated by the observation that lincomycin sorption decreased with increasing ionic strength at lower pH (6.7) but remained constant at higher pH (10). The long-term lincomycin sequestration by biochars was largely due to pore diffusion plausibly independent of solution pH and ionic composition. Therefore, manure-derived biochars had lasting lincomycin sequestration capacity, implying that biochar soil amendment could significantly affect the distribution, transport, and bioavailability of lincomycin in agroecosystems. PMID:27065399

  18. Utilization of Re-processed Anaerobically Digested Fiber from Dairy Manure as a Container Media Substrate

    USDA-ARS?s Scientific Manuscript database

    The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...

  19. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  20. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    PubMed Central

    Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China. PMID:25405870

  1. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    PubMed

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  2. Performance evaluation of the Trans-PET® BioCaliburn® LH system: a large FOV small-animal PET system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Zhu, Jun; Liang, Xiao; Niu, Ming; Wu, Xiaoke; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-01-01

    The Trans-PET® BioCaliburn® LH is a commercial positron emission tomography (PET) system for animal imaging. The system offers a large transaxial field-of-view (FOV) of 13.0 cm to allow imaging of multiple rodents or larger animals. This paper evaluates and reports the performance characteristics of this system. Methods: in this paper, the system was evaluated for its spatial resolutions, sensitivity, scatter fraction, count rate performance and image quality in accordance with the National Electrical Manufacturers Association (NEMA) NU-4 2008 specification with modifications. Phantoms and animals not specified in the NEMA specification were also scanned to provide further demonstration of its imaging capability. Results: the spatial resolution is 1.0 mm at the center. When using a 350-650 keV energy window and a 5 ns coincidence time window, the sensitivity at the center is 2.04%. The noise equivalent count-rate curve reaches a peak value of 62 kcps at 28 MBq for the mouse-sized phantom and a peak value of 25 kcps at 31 MBq for the rat-sized phantom. The scatter fractions are 8.4% and 17.7% for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients measured by using the NEMA image-quality phantom both indicate good imaging performance, even though the reconstruction algorithm provided by the vendor does not implement all desired corrections. The Derenzo-phantom images show that the system can resolve 1.0 mm diameter rods. Animal studies demonstrate the capabilities of the system in dynamic imaging and to image multiple rodents. Conclusion: the Trans-PET® BioCaliburn® LH system offers high spatial resolution, a large transaixal FOV and adequate sensitivity. It produces animal images of good quality and supports dynamic imaging. The system is an attractive imaging technology for preclinical research.

  3. Selective release of inorganic constituents in broiler manure biochars under different post-activation treatments

    USDA-ARS?s Scientific Manuscript database

    Previous studies determined that poultry litter is a desirable feedstock for activated biochars with enhanced adsorption towards cations. Animal manures such as poultry litter contain a significant fraction of inorganic material that can significantly affect the final physical, chemical and adsorpt...

  4. [Effect of application of cow manure and green manure on corn yield and soil physical-chemical properties in land restoration area].

    PubMed

    Xu, Da Bing; Deng, Jian Qiang; Peng, Wu Xing; Si, Guo Han; Peng, Cheng Lin; Yuan, Jia Fu; Zhao, Shu Jun; Wang, Rui

    2017-03-18

    The effects of cow manure and green manure on maize yield, soil respiration and soil physical-chemical properties in land restoration area was evaluated through field experiments. The results indicated that the maize yield and thousand-grain mass with cow manure were increased by 7.2%-29.9% and 2.5%-18.2%, respectively compared with the application of chemical fertilizer (CF), while the soil active organic carbon and organic matter contents of cow manure were 5.3%-34.6% and 8.0%-17.6% higher than that obtained in CF. The maize yield and thousand-grain mass were increased by 10.8%-15.6% and 4.5%-8.4% with application of green manure, respectively compared with CF. The content of active organic carbon in green manure was 14.1%-48.6% higher than that detected in CF. In the second year, the content of organic matter in green manure treatment was 7.2% higher than that of CF. The soil respiration rates under cow manure and green manure treatments increased by 20.0%-69.3% compared with CF. CF and green manure could improve the soil bulk density and increase the aggregate ratios of <0.01 mm and 0.05-1 mm fractions, respectively. On the other hand, the cow manure and green manure could decrease the soil total porosity and the capillary porosity. In conclusion, the application of cow manure and green manure in land restoration region could increase maize yield during the two consecutive seasons, which showed a positive response to improvement of soil physical-chemical properties.

  5. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion.

    PubMed

    Sun, Chen; Cao, Weixing; Banks, Charles J; Heaven, Sonia; Liu, Ronghou

    2016-10-01

    The feasibility of co-digestion of chicken manure (CM) and maize silage (MS) without water dilution was investigated in 5-L digesters. Specific methane production (SMP) of 0.309LCH4g(-1) volatile solids (VS) was achieved but only at lower %CM. Above a critical threshold for total ammonia nitrogen (TAN), estimated at 7gNL(-1), VFA accumulated with a characteristic increase in acetic acid followed by its reduction and an increase in propionic acid. During this transition the predominant methanogenic pathway was hydrogenotrophic. Methanogenesis was completely inhibited at TAN of 9gNL(-1). The low digestibility of the mixed feedstock led to a rise in digestate TS and a reduction in SMP over the 297-day experimental period. Methanogenesis appeared to be failing in one digester but was recovered by reducing the %CM. Co-digestion was feasible with CM ⩽20% of feedstock VS, and the main limiting factor was ammonia inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. FUEL FLEXIBLE LOW EMISSIONS BURNER FOR WASTE-TO-ENERGY SYSTEMS - PHASE I

    EPA Science Inventory

    Waste-to-energy (WTE) technologies are being developed that combine waste management and energy generation. These wastes include a wide range of bio-based fuel stocks (biomass from wood and/or grasslands) or organic waste streams (manure and farm waste, municipal solid wa...

  7. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  8. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.

    PubMed

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong

    2017-04-01

    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd 2+ ) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd 2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R 2  > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd 2+ , in particular zeolite, and the percentage decreases for Cd 2+ sorption increased with increasing concentrations of Cd 2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd 2+ , however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd 2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd 2+ sorption. The adsorbed form was found to inhibit Cd 2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd 2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd 2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier Ltd. All

  9. REMOTE SENSING FOR DETECTING SWINE ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Surface runoff from animal feeding operations (AFO's) and its infiltration into ground water can
    pose a number of risks to water quality mainly because of the amount of animal manure and wastewater they produce. Excess nutrients generated by livestock facilities can lead to a...

  10. Recycling manure as cow bedding: Potential benefits and risks for UK dairy farms.

    PubMed

    Leach, Katharine A; Archer, Simon C; Breen, James E; Green, Martin J; Ohnstad, Ian C; Tuer, Sally; Bradley, Andrew J

    2015-11-01

    Material obtained from physical separation of slurry (recycled manure solids; RMS) has been used as bedding for dairy cows in dry climates in the US since the 1970s. Relatively recently, the technical ability to produce drier material has led to adoption of the practice in Europe under different climatic conditions. This review collates the evidence available on benefits and risks of using RMS bedding on dairy farms, with a European context in mind. There was less evidence than expected for anecdotal claims of improved cow comfort. Among animal health risks, only udder health has received appreciable attention. There are some circumstantial reports of difficulties of maintaining udder health on RMS, but no large scale or long term studies of effects on clinical and subclinical mastitis have been published. Existing reports do not give consistent evidence of inevitable problems, nor is there any information on clinical implications for other diseases. The scientific basis for guidelines on management of RMS bedding is limited. Decisions on optimum treatment and management may present conflicts between controls of different groups of organisms. There is no information on the influence that such 'recycling' of manure may have on pathogen virulence. The possibility of influence on genetic material conveying antimicrobial resistance is a concern, but little understood. Should UK or other non-US farmers adopt RMS, they are advised to do so with caution, apply the required strategies for risk mitigation, maintain strict hygiene of bed management and milking practices and closely monitor the effects on herd health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes.

    PubMed

    Fongaro, G; Viancelli, A; Magri, M E; Elmahdy, E M; Biesus, L L; Kich, J D; Kunz, A; Barardi, C R M

    2014-05-01

    Swine production is an important economic activity in Brazil, and there is interest in the development of clean production mechanisms to support sustainable agro-industrial activities. The biomass derived from swine manure has good potential to be used as a biofertilizer due to its high nutrient concentration. However, the land application of manure should be based on safety parameters such as the presence of pathogens that can potentially infect animals and people. This study was designed to assess the presence of porcine circovirus-2 (PCV2), porcine adenovirus (PAdV), rotavirus-A (RV-A) and Salmonella spp. in liquid manure, as well the infectivity of two genotypes of circovirus-2 (PCV2a and PCV2b) present in liquid manure. Three swine farms were evaluated: 1) a nursery production farm (manure analyzed before and after anaerobic biodigestion), 2) a grow-finish production farm (analyzed before and after anaerobic biodigestion), and 3) a second grow-finish production farm (raw manure-affluent). PCV2, PAdV and RV-A were present before and after anaerobic biodigestion (either affluent or effluent) at all farms. Salmonella spp. were detected at farm 1 (affluent and effluent) and farm 3 (raw manure-affluent) but not farm 2 (affluent and effluent). When the ability of the anaerobic biodigestion process to reduce viral concentration was evaluated, no significant reduction was observed (P>0.05). Both the PCV2a and PCV2b genotypes were detected, suggesting viral co-infection in swine production. The results revealed infectious PCV2 even after anaerobic biodigestion treatment. The presence of Salmonella spp. and enteric viruses, especially infectious PCV2, in the final effluent from the anaerobic biodigester system suggests that the process is inefficient for pathogen inactivation. Due to the prevalence and infectivity of PCV2 and considering the successful use of molecular methods coupled to cell culture for detecting infectious PCV2, we suggest that this virus can be used

  12. Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.

