Science.gov

Sample records for animal radionuclide imaging

  1. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    SciTech Connect

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C

    2004-02-27

    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  2. Radionuclide bone imaging and densitometry

    SciTech Connect

    Mettler, F.A.

    1988-01-01

    This book contains 13 selections. Some of the titles are: Radionuclides and the Normal Bone Scan; The Radionuclide Bone Scan in Malignant Disease; Pediatric Applications of Radionuclide Bone Imaging; The Radionuclide Bone Scan in Arthritis and Metabolic and Miscellaneous Disorders; and Soft Tissue Activity on the Radionuclide Bone Scan.

  3. Radionuclide bone imaging

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Webber, M.M.

    1981-12-01

    Radionuclide bone imaging of the skeleton, now well established as the most important diagnostic procedure in detecting bone metastases, is also a reliable method for the evaluation of the progression or regression of metastatic bone disease. The article concentrates on the technetium-99m agents and the value of these agents in the widespread application of low-dose radioisotope scanning in such bone diseases as metastasis, osteomyelitis, trauma, osteonecrosis, and other abnormal skeletal conditions.

  4. Radionuclide salivary gland imaging

    SciTech Connect

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  5. Radionuclide Imaging of Cardiovascular Infection.

    PubMed

    Ahmed, Fozia Zahir; James, Jackie; Memmott, Matthew J; Arumugam, Parthiban

    2016-02-01

    Owing to expanding clinical indications, cardiac implantable electronic devices (CIEDs) are being increasingly used. Despite improved surgical techniques and the use of prophylactic antimicrobial therapy, the rate of CIED-related infection is also increasing. Infection is a potentially serious complication, with clinical manifestations ranging from surgical site infection and local symptoms in the region of the generator pocket to fulminant endocarditis. The utility of radionuclide imaging as a stand-alone noninvasive diagnostic imaging test in patients with suspected endocarditis has been less frequently examined. This article summarizes the recent advances in radionuclide imaging for evaluation of patients with suspected cardiovascular infections. PMID:26590786

  6. Traces of natural radionuclides in animal food

    SciTech Connect

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  7. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  8. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans . PMID:25995102

  9. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  10. Whole animal imaging

    PubMed Central

    Sandhu, Gurpreet Singh; Solorio, Luis; Broome, Ann-Marie; Salem, Nicolas; Kolthammer, Jeff; Shah, Tejas; Flask, Chris; Duerk, Jeffrey L.

    2015-01-01

    Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research. PMID:20836038

  11. The effects of radionuclides on animal behavior.

    PubMed

    Gagnaire, Beatrice; Adam-Guillermin, Christelle; Bouron, Alexandre; Lestaevel, Philippe

    2011-01-01

    increased suicides, as well as modification of preferred nesting sites, reduced hatching success and fecundity in birds that live in the Chernobyl zone. No significant effect from caesium exposure was shown in laboratory experiments with rats, but few studies were conducted. Data on radioactive cadmium are not available in the literature, but the effects of its metallic form have been well studied. Cadmium induces mental retardation and psychomotor alterations in exposed populations and increases anxiety in rats, leading to depression. Cadmium exposure also results in well-documented effects on feeding and burrowing behavior in several invertebrate species (crustaceans, gastropods, annelids, bivalves) and on different kinds of fish behavior (swimming activity, fast-start response, antipredatory behavior). Cobalt induces memory deficits in humans and may be involved in Alzheimer's disease; gamma irradiation by cobalt also decreases fecundity and alters mating behavior in insects. Collectively, data are lacking or are meagre on radionuclide pollutants, and a better knowledge of their actions on the cellular and molecular mechanisms that control animal behavior is needed. PMID:21170702

  12. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  13. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  14. Radionuclide imaging of the urinary tract

    SciTech Connect

    Velchik, M.G.

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable. 136 references.

  15. Translational Applications of Molecular Imaging and Radionuclide Therapy

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-06-17

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled “Translational Applications of Molecular Imaging and Radionuclide Therapy” to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study – the role of a diagnostic scan on therapy selection. This latter topic will include discussions on α therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research.

  16. Current status of radionuclide scrotal imaging

    SciTech Connect

    Holder, L.E.; Melloul, M.; Chen, D.

    1981-10-01

    Scrotal imaging with technetium-99m sodium pertechnetate consists of a radionuclide angiogram and static scrotal scans. Utilization of this study in patients presenting with an acute scrotum can dramatically reduce the number of surgical explorations for acute epididymitis. It can also aid in other aspects of differential diagnosis in patients presenting with either an acutely enlarged and/or painful scrotum or a scrotal mass. Ambiguities in previous descriptions of perfusion through the spermatic and extraspermatic cord vessels are described and distinguished from scrotal perfusion. The clinical and scintigraphic spectrum of testicular torsion, including spontaneous detorsion, early acute testicular torsion, midphase testicular torsion, and late phase or ''missed testicular torsion,'' is discussed and illustrated. The variety of patterns seen in acute epididymitis, including lateral and medial epididymal location, and focal epididymitis are described, as is the appearance of hydrocele as both a primary and secondary entity. The relationship of scrotal imaging to the overall clinical presentation and evaluation of these patients is emphasized in testicular torsion, torsion of the testicular appendages, epididymitis, abscess, trauma, tumor, spermatocele, and varicocele. The techniques, clinical utility, and relationship to radionuclide imaging of Doppler ultrasound and gray scale ultrasound scanning are reviewed. Doppler ultrasound results in many false negative studies in testicular torsion. Gray scale ultrasound is useful in clarifying the nature of scrotal masses.

  17. Radionuclide transfer to animal products: revised recommended transfer coefficient values.

    PubMed

    Howard, B J; Beresford, N A; Barnett, C L; Fesenko, S

    2009-03-01

    A compilation has been undertaken of data which can be used to derive animal product transfer coefficients for radionuclides, including an extensive review of Russian language information. The resultant database has been used to provide recommended transfer coefficient values for a range of radionuclides to (i) cow, sheep and goat milk, (ii) meat (muscle) of cattle, sheep, goats, pigs and poultry and (iii) eggs. The values are used in a new IAEA handbook on transfer parameters which replaces that referred to as 'TRS 364'. The paper outlines the approaches and procedures used to identify and collate data, and assumptions used. There are notable differences between the TRS 364 'expected' values and the recommended values in the revised Handbook from the new database. Of the recommended values, three milk values are at least an order of magnitude higher than the TRS 364 values (Cr, Pu (cow) Pu (sheep)) and one milk value is lower (Ni (cow)). For meat, four values (Am, Cd, Sb (beef) I (pork)) are at least an order of magnitude higher than the TRS 364 values and eight values are at least an order of magnitude lower (Ru, Pu (beef), Ru, Sr, Zn (sheep), Ru, Sr (pork), Mn (poultry)). Many data gaps remain. PMID:19200625

  18. Radionuclide Imaging of Musculoskeletal Infection: A Review.

    PubMed

    Palestro, Christopher J

    2016-09-01

    There are numerous imaging tests for diagnosing musculoskeletal infection. Radiographs are routinely performed, because even when not diagnostic, they provide an anatomic overview of the region of interest that could influence subsequent procedure selection and interpretation. MRI is sensitive and provides superb anatomic detail. Bone scintigraphy accurately diagnoses osteomyelitis in bones not affected by underlying conditions. (67)Ga is used primarily for spondylodiskitis. Although in vitro labeled leukocyte imaging is the radionuclide test of choice for complicating osteomyelitis such as diabetic pedal osteomyelitis and prosthetic joint infection, it is not useful for spondylodiskitis. Antigranulocyte antibodies and antibody fragments have limitations and are not widely available. (111)In-biotin is useful for spondylodiskitis. Radiolabeled synthetic fragments of the antimicrobial peptide ubiquicidin are promising infection-specific agents. (18)F-FDG is the radiopharmaceutical of choice for spondylodiskitis. Its role in diabetic pedal osteomyelitis and prosthetic joint infection is not established. Preliminary data suggest (68)Ga may be useful in musculoskeletal infection. (124)I-fialuridine initially showed promise as an infection-specific radiopharmaceutical, but subsequent investigations were disappointing. The development of PET/CT and SPECT/CT imaging systems, which combine anatomic and functional imaging, has revolutionized diagnostic imaging. These hybrid systems are redefining the diagnostic workup of patients with suspected or known infection and inflammation by improving diagnostic accuracy and influencing patient management. PMID:27390160

  19. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  20. Somatostatin Receptor Based Imaging and Radionuclide Therapy

    PubMed Central

    Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. PMID:25879040

  1. Radionuclide imaging and treatment of thyroid cancer.

    PubMed

    Wang, Xiu Juan; Li, XianFeng; Ren, Yuan

    2016-01-01

    Over the past decades, the diagnostic methods and therapeutic tools for thyroid cancer (TC) have been greatly improved. In addition to the classical method of ingestion of radioactive iodine-131 (I131) and subsequent I123 and I124 positron emission tomography (PET) in therapy and examination, I124 PET-based 3-dimensional imaging, Ga68-labeled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI(3)-octreotide (DOTANOC) PET/computed tomography (CT), Tc99m tetrofosmin, pre-targeted radioimmunotherapy, and peptide receptor radionuclide therapy have all been used clinically. These novel methods are useful in diagnosis and therapy of TC, but also have unavoidable adverse effects. In this review, we will discuss the development of nuclear medicine in TC examination and treatment. PMID:27100499

  2. Radionuclide-labeled nanostructures for In Vivo imaging of cancer

    NASA Astrophysics Data System (ADS)

    Rhim, Won-Kyu; Kim, Minho; Hartman, Kevin L.; Kang, Keon Wook; Nam, Jwa-Min

    2015-05-01

    Molecular imaging plays an important role in the non-invasive diagnosis and the guiding or monitoring of disease treatment. Different imaging modalities have been developed, and each method possesses unique strengths. While a variety of molecules have been used previously in nuclear imaging, the exceptional properties of nanostructures in recent research enable the deployment of accurate and efficient diagnostic agents using radionuclide-nanostructures. This review focuses on the radionuclide labeling strategies of various nanostructures and their applications for multimodality tumor imaging.

  3. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure.

    PubMed

    Harinstein, Matthew E; Soman, Prem

    2016-03-01

    Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF. PMID:26841785

  4. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  5. Collecting and Animating Online Satellite Images.