    PubMed

    Srinivasan, Asha; Liao, Ping H; Lo, Kwang V

    2016-12-01

    A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H 2 O 2 -AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H 2 O 2 dosage (0.4% H 2 O 2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole -1 . The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H 2 O 2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H 2 O 2 -AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.

  13. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    PubMed

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin -1 ) and nitrogen flow rate (50-150cm 3 min -1 ). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg -1 , 1289kgm -3 and 0.6mm 2 s -1 , respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg -1 is a promising candidate for solid fuel applications that also contributes to the preservation of the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome

    PubMed Central

    Wang, Hang; Sangwan, Naseer; Li, Hong-Yi; Su, Jian-Qiang; Oyang, Wei-Yin; Zhang, Zhi-Jian; Gilbert, Jack A; Zhu, Yong-Guan; Ping, Fan; Zhang, Han-Luo

    2017-01-01

    The overuse of antibiotics as veterinary feed additives is potentially contributing to a significant reservoir of antibiotic resistance in agricultural farmlands via the application of antibiotic-contaminated manure. Vermicomposting of swine manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. To determine how vermicomposting influences antibiotic resistance traits in swine manure, we explored the resistome and associated bacterial community dynamics during larvae gut transit over 6 days of treatment. In total, 94 out of 158 antibiotic resistance genes (ARGs) were significantly attenuated (by 85%), while 23 were significantly enriched (3.9-fold) following vermicomposting. The manure-borne bacterial community showed a decrease in the relative abundance of Bacteroidetes, and an increase in Proteobacteria, specifically Ignatzschineria, following gut transit. ARG attenuation was significantly correlated with changes in microbial community succession, especially reduction in Clostridiales and Bacteroidales. Six genomes were assembled from the manure, vermicompost (final product) and gut samples, including Pseudomonas, Providencia, Enterococcus, Bacteroides and Alcanivorax. Transposon-linked ARGs were more abundant in gut-associated bacteria compared with those from manure and vermicompost. Further, ARG-transposon gene cassettes had a high degree of synteny between metagenomic assemblies from gut and vermicompost samples, highlighting the significant contribution of gut microbiota through horizontal gene transfer to the resistome of vermicompost. In conclusion, the larvae gut microbiome significantly influences manure-borne community succession and the antibiotic resistome during animal manure processing. PMID:27458785

  15. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome.

    PubMed

    Wang, Hang; Sangwan, Naseer; Li, Hong-Yi; Su, Jian-Qiang; Oyang, Wei-Yin; Zhang, Zhi-Jian; Gilbert, Jack A; Zhu, Yong-Guan; Ping, Fan; Zhang, Han-Luo

    2017-01-01

    The overuse of antibiotics as veterinary feed additives is potentially contributing to a significant reservoir of antibiotic resistance in agricultural farmlands via the application of antibiotic-contaminated manure. Vermicomposting of swine manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. To determine how vermicomposting influences antibiotic resistance traits in swine manure, we explored the resistome and associated bacterial community dynamics during larvae gut transit over 6 days of treatment. In total, 94 out of 158 antibiotic resistance genes (ARGs) were significantly attenuated (by 85%), while 23 were significantly enriched (3.9-fold) following vermicomposting. The manure-borne bacterial community showed a decrease in the relative abundance of Bacteroidetes, and an increase in Proteobacteria, specifically Ignatzschineria, following gut transit. ARG attenuation was significantly correlated with changes in microbial community succession, especially reduction in Clostridiales and Bacteroidales. Six genomes were assembled from the manure, vermicompost (final product) and gut samples, including Pseudomonas, Providencia, Enterococcus, Bacteroides and Alcanivorax. Transposon-linked ARGs were more abundant in gut-associated bacteria compared with those from manure and vermicompost. Further, ARG-transposon gene cassettes had a high degree of synteny between metagenomic assemblies from gut and vermicompost samples, highlighting the significant contribution of gut microbiota through horizontal gene transfer to the resistome of vermicompost. In conclusion, the larvae gut microbiome significantly influences manure-borne community succession and the antibiotic resistome during animal manure processing.

  16. The anaerobic co-digestion of sheep bedding and ⩾ 50% cattle manure increases biogas production and improves biofertilizer quality.

    PubMed

    Cestonaro, Taiana; Costa, Mônica Sarolli Silva de Mendonça; Costa, Luiz Antônio de Mendonça; Rozatti, Marcos Antonio Teofilo; Pereira, Dercio Ceri; Lorin, Higor Eisten Francisconi; Carneiro, Leocir José

    2015-12-01

    Sheep manure pellets are peculiarly shaped as small 'capsules' of limited permeability and thus are difficult to degrade. Fragmentation of manure pellets into a homogeneous mass is important for decomposition by microorganisms, and occurs naturally by physical shearing due to animal trampling, when sheep bedding is used. However, the high lignocellulose content of sheep bedding may limit decomposition of sheep manure. Here, we evaluated if co-digestion of sheep bedding with cattle manure would improve the yield and quality of the useful products of anaerobic digestion of sheep bedding--biogas and biofertilizer--by providing a source of nutrients and readily available carbon. Mixtures of sheep bedding and cattle manure in varying proportions (0%, 25%, 50%, 75%, or 100% cattle manure) were added to 6-L digesters, used in a batch system, and analyzed by uni and multivariate statistical tools. PC1, which explained 64.96% of data variability, can be referred to as 'organic fraction/productivity', because higher rates of organic fraction consumption (COD, cellulose and hemicellulose contents) led to higher digester productivity (biogas production, nutrient concentration, and sample stability changes). Therefore, productivity and organic fraction variables were most influenced by manure mixtures with higher (⩾ 50%) or lower (⩽ 25%) ratios of cattle manure, respectively. Increasing the amount of cattle manure up to 50% enhanced the biogas potential production from 142 L kg(-1)TS (0% of cattle manure) to 165, 171, 160 L biogas kg(-1)TS for the mixtures containing 100%, 75% and 50% of cattle manure, respectively. Our results show that the addition of ⩾ 50% cattle manure to the mixture increases biogas production and improves the quality of the final biofertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Effects of continuous application of bio-organic fertilizer on banana production and cultural microflora of bulk soil in orchard with serious disease incidence].

    PubMed

    Zhong, Shu-tang; Shen, Zong-zhuan; Sun, Yi-fei; Lyu, Na-na; Ruan, Yun-ze; Li, Rong; Shen, Qi-rong

    2015-02-01

    A field experiment was conducted for two years to investigate the effects of different fertilization applications on the suppression of banana fusarium wilt disease, crop yield, fruit quality and culturable microflora in a banana orchard which has been monocultured with banana for 12 years and suffered serious banana fusarium wilt disease. The fertilizers included chemical fertilizer (CF), cow manure compost (CM), pig manure compost (PM) and bio-organic fertilizer (BIO). The banana soil microflora was invested using plate-counting method and culture-dependent polymerase chain reaction denaturing gradient gel electrophoresis method (CD PCR-DGGE). Results showed that, compared with the other treatments, 2-year consecutive application of BIO significantly reduced the banana fusarium wilt disease incidence, and improved the banana mass per tree, crop yield, total soluble sugar content and the ratio of total soluble sugar to titratable acidity of fruits (sugar/acid ratio). Moreover, the analysis of culturable microflora showed that BIO application significantly increased the soil microbial biomass, soil culturable bacteria, bacillus and actinomycetes, and the ratio of bacteria to fungi (B/F) , while decreased the Fusarium oxysporum. Based on the CD PCR-DGGE results, the BIO application significantly altered the soil culturable bacterial structure and showed highest richness and diversity after 2 years of BIO application. The phylogenetic analysis of the selected bands showed that BIO application enriched the soil with the species of Paenibacillus sp., Burkholderia sp., uncultured Verrucomicrobia sp. and Bacillus aryabhattai, and depressed the species of Ralstonia sp., Chryseobacterium gleum, Fluviicola taffensis, Enterobacter sp. and Bacillus megaterium. These results confirmed that the continuous application of BIO effectively controlled the fusarium wilt disease, improved the crop yield and fruit quality, and modulated the soil culturable microflora under field

  18. USDA-ARS research update: Improved solid-liquid separation using polymers in flushing systems and new technology to recover the ammonia from covered lagoons

    USDA-ARS?s Scientific Manuscript database

    Part 1: Improved method for recovery of organic solids from diluted swine manure: Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds,...

  19. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health

    PubMed Central

    Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality. PMID:29451918

  20. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health.

    PubMed

    Zhao, Jia; Liu, Jiang; Liang, Hong; Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao; Wang, Yuguo

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality.

  1. Does monensin in chicken manure from poultry farms pose a threat to soil invertebrates?

    PubMed

    Zižek, Suzana; Hrženjak, Rok; Kalcher, Gabrijela Tavčar; Srimpf, Karin; Semrov, Neva; Zidar, Primož

    2011-04-01

    Monensin is a carboxylic polyether ionophore used in the poultry industry as a coccidiostat. It enters the environment via manure from broiler farms. In spite of its potential presence in the environment, information concerning monensin residues in manure and soil and its toxicity to soil organisms are insufficient. In the present study, two beneficial soil invertebrate species, earthworms (Eisenia andrei) and woodlice (Porcellio scaber), were used to assess the toxicity of monensin. Animals were exposed to a range of monensin concentrations via soil or food. Earthworm reproduction was found to be the most susceptible endpoint (NOEC=3.5 mg kg(-1) dry soil; EC(50)=12.7 mg kg(-1) dry soil), while no adverse effects were recorded in isopods (NOEC⩾849mgkg(-1) dry soil, NOEC⩾357mgkg(-1) dry food). The obtained toxicity data were compared with potential concentrations of monensin in soil. In view of this, manure from broiler chickens treated with monensin at a poultry farm was sampled. According to monensin and nitrogen concentrations in the chicken manure and the degradation time of monensin, the predicted environmental concentration (PEC) was calculated. PEC of monensin is around 0.013 mg kg(-1) soil if manure is used after 3 months of composting and 0.05 mg kg(-1) soil if used without storage. Data for earthworm reproduction was used to estimate the predicted no-effect concentration (PNEC). If fresh chicken manure is applied to terrestrial ecosystems, the risk quotient (PEC/PNEC ratio) is above 1, which indicates that monensin might pose an environmental risk under certain conditions. To prevent this, it is strongly recommended to compost chicken manure for several months before using it as fertiliser. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology.

    PubMed

    Yerushalmi, Laleh; Alimahmoodi, Mahmood; Afroze, Niema; Godbout, Stephane; Mulligan, Catherine N

    2013-06-15

    The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. TECHNICAL GUIDANCE FOR THE APPLICATION OF CAFO MANURE TO LAND IN THE WINTER

    EPA Science Inventory

    The purpose of the paper is to present technical guidance to which EPA Region 5 will refer as we work together with those states that intend to allow concentrated animal feeding operations to apply manure to land in the winter. For this purpose, Region 5 assumes that the risk of...

  4. A review of bio-aerosol exposures and associated health effects in veterinary practice.

    PubMed

    Samadi, Sadegh; Wouters, Inge M; Heederik, Dick J J

    2013-01-01

    Occupational exposure to bio-aerosols has been linked to various health effects. This review presents an overview of bio-aerosol exposure levels in veterinary practices, and investigates the possibility of health effects associated with bio-aerosol exposure. A systematic literature search was carried out in PubMed. Publications were included if they provided information on bio-aerosol exposure and related health effects through veterinary practice and other professions with similar exposures, occupationally exposed to animals. Few studies in veterinary settings showed that substantial bio-aerosol exposure levels (e.g. endotoxin and β(1→3)-glucan) were likely occur when handling farm animals and horses. Exposure levels are comparable to those levels observed in farming which have been associated with respiratory health effects. Animal specific allergen exposures have hardly been studied, but showed to be measurable in companion animal clinics and dairy barns. The Findings of the few studies available among veterinary populations, particularly those working with farm animals and horses, are indicative of an elevated risk for developing respiratory symptoms. Studies among pig farmers, exposed to similar environments as veterinarians, strongly confirm that veterinary populations are at an increased risk of developing respiratory diseases in relation to bio-aerosol exposure, in particular endotoxin. Exposure to animal allergens during veterinary practice may cause allergic inflammation, characterized by IgE-mediated reactions to animal allergens. Nonetheless, the occurrence of sensitization or allergy against animal allergens is poorly described, apart from laboratory animal allergy, especially known from exposure to rats and mice. Veterinary populations are likely exposed to elevated levels of bio-aerosols such as endotoxins, β(1→3)-glucans, and some specific animal allergens. Exposures to these agents in animal farmers are associated with allergic and non

  5. Influence of the ultrasound pretreatment on anaerobic digestion of cattle manure, food waste and crude glycerine.

    PubMed

    Ormaechea, Pedro; Castrillón, Leonor; Marañón, Elena; Fernández-Nava, Yolanda; Negral, Luis; Megido, Laura

    2017-03-01

    To increase the production of methane, when cattle manure (CM) is digested, pretreatments can be applied and/or the manure can be co-digested with other wastes. In this research work, a mixture of CM, food waste (FW) and raw glycerine (Gly) in a proportion in weight of 87% CM, 10% FW and 3% Gly was digested, (a) without pretreatment and (b) with pretreatment by ultrasound, applying a sonication energy of 1040 kJ/kg total solids. Specific methane production was 290 L CH 4 /kg volatile solids (VS) without pretreatment and 520 L CH 4 /kg VS with pretreatment. With respect to the volumetric methane production, 1.07 L CH 4 /L reactor .day was produced in the first case, and in the second case, 1.98 L CH 4 /L reactor .day. We can conclude that the application of ultrasound pretreatment significantly improved the production of biogas.

  6. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils.

    PubMed

    Sandberg, Kyle D; LaPara, Timothy M

    2016-02-01

    The goal of this study was to determine the fate of antibiotic resistance genes (ARGs) and class 1 integrons following the application of swine and dairy manure to soil. Soil microcosms were amended with either manure from swine fed subtherapeutic levels of antibiotics or manure from dairy cows that were given antibiotics only rarely and strictly for veterinary purposes. Microcosms were monitored for 6 months using quantitative PCR targeting 16S rRNA genes (a measure of bacterial biomass), intI1, erm(B), tet(A), tet(W) and tet(X). Swine manure had 10- to 100-fold higher levels of ARGs than the dairy manure, all of which decayed over time after being applied to soil. A modified Collins-Selleck model described the decay of ARGs in the soil microcosms well, particularly the characteristic in which the decay rate declined over time. By the completion of the soil microcosm experiments, ARGs in the dairy manure-amended soils returned to background levels, whereas the ARGs in swine manure remained elevated compared to control microcosms. Our research suggests that the use of subtherapeutic use of antibiotics in animal feed could lead to the accumulation of ARGs in soils to which manure is applied. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    PubMed

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  9. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  10. Recovery of proteins and phosphorus from manure

    USDA-ARS?s Scientific Manuscript database

    The recovery of phosphorus and proteins from manure could be advantageous to both offset costs and to improve and lessen the environmental impacts of manure storage and treatment. Phosphorous in manure can contaminate rivers, lakes, and bays through runoff, if applied onto a cropland excessively. Th...

  11. Decline in extractable antibiotics in manure-based composts during composting.

    PubMed

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Distillers by-product cattle diets enhance reduced sulfur gas fluxes from feedlot soils and manures

    USDA-ARS?s Scientific Manuscript database

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times duri...

  13. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil.

    PubMed

    Blaustein, Ryan A; Hill, Robert L; Micallef, Shirley A; Shelton, Daniel R; Pachepsky, Yakov A

    2016-01-01

    The rainfall-induced release of pathogens and microbial indicators from land-applied manure and their subsequent removal with runoff and infiltration precedes the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in intensity during rainfall do not affect microbial removal when expressed as a function of rainfall depth. The objective of this work was to test this assumption by measuring the removal of Escherichia coli, enterococci, total coliforms, and chloride ion from dairy manure applied in soil boxes containing fescue, under 3, 6, and 9cmh(-1) of rainfall. Runoff and leachate were collected at increasing time intervals during rainfall, and post-rainfall soil samples were taken at 0, 2, 5, and 10cm depths. Three kinetic-based models were fitted to the data on manure-constituent removal with runoff. Rainfall intensity appeared to have positive effects on rainwater partitioning to runoff, and removal with this effluent type occurred in two stages. While rainfall intensity generally did not impact the parameters of runoff-removal models, it had significant, inverse effects on the numbers of bacteria remaining in soil after rainfall. As rainfall intensity and soil profile depth increased, the numbers of indicator bacteria tended to decrease. The cumulative removal of E. coli from manure exceeded that of enterococci, especially in the form of removal with infiltration. This work may be used to improve the parameterization of models for bacteria removal with runoff and to advance estimations of depths of bacteria removal with infiltration, both of which are critical to risk assessment of microbial fate and transport in the environment. Published by Elsevier B.V.

  14. Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots

    EPA Science Inventory

    A series of simulated rainfall run-off experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall run-off events....

  15. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    NASA Astrophysics Data System (ADS)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  16. Water quality improvements of wastewater from confined animal feeding operations after advanced treatment.

    PubMed

    Vanotti, Matias B; Szogi, Ariel A

    2008-01-01

    Current trends of animal production concentration and new regulations promote the need for environmentally safe alternatives to land application of liquid manure. These technologies must be able to substantially remove nutrients, heavy metals, and emissions of ammonia and odors and disinfect the effluent. A new treatment system was tested full-scale in a 4360-swine farm in North Carolina to demonstrate environmentally superior technology (EST) that could replace traditional anaerobic lagoon treatment. The system combined liquid-solids separation with nitrogen and phosphorus removal processes. Water quality was monitored at three sites: (i) the treatment plant as the raw manure liquid was depurated in the various processes, (ii) the converted lagoon as it was being cleaned up with the treated effluent, and (iii) an adjacent traditional anaerobic lagoon. The treatment plant removed 98% of total suspended solids (TSS), 76% of total solids (TS), 100% of 5-d biochemical oxygen demand (BOD(5)), 98% of total Kjeldahl nitrogen (TKN) and NH(4)-N, 95% of total phosphorus (TP), 99% of Zn, and 99% of Cu. The quality of the liquid in the converted lagoon improved rapidly as cleaner effluent from the plant replaced anaerobic lagoon liquid. The converted lagoon liquid became aerobic (dissolved oxygen, 6.95 mg L(-1); Eh, 342 mv) with the following mean reductions in the second year of the conversion: 73% of TSS, 40% of TS, 77% of BOD(5), 85% of TKN, 92% of NH(4)-N, 38% of TP, 37% of Zn, and 39% of Cu. These findings overall showed that EST can have significant positive impacts on the environment and on the livestock industries.

  17. Environmental transport of endogenous dairy manure estrogens.

    PubMed

    Popova, Inna E; Morra, Matthew J

    2017-11-02

    Although estrogens originating from dairy manure applied to agricultural soils as a fertilizer can potentially contaminate surface water and groundwater, the variables that control transport are poorly understood. Our objective was to assess the potential for off-site movement of endogenous dairy cattle estrogens when manure is applied on fields at agronomically relevant fertilization rates. Estrone (E1), 17α-estradiol (α-E2), and 17β-estradiol (β-E2) were used in laboratory sorption, desorption, and transformation incubations with both manure and an agriculturally relevant soil. Sorption on manure containing 44% organic carbon exceeded sorption on soil containing 0.8% organic carbon by 20 to 150 times, following the pattern of β-E2 > α-E2 > E1. Approximately 20% of E1 and 17% of α-E2 were desorbed from manure, whereas only about 4% of β-E2 was desorbed. Thirty to seventy percent of α-E2 and β-E2 were converted to E1 in soil and manure, making it imperative that transformation reactions be considered when predicting transport and potential biological effects in the environment. Overall results indicate that high organic carbon concentrations and relatively low amounts of desorption inhibit the potential for off-site transport of endogenous dairy manure estrogens.