    ERIC Educational Resources Information Center

    Irons, Ralph

    1995-01-01

    Describes how to generate automated classroom resources from the Internet. Topics covered include viewing animated satellite weather images using file transfer protocol (FTP); sources of images on the Internet; shareware available for viewing images; software for automating image retrieval; procedures for animating satellite images; and storing…

  6. Oncogene mRNA Imaging with Radionuclide-PNA-Peptides

    SciTech Connect

    Wickstrom, Eric

    2008-03-19

    New cancer gene hybridization probes to carry radionuclides were made. Noninvasive technetium-99m gamma imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated, followed by noninvasive technetium-99m imaging of MYC cancer gene activity. Noninvasive imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated with a positron-emitting copper-64 probe, followed by noninvasive positron imaging of IRS1 cancer gene activity.

  7. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 1. Gut absorption.

    PubMed

    Fesenko, S; Isamov, N; Howard, B J; Voigt, G; Beresford, N A; Sanzharova, N

    2007-01-01

    An extensive programme of experiments was conducted in the former USSR on transfer of radionuclides to a wide range of different agricultural animals. Only a few of these studies were made available in the English language literature or taken into account in international reviews of gastrointestinal uptake. The paper gives extended information on Russian research on radionuclide absorption in the gut of farm animals performed in controlled field and laboratory experiments from the 1960s to the current time. The data presented in the paper, together with English language values, will be used to provide recommended values of absorption specifically for farm animals within the revision of the IAEA Handbook of Parameter Values IAEA [International Atomic Energy Agency, 1994. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, IAEA technical reports series No. 364. International Atomic Energy Agency, Vienna]. PMID:17728027

  8. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  9. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 2. Transfer to milk.

    PubMed

    Fesenko, S; Howard, B J; Isamov, N; Voigt, G; Beresford, N A; Sanzharova, N; Barnett, C L

    2007-01-01

    An overview of original information available from Russian language papers on radionuclide transfer to milk is provided. Most of the data presented have not been taken into account in international reviews. The transfer coefficient (F(m)) values for radioactive isotopes of strontium, caesium and iodine are in good agreement with those previously published. The Russian language data, often based on experiments with many animals, constitute a considerable increase to the available data for many less well-studied radionuclides. In some instances, the Russian language data suggest changes in recommended values (e.g. Zr and Ru). The information presented here substantially increases the amount of available data on radionuclide transfer to milk and will be included in the current revision of the IAEA TRS Handbook of parameter values for radionuclide transfer. PMID:17766017

  10. High-resolution, high sensitivity detectors for molecular imaging with radionuclides: The coded aperture option

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Cisbani, E.; Colilli, S.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lo Meo, S.; Lucentini, M.; Magliozzi, M. L.; Santavenere, F.; Lanza, R. C.; Majewski, S.; Cinti, M. N.; Pani, R.; Pellegrini, R.; Orsini Cancelli, V.; De Notaristefani, F.; Bollini, D.; Navarria, F.; Moschini, G.

    2006-12-01

    Molecular imaging with radionuclides is a very sensitive technique because it allows to obtain images with nanomolar or picomolar concentrations. This has generated a rapid growth of interest in radionuclide imaging of small animals. Indeed radiolabeling of small molecules, antibodies, peptides and probes for gene expression enables molecular imaging in vivo, but only if a suitable imaging system is used. Detecting small tumors in humans is another important application of such techniques. In single gamma imaging, there is always a well known tradeoff between spatial resolution and sensitivity due to unavoidable collimation requirements. Limitation of the sensitivity due to collimation is well known and affects the performance of imaging systems, especially if only radiopharmaceuticals with limited uptake are available. In many cases coded aperture collimation can provide a solution, if the near field artifact effect can be eliminated or limited. At least this is the case for "small volumes" imaging, involving small animals. In this paper 3D-laminography simulations and preliminary measurements with coded aperture collimation are presented. Different masks have been designed for different applications showing the advantages of the technique in terms of sensitivity and spatial resolution. The limitations of the technique are also discussed.

  11. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.

    PubMed

    Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  12. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy

    PubMed Central

    Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  13. Enclosure for small animals during awake animal imaging

    SciTech Connect

    Goddard, Jr., James S

    2013-11-26

    An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be made with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.

  14. Development of a triple modality small animal planar imaging system

    SciTech Connect

    A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn

    2006-02-01

    Recently small animal research utilizing nuclear medicine based imaging has been combined with structural anatomical imaging from x-ray radiography providing a powerful tool for animal researchers. The addition of a third modality is the goal of our instrumentation development. Thomas Jefferson National Accelerator Facility and Case Western Reserve University have been collaborating on the development of a planar imaging system which in addition to radiopharmaceutical based functional imaging and x-ray radiography structural imaging also allows for the in vivo bioluminescence imaging thus providing another functional imaging modality. For the gamma camera we use is a Hamamatsu position sensitive photomultiplier tube coupled to a pixellated NaI(TI) scintillator array with individual crystal elements 1 mm × 1 mm × 5 mm in size and a 0.25 mm septum between each element. The gamma camera has a 10 cm diameter active area and can be used for 125I, 99mT and 111In radionuclide imaging. To acquire anatomical information we are using a Rad-Icon Shad-o-Box X-ray detector that provides a field of view of 5 cm × 10 cm. The x-ray source is a Source-Ray compact x-ray generator. We are using a Princeton Instruments cooled CCD based detector for the imaging of the bio-distribution of bioluminescence. All three imaging instruments will be integrated into a single light tight / x-ray tight enclosure.

  15. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  16. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  17. Diagnosis of adrenal tumors with radionuclide imaging

    SciTech Connect

    Beierwaltes, W.H.; Sisson, J.C.; Shapiro, B.

    1984-01-01

    The development of radiolabeled cholesterols in 1969 as precursors of adrenocortical steroid production allowed the first noninvasive imaging of the adrenal cortices. FDA-NDA approval in 1984 should allow routine use of these agents in most hospitals. NP-59 is most commonly used in the diagnosis and management of Cushing syndrome; the second most common use is in the diagnosis of primary aldosteronism. It is also helpful in the differential diagnosis of adrenal and ovarian hyperandrogenism and hirsutism, and is the only noninvasive method of detecting unilateral adrenocortical hypofunction. The newest and most popular use is in the differential diagnosis of asymptomatic masses in the region of the adrenal gland discovered incidentally with CT scan (incidentalomas). In this situation, the NP-59 scan can define whether the tumor is in the adrenal gland and if it is functional or nonfunctional. The authors believe that, in the future, radiolabeled enzyme inhibitors might offer better diagnostic imaging of the adrenal cortex, although these agents will probably not be available for routine use for some time. The development of a radioiodinated guanethidine analog, /sup 131/I-MIBG, has allowed differentiation of normal adrenal medullary function from bilateral adrenal medullary hyperplasia before the development of hypertension or tachycardia, diagnostic increases in plasma or urinary catecholamines, or abnormal CT scans. The search for a pheochromocytoma should begin with /sup 131/I-MIBG scintigraphy. While over 90% of primary pheochromocytomas occur in the abdomen, neither a survey of the abdomen nor the finding of a single tumor should conclude the search.

  18. Radionuclide imaging of the biliary tract

    SciTech Connect

    Henry, R.E.; Daly, M.J.

    1981-01-01

    Cholescintigraphy with technetium-labeled biliary agents has great value in evaluation of the patient with suspected acute cholecystitis. Visualization of the gall bladder virtually excludes acute cholecystitis and obstruction of the cystic duct. Nonvisualization of the gall bladder, however, is not specific for acute cholecystitis and may also occur in some patients with chronic cholecystitis or pancreatitis. Interpretation of gall bladder nonvisualization, therefore, must be correlated with the clinical presentation. Biliary tract imaging is also useful in evaluation of some focal abnormalities within the liver, neonatal jaundice, detection of bile leaks or bile reflux, and biliary-enteric shunts. The role of technetium-labeled biliary agents in the evaluation of patients with jaundice is less clear. Excretion of tracer into the gut excludes complete biliary tract obstruction, but the test may be nonconclusive at higher serum bilirubin levels. If persistent common bile duct activity is observed with delayed excretion into the gut, the diagnosis of partial obstruction may be made, but this procedure will be inconclusive if the common bile duct is not visualized and/or significant hepatocellular disease is present. Ultrasonography and abdominal CT are the preferred tools for the diagnosis of biliary tract obstruction at present, but newer biliary tract agents which achieve better hepatic extraction and greater bile concentration at high serum bilirubin levels may improve the diagnostic efficacy of cholescintigraphy.

  19. Sequential radionuclide bone imaging in avascular pediatric hip conditions

    SciTech Connect

    Minikel, J.; Sty, J.; Simons, G.

    1983-05-01

    Radionuclide bone imaging was performed on six patients with various hip conditions. Initial bone images revealed diminished uptake of isotope /sup 99m/Tc-MDP in the capital femoral epiphysis. Following therapeutic intervention, repeat bone scans revealed normal uptake of /sup 99m/Tc-MDP in the capital femoral epiphysis. Subsequent radiographs revealed that avascular necrosis had not occurred. There are two types of avascularity: the potentially reversible, and the irreversible. Attempts should be made toward early recognition of the potentially reversible avascular insult. With early recognition, surgical reconstruction prior to osteophyte death may result in revascularization. If this can be accomplished, avascular necrosis can be avoided.

  20. Radionuclide imaging in the evaluation of osteomyelitis and septic arthritis

    SciTech Connect

    Kim, E.E.; Haynie, T.P.; Podoloff, D.A.; Lowry, P.A.; Harle, T.S. )

    1989-01-01

    Despite controversy over its exact role, radionuclide imaging plays an important role in the evaluation of patients suspected of having osteomyelitis. The differentiation between osteomyelitis and cellulitis is best accomplished by using a three-phase technique using Tc-99m methylene diphosphonate (MDP). Frequently, it is necessary to obtain multiple projections and magnification views to adequately assess suspected areas. It is recommended that a Ga-67 or In-111 leukocyte scan be performed in those cases where osteomyelitis is strongly suspected clinically and the routine bone scan is equivocal or normal. Repeated bone scan after 48 to 72 h may demonstrate increased radioactivity in the case of early osteomyelitis with the initial photon-deficient lesion. In-111 leukocyte imaging is useful for the evaluation of suspected osteomyelitis complicating recent fracture or operation, but must be used in conjunction with clinical and radiographic correlation. The recognition of certain imaging patterns appears helpful to separate osteomyelitis from septic arthritis or cellulitis. 83 references.

  1. Role of radionuclide imaging in the diagnosis of acute osteomyelitis

    SciTech Connect

    Demopulos, G.A.; Bleck, E.E.; McDougall, I.R.

    1988-09-01

    Over the last decade, the role of nuclear medicine studies in the diagnosis of acute osteomyelitis has been discussed in depth in the literature. Yet, the respective roles played in this setting by each of the commonly used radionuclide studies often are confusing. In an attempt to develop a cogent diagnostic strategy, we reviewed the literature published within the last 12 years pertaining to the use of radiophosphate bone scintigraphy as well as gallium and indium WBC imaging in the diagnosis of this condition. Based on our findings, we propose an alternative approach to the evaluation of a patient with suspected acute osteomyelitis. 63 references.

  2. Applications of penetrating radiation for small animal imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Wu, Max C.; Iwata, Koji; Hwang, Andrew B.; Wong, Kenneth H.; Barber, William C.; Dae, Michael W.; Sakdinawat, Anne E.

    2002-11-01

    Researchers long have relied on research involving small animals to unravel scientific mysteries in the biological sciences, and to develop new diagnostic and therapeutic techniques in the medical and health sciences. Within the past 2 decades, new techniques have been developed to manipulate the genome of the mouse, allowing the development of transgenic and knockout models of mammalian and human disease, development, and physiology. Traditionally, much biological research involving small animals has relied on the use of invasive methods such as organ harvesting, tissue sampling, and autoradiography during which the animal was sacrificed to perform a single measurement. More recently, imaging techniques have been developed that assess anatomy and physiology in the intact animal, in a way that allows the investigator to follow the progression of disease, or to monitor the response to therapeutic interventions. Imaging techniques that use penetrating radiation at millimeter or submillimeter levels to image small animals include x-ray computed tomography (microCT), single-photon emission computed tomography (microSPECT), and imaging positron emission computed tomography (microPET). MicroCT generates cross-sectional slices which reveal the structure of the object with spatial resolution in the range of 50 to 100 microns. MicroSPECT and microPET are radionuclide imaging techniques in which a radiopharmaceutical is injected into the animal that is accumulated to metabolism, blood flow, bone remodeling, tumor growth, or other biological processes. Both microSPECT and microPET offer spatial resolutions in the range of 1-2 millimeters. However, microPET records annihilation photons produced by a positron-emitting radiopharmaceutical using electronic coincidence, and has a sensitivity approximately two orders of magnitude better than microSPECT, while microSPECT is compatible with gamma-ray emitting radiopharmaceuticals that are less expensive and more readily available

  3. Review of Russian language studies on radionuclide behaviour in agricultural animals: 3. Transfer to muscle.

    PubMed

    Fesenko, S; Isamov, N; Howard, B J; Beresford, N A; Barnett, C L; Sanzharova, N; Voigt, G

    2009-03-01

    Over 150 publications reporting studies conducted in the former USSR were reviewed to provide transfer coefficients (F(f)) to the muscle of domestic animals from experiments using chronic administration, often for long timescales in large scale experiments. Only a few of these studies were made available in the English language literature or taken into account in international reviews. The values derived have been compared with expected values reported by the IAEA's Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) where possible. The information presented here has been used in the current updating of parameters recommended for environmental assessments by the IAEA. Many of the reported values are for Sr due to the Mayak accident and Cs due to the Chernobyl accident. Nevertheless, the reported data for a wide range of radionuclides, in particular for Ru, Sb, and Zn markedly improve the extent of available data. PMID:19157656

  4. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  5. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  6. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    PubMed

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. PMID:26774390

  7. Bioluminescence imaging in live cells and animals.

    PubMed

    Tung, Jack K; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E

    2016-04-01

    The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment. PMID:27226972

  8. How Phoenix Creates Color Images (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This simple animation shows how a color image is made from images taken by Phoenix.

    The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists.

    By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Three-phase radionuclide bone imaging in sports medicine

    SciTech Connect

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-07-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.

  10. Hematogenous pyogenic vertebral osteomyelitis: diagnostic value of radionuclide bone imaging

    SciTech Connect

    Adatepe, M.H.; Powell, O.M.; Isaacs, G.H.; Nichols, K.; Cefola, R.

    1986-11-01

    Hematogenous pyogenic vertebral osteomyelitis (HPVO) continues to be a diagnostic problem for clinicians due to nonspecific presentation of the disease (1,2). We reviewed our experience of the last 10 years to determine the diagnostic usefulness of radionuclide bone studies in this disease. We found 15 patients whose primary diagnosis was HPVO. Of the 15 patients, 12 had (99mTc)MDP bone scans which were all positive. Five of the 12 patients had positive (/sup 67/Ga)citrate scans and one patient with chronic active HPVO had negative /sup 67/Ga and (/sup 111/In)WBC bone images. At the same time, three patients' spine x-rays and one patient's CT scan of the vertebra were normal. Additionally, in three patients spine x-rays were interpreted as consistent with degenerative joint disease that contributed to the delay of the diagnosis. We conclude that when HPVO is suspected an abnormal (99mTc)MDP bone image increases the probability of the disease, even if the x-rays and CT scans of the spine are normal. An abnormal /sup 67/Ga image following an abnormal 99mTc bone image increases the specificity of the diagnosis. Normal (99mTc)MDP and (/sup 67/Ga)citrate bone images of the vertebra virtually exclude the diagnosis of HPVO.

  11. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  12. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease.

    PubMed

    Partington, Sara L; Valente, Anne Marie; Landzberg, Michael; Grant, Frederick; Di Carli, Marcelo F; Dorbala, Sharmila

    2016-02-01

    Non-invasive testing of children with congenital heart disease (CHD) began in the 1950s with the introduction of radionuclide studies to assess shunt fractions, pulmonary blood flow, and ventricular contractile function. Echocardiography and cardiac magnetic resonance imaging have since replaced radionuclide imaging in many of these roles. Concurrently, percutaneous and surgical repairs of complex CHD evolved, creating new roles for radionuclide imaging. In this paper on applications of radionuclide imaging in CHD, we review the multiple mechanisms for myocardial ischemia in CHD. We critically compare optimal radionuclide imaging techniques to other imaging modalities for assessing ischemia in CHD. We present the current role of nuclear imaging for assessing viability and pulmonary blood flow. We highlight the value added by advances in dedicated cardiac SPECT scanners, novel reconstruction software, and cardiac PET in performing low-dose radionuclide imaging in CHD. Finally, we discuss the emerging clinical indications for radionuclide imaging in CHD including coronary flow reserve assessment and evaluation of cardiovascular prosthesis and device infections. PMID:26129940

  13. A 5 Tesla imaging magnet for imaging laboratory animals

    SciTech Connect

    Carolan, J.L.; Burns, W.A.; Green, M.A.

    1989-03-01

    This is a report on the construction of the first of a series of Magnetic Resonance Imaging (MRI) imaging magnets for laboratory animals. The first NCC magnet has a 33 centimeter warm bore with a design central induction of 5.5 T without active shielding and 5.0 T with active shielding. The magnet will be used for both imaging and spectroscopy of living animals. The active shield system is designed so that the 5 Gauss line is less than 3 meters from the magnet center when the magnet operates at design field. This permits the magnet to be used within an experimental space commonly available within a university building.

  14. Imaging regional renal function parameters using radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Qiao, Yi

    A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney

  15. Quantifying the transfer of radionuclides to food products from domestic farm animals.

    PubMed

    Howard, B J; Beresford, N A; Barnett, C L; Fesenko, S

    2009-09-01

    Databases have been compiled to derive parameter values relevant to the transfer of radionuclides from feedstuffs to domestic animal products to provide a revision to the IAEA Handbook on transfer parameters TRS 364. Significant new data inputs have been incorporated into the databases from an extensive review of Russian language information and inclusion of data published since the early 1990s. Fractional gastrointestinal absorption in adult ruminants presented in the revised handbook are generally similar to those recommended for adult humans by the ICRP. Transfer coefficient values are presented in the handbook for a range of radionuclides to farm animal products. For most animal products, transfer coefficient values for elements additional to those in TRS 364 are provided although many data gaps remain. Transfer coefficients generally vary between species with larger species having lower values than smaller species. It has been suggested that the difference is partly due to the inclusion of dietary dry matter intake in the estimation of transfer coefficient and that whilst dietary intake increases with size nutrient concentrations do not. An alternative approach to quantifying transfer by using concentration ratios (CR), which do not consider dietary intake, has been evaluated. CR values compiled for the handbook vary considerably less between species than transfer coefficient values. The advantage of the CR approach is that values derived for one species could be applied to species for which there are no data. However, transfer coefficients will continue to be used as few studies currently report CR values or give data from which they can be estimated. PMID:19362760

  16. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 µm in all dimensions is now routinely attained in living animals, and 10 µm3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  17. The Value of Radionuclide Bone Imaging in Defining Fresh Fractures Among Osteoporotic Vertebral Compression Fractures.