  18. Stimulation of N2 O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis.

    PubMed

    Zhou, Minghua; Zhu, Bo; Wang, Shijie; Zhu, Xinyu; Vereecken, Harry; Brüggemann, Nicolas

    2017-10-01

    Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N 2 O) emissions. However, given that the sign and magnitude of manure effects on soil N 2 O emissions is uncertain, the net climatic impact of manure application in arable land is unknown. Here, we performed a global meta-analysis using field experimental data published in peer-reviewed journals prior to December 2015. In this meta-analysis, we quantified the responses of N 2 O emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application significantly increased N 2 O emissions by an average 32.7% (95% confidence interval: 5.1-58.2%) compared to application of synthetic N fertilizer alone. The significant stimulation of N 2 O emissions occurred following cattle and poultry manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stimulatory effects on N 2 O emissions were also observed for warm temperate climate, acid soils (pH < 6.5), and soil texture classes of sandy loam and clay loam. Average direct N 2 O emission factors (EFs) of 1.87% and 0.24% were estimated for upland soils and rice paddy soils receiving manure application, respectively. Although manure application increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be largely offset by stimulation of soil N 2 O emissions and aggravated by CH 4 emissions if, particularly for rice paddy soils, the stimulation of CH 4 emissions by manure application was taken into account. © 2017 John Wiley & Sons Ltd.

  19. [Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures].

    PubMed

    Shang, He-ping; Li, Yang; Zhang, Tao; Su, De-chun

    2015-01-01

    Soil incubation experiments were conducted with different sources of manures containing heavy metals to evaluate the bioavailability of heavy metals (Cu and Zn) and their form transformation in different soils. This study may assist in developing strategies to ascertain the loads of heavy metals which entered into soils together with manures, and promote policies to evaluate the ecological risk in agriculture soils. The results showed that, during the six months of soil incubation, the pH value of acidic soil increased and the pH value of calcareous soil reduced. After adding chicken manures, the contents of available Cu in both calcareous and acid soils were significant lower than those in the equivalent inorganic salt treatments, but there was no significant difference between the treatments in the contents of available Zn in both calcareous and acid soils. Furthermore, there were also no significant differences between pig matures and the equivalent inorganic salt treatments in the contents of available Cu and Zn in both calcareous and acid soils. The results of form tendency showed that the main forms of Cu and Zn in both calcareous and acid soils, which entered into soils together with manures, were exchangeable, carbonate, Fe-Mn oxides, and organic. And the proportions of different heavy metals species in calcareous and acid soils were different with different manures sources. After six months of incubation, the contents of exchangeable and Fe-Mn oxides Cu, Zn were lower than those in the equivalent inorganic salt treatments, the contents of organics Cu and Zn were higher than those in the equivalent inorganic salt treatments, and other Cu and Zn forms in soils showed no difference with inorganic salt treatments.

  20. Bio-inspired Murray materials for mass transfer and activity

    PubMed Central

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-01-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid–solid, gas–solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes. PMID:28382972

  1. Bio-inspired Murray materials for mass transfer and activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  2. AFO Manure Management - Minnesota: Feedlot Registration

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  3. Co-liquefaction of Elbistan Lignite with Manure Biomass; Part 2 - Effect of Biomass Type, Waste to Lignite Ratio and Solid to Liquid Ratio

    NASA Astrophysics Data System (ADS)

    Karaca, Hüseyin; Koyunoglu, Cemil

    2017-12-01

    pulp and waste plastic liquefied and to understand hydrogen quantity change after liquefaction, (H/C)atomic ratio of products obtained. Due to the highest oil conversion of manure biomass and highest (H/C)atomic ratio results show manure is the favourable biomass for EL amongst the other biomass used. And liquid/solid ratio optimized. About high total conversion of oil products the optimum ratio obtained as 3/1. And also EL with manure liquefied with the w/EL ratio between 0:1 to 1:1. As a result, by thinking about the yield values obtained, the optimum waste to lignite ratio found to be 1:1.

  4. Trans-disciplinary soil science research: Impacts of dairy nutrition on manure chemistry and the environment

    USDA-ARS?s Scientific Manuscript database

    The on-going trend of consolidation and intensification of animal agriculture requires a greater dependence on purchased feed. Larger livestock farms and more imported feed can result in the excretion of manure nutrients that may surpass the recycling capacity of local land, air, and water resource...

  5. The ALFAM2 database on ammonia emission from field-applied manure: description and illustrative analysis

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) emission from animal manure contributes to air pollution and ecosystem degradation, and is a loss of reactive nitrogen (N) from agricultural systems. Estimates of NH3 emission are necessary for national inventories and nutrient management. Many studies have made measurements of NH3 emi...

  6. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    PubMed

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A direct plating method for estimating populations of Escherichia coli O157 in bovine manure and manure-based materials.

    PubMed

    Berry, Elaine D; Wells, James E

    2008-11-01

    Escherichia coli O157:H7 outbreaks associated with produce consumption have brought attention to livestock manures and manure-based soil amendments as potential sources of pathogens for the contamination of these crops. Procedures for enumeration of E. coli O157:H7 are needed to assess the risks of transmission from these manures and their by-products. A direct plating method employing spiral plating onto CHROMagar O157 was investigated for enumeration of E. coli O157:H7 in feedlot surface material, aged bovine manure, bovine manure compost, and manure-amended soil. In studies utilizing samples spiked with a five-strain cocktail of E. coli O157:H7 at levels ranging from 102 to 10(5) CFU/g of sample, there were strong correlations between the observed and predicted levels of this pathogen. Although the addition of 2.5 mg/liter potassium tellurite and 5 mg/liter novobiocin made the medium more restrictive, these amendments enhanced the ability to identify and enumerate E. coli O157:H7 in feedlot surface material, which contained a higher proportion of fresh feces than did the other three sample types and therefore higher levels of interfering bacterial microflora. The spiral plating method was further assessed to determine its ability to enumerate E. coli O157:H7 in naturally contaminated feedlot surface material. Comparison of E. coli O157:H7 counts in feedlot surface material obtained by the spiral plating method and a most probable number technique were well correlated. We conclude that direct spiral plating onto CHROMagar O157 is effective for estimating E. coli O157:H7 levels in a variety of manures and manure-containing sample types to a lower detection limit of 200 CFU/g. The method has application for determining E. coli O157:H7 concentrations in manures and composts before their sale and use as soil amendments and for measuring the effectiveness of manure treatment processes to reduce or inactivate this pathogen.

  8. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land.

    PubMed

    Dolliver, Holly; Gupta, Satish

    2008-01-01

    A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.

  9. Three generation production biotechnology of biomass into bio-fuel

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  10. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    PubMed

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots

    USDA-ARS?s Scientific Manuscript database

    A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) were conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying re...

  12. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application

    USDA-ARS?s Scientific Manuscript database

    Manure management at dairy production facilities, including anaerobic digestion (AD) and solid-liquid separation (SLS), has a strong potential for the abatement of greenhouse gas (GHG) and ammonia (NH3) emissions. This study evaluated the effects of AD, SLS, and AD+SLS on GHG and NH3 emissions durin...

  13. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  14. The Use of Animated Videos to Illustrate Oral Solid Dosage Form Manufacturing in a Pharmaceutics Course.

    PubMed

    Yellepeddi, Venkata Kashyap; Roberson, Charles

    2016-10-25

    Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students' perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students' performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning.

  15. The Use of Animated Videos to Illustrate Oral Solid Dosage Form Manufacturing in a Pharmaceutics Course

    PubMed Central

    Roberson, Charles

    2016-01-01

    Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students’ perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students’ performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning. PMID:27899837

  16. A comparative study of composting the solid fraction of dairy manure with or without bulking material: Performance and microbial community dynamics.

    PubMed

    Zhong, Xiao-Zhong; Ma, Shi-Chun; Wang, Shi-Peng; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Deng, Yu; Kida, Kenji

    2018-01-01

    The present study compared the development of various physicochemical properties and the composition of microbial communities involved in the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-regulated SFDM (RDM). The changes in several primary physicochemical properties were similar in the two composting processes, and both resulted in mature end-products within 48days. The bacterial communities in both composting processes primarily comprised Proteobacteria and Bacteroidetes. Firmicutes were predominant in the thermophilic phase, whereas Chloroflexi, Planctomycetes, and Nitrospirae were more abundant in the final mature phase. Furthermore, the succession of bacteria in both groups proceeded in a similar pattern, suggesting that the effects of the bulking material on bacterial dynamics were minor. These results demonstrate the feasibility of composting using only the SFDM, reflected by the evolution of physicochemical properties and the microbial communities involved in the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    USDA-ARS?s Scientific Manuscript database

    There is growing concern about environmental impact of residual antibiotics and feed additives in the manure of treated animals. Monensin, a polyether ionophore coccidiostat, is the only feed additive permitted for use in the U.S. for lactating dairy cows. Previous research has shown that up to 5...

  18. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  19. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  20. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure.

    PubMed

    Zhang, Ranran; Gu, Jie; Wang, Xiaojuan; Qian, Xun; Duan, Manli; Sun, Wei; Zhang, Yajun; Li, Haichao; Li, Yang

    2017-02-01

    In this study, swine manure containing sulfachloropyridazine sodium (SCPS) and zinc was subjected to mesophilic (37°C) anaerobic digestion (AD). The absolute abundances (AAs) of antibiotic resistance genes (ARGs) were evaluated, as well as intI1 and intI2, and the degradation of SCPS according to variation in the amount of bio-available zinc (bio-Zn). In digester that only contained SCPS, the concentrations of SCPS were lower than that digesters both contain SCPS and Zn. Compared with the control digester, the addition of SCPS increased the AAs of sul1, sul3, drfA1, and drfA7 by 1.3-13.1 times. However, compared with the digester with SCPS but no added Zn, the AAs of sul3, drfA1, and drfA7 were decreased by 21.4-70.3% in the presence of SCPS and Zn, whereas sul1 and sul2 increased 1.3-10.7 times. There were significant positive correlations (P<0.05) between the concentrations of SCPS with several ARGs and bio-Zn. Copyright © 2016. Published by Elsevier Ltd.