    PubMed

    Zhao, Quan-Ming; Gu, Xiao-Feng; Liu, Zhong-Tang; Cheng, Li

    2016-05-01

    Vertebral fractures are the most common osteoporotic fractures. To perform percutaneous vertebral body cement augmentation, it is essential to accurately identify the affected vertebrae. The study evaluated the role of radionuclide bone imaging in identifying fresh osteoporotic vertebral compression fractures. A prospective study of 39 patients with acute osteoporotic vertebral compression fractures was carried out. All patients underwent magnetic resonance imaging (MRI) and radionuclide bone imaging to determine if the fractures were fresh, followed by percutaneous kyphoplasty for the fresh fractures. The positive rate on radionuclide bone imaging was 92.1% (82/89), and the positive rate on MRI was 93.3% (83/89), with no statistically significant difference (P > 0.05). Eighty-one vertebrae had the same positive identification by both radionuclide bone imaging and MRI, and 5 of the same vertebrae were diagnosed negative by both techniques. One patient with positive radionuclide bone imaging was negative according to MRI, and 2 patients were entirely positive by MRI but negative by radionuclide bone imaging. A kappa test showed good consistency between the 2 methods for detecting the affected vertebrae (Kappa = 0.751, P < 0.01). Radionuclide bone imaging is as sensitive as MRI in the diagnosis of fresh osteoporotic vertebral compression fracture, making it an effective method for detecting affected vertebrae for percutaneous vertebroplasty. PMID:27159858

  18. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  19. Imaging Histone Methylations in Living Animals.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Histone modifications (methylation, acetylation, phosphorylation, sumoylation, etc.,) are at the heart of cellular regulatory mechanisms, which control expression of genes in an orderly fashion and control the entire cellular regulatory networks. Histone lysine methylation has been identified as one of the several posttranslational histone modifications that plays crucial role in regulating gene expressions in facultative heterochromatic DNA regions while maintaining structural integrity in constitutive heterochromatic DNA regions. Since histone methylation is dysregulated in various cellular diseases, it has been considered a potential therapeutic target for drug development. Currently there is no simple method available to screen and preclinically evaluate drugs modulating this cellular process, we recently developed two different methods by adopting reporter gene technology to screen drugs and to preclinically evaluate them in living animals. Method detects and quantitatively monitors the level of histone methylations in intact cells, is of a prerequisite to screen small molecules that modulate histone lysine methylation. Here, we describe two independent optical imaging sensors developed to image histone methylations in cells and in living animals. Since we used standard PCR-based cloning strategies to construct different plasmid vectors shown in this chapter, we are not providing any details regarding the construction methods, instead, we focus on detailing various methods used for measuring histone methylation-assisted luciferase quantitation in cells and imaging in living animals. PMID:27424907

  20. Imaging of Ancient Egyptian Animal Mummies.

    PubMed

    McKnight, Lidija M; Atherton-Woolham, Stephanie D; Adams, Judith E

    2015-01-01

    Human mummies have long been studied by using imaging as a primary investigative method. Mummified animal remains from ancient Egypt are less well researched, yet much can be learned about species diversity and the methods of preservation. Noninvasive imaging methods enable mummy bundles to remain intact, with no detrimental physical effects, thus ensuring protection of a valuable archaeological resource. This article is based on the research experience gathered during 13 years (2000-2012) with 152 animal mummies held in the collections of 17 museums in the United Kingdom. Conventional radiography, computed radiography, digital radiography, and computed tomography (CT) available in the clinical setting were used to assess the value of each imaging modality in the study of animal mummies and related material. Radiography proved to be an excellent research method that provided initial insight into the contents of the mummy bundle, and CT contributed additional useful detail in some cases. Paleoradiologic analyses enabled information on mummy bundle contents to be proved, including the nature of the skeletal remains and the methods of mummification. An optimum method involving radiography and CT is described. PMID:26562240

  1. Accurate scatter compensation using neural networks in radionuclide imaging

    SciTech Connect

    Ogawa, Koichi; Nishizaki, N. . Dept. of Electrical Engineering)

    1993-08-01

    The paper presents a new method to estimate primary photons using an artificial neural network in radionuclide imaging. The neural network for [sup 99m]Tc had three layers, i.e., one input layer with five units, one hidden layer with five units, and one output layer with two units. As input values to the input units, the authors used count ratios which were the ratios of the counts acquired by narrow windows to the total count acquired by a broad window with the energy range from 125 to 154 keV. The outputs were a scatter count ratio and a primary count ratio. Using the primary count ratio and the total count they calculated the primary count of the pixel directly. The neural network was trained with a back-propagation algorithm using calculated true energy spectra obtained by a Monte Carlo method. The simulation showed that an accurate estimation of primary photons was accomplished within an error ratio of 5% for primary photons.

  2. [Right ventricular dysplasia and dilated cardiomyopathy observed by radionuclide images].

    PubMed

    Takamura, I; Ando, J; Miyamoto, A; Kobayashi, T; Sakamoto, S; Yasuda, H

    1985-12-01

    Four cases of right ventricular dysplasia (RVD) and 28 cases of dilated cardiomyopathy (DCM) were studied. RVD was characterized clinically by syncope, sustained recurrent ventricular tachycardia with left bundle branch block patterns on the surface electrocardiogram, and right heart failure. Furthermore, moderate to severe dilatation of the right ventricle and depressed right ventricular function were apparent on radionuclide angiography. However, left ventricular dilatation and depressed left ventricular function were documented in DCM. Right ventricular volume was proportional to left ventricular volume in DCM, however, right ventricular volume was disproportionately greater in RVD. On the T1-201 perfusion image, left ventricular perfusion defects were delineated in 10 of 26 patients with DCM, and in one of four RVD patients. During two to eight year follow-up periods, six patients died suddenly five of whom had left ventricular perfusion defects. However, in 19 patients without left ventricular perfusion defects, only one sudden death was observed. A connecting link between sudden death and left ventricular perfusion defect is suggested. PMID:3841888

  3. Imaging of Small-Animal Models of Infectious Diseases

    PubMed Central

    Jelicks, Linda A.; Lisanti, Michael P.; Machado, Fabiana S.; Weiss, Louis M.; Tanowitz, Herbert B.; Desruisseaux, Mahalia S.

    2014-01-01

    Infectious diseases are the second leading cause of death worldwide. Noninvasive small-animal imaging has become an important research tool for preclinical studies of infectious diseases. Imaging studies permit enhanced information through longitudinal studies of the same animal during the infection. Herein, we briefly review recent studies of animal models of infectious disease that have used imaging modalities. PMID:23201133

  4. Radionuclide imaging of myocardial infarction using Tc-99m TBI

    SciTech Connect

    Holman, B.L.; Campbell, S.; Kirshenbaum, J.M.; Lister-James, J.; Jones, A.G.; Davison, A.; Antman, E.

    1985-05-01

    The cationic complex Tc-99m t-butylisonitrile (TBI) concentrates in the myocardial tissue of several animal species. Its myocardial distribution is proportional to blood flow both in zones of ischemia and in normal myocardium at rest. Planar, tomographic, and gated myocardial images have been obtained using Tc-99m TBI in the human. The authors investigated the potential application of Tc-99m TBI imaging to detect and localize myocardial infarction. Four subjects without clinical evidence of cardiovascular disease and five patients with ECG evidence of previous myocardial infarction were studied. Tc-99m TBI (10mCi) was injected intravenously with the patient in a resting state with planar imaging in the anterior, 30 and 70 degree LAO projections beginning one hr after injection. The distribution of the tracer was homogeneous throughout the left ventricular wall in the normal subjects. Regional perfusion defects were present in 4/5 of the patients with myocardial infarction. Location of the defects corresponded to the location of the infarct using ECG criteria (2 inferoposterior and 2 anterior). The patient in whom the Tc-99m TBI image appeared normal had sustained a subendocardial myocardial infarct which could not be localized by ECG; the other 4 pts had transmural infarcts. Anterior and 30 degree LAO images were of excellent quality in all cases; there was overlap of the liver on the inferior wall of the left ventricle on the 70 degree LAO views. The authors conclude that accurate perfusion imaging may be possible using Tc-99m TBI in patients with transmural myocardial infarction.

  5. Radiolabeling strategies for radionuclide imaging of stem cells.

    PubMed

    Wolfs, Esther; Verfaillie, Catherine M; Van Laere, Koen; Deroose, Christophe M

    2015-04-01

    The interest in the use of stem cells as a source for therapy has increased dramatically over the last decades. Different stem cell types have been tested in both in vitro and in vivo models, because of their properties such as differentiation potential, trophic effects and immune modulatory properties. To further optimize the use of different stem cell types for the treatment of disease in a clinical setting, it is necessary to know more about the in vivo behavior of these cells following engraftment. Until now, the golden standard to preclinically evaluate cell therapy was histology, which is an invasive method as the animals need to be sacrificed. This hampers the generation of dynamic information and results in only one single point in time available for analysis per animal. For more information regarding cell migration, in situ persistence, viability, proliferation and differentiation, molecular imaging can be used for imaging cells after transplantation dynamically and longitudinally, in a noninvasive way. With this technology, it becomes possible to track cells within the same subjects over a long period of time. PMID:25534590

  6. Progress of Focusing X-ray and Gamma-ray Optics for Small Animal Imaging

    SciTech Connect

    Pivovaroff, M J; Funk, T; Barber, W C; Ramsey, B D; Hasegawa, B H

    2005-08-05

    Significant effort is currently being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. Ideally, one would like to discern these functional and metabolic relationships with in vivo radionuclide imaging at spatial resolutions approaching those that can be obtained using the anatomical imaging techniques (i.e., <100 {micro}m), which would help to answer outstanding questions in many areas of biomedicine. In this paper, we report progress on our effort to develop high-resolution focusing X-ray and gamma-ray optics for small-animal radionuclide imaging. The use of reflective optics, in contrast to methods that rely on absorptive collimation like single- or multiple-pinhole cameras, decouples spatial resolution from sensitivity (efficiency). Our feasibility studies have refined and applied ray-tracing routines to design focusing optics for small animal studies. We also have adopted a replication technique to manufacture the X-ray mirrors, and which in experimental studies have demonstrated a spatial resolution of {approx}190 {micro}m. We conclude that focusing optics can be designed and fabricated for gamma-ray energies, and with spatial resolutions, and field of view suitable for in vivo biological studies. While the efficiency of a single optic is limited, fabrication methods now are being developed that may make it possible to develop imaging systems with multiple optics that could collect image data over study times that would be practical for performing radionuclide studies of small animals.

  7. Tri-modality small animal imaging system

    SciTech Connect

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  8. Small animal cardiovascular MR imaging and spectroscopy.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; Moonen, Rik P M; Motaal, Abdallah G; Prompers, Jeanine J; Strijkers, Gustav J; Vandoorne, Katrien; Nicolay, Klaas

    2015-08-01

    The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled. PMID:26282195

  9. Animal imaging studies of potential brain damage

    NASA Astrophysics Data System (ADS)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  10. A review of small animal imaging planar and pinhole spect Gamma camera imaging.

    PubMed

    Peremans, Kathelijne; Cornelissen, Bart; Van Den Bossche, Bieke; Audenaert, Kurt; Van de Wiele, Christophe

    2005-01-01

    Scintigraphy (positron emission tomography (PET) or single photon emission computed tomography (SPECT) techniques) allows qualitative and quantitative measurement of physiologic processes as well as alterations secondary to various disease states. With the use of specific radioligands, molecular pathways and pharmaco-kinetic processes can be investigated. Radioligand delivery can be (semi)quantified in the region of interest in cross-sectional and longitudinal examinations, which can be performed under the same conditions or after physiologic or pharmacologic interventions. Most preclinical pharmacokinetic studies on physiological and experimentally altered physiological processes are performed in laboratory animals using high-resolution imaging systems. Single photon emission imaging has the disadvantage of decreased spatial and temporal resolution compared with PET. The advantage of SPECT is that equipment is generally more accessible and commonly used radionuclides have a longer physical half-life allowing for investigations over a longer time interval. This review will focus on single photon emission scintigraphy. An overview of contemporary techniques to measure biodistribution and kinetics of radiopharmaceuticals in small animal in vivo is presented. Theoretical as well as practical aspects of planar gamma camera and SPECT pinhole (PH) imaging are discussed. Current research is focusing on refining PH SPECT methodology, so specific regarding technical aspects and applications of PH SPECT will be reviewed. PMID:15869162

  11. First Results of Small Animal Imaging Spect Detector for Cardiovascular Disease Studies on Mice

    NASA Astrophysics Data System (ADS)

    Magliozzi, M. L.; Ballerini, M.; Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Torrioli, S.; Veneroni, P.; Majewsky, S.; Mok, S. P. G.; Tsui, B. M. W.; Wang, Y.; Marano, G.; Musumeci, M.; Palazzesi, S.; Ciccariello, G.; de Vincentis, G.; Accorsi, R.

    2008-06-01

    We have developed a compact, open, Dual Head pinhole SPECT system for high resolution molecular imaging with radionuclides of mice, dedicated mainly to preclinical study of stem cells capability to recover myocardial infarction. The gamma detector is made of pinhole tungsten collimators, pixellated scintillators, matrix of multi-anode PMTs and individual channel readout. Measurements have been performed on phantoms and live mice devoted initially to test and calibrate the system and to optimize protocols. The implemented system and the first results will be presented, demonstrating the effectiveness of our dedicated SPECT detector for small animal imaging.

  12. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  13. Comparison of magnetic resonance imaging and radionuclide imaging in the evaluation of renal transplant failure

    SciTech Connect

    Goldsmith, M.S.; Tanasescu, D.E.; Waxman, A.D.; Crues, J.V. III

    1988-04-01

    Magnetic resonance imaging (MRI) was compared with radionuclide scintigraphy (RNS) in 16 patients with renal transplants undergoing renal failure to determine which modality could best discriminate between rejection, acute tubular necrosis (ATN), and cyclosporin nephrotoxicity (CN). Although all rejecting transplants had reduced corticomedullary differentiation (CMD) on T1-weighted MR images, four of five cases of ATN had appearances that could not be distinguished from rejection. A normal CMD suggests nonrejection, but diminished CMD is nonspecific. Tc-99m DTPA/I-131 hippuran RNS was superior to MRI in differentiating rejection from ATN. Although ATN and CN have similar RNS patterns, this distinction can usually be made based on the clinical time course. Other potential uses of MRI in the evaluation of the renal transplants are discussed.

  14. Comparison of radionuclide imaging and ultrasonography of the liver.

    PubMed

    Elyaderani, M K; Gabriele, O F

    1983-01-01

    Radionuclide liver scans and gray scale ultrasonography of the liver were compared in 456 patients with various abnormalities including normal variants, jaundice, abscesses, and metastatic diseases. In general the better resolution of sonography detected smaller and deeper focal lesions than nuclide scans, but nuclide studies were more informative in hepatocellular disorders. Nuclide studies frequently demonstrated lesions that could be further delineated by sonography as either cystic or solid. This ability was of particular significance in isolated liver lesions found during metastatic surveys. PMID:6823576

  15. Radionuclide salivary imaging usefulness in a private otolaryngology practice

    SciTech Connect

    Schall, G.L.; Smith, R.R.; Barsocchini, L.M.

    1981-01-01

    Radionuclide salivary gland scans were performed on 44 patients using sodium pertechnetate Tc 99m. The accuracy of the scans and their usefulness in the clinical treatment of the patients were reviewed. The scan provided helpful information in 31 of 38 cases in which adequate follow-up data were available, although it proved diagnostic in only six patients. It was particularly useful in the evaluation of primary salivary gland neoplasms, acute and chronic sialadenitis, and sialolithiasis, as well as in the differential diagnosis of xerostomia. The value of this procedure in the elucidation of a variety of morphologic and functional diseases of these glands warrants its greater application in private otolaryngologic practices.

  16. Method and apparatus for animal positioning in imaging systems

    SciTech Connect

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  17. Should single-phase radionuclide bone imaging be used in suspected osteomyelitis

    SciTech Connect

    Fihn, S.D.; Larson, E.B.; Nelp, W.B.; Rudd, T.G.; Gerber, F.H.

    1984-10-01

    The records of 69 patients who had 86 delayed, static radionuclide bone images for suspected osteomyelitis were studied to determine the effects of this procedure on diagnosis and treatment. Sensitivity, specificity, and positive predictive value were lower than reported in several other studies. When osteomyelitis was unlikely, imaging was either negative or falsely positive and rarely affected treatment. In 46 cases where osteomyelitis was more likely, imaging potentially changed therapy in 19 but was unhelpful or misleading in 15. Static-phase images with ''definite'' interpretations, particularly when negative, are specific, but ''equivocal'' studies may lead to diagnostic and therapeutic errors. When ostemyelitis is improbable, imaging rarely changes diagnosis or therapy.

  18. Physiological considerations in radionuclide imaging of the penis during impotence therapy

    SciTech Connect

    Chaudhuri, T.K.; Fink, S.; Burger, R.H.; Netto, I.C.; Palmer, J.D. )

    1989-01-01

    The increased use of intracorporeal drugs in the treatment of impotence has advanced our understanding of erectile physiology. Radionuclide imaging of the penis (nuclear penogram) has provided clinicians with a noninvasive, objective measure of blood flow and blood pool changes during erection and with assistance in the quantitative documentation of therapeutic effect. 39 references.

  19. Vesicorectal fistula detected on direct radionuclide cystography--importance of fecal matter imaging.

    PubMed

    Aghaei, Atena; Sadeghi, Ramin; Saeedi, Parisa

    2014-01-01

    We report an 11 year old male patient with the history of imperforate anus, which was repaired surgically 4 years ago. He has been complaining of intermittent passing of urine into the rectum recently. The vesicorectal fistula in this patient was proven by imaging of the fecal matter post direct radionuclide cystography study. Our case showed that nuclear medicine imaging can be extended to unanimated objects such as patients' excrements or fluids with important diagnostic yields. PMID:24610652

  20. New Strategies for 0.5 mm Resolution, High Sensitivity, Multi- Radionuclide Imaging

    SciTech Connect

    Levin, Craig S.

    2015-02-28

    This project constitutes a 0.5-millimeter resolution radionuclide detector system built from CZT. (1) A novel dual-crystal photon detector module design with cross-strip electrode patterns was developed; (2) The module mechanical assembly was built; (3) A data acquisition (DAQ) chain for the module was produced; (4) A software tool was developed to incorporate novel time and energy measurement calibration techniques. (5) A small multi-detector prototype of the radionuclide imaging system was built from this module for system-level characterizations.

  1. Pitfalls and Limitations of Radionuclide Imaging in Endocrinology.

    PubMed

    Agrawal, Kanhaiyalal; Esmail, Abdulredha A H; Gnanasegaran, Gopinath; Navalkissoor, Shaunak; Mittal, Bhagwant Rai; Fogelman, Ignac

    2015-09-01

    Several different techniques, radiopharmaceuticals, and imaging modalities are commonly used in nuclear medicine for studies of endocrine organs. Nuclear medicine is used in the management of benign and malignant thyroid, parathyroid, and neuroendocrine disorders. Thus, it is essential to acknowledge pitfalls and the limitations of nuclear medicine imaging for accurate diagnosis and patient management. PMID:26278855

  2. Differential optical imaging in animal models using infrared transillumination

    NASA Astrophysics Data System (ADS)

    Dixit, Sanhita; Le, Theresamai; Amin, Khalid; Faris, Gregory W.

    2007-02-01

    We demonstrate the use of diffuse optical imaging via transillumination to detect cancerous tissue in a rat animal model. In this imaging modality infrared radiation is transmitted through whole animal tissue. The radiation is nonionizing and uses endogenous contrast: namely deoxyhemoglobin (Hb) and oxyhemoglobin (HbO). Differential image analysis is performed to visualize the presence of cancerous tissue. Varying levels of inspired air and carbogen gases ensure a differential response in absorption by blood due to changing levels of Hb and HbO. We believe that this response may be sufficient to provide contrast in differential image analysis. The present method also sheds light on physiological challenges in whole animal imaging especially with respect to significant optical signals from healthy tissue. Specifically, we have seen strong signals from abdominal regions in normal rats indicative of diet related anomalous transmission. We have also been able to track the changes in optical signal during animal death.

  3. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    SciTech Connect

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.

  4. Hyperparathyroidism: comparison of MR imaging with radionuclide scanning

    SciTech Connect

    Peck, W.W.; Higgins, C.B.; Fisher, M.R.; Ling, M.; Okerlund, M.D.; Clark, O.H.

    1987-05-01

    Twenty-three patients with hyperparathyroidism were evaluated preoperatively with magnetic resonance (MR) imaging. Twenty patients also underwent thallium-201/technetium-99m scintigraphy. Of 22 patients with primary hyperparathyroidism, 12 had persistent or recurrent disease. One had secondary hyperparathyroidism due to end-stage renal disease. MR imaging allowed accurate localization of abnormal parathyroid glands in 64% evaluated prospectively and 82% evaluated retrospectively. Scintigraphy allowed localization of 60% evaluated prospectively and 70% retrospectively. The two imaging modalities together allowed detection of 68% evaluated prospectively and 91% retrospectively. MR imaging allowed detection of two of five mediastinal adenomas evaluated prospectively and four of five retrospectively. In patients who underwent both imaging studies, MR was more successful in those with previous neck surgery (73% evaluated prospectively and 91% retrospectively) than in those with no prior surgery (57% prospectively and 71% retrospectively). Scintigraphy allowed accurate localization in 64% evaluated prospectively and 64% retrospectively in patients with previous surgery versus 57% prospectively and 86% retrospectively in patients with no prior neck surgery. Four false-positive results were obtained with MR imaging and three with scintigraphy. MR imaging was useful for parathyroid localization in patients with hyperparathyroidism, particularly in patients requiring additional surgery.