  1. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields.

    PubMed

    Biswas, Sagor; Kranz, William L; Shapiro, Charles A; Snow, Daniel D; Bartelt-Hunt, Shannon L; Mamo, Mitiku; Tarkalson, David D; Zhang, Tian C; Shelton, David P; van Donk, Simon J; Mader, Terry L

    2017-02-15

    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17β-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL -1 . Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate

    USDA-ARS?s Scientific Manuscript database

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...

  3. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  4. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  5. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    PubMed

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites.

    PubMed

    Yao, Lixian; Huang, Lianxi; Bai, Cuihua; He, Zhaohuan; Zhou, Changmin

    2017-07-01

    Roxarsone (ROX), a widely used feed organoarsenic additive, occurs as itself and its metabolites in animal manure that is commonly land used as fertilizer. Soil property impacts arsenic (As) speciation and bioavailability. Fourteen soils across China were used to conduct culture experiments to investigate As uptake by garland chrysanthemum (ChrysanthemumL coronarium), with the soils fertilized with chicken manure bearing ROX and its metabolites. The results show As(III) was the sole As form in garland chrysanthemum shoots, and As(III) and As(V) occurred in roots. Only inorganic As was detected in all soils when the plants were harvested. Stepwise regression analysis shows soil-exchangeable Ca predominated shoot As(III) concentration (shoot As(III) = 1.60030 soil Ca, R 2  = 0.8832***). Therefore, ROX is transferred into the human food chain finally as inorganic As in plants. Application of animal manure bearing ROX and its metabolites is not recommended in Ca-rich soils to avoid excess inorganic As dietary exposure.

  7. Environmental Dissemination of Multidrug Methicillin-Resistant Staphylococcus sciuri After Application of Manure from Commercial Swine Production Systems.

    PubMed

    Kumar, Deepak; Pornsukarom, Suchawan; Sivaraman, G K; Thakur, Siddhartha

    2018-04-01

    The deposition of manure originating from food animal farms in the environment can lead to the dissemination of antimicrobial-resistant (AMR) bacterial foodborne pathogens, thereby potentially impacting human health. The objective of our study was to determine the dissemination of multidrug methicillin-resistant Staphylococcus sciuri (MDR-MRSS) in the environment after land application of manure on commercial swine farms. A total of 400 environmental samples (40 manure and 360 soil) were collected after repeated sampling from four commercial swine farms located in North Carolina (n = 1) and Iowa (n = 3) in the United States. At each farm, we collected 10 manure and 40 soil samples (20 samples before and after 2 h of manure application) from four plots (five soil samples/plot) on day 0. Subsequently, 20 soil samples were collected on day 7, 14, and 21 from the same plots. A total of 67 (16.75%) MRSS were isolated from the 400 samples. The prevalence in soil and manure was 13.33% (48/360) and 47.5% (19/40), respectively. Prevalence was highest in the soil samples collected after 2 h of manure application on day 0 and decreased subsequently on 7, 14, and 21 days. Antimicrobial susceptibility testing was done against a panel of 12 antibiotics. A majority of S. sciuri isolates exhibited resistance against ampicillin (AMP; 95.5%), penicillin (PEN; 95.5%), clindamycin (CLI; 95.5%), cefoxitin (FOX; 92.5%), ceftiofur (XNL; 92.5%), tetracycline (TET; 86.56%), and erythromycin (ERY; 50.74%). The MDR pattern AMP FOX CLI PEN TET XNL (n = 24; 35.8%) was the most commonly observed. We detected multiple AMR genes, including mecA, aac(6'), Ie-aph(2″)Ia, tetM, tetK, mphC, ermA, ermB, and ermC. Pulsed-field gel electrophoresis clustered isolates from different sample collection days from the same farm into one group. Overall, our study identifies swine manure as an important reservoir of MDR-MRSS and highlights its dissemination in the environment upon spreading of

  8. Effects of poultry manure, compost, and biochar amendments on soil nitrogen dynamics in maize production systems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Tang, J.; Hastings, M. G.; Dell, C. J.; Sims, T.

    2013-12-01

    Intensification of animal agriculture has profound impacts on the global and local biogeochemistry of nitrogen (N), resulting in consequences to environmental and human health. In the Chesapeake Bay watershed, intensive agriculture is the primary contributor to N pollution, with animal manure comprising more than half of N from agriculture. Management interventions may play an important role in mitigating reactive N pollution in the Bay watershed. The objective of our research was to test management strategies that maximize benefits of poultry manure as an agricultural resource while minimizing it as a source of reactive nitrogen to the atmosphere and ground and surface waters. We conducted field experiments in two agricultural regions of the Chesapeake Bay watershed (Georgetown, Delaware and State College, Pennsylvania) to explore the effects of poultry manure amendments on gaseous N losses and soil N transformations. Treatments were applied at rates needed to meet the plant N demand at each site and included unfertilized controls, fertilizer N (urea), and raw, composted, or and biocharred poultry manure. The fate of the N from all sources was followed throughout the growing season. Global greenhouse gases emitted from soil (nitrous oxide [N2O] and carbon dioxide [CO2]) and regional air pollutants (nitrogen oxides [NOx] and ammonia [NH3]) were measured. Gas measurements were coupled with data on treatment effects on temperature, moisture, and concentrations of nitrate (NO3¬-) and ammonium (NH4+) in surface soils (0-10 cm). Soil NO3- and NH4+ were also measured approximately monthly in the soil profile (0-10, 10-30, 30-50, 50-70, and 70-100 cm) as an index of leaching potential. Plant N uptake and grain production were also quantified to quantify crop N use efficiency and compare measured N losses for each N source. Our results suggest that the form of poultry manure amendments can affect the magnitude of reactive N losses to the environment.

  9. Estimating farm-gate ammonia emissions from major animal production systems in China

    NASA Astrophysics Data System (ADS)

    Gao, Zhiling; Ma, Wenqi; Zhu, Gaodi; Roelcke, Marco

    2013-11-01

    Ammonia (NH3) emissions from livestock production in China are an important contributor to the global NH3 budget. In this study, by estimating total nitrogen (N) intake based on herd structures and excreted N, a mass balance model was used to estimate NH3 losses from animal housing and manure storage facilities of dairy cattle, beef cattle, pigs, broiler and layer productions within animal farm gate and their corresponding NH3 emission intensities on the basis of animal products, N and protein in animal products. In 2009, NH3 emissions from pigs, layers, beef and dairy cattle and broiler production systems in China were 1.23, 0.52, 0.24, 0.21 and 0.09 million tons, respectively. The NH3 emission intensities were 26.6 g NH3-N kg-1 of pork, 28.1 g NH3-N kg-1 of layer eggs, 39.4 g NH3-N kg-1 of beef meat, 6.0 g NH3-N kg-1 of dairy milk and 4.6 g NH3-N kg-1 of chicken meat, or 1260 (pigs), 1514 (layers), 1297 (beef), 1107 (dairy) and 123 g NH3-N (broilers) kg-1 N in animal products. Of the sectors of NH3 emission, manure storage facilities and farmyard manure (FYM) in animal housing were the major contributors to the total NH3 emissions except for layers; housing emissions from slurry were also major contributors for dairy and pig production.

  10. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiling, E-mail: zhilinggao@hotmail.com; Lin, Zhi; Yang, Yuanyuan

    Due to the expanding dairy and beef population in China and their contribution to global CH{sub 4} and N{sub 2}O budgets, a framework considering changes in feed, manure management and herd structure was established to indicate the trends of CH{sub 4} and N{sub 2}O emissions from the enteric formation and manure storage in China's beef and dairy production and the underlying driving forces during the period 1961–2010. From 1961 to 2010, annual CH{sub 4} and N{sub 2}O emissions from beef cattle in China increased from 2.18 Mt to 5.86 Mt and from 7.93 kt–29.56 kt, respectively, while those from dairymore » cattle increased from 0.023 to 1.09 Mt and 0.12 to 7.90 kt, respectively. These increases were attributed to the combined changes in cattle population and management practices in feeds and manure storage. Improvement in cattle genetics during the period increased the bodyweight, required dry matter intake and gross energy and thus resulted in increased enteric CH{sub 4} EFs for each category of beef and dairy cattle as well as the overall enteric EFs (i.e., Tier 1 in IPCC). However, for beef cattle, such an impact on the overall enteric EFs was largely offset by the herd structure transition from draft animal-oriented to meat animal-oriented during 1961–2010. Although the CO{sub 2}-eq of CH{sub 4} and N{sub 2}O from manure storage was less than the enteric emissions during 1961–2010 in China, it tended to increase both in beef and dairy cattle, which was mainly driven by the changes in manure management practices. - Highlights: • CH{sub 4} emissions dominated the CO{sub 2}-eq emissions from dairy and beef cattle in China. • Beef herd transition played an important role in CH{sub 4} emissions. • Changes of manure managements increased the manure EFs of CH{sub 4} and N{sub 2}O. • Manure contributed very less to the total CO{sub 2}-eq emissions but tended to grow.« less

  11. Recovery of amino acids and phosphorus from manure

    USDA-ARS?s Scientific Manuscript database

    Background & Objectives: The recovery of phosphorus and proteins from manure could be advantageous to both offset costs and to improve and lessen the environmental impacts of manure. Phosphorous in manure can contaminate rivers, lakes, and bays through runoff, if applied onto a cropland excessively....

  12. Windrow composting mitigated CH4 emissions: characterization of methanogenic and methanotrophic communities in manure management.