  5. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  6. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    SciTech Connect

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-23

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  7. ECG Gated Ultrasonic Small Animal Imaging.

    PubMed

    Liu, Jian-Hung; Jeng, Geng-Shi; Wu, Tung-Ke; Li, Pai-Chi

    2005-01-01

    Echocardiography is a routine clinical procedure to diagnose cardiac functions. The organic structure of the mouse is similar to that of human so that murine echocardiography has potentially become an effective tool for the assessment of human cardiovascular disease. However, clinical ultrasonic imaging systems are not suitable for murine cardiac imaging due to its limited spatial and temporal resolution. Thus, high frequency ultrasonic imaging (≥ 20 MHz) is necessary in order to provide spatial resolution at the order of 100 μm. Furthermore, due to the lack of transducer arrays at such a high frequency, single-element transducer with mechanical scanning is typically used. Thus the frame rate is insufficient for imaging the quick motion of the mouse. In this paper, a high frequency ultrasonic imaging system with electrocardiography gating is built in order to provide both high spatial resolution and high temporal effecting resolution. The system utilizes the R-wave trigger signal from murine electrocardiography. Image data are acquired in either the block scanning mode or the line scanning mode. In block scanning, murine cardiac images in systole and diastole can be retrospectively reconstructed with a short data acquisition time. In line scanning, on the other hand, images during the entire cardiac cycle can be obtained. It is demonstrated that the effective frame rate can be up to 2 kHz, which is only limited by the pulse repetition rate of the system. PMID:17282556

  8. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  9. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  10. Radionuclide imaging of the liver in human fascioliasis

    SciTech Connect

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  11. [The role of trace elements in radiation protection of plants and animals on radionuclide contaminated territories of Poles'e].

    PubMed

    Gudkov, I N; Lazarev, N M; Grusha, V V; Bidenko, V N

    2011-01-01

    The retrospective review and analysis of works on some physiologically active trace elements influence on the radionuclides transfer from soil to plants and with forage to animals are presented. Also reviewed is their radioresistance in the contaminated territories. It is shown that some elements--zinc, manganese, cobalt--being appled to the soil at seeding or spraying plants with aqueous solutions and also in complex compounds are capable of reducing significantly the 90Sr and 137Cs transit to agricultural plants, and with forage--into the animals bodies. We have also shown that trace elements reduce the effects of radiation injury. The mechanisms of the radioprotective action of trace elements are also discussed in the paper. PMID:21520614

  12. Chemical methods for reduction of the transfer of radionuclides to farm animals in semi-natural environments.

    PubMed

    Hove, K

    1993-09-24

    The same chemicals can be used for reduction of radionuclide transfer to animals whether kept on farms or grazing in semi-natural and natural habitats. However, different techniques are required for administration of the active compounds. Dairy ruminants may be treated effectively by inclusion of chemicals in supplemental concentrates. Practical experience gained after the Chernobyl accident has shown that both clay minerals and hexacyanoferrates are effective in preventing high radiocaesium levels in animal products. Chemicals such as bentonite clays and CaCO3, used for reduction of 137Cs and 90Sr transfer respectively, must be fed in hectogram quantities and are only practical for dairy animals in semi-natural ecosystems. Salt licks and sustained release boli with hexacyanoferrates as caesium binders have been developed and used successfully after the Chernobyl accident for meat producing cattle, sheep and reindeer which graze freely for extended periods. Daily doses of 25-300 mg in sheep and 250-2000 mg in cows reduces 137Cs accumulation 2-10-fold. Binders for 90Sr have not been tested in grazing animals. Stable iodine could be provided in salt licks and indwelling rumen boli at rates required to block radioiodine uptake by the thyroid gland. Boli and salt licks are highly cost effective in reducing doses to man when compared to interdiction of food from farm animals. PMID:8248770

  13. Comparison of ultrasonography, computerized tomography, and radionuclide imaging in the diagnosis of acute and chronic cholecystitis

    SciTech Connect

    Matolo, N.M.; Stadalnik, R.C.; McGahan, J.P.

    1982-12-01

    Seventy-five patients with abdominal pain in the right upper quadrant who were subsequently confirmed operatively and histologically to have acute or chronic cholecystitis underwent radionuclide imaging of the biliary tree, ultrasonography, and/or computerized tomography before operation. fifty-eight of the patients had acute cholecystitis and 17 had chronic cholecystitis and cholelithiasis. Analysis of our data indicates that ultrasonography is an accurate and better screening test than cholescintigraphy in the diagnosis of chronic cholecystitis and cholelithiasis, but it is less accurate in the detection of acute cholecystitis. On the other hand, radionuclide imaging is highly sensitive and specific in the early diagnosis of acute cholecystitis, but it is poor in the diagnosis of chronic cholecystitis and cholelithiasis unless the cystic duct is obstructed. CT scanning is more expensive than ultrasonography but may be extremely helpful in problematic cases such as the diagnosis of the cause in biliary obstruction or in imaging of the pancreas.

  14. Need for routine delayed radionuclide hepatobiliary imaging in patients with intercurrent disease

    SciTech Connect

    Drane, W.E.; Nelp, W.B.; Rudd, T.G.

    1984-06-01

    A retrospective review was made of all radionuclide hepatobiliary studies performed in a major trauma center over a 27-month period and correlated with the patients' clinical course. In a population of 42 patients (27 of whom were on total parenteral nutrition (TPN)) who had severe intercurrent illness (primarily trauma), and an additional 18 patients who had hepatocellular dysfunction, hepatobiliary imaging confirmed a patent cystic duct in 43 of 60 patients (72%). Of 17 patients who had nonvisualization of the gallbladder, four had surgically proved acute cholecystitis. The presence of gallstones, wall thickening, or sludge on sonograms did not correlate with cystic duct patency, and was not specific for acute cholecystitis. Though gallbladder function is compromised in the population with severe intercurrent disease, radionuclide hepatobiliary imaging is still valuable; it can confirm a patent systic duct in at least 72% of patients if routine imaging is continued for up to 24 hours.

  15. Radionuclide imaging and ultrasound in liver/spleen trauma: a prospective comparison

    SciTech Connect

    Froelich, J.W.; Simeone, J.F.; McKusick, K.A.; Winzelberg, G.G.; Strauss, H.W.

    1982-11-01

    In a prospective blind study of liver/spleen trauma, 32 consecutive patients were evaluated by radionuclide imaging (/sup 99m/Tc-sulfur colloid) and gray-scale ultrasound. Six patients (19%) had inadequate sonograms due to injuries and pain. Thirteen (41%) were normal, 13 (41%) were abnormal with one technique or the other, and there was a discrepancy in 2 (6%). Of the 13 abnormal patients, 1 had a lacerated spleen, 2 had angiographic confirmation of a subcapsular hematoma, and 10 showed resolution on follow-up. Two patients with left-sided trauma had abnormal radionuclide scans of the liver; sonograms were initially normal in one of them, but subsequent imaging confirmed the abnormality. The authors feel that imaging with /sup 99m/Tc-sulfur colloid should be the primary screening examination for liver/spleen trauma.

  16. Ventilation perfusion radionuclide imaging in cryptogenic fibrosing alveolitis.

    PubMed

    Bourke, S J; Hawkins, T; Keavey, P M; Gascoigne, A D; Corris, P A

    1993-06-01

    There is increasing interest in ventilation perfusion (V/Q) imaging in cryptogenic fibrosing alveolitis because of the data these scans provide on the dynamic V/Q relationships in such patients undergoing single lung transplantation. However, the full spectrum of V/Q abnormalities in this disease is poorly defined. We therefore analysed the V/Q scans of 45 consecutive patients with advanced cryptogenic fibrosing alveolitis being considered for single lung transplantation. Scans were classified according to the presence, severity and degree of matching of defects in ventilation and perfusion images and the results were compared with the data obtained from lung function tests. Ventilation images showed defects in 13 (29%) and 'washout delay' in 15 (33%) patients; 10 (22%) patients had asymmetric distribution of ventilation with one lung receiving > 60% of total ventilation. Perfusion images showed normal perfusion in 8 (18%), mild defects in 18 (40%) and major defects in 19 (42%) patients. The distribution of perfusion between lungs was significantly asymmetric in 20 (45%) patients. V/Q images were matched in 15 (33%), mildly mismatched in 15 (33%) and severely mismatched in 15 (33%) patients, but the degree of V/Q mismatch did not show a relationship to KCO, PaO2 or A-aO2 gradient. The appearances were atypical of pulmonary embolism in eight patients. V/Q images in cryptogenic fibrosing alveolitis show a diverse range of appearances and may mimic pulmonary embolism. V/Q imaging complements the data obtained from lung function tests and is particularly useful in defining the differential function of each lung which is particularly important in the assessment of patients for single lung transplantation. PMID:8321484

  17. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults.

    PubMed

    Keramida, Georgia; James, Jacqueline M; Prescott, Mary C; Peters, Adrien Michael

    2015-09-01

    To understand pitfalls and limitations in adult renography, it is necessary to understand firstly the physiology of the kidney, especially the magnitude and control of renal blood flow, glomerular filtration rate and tubular fluid flow rate, and secondly the pharmacokinetics and renal handling of the three most often used tracers, Tc-99m-mercaptoacetyltriglycine (MAG3), Tc-99m-diethylene triamine pentaacetic acid (DTPA) and Tc-99m-dimercaptosuccinic acid (DMSA). The kidneys may be imaged dynamically with Tc-99m-MAG3 or Tc-99m-DTPA, with or without diuretic challenge, or by static imaging with Tc-99m-DMSA. Protocols are different according to whether the kidney is native or transplanted. Quantitative analysis of dynamic data includes measurement of renal vascularity (important for the transplanted kidney), absolute tracer clearance rates, differential renal function (DRF) and response to diuretic challenge. Static image reveals functional renal parenchymal damage, both focal and global, is useful in the clinical management of obstructive uropathy, renal stone disease and hypertension (under angiotensin converting enzyme inhibition), and is the preferred technique for determining DRF. Diagnosis based on morphological appearances is important in transplant management. Even though nuclear medicine is now in the era of hybrid imaging, renal imaging remains an important subspecialty in nuclear medicine and requires a sound basing in applied physiology, the classical supporting discipline of nuclear medicine. PMID:26278854

  18. Role of radionuclide cardiac imaging in coronary artery bypass surgery

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Mostel, E.

    1987-01-01

    The main applications of cardiac nuclear imaging in coronary artery bypass surgery include: patient selection, prediction of improvement in resting LV function after revascularization, diagnosis of perioperative myocardial infarction, assessment of the results of revascularization, evaluation of new or recurrent symptoms, and in risk stratification. Proper understanding of which test to be used, when, and why may be important to optimize patient management.

  19. Radionuclide imaging - A molecular key to the atherosclerotic plaque

    PubMed Central

    Langer, Harald Franz; Haubner, Roland; Pichler, Bernd Juergen; Gawaz, Meinrad

    2008-01-01

    Despite primary and secondary prevention, serious cardiovascular events like unstable angina or myocardial infarction still account for one third of all deaths worldwide. Therefore, identifying individual patients with vulnerable plaques at high risk for plaque rupture is a central challenge in cardiovascular medicine. Several non-invasive techniques, such as MRI, multislice computed tomography and electron beam tomography are currently being tested for their ability to identify such patients by morphological criteria. In contrast, molecular imaging techniques use radiolabeled molecules to detect functional aspects in atherosclerotic plaques by visualizing its biological activity. Based upon the knowledge about the pathophysiology of atherosclerosis, various studies in vitro, in vivo and the first clinical trials have used different tracers for plaque imaging studies, including radioactive labelled lipoproteins, components of the coagulation system, cytokines, mediators of the metalloproteinase system, cell adhesion receptors and even whole cells. This review gives an update on the relevant non-invasive plaque imaging approaches using nuclear imaging techniques to detect atherosclerotic vascular lesions. PMID:18582628

  20. Cardiovascular imaging: what have we learned from animal models?

    PubMed Central

    Santos, Arnoldo; Fernández-Friera, Leticia; Villalba, María; López-Melgar, Beatriz; España, Samuel; Mateo, Jesús; Mota, Ruben A.; Jiménez-Borreguero, Jesús; Ruiz-Cabello, Jesús

    2015-01-01

    Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models. PMID:26539113

  1. Radionuclide thyroid imaging in the newborn with suspected hypothyroidism

    SciTech Connect

    Yoosufani, Z.; Karimeddini, M.K.; Spencer, R.P.; Ratzan, S.K.

    1985-05-01

    The authors reviewed their experience with thyroid imaging in newborns with suspected congenital hypothyroidism. The infants were selected through a hypothyroidism screening program. There were 19 infants (14 females, 5 males) from 2 to 8 weeks of age with a blood T4 <6 ..mu..g/dl. Thyroid imaging was performed with either IV or IM injection of 0.5 to 1 mCi of Tc 99m pertechnetate using a gamma camera with a pinhole collimator. Salivary glands and stomach were also imaged for assessing the presence of the transport system. In 6 infants (32%) no thyroid tissue was visualized (thyroid hypoplasia). Four infants (21%) showed ectopic thyroid tissue in the lingual or sublingual area. Two infants (10%) had evidence of goiter. The remaining 7 infants (37%) had normal appearing glands in size and position. TSH values were markedly elevated (> 100 ..mu mu../ml) in all 10 patients with hypoplastic or ectopic thyroid. Two patients were subsequently found to have normal thyroid function (one with TBG deficiency and one with transient hypothyroidism). Thyroidal as well as salivary gland trapping of the radiotracer in these two infants was clearly less than that of adults suggesting immaturity of the transport/trapping mechanism. All 4 patients with ectopic thyroid had markedly increased uptake of the radiotracer. All other patients with elevated TSH levels had increased uptake of the radiotracer as compared to the normals. They conclude that thyroid scanning is an important tool in delineating the etiology of congenital hypothyroidism.

  2. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  3. Cross-bridged Macrocyclic Chelators for Stable Complexation of Copper Radionuclides for PET Imaging

    PubMed Central

    Anderson, Carolyn J.; Wadas, Thaddeus J.; Wong, Edward H.; Weisman, Gary R.

    2015-01-01

    Copper-64 (t1/2 = 12.7 h, β+: 17.4%, Eβ+max = 656 keV; β−: 39%, Eβ-max = 573 keV) has emerged as an important non-standard positron-emitting radionuclide for PET imaging of diseased tissues. A significant challenge of working with copper radionuclides is that they must be delivered to the living system as a stable complex that is attached to a biological targeting molecule for effective imaging and therapy. Significant research has been devoted to the development of ligands that can stably chelate 64Cu, in particular, the cross-bridged macrocyclic chelators. This review describes the coordination chemistry and biological behavior of 64Cu-labeled cross-bridged complexes. PMID:18043536

  4. Synthetic copolymer kit for radionuclide blood-pool imaging

    SciTech Connect

    Bogdanov, A.A. Jr.; Callahan, R.J.; Wilkinson, R.A.

    1994-11-01

    A synthetic blood pool imaging agent labeled with {sup 99m}Tc is reported. The agent, methoxypolyethylene glycolpoly-L-Iysyl-diethylenetriaminepentaacetate monoamide was synthesized from a covalent graft copolymer of methoxypolyethylene glycol succinate (molecular weight 5.1 kD) with subsequent modification of the product with diethylenetriamineacetyl residues. The polymer was formulated into a kit that contained Sn(II) and sodium acetate for radiolabeling with {sup 99m}Tc. Biodistribution studies were performed in rats. Blood-pool imaging and blood clearance determination was carried out in rabbits and in a rhesus monkey. The {sup 99m}Tc-labeled agent [specific activity greater than 3.7 GBq/mg; radiochemical purity more than 98% by thin-layer and high-performance liquid chromatography (HPLC)] demonstrated remarkable stability in solution (pH 5.5-6.5) with no radioactive products of degradation detectable by HPLC even at 24 hr postlabeling. The agent exhibited prolonged circulation in the blood with a half-life of 31.5 hr in rabbits. Bio-distribution in rats showed a lack of substantial accumulation of the agent in the reticuloendothelial system. Sequential acquisitions were performed in a rhesus monkey. The {sup 99m}Tc-labeled polymer kit was compared with the {sup 99m}Tc-red blood cells (RBCs) labeled in vitro. Both methods produced similar heart-to-lung ratios. The ratios remained essentially unchanged for up to 15 hr postinjection. The {sup 99m}Tc-labeled methaxypolyethylene glycol-poly-L-lysyl-diethylenetriamine pentaacetate monoamide is an attractive alternative to radiolabeled RBCs for blood pool imaging applications. 33 refs., 7 figs.

  5. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification.

    PubMed

    deKemp, Robert A; Renaud, Jennifer M; Klein, Ran; Beanlands, Rob S B

    2016-02-01

    Myocardial perfusion imaging is performed most commonly using Tc-99m-sestamibi or tetrofosmin SPECT as well as Rb-82-rubidium or N-13-ammonia PET. Diseased-to-normal tissue contrast is determined by the tracer retention fraction, which decreases nonlinearly with flow. Reduced tissue perfusion results in reduced tracer retention, but the severity of perfusion defects is typically underestimated by 20% to 40%. Compared to SPECT, retention of the PET tracers is more linearly related to flow, and therefore, the perfusion defects are measured more accurately using N-13-ammonia or Rb-82. PMID:26590778

  6. Comparative placental transfer, localization, and effects of radionuclides in experimental animal and human pregnancies

    SciTech Connect

    Sikov, M.R.; Meznarich, H.K.; Traub, R.J.

    1991-11-01

    Estimating radiation doses to the human embryo/fetus from radionuclides and predicting effects requires extrapolation of data from studies of laboratory species, with scaling for species-specific developmental stage and gestational time relationships and maturities at birth. Combinations of fetal-to-maternal ratios of concentrations, patterns of deposition, transfer kinetics, and compartmental and physiologic models are used to predict radioactivity levels and radiation doses to the conceptus. There is agreement between values expressing fractional transfer across the placenta ({theta}) with tabulated values for fractional absorption (f{sub 1}) from gastrointestinal (GI) tract or lung for most substances commonly involved in metabolic processes. A tendency toward disagreement for some other materials is thought to involve explanations based on their physicochemistry, toxicity, or the influence of target tissue development on placental transfer kinetics.

  7. It's Not Easy Being Green: Student Recall of Plant and Animal Images

    ERIC Educational Resources Information Center

    Schussler, Elisabeth E.; Olzak, Lynn A.

    2008-01-01

    It is well documented that people are less interested in studying plants than animals. We tested whether university students would selectively recall more animal images than plant images even when equally-nameable plant and animal images were presented for equal lengths of time. Animal and plant images were pre-tested and 14 animal-plant pairs…

  8. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 1. Goat milk.

    PubMed

    Howard, B J; Wells, C; Barnett, C L

    2016-04-01

    Under the MODARIA (Modelling and Data for Radiological Impact Assessments Programme of the International Atomic Energy Agency), there has been an initiative to improve the derivation, provenance and transparency of transfer parameter values for radionuclides. The approach taken for animal products is outlined here and the first revised table for goat milk is provided. Data from some references used in TRS 472 were removed and reasons given for removal. Particular efforts were made to improve the number of CR (concentration ratio) values which have some advantages over transfer coefficients. There is little difference in most of the new CR and Fm (transfer coefficient) values for goat milk compared with those in TRS 472. In TRS 472, 21 CR values were reported for goat milk. In the 2015 dataset for goat milk CR values for a further 14 elements are now included. The CR and Fm values for only one element (Co) were removed. PMID:26845198

  9. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging

    PubMed Central

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU. PMID:26901051

  10. Radionuclide imaging of the injured spleen and liver

    SciTech Connect

    Lutzker, L.G.