    PubMed

    Chen, Ruirui; Wang, Yiming; Wei, Shiping; Wang, Wei; Lin, Xiangui

    2014-12-01

    With increasing livestock breeding, methane (CH4 ) emissions from manure management will increasingly contribute more to atmospheric CH4 concentration. The dynamics of methanogens and methanotrophs have not yet been studied in the manure environment. The current study combines surface CH4 emissions with methanogenic and methanotrophic community analyses from two management practices, windrow composting (WCOM) and solid storage (SSTO). Our results showed that there was an c. 50% reduction of CH4 emissions with WCOM compared with SSTO over a 50-day period. A sharp decrease in the quantities of both methanogens and methanotrophs in WCOM suggested that CH4 mitigation was mainly due to decreased CH4 production rather than increased CH4 oxidation. Pyrosequencing analysis demonstrated that aeration caused a clear shift of dominant methanogens in the manure, with specifically a significant decrease in Methanosarcina and increase in Methanobrevibacter. The composition of methanogenic community was influenced by manure management and regulated CH4 production. A sharp increase in the quantity of methanotrophs in SSTO suggested that microbial CH4 oxidation is an important sink for the CH4 produced. The increased abundance of Methylococcaceae in SSTO suggested that Type I methanotrophs have an advantage in CH4 oxidation in occupying niches under low CH4 and high O2 conditions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Decreasing Bio-Degradation Rate of the Hydrothermal-Synthesizing Coated Mg Alloy via Pre-Solid-Solution Treatment

    PubMed Central

    Song, Dan; Li, Cheng; Zhang, Liwen; Ma, Xiaolong; Guo, Guanghui; Zhang, Fan; Jiang, Jinghua; Ma, Aibin

    2017-01-01

    In this study, we report an effective approach, pre-solid solution (SS) treatment, to reduce the in-vitro bio-degradation rate of the hydrothermal-synthesizing coated Mg–2Zn–Mn–Ca–Ce alloy in Hanks’ solution. Pre-SS treatment alters the microstructure of alloys, which benefits the corrosion resistances of the substrate itself and the formed coating as well. The micro-galvanic corrosion between the secondary phase (cathode) and the α-Mg phase (anode) is relieved due to the reduction of the secondary phase. Meanwhile, coating formed on the SS-treated alloy was compacter than that on as-cast alloy, which provides better protection against initial corrosion. PMID:28773223

  14. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR.

  15. Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms

    NASA Astrophysics Data System (ADS)

    VanderZaag, A. C.; MacDonald, J. D.; Evans, L.; Vergé, X. P. C.; Desjardins, R. L.

    2013-09-01

    Methane emissions from manure management represent an important mitigation opportunity, yet emission quantification methods remain crude and do not contain adequate detail to capture changes in agricultural practices that may influence emissions. Using the Canadian emission inventory methodology as an example, this letter explores three key aspects for improving emission quantification: (i) obtaining emission measurements to improve and validate emission model estimates, (ii) obtaining more useful activity data, and (iii) developing a methane emission model that uses the available farm management activity data. In Canada, national surveys to collect manure management data have been inconsistent and not designed to provide quantitative data. Thus, the inventory has not been able to accurately capture changes in management systems even between manure stored as solid versus liquid. To address this, we re-analyzed four farm management surveys from the past decade and quantified the significant change in manure management which can be linked to the annual agricultural survey to create a continuous time series. In the dairy industry of one province, for example, the percentage of manure stored as liquid increased by 300% between 1991 and 2006, which greatly affects the methane emission estimates. Methane emissions are greatest from liquid manure, but vary by an order of magnitude depending on how the liquid manure is managed. Even if more complete activity data are collected on manure storage systems, default Intergovernmental Panel on Climate Change (IPCC) guidance does not adequately capture the impacts of management decisions to reflect variation among farms and regions in inventory calculations. We propose a model that stays within the IPCC framework but would be more responsive to farm management by generating a matrix of methane conversion factors (MCFs) that account for key factors known to affect methane emissions: temperature, retention time and inoculum. This

  16. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    PubMed

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure

    PubMed Central

    Ravva, Subbarao V.; Korn, Anna

    2015-01-01

    Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork. PMID:26184255

  18. Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure.

    PubMed

    Ravva, Subbarao V; Korn, Anna

    2015-07-10

    Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork.

  19. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions.

    PubMed

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.

  20. Nitrifying bio-cord reactor: performance optimization and effects of substratum and air scouring.

    PubMed

    Tian, Xin; Ahmed, Warsama; Delatolla, Robert

    2017-11-20

    Ammonia removal kinetics and solids' production performance of the bio-cord technology are studied in this research. Three nitrifying reactors housing different bio-cord substratum were operated at five different ammonia loading rates. All of the bio-cord substrata demonstrated stable and high ammonia-nitrogen removal efficiencies of 96.8 ± 0.9%, 97.0 ± 0.6% and 92.0 ± 0.4% at loading rates of 0.8, 1.6 and 1.8 g [Formula: see text]-N/m 2  d, respectively. At these same loading rates, the bio-cord reactors housing the three substrata also showed low solids' production rates of 0.19 ± 0.03, 0.23 ± 0.02, 0.25 ± 0.03 g total suspended solids/d. A reduction of system stability, identified via fluctuating ammonia removal rates, was however observed for all substrata at loading rates of 2.1 and 2.4 g [Formula: see text]-N/m 2  d. Further, the solids' production rates at these higher loading conditions were also observed to fluctuate for all substrata, likely indicating intermediate sloughing events. The effects of enhancing the air scouring of the bio-cord on the ammonia removal rate was shown to be dependent upon the substratum, while enhanced air scouring of the bio-cord was shown to stabilize the production of solids for all substrata. This study represents the first performance and optimization study of the bio-cord technology for low-carbon nitrification and shows that air scouring of the substratum reduces sloughing events at elevated loading and that the bio-cord technology achieves stable kinetics above conventional rates of 1 g [Formula: see text]-N/m 2  d to values of 1.8 g [Formula: see text]-N/m 2  d.

  1. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961-2010.

    PubMed

    Gao, Zhiling; Lin, Zhi; Yang, Yuanyuan; Ma, Wenqi; Liao, Wenhua; Li, Jianguo; Cao, Yufeng; Roelcke, Marco

    2014-11-01

    Due to the expanding dairy and beef population in China and their contribution to global CH4 and N2O budgets, a framework considering changes in feed, manure management and herd structure was established to indicate the trends of CH4 and N2O emissions from the enteric formation and manure storage in China׳s beef and dairy production and the underlying driving forces during the period 1961-2010. From 1961 to 2010, annual CH4 and N2O emissions from beef cattle in China increased from 2.18Mt to 5.86Mt and from 7.93kt-29.56kt, respectively, while those from dairy cattle increased from 0.023 to 1.09Mt and 0.12 to 7.90kt, respectively. These increases were attributed to the combined changes in cattle population and management practices in feeds and manure storage. Improvement in cattle genetics during the period increased the bodyweight, required dry matter intake and gross energy and thus resulted in increased enteric CH4 EFs for each category of beef and dairy cattle as well as the overall enteric EFs (i.e., Tier 1 in IPCC). However, for beef cattle, such an impact on the overall enteric EFs was largely offset by the herd structure transition from draft animal-oriented to meat animal-oriented during 1961-2010. Although the CO2-eq of CH4 and N2O from manure storage was less than the enteric emissions during 1961-2010 in China, it tended to increase both in beef and dairy cattle, which was mainly driven by the changes in manure management practices. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils.

    PubMed

    Huang, Lidong; Yang, Junming; Xu, Yuting; Lei, Jiayan; Luo, Xiaoshan; Cade-Menun, Barbara J

    2018-03-01

    Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and AgriFood Canada.

  3. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Sun, Jian; Liu, Jing-Yong; Sun, Shui-Yu; Yang, Zuo-Yi; Wang, Yin

    2017-07-01

    Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.

  4. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    PubMed

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  6. Optimization of methane production by combining organic waste and cow manure as feedstock in anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Theresia, Martha; Priadi, Cindy Rianti

    2017-03-01

    The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.

  7. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure.

    PubMed

    Hussein, Mahmoud; Pillai, Viju V; Goddard, Joshua M; Park, Hui G; Kothapalli, Kumar S; Ross, Deborah A; Ketterings, Quirine M; Brenna, J Thomas; Milstein, Mark B; Marquis, Helene; Johnson, Patricia A; Nyrop, Jan P; Selvaraj, Vimal

    2017-01-01

    The common housefly, Musca domestica, is a considerable component of nutrient recycling in the environment. Use of housefly larvae to biodegrade manure presents an opportunity to reduce waste disposal while the rapidly assimilated insect biomass can also be used as a protein rich animal feed. In this study, we examine the biodegradation of dairy cattle manure using housefly larvae, and the nutritional value of the resulting larva meal as a feed ingredient. Our results demonstrated that dairy cattle manure presents a balanced substrate for larval growth, and the spent manure showed reductions in concentration of total nitrogen (24.9%) and phosphorus (6.2%) with an overall reduction in mass. Larva yield at an optimum density was approximately 2% of manure weight. Nutritional analysis of M. domestica larva meal showed values comparable to most high protein feed ingredients. Larva meal was 60% protein with a well-balanced amino acid profile, and 20% fat with 57% monounsaturated fatty acids, and 39% saturated fatty acids. Larva meal lacked any significant amount of omega-3 fatty acids. Evaluation of micronutrients in larva meal suggested that it is a good source of calcium and phosphorus (0.5% and 1.1% respectively). The nutritional value of larva meal closely matches that of fishmeal, making it a potentially attractive alternative for use as a protein-rich feed ingredient for livestock and aquaculture operations.

  8. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure

    PubMed Central

    Hussein, Mahmoud; Pillai, Viju V.; Goddard, Joshua M.; Park, Hui G.; Kothapalli, Kumar S.; Ross, Deborah A.; Ketterings, Quirine M.; Brenna, J. Thomas; Milstein, Mark B.; Marquis, Helene; Johnson, Patricia A.; Nyrop, Jan P.

    2017-01-01

    The common housefly, Musca domestica, is a considerable component of nutrient recycling in the environment. Use of housefly larvae to biodegrade manure presents an opportunity to reduce waste disposal while the rapidly assimilated insect biomass can also be used as a protein rich animal feed. In this study, we examine the biodegradation of dairy cattle manure using housefly larvae, and the nutritional value of the resulting larva meal as a feed ingredient. Our results demonstrated that dairy cattle manure presents a balanced substrate for larval growth, and the spent manure showed reductions in concentration of total nitrogen (24.9%) and phosphorus (6.2%) with an overall reduction in mass. Larva yield at an optimum density was approximately 2% of manure weight. Nutritional analysis of M. domestica larva meal showed values comparable to most high protein feed ingredients. Larva meal was 60% protein with a well-balanced amino acid profile, and 20% fat with 57% monounsaturated fatty acids, and 39% saturated fatty acids. Larva meal lacked any significant amount of omega-3 fatty acids. Evaluation of micronutrients in larva meal suggested that it is a good source of calcium and phosphorus (0.5% and 1.1% respectively). The nutritional value of larva meal closely matches that of fishmeal, making it a potentially attractive alternative for use as a protein-rich feed ingredient for livestock and aquaculture operations. PMID:28170420

  9. Determination of fluoroquinolones in cattle manure-based biogas residue by ultrasonic-enhanced microwave-assisted extraction followed by online solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Lu, Xue-Feng; Zhou, Yang; Zhang, Jian; Ren, Yu-Peng

    2018-06-01

    The present work describes the development and application of an ultrasonic-enhanced microwave-assisted extraction (UEMAE) followed by online solid phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry method for the analysis of 14 fluoroquinolones in cattle manure-based biogas residue (CMBBR). The UEMAE was performed using the mixed solution of sodium dihydrogen phosphate and disodium ethylenediamine tetraacetic acid, avoiding use of any organic solvent. The online SPE system employed two solid phase extraction columns in a parallel manner, and the extraction was performed by passing 1 mL of the extract through the column. Quantification was performed using standard spiked samples and structural analogue internal standard, which were indispensable to reduce the matrix effects. Validation parameters were performed and good linearity (R 2  > 0.99 in all cases) and precision (inter- and intra-day relative standard deviations were lower than 12.8%) were obtained. Limits of detection were as low as 0.021 ng ∙ g -1 and lower limits of quantification were 0.5 ng ∙ g -1 for all fluoroquinolones. The overall extraction recovery, which was the product of the UEMAE recovery and the online SPE recovery, was assessed for three concentration levels (0.8, 40 and 400 ng ∙ g -1 ) and acceptable values (74.3-99.3%) were found. As a part of the method validation, the developed method has been used to analyze real CMBBR samples. Nine fluoroquinolones were found in the concentration range of 0.9-74.6 ng ∙ g -1 , while five were not detected in the samples. The results showed the method could be adapted for screening the presence or the final fate of fluoroquinolones during fermentation of animal waste. Copyright © 2018. Published by Elsevier B.V.

  10. Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study.

    PubMed

    Ding, Luyu; Lu, Qikun; Xie, Lina; Liu, Jie; Cao, Wei; Shi, Zhengxiang; Li, Baoming; Wang, Chaoyuan; Zhang, Guoqiang; Ren, Shixi

    2016-03-01

    The open lots and manure stockpiles of dairy farm are major sources of greenhouse gas (GHG) emissions in typical dairy cow housing and manure management system in China. GHG (CO(2), CH(4) and N(2)O) emissions from the ground level of brick-paved open lots and uncovered manure stockpiles were estimated according to the field measurements of a typical dairy farm in Beijing by closed chambers in four consecutive seasons. Location variation and manure removal strategy impacts were assessed on GHG emissions from the open lots. Estimated CO(2), CH(4) and N(2)O emissions from the ground level of the open lots were 137.5±64.7 kg hd(-1) yr(-1), 0.45±0.21 kg hd(-1) yr(-1) and 0.13±0.08 kg hd(-1) yr(-1), respectively. There were remarkable location variations of GHG emissions from different zones (cubicle zone vs. aisle zone) of the open lot. However, the emissions from the whole open lot were less affected by the locations. After manure removal, lower CH(4) but higher N(2)O emitted from the open lot. Estimated CO(2), CH(4) and N(2)O emissions from stockpile with a stacking height of 55±12 cm were 858.9±375.8 kg hd(-1) yr(-1), 8.5±5.4 kg hd(-1) yr(-1) and 2.3±1.1 kg hd(-1) yr(-1), respectively. In situ storage duration, which estimated by manure volatile solid contents (VS), would affect GHG emissions from stockpiles. Much higher N(2)O was emitted from stockpiles in summer due to longer manure storage. This study deals with greenhouse gas (GHG) emissions from open lots and stockpiles. It's an increasing area of concern in some livestock producing countries. The Intergovernmental Panel on Climate Change (IPCC) methodology is commonly used for estimation of national GHG emission inventories. There is a shortage of on-farm information to evaluate the accuracy of these equations and default emission factors. This work provides valuable information for improving accounting practices within China or for similar manure management practice in other countries.

  11. Estrogenic activity and nutrient losses in surface runoff after winter manure application to small watersheds.

    PubMed

    Shappell, N W; Billey, L O; Shipitalo, M J

    2016-02-01

    Confined Animal Feeding Operations generate large amounts of wastes that are land-applied to provide nutrients for crop production and return organic matter to the soil. Production practices and storage limitations often necessitate that wastes be applied to frozen and snow-covered soil. Use of application setbacks have reduced concerns related to nutrient losses in surface runoff from manure, but the estrogenic activity of runoff under these conditions has not been evaluated. Therefore, we measured and sampled surface runoff when manure was applied in the winter at a rate to meet crop N needs and measured estradiol equivalents (E2Eqs) using E-Screen. In year one, six small watersheds used to produce corn were evaluated, treatments: 2 no-manure controls, 2 liquid swine manure with 30-m setbacks, and 2 turkey litter with 30-m setbacks. In addition, beef manure was applied to six frozen plots of forage. For years 2 and 3, applications were repeated on the swine manure watersheds and one control watershed. E2Eqs and nutrient concentrations generally peaked in the first runoff event after application. The highest measured E2Eq (5.6 ng L(-1)) was in the first event after swine manure application and was less than the 8.9 ng L(-1) Lowest Observable Effect Concentration (LOEC) for aquatic species and well below the concentrations measured in other studies using ELISAs to measure hormone concentrations. No runoff occurred from plots planted with forage, indicating low risk for environmental impact, and therefore plots were discontinued from study. In years 2 and 3, estrogenic activity never exceeded the Predicted No Effect Concentrations for E2 of 2 ng L(-1). When post-application runoff contained high estrogenic activity, strong correlations (R(2) 0.86 to 0.96) of E2Eq to Ca(2+), Mg(2+), and K(+) concentrations were observed, indicating under some condition these cations might be useful surrogates for E2Eq measurements. Published by Elsevier B.V.

  12. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  13. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.

    PubMed

    Edström, Mats; Nordberg, Ake; Thyselius, Lennart

    2003-01-01

    Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

  14. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure.

    PubMed

    Yang, Qingxiang; Tian, Tiantian; Niu, Tianqi; Wang, Panliang

    2017-10-01

    Diverse antibiotic-resistance genes (ARGs) are frequently reported to have high prevalence in veterinary manure samples due to extensive use of antibiotics in farm animals. However, the characteristics of the distribution and transmission of ARGs among bacteria, especially among different species of multiple antibiotic-resistant bacteria (MARB), have not been well explored. By applying high-throughput sequencing methods, our study uncovered a vast MARB reservoir in livestock manure. The genera Escherichia, Myroides, Acinetobacter, Proteus, Ignatzschineria, Alcaligenes, Providencia and Enterococcus were the predominant cultivable MARB, with compositions of 40.6%-85.7%. From chicken manure isolates, 33 MARB were selected for investigation of the molecular characteristics of antibiotic resistance. A total of 61 ARGs and 18 mobile genetic elements (MGEs) were investigated. We found that 47 ARGs were widely distributed among the 33 MARB isolates. Each isolate carried 27-36 genes responsible for resistance to eight classes of antibiotics frequently used in clinic or veterinary settings. ARGs to the six classes of antibiotics other than streptogramins and vancomycin were present in all 33 MARB isolates with a prevalence of 80%-100%. A total of 12 MGEs were widely distributed among the 33 MARB, with intI1, IS26, ISaba1, and ISEcp1 simultaneously present in 100% of isolates. In addition, 9 gene cassettes within integrons and ISCR1 were detected among MARB isolates encoding resistance to different antibiotic classes. This is the first report revealing the general co-presence of multiple ARGs, various MGEs and ARG cassettes in different species of individual MARB isolates in chicken manure. The results highlight a much higher risk of ARGs spreading through livestock manure to humans than we expected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Asphyxiation Incidents by Hydrogen Sulfide at Manure Storage Facilities of Swine Livestock Farms in Korea.

    PubMed

    Park, Jihoon; Kang, Taesun; Jin, Suhyun; Heo, Yong; Kim, Kyungran; Lee, Kyungsuk; Tsai, Perngjy; Yoon, Chungsik

    2016-01-01

    Livestock workers are involved in a variety of tasks, such as caring for animals, maintaining the breeding facilities, cleaning, and manure handling, and are exposed to health and safety risks. Hydrogen sulfide is considered the most toxic by-product of the manure handling process at livestock facilities. Except for several reports in developed countries, the statistics and cause of asphyxiation incidents in farms have not been collected and reported systematically, although the number of these incidents is expected to increase in developing and underdeveloped countries. In this study, the authors compiled the cases of work-related asphyxiation incidents at livestock manure storage facilities and analyzed the main causes. In this survey, a total of 17 incidents were identified through newspapers or online searches and public reports. Thirty workers died and eight were injured due to work-related tasks and rescue attempts from 1998 to 2013 in Korea. Of the 30 fatalities, 18 occurred during manure handling/maintenance tasks and 12 during rescue attempts. All incidents except for one case occurred during the warm season from the late spring (April) to early autumn (September) when manure is likely to decompose rapidly. It is important to train employees involved in the operation of the facilities (i.e., owners, managers, employees) regarding the appropriate prevention strategies for confined space management, such as hazard identification before entry, periodical facility inspection, restriction of unnecessary access, proper ventilation, and health and safety. Sharing information or case reports on previous incidents could also help prevent similar cases from occurring and reduce the number of fatalities and injuries.

  16. Potential gases emissions from the combustion of municipal solid waste by bio-drying.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Shao, Li-Ming

    2009-09-15

    One aerobic and two combined hydrolytic-aerobic processes were set up to investigate the influence of bio-drying on the potential emissions of combustion gases and the quantitative relationships of potential emissions with organics degradation. Results showed that the bio-drying would result in the increase of the HCl and SO(2) emissions and potential for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation, but the decrease of NO(x) emissions in the combustion. The potential emissions of combustion gases were correlated with organics degradation (correlation coefficient, r=0.67 for HCl, r=0.96 for SO(2), r=0.91 for PCDD/Fs and r=-0.60 for NO(x)). Interestingly, the total emissions of combustion gases based on input waste could be minimized by bio-drying. The bio-drying caused a reduction of NO(x) emissions but a negligible variation of total emissions of HCl and SO(2) as well as the potential for total PCDD/Fs formation. Moreover, the bio-drying could significantly improve the ratio of gas emissions to low heating values. The mixed waste after bio-drying was more favorable for combustion and the combined process with insufficient aeration during the hydrolytic stage was proposed for the bio-drying operation.

  17. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.

    PubMed

    Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I

    2015-04-01

    Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  19. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pile mixing increases greenhouse gas emissions during composting of dairy manure.

    PubMed

    Ahn, H K; Mulbry, W; White, J W; Kondrad, S L

    2011-02-01

    The effect of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed four times during the 80 day trial were approximately 20% higher than emissions from unmixed (static) piles. For both treatments, carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) accounted for 75-80%, 18-21%, and 2-4% of GHG emissions, respectively. Seventy percent of CO(2) emissions and 95% of CH(4) emissions from all piles occurred within first 23 days. By contrast, 80-95% of N(2)O emissions occurred after this period. Mixed and static piles released 2 and 1.6 kg GHG (CO(2)-Eq.) for each kg of degraded volatile solids (VS), respectively. Our results suggest that to minimize GHG emissions, farmers should store manure in undisturbed piles or delay the first mixing of compost piles for approximately 4 weeks. Published by Elsevier Ltd.

  2. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems.

    PubMed

    Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Cook, Shaun R; Zaheer, Rahat; Yang, Hua; Woerner, Dale R; Geornaras, Ifigenia; McArt, Jessica A; Gow, Sheryl P; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; McAllister, Tim A; Belk, Keith E; Morley, Paul S

    2016-04-20

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.

  3. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems

    PubMed Central

    Noyes, Noelle R.; Yang, Xiang; Linke, Lyndsey M.; Magnuson, Roberta J.; Cook, Shaun R.; Zaheer, Rahat; Yang, Hua; Woerner, Dale R.; Geornaras, Ifigenia; McArt, Jessica A.; Gow, Sheryl P.; Ruiz, Jaime; Jones, Kenneth L.; Boucher, Christina A.; McAllister, Tim A.; Belk, Keith E.; Morley, Paul S.

    2016-01-01

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. PMID:27095377

  4. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    PubMed

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  6. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    PubMed

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  7. Composition and parameters of household bio-waste in four seasons.

    PubMed

    Hanc, Ales; Novak, Pavel; Dvorak, Milan; Habart, Jan; Svehla, Pavel

    2011-07-01

    Bio-waste makes up almost half portion of municipal solid waste. The characterization of household bio-waste is important in determining the most appropriate treatment method. The differences in composition and parameters of bio-waste derived from urban settlement (U-bio-waste) and family houses (F-bio-waste) during the four climate seasons are described in this paper. Twelve components and 20 parameters for bio-waste were evaluated. The composition of U-bio-waste was almost steady over those seasons, unlike F-bio-waste. U-bio-waste was comprised mainly (58.2%) of fruit and vegetable debris. F-bio-waste was primarily made up of seasonal garden components. The amount of variation among seasons in both type of bio-waste increased in sequence: basic parametersbio-waste were found out. Results of this research could be utilized to support another composition and parameters of bio-waste and be suitable for establishing bio-waste processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  9. [Emission of CH4, N2O and NH3 from vegetable field applied with animal manure composts].

    PubMed

    Wan, He-Feng; Zhao, Chen-Yang; Zhong, Jia; Ge, Zhen; Wei, Yuan-Song; Zheng, Jia-Xi; Wu, Yu-Long; Han, Sheng-Hui; Zheng, Bo-Fu; Li, Hong-Mei

    2014-03-01

    Greenhouse gas (GHG) emission from vegetable land is of great concern recently because agriculture land is one of the major sources contributing to global GHG emission. In this study, an experiment of Lactuca sativa L. land applied with different animal manure composts was carried out in a greenhouse vegetable land located in the surburb of Beijing to monitor the emission of GHG (CH4 and N2O) and ammonia in situ, and to analyze the affecting factors of GHG and ammonia emission. Results showed that the emission factors (EFs) of CH4 from Treatment NRM, RM and CF were 0.2%, 0.027% and 0.004%, respectively,the EFs of N2O from these three treatments were 0.18%, 0.63% and 0.74%, respectively, and the EFs of ammonia were 2.00%, 3.98% and 2.53%, respectively. CH4 emission flux was significantly affected by soil temperature and humidity, while N2O emission flux was related to soil temperature, surface temperature and humidity. The emission fluxes of CH4, N2O and NH3 were significantly affected by soil moisture, but there was little relation between CH4, N2O and NH3 emissions and the ambient temperature in the greenhouse.

  10. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    PubMed Central

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  11. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  12. Pathogen reduction in minimally managed composting of bovine manure.

    PubMed

    Millner, Patricia; Ingram, David; Mulbry, Walter; Arikan, Osman A

    2014-11-01

    Spread of manure pathogens is of considerable concern due to use of manure for land application. In this study, the effects of four static pile treatment options for bovine manure on die-off of a generic Escherichia coli, E. coli O157:H7 surrogate, Salmonella Senftenberg, Salm. Typhimurium, and Listeria monocytogenes were evaluated. Bovine manure spiked with these bacteria were placed in cassettes at the top, middle, and bottom sections of four static pile treatments that reflect minimal changes in pile construction with and without straw. Temperatures were monitored continuously during the 28 day self-heating period. E. coli and salmonellae were reduced from 8 to 9 log10 CFU g(-1) to undetectable levels (<1.77 log10 MPN g(-1)) at 25-30 cm depths within 7 days in all pile sections except for the manure-only pile in which 3-4 logs of reduction were obtained. No L. monocytogenes initially present at 6.62 log10 CFU g(-1) were recovered from straw-amended piles after 14 days, in contrast with manure-only treatment in which this pathogen was recovered even at 28 days. Decline of target bacterial populations corresponded to exposure to temperatures above 45°C for more than 3 days and amendments of manure with straw to increase thermophilic zones. Use of straw to increase aeration, self-heating capacity, and heat retention in manure piles provides producers a minimal management option for composting that enhances pathogen die-off and thereby reduces risk of environmental spread when manure is applied to land. Published by Elsevier Ltd.

  13. Effect of farmyard manure rate on water erosion of a Mediterranean soil: determination of the critical point of inefficacy

    NASA Astrophysics Data System (ADS)

    Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with

  14. Bio-chemo-mechanics of thoracic aortic aneurysms.

    PubMed

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  15. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment.

    PubMed

    Li, Yangyang; Manandhar, Ashish; Li, Guoxue; Shah, Ajay

    2018-03-20

    Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO 2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO 2 , EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The development of alum rates to enhance the remediation of phosphorus in fluvial systems following manure spills

    USDA-ARS?s Scientific Manuscript database

    Following the remediation of animal manure spills that reach surface waters, contaminated streambed sediments are often left in place and become a source for internal P loading within the stream in subsequent flow. The objective of this study was to develop treatment rates and combinations of alum a...

  17. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves.

    PubMed

    Arikan, Osman A

    2008-10-30

    The fate of antibiotic residues in the manure of treated animals is of considerable concern because of the potential development of antibiotic-resistant bacteria in the environment. The objective of this study was to determine the fate of chlortetracycline (CTC) during the anaerobic digestion of manure from medicated calves. Five beef calves were medicated for 5 days with 22 mg/kg/day of CTC. Manure samples collected from calves after medication were diluted 5-fold with water, loaded into triplicate 1L anaerobic digesters and incubated at 35 degrees C. The CTC concentration decreased approximately 75% (from 5.9 to 1.4 ppm) during the 33 days digestion period, yielding a half-life of about 18 days. The concentration of the CTC epimer, 4-epi-chlortetracycline (ECTC), declined roughly 33% (from 4.1 to 2.5mg/L) during anaerobic digestion. However, the concentration of the CTC metabolite, iso-chlortetracycline (ICTC), increased 2-fold (from 2.3 to 4.6 mg/L) during the digestion period. Although the water-soluble concentration of CTC decreased 84% (from 0.3 to 0.04 mg/L), the water-soluble concentrations of ECTC and ICTC increased roughly 2-fold during digestion (from 0.5 to 0.93, and 1.0 to 2.7 mg/L, respectively). Since ECTC and ICTC are more water-soluble than the parent tetracycline CTC, it is more likely that these compounds present in digested manure slurry will be detected in water monitoring samples.

  18. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E., E-mail: emara@uniovi.es; Castrillon, L.; Quiroga, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogasmore » yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.« less

  19. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... animal types using Equation JJ-1. ER30OC09.138 Where: MMSC = Manure management systems component. TVSAT = Total volatile solids excreted by animal type, calculated using Equation JJ-3 of this section (kg/day... JJ-4 of this section; if no solid separation occurs, this value is set to 0. (B0)AT = Maximum CH4...

  20. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review.

    PubMed

    Tasho, Reep Pandi; Cho, Jae Yong

    2016-09-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. Copyright © 2016 Elsevier B.V. All rights reserved.