    1983-07-01

    After the introduction of Tc-99m sulfur colloid and the gamma camera, radiocolloid liver-spleen imaging displaced angiography as the primary modality for diagnosing injury because of its sensitivity and non-invasiveness. A splenic defect may be nonspecific since it can be caused by a congenital variant. Specificity can be increased by awareness of common morphologic variations and judicious use of detector angulation to separate an overlapping left lobe. An increased incidence of overwhelming sepsis in postsplenectomy patients led to a more conservative approach to splenic injury, aided by sequential scintigraphy to demonstrate healing of traumatic defects. This decreased the significance of an initial false-positive scan that was caused by congenital variation, since the clinical ''bottom line'' was failure of a defect to enlarge or cause delayed rupture. Computed tomography (CT) is also a sensitive method of diagnosing injury or spleen and liver as well as other intraabdominal organs such as the kidneys. Its performance has not been compared to simultaneous multiorgan scintigraphy, an underutilized but very useful approach.

  11. Development of a combined microSPECT/CT system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  12. Visual images in Luigi Galvani's path to animal electricity.

    PubMed

    Piccolino, Marco

    2008-01-01

    The scientific endeavor that led Luigi Galvani to his hypothesis of "animal electricity," i.e., of an electricity present in a condition of disequilibrium between the interior and the exterior of excitable animal fibers, is reviewed here with particular emphasis to the role played by visual images in Galvani's path of discovery. In 1791 Galvani formulated his model of neuromuscular physiology on the base of the image of a muscle and a nerve fiber together as in a "minute animal Leyden jar." This was the last instance of a series of physical models that accompanied Galvani's experimental efforts in the search of a theory capable of accounting for the electric nature of nerve conduction in spite of the many objections formulated in the eighteenth century against a possible role of electricity in animal physiology. PMID:18629700

  13. Small animal radiation research platform: imaging, mechanics, control and calibration.

    PubMed

    Matinfar, Mohammad; Gray, Owen; Iordachita, Iulian; Kennedy, Chris; Ford, Eric; Wong, John; Taylor, Russell H; Kazanzides, Peter

    2007-01-01

    In cancer research, well characterized small animal models of human cancer, such as transgenic mice, have greatly accelerated the pace of development of cancer treatments. The goal of the Small Animal Radiation Research Platform (SARRP) is to make those same models available for the development and evaluation of novel radiation therapies. In combination with advanced imaging methods, small animal research allows detailed study of biological processes, disease progression, and response to therapy, with the potential to provide a natural bridge to the clinical environment. The SARRP will realistically model human radiation treatment methods in standard animal models. In this paper, we describe the mechanical and control structure of the system. This system requires accurate calibration of the x-ray beam for both imaging and radiation treatment, which is presented in detail in the paper. PMID:18044657

  14. The need for routine delayed radionuclide hepatobiliary imaging in patients with intercurrent disease

    SciTech Connect

    Drane, W.E.; Nelp, W.B.; Rudd, T.G.

    1984-06-01

    A retrospective review was made of all radionuclide hepatobiliary studies performed in a major trauma center over a 27-month period and correlated with the patients' clinical course. In a population of 42 patients (27 of whom were on total parenteral nutrition (TPN)) who had severe intercurrent illness (primarily trauma), and an additional 18 patients who had hepatocellular dysfunction, hepatobiliary imaging confirmed a patent cystic duct in 43 of 60 patients (72%). Fourteen of these 43 patients (33%) had gallbladder visualization at later than one hour after radiotracer administration, and seven of these 14 required imaging from four to 24 hours. Of 17 patients who had nonvisualization of the gallbladder, four had surgically proved acute cholecystitis. Images of nine of the remaining 13 patients with gallbladder nonvisualization were not obtained for 24 hours. The presence of gallstones, wall thickening, or sludge on sonograms did not correlate with cystic duct patency, and was not specific for acute cholecystitis. Though gallbladder function is compromised in the population with severe intercurrent disease, radionuclide hepatobiliary imaging is still valuable; it can confirm a patent cystic duct in at least 72% of patients if routine imaging is continued for up to 24 hours.

  15. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  16. CNS Animal fMRI imaging in Pain and Analgesia

    PubMed Central

    Borsook, David; Becerra, Lino

    2010-01-01

    Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a “language of translation” between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia. PMID:21126534

  17. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  18. Photoacoustic Imaging of Animals with an Annular Transducer Array

    NASA Astrophysics Data System (ADS)

    Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui

    2014-07-01

    A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.

  19. High-Resolution and Animal Imaging Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Belcari, Nicola; Guerra, AlbertoDel

    During the last decade we have observed a growing interest in "in vivo" imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called "molecular imaging."Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity.

  20. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status.

    PubMed

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S; Poeppel, Thorsten D; van den Broek, Sebastiaan A M W; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  1. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status

    PubMed Central

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S.; Poeppel, Thorsten D.; van den Broek, Sebastiaan A. M. W.; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C.

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  2. Bioluminescent system for dynamic imaging of cell and animal behavior

    SciTech Connect

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James; and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  3. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy

    PubMed Central

    Zhao, He; Chao, Yu; Liu, Jingjing; Huang, Jie; Pan, Jian; Guo, Wanliang; Wu, Jizhi; Sheng, Mao; Yang, Kai; Wang, Jian; Liu, Zhuang

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) with various unique properties have attracted great attention in cancer theranostics. Herein, SWNTs are coated with a shell of polydopamine (PDA), which is further modified by polyethylene glycol (PEG). The PDA shell in the obtained SWNT@PDA-PEG could chelate Mn2+, which together with metallic nanoparticulate impurities anchored on SWNTs offer enhanced both T1 and T2 contrasts under magnetic resonance (MR) imaging. Meanwhile, also utilizing the PDA shell, radionuclide 131I could be easily labeled onto SWNT@PDA-PEG, enabling nuclear imaging and radioisotope cancer therapy. As revealed by MR & gamma imaging, efficient tumor accumulation of SWNT@PDA-131I-PEG is observed after systemic administration into mice. By further utilizing the strong near-infarared (NIR) absorbance of SWNTs, NIR-triggered photothermal therapy in combination with 131I-based radioisotope therapy is realized in our animal experiments, in which a remarkable synergistic antitumor therapeutic effect is observed compared to monotherapies. Our work not only presents a new type of theranostic nanoplatform based on SWNTs, but also suggests the promise of PDA coating as a general approach to modify nano-agents and endow them with highly integrated functionalities. PMID:27570554

  4. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy.

    PubMed

    Zhao, He; Chao, Yu; Liu, Jingjing; Huang, Jie; Pan, Jian; Guo, Wanliang; Wu, Jizhi; Sheng, Mao; Yang, Kai; Wang, Jian; Liu, Zhuang

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) with various unique properties have attracted great attention in cancer theranostics. Herein, SWNTs are coated with a shell of polydopamine (PDA), which is further modified by polyethylene glycol (PEG). The PDA shell in the obtained SWNT@PDA-PEG could chelate Mn(2+), which together with metallic nanoparticulate impurities anchored on SWNTs offer enhanced both T1 and T2 contrasts under magnetic resonance (MR) imaging. Meanwhile, also utilizing the PDA shell, radionuclide (131)I could be easily labeled onto SWNT@PDA-PEG, enabling nuclear imaging and radioisotope cancer therapy. As revealed by MR & gamma imaging, efficient tumor accumulation of SWNT@PDA-(131)I-PEG is observed after systemic administration into mice. By further utilizing the strong near-infarared (NIR) absorbance of SWNTs, NIR-triggered photothermal therapy in combination with (131)I-based radioisotope therapy is realized in our animal experiments, in which a remarkable synergistic antitumor therapeutic effect is observed compared to monotherapies. Our work not only presents a new type of theranostic nanoplatform based on SWNTs, but also suggests the promise of PDA coating as a general approach to modify nano-agents and endow them with highly integrated functionalities. PMID:27570554

  5. Fluorescence and Cerenkov luminescence imaging. Applications in small animal research.

    PubMed

    Schwenck, J; Fuchs, K; Eilenberger, S H L; Rolle, A-M; Castaneda Vega, S; Thaiss, W M; Maier, F C

    2016-04-12

    This review addresses small animal optical imaging (OI) applications in diverse fields of basic research. In the past, OI has proven to be cost- and time-effective, allows real-time imaging as well as high-throughput analysis and does not imply the usage of ionizing radiation (with the exception of Cerenkov imaging applications). Therefore, this technique is widely spread - not only geographically, but also among very different fields of basic research - and is represented by a large body of publications. Originally used in oncology research, OI is nowadays emerging in further areas like inflammation and infectious disease as well as neurology. Besides fluorescent probe-based contrast, the feasibility of Cerenkov luminescence imaging (CLI) has been recently shown in small animals and thus represents a new route for future applications. Thus, this review will focus on examples for OI applications in inflammation, infectious disease, cell tracking as well as neurology, and provides an overview over CLI. PMID:27067794

  6. Beta camera for static and dynamic imaging of charged-particle emitting radionuclides in biologic samples

    SciTech Connect

    Ljunggren, K.; Strand, S.E. )

    1990-12-01

    A detection system based on microchannel plates has been constructed to image charged particles emitted by radionuclides in biomedical samples. This technique has significant advantages over conventional film autoradiography for investigating the distribution of radiolabeled compounds: shorter acquisition times due to the high sensitivity, easier sample handling, direct quantification and the ability to perform dynamic studies. The detector performance shows a spatial resolution of 0.9 mm for carbon-14 ({sup 14}C) (0.156 MeV), good linearity and homogeneity. The noise level is below 50/(cm{sup 2}.sec). Successful imaging with this system has been performed with beta-emitters {sup 14}C, sulfur-35 ({sup 35}S), iodine-131 ({sup 131}I), yttrium-90 (90Y), and positron emitters gallium-68 ({sup 68}Ga), and fluorine-18 ({sup 18}F). Dynamic studies of axonal transport of {sup 35}S-methionine in a nerve, and static images of 90Y-labeled monoclonal antibodies in slices of tumors are presented. The system shows promise for rapid quantitative imaging of charged-particle emitting radionuclides in small biologic samples.

  7. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    PubMed Central

    Lauridsen, Henrik; Hansen, Kasper; Wang, Tobias; Agger, Peter; Andersen, Jonas L.; Knudsen, Peter S.; Rasmussen, Anne S.; Uhrenholt, Lars; Pedersen, Michael

    2011-01-01

    Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and μCT to create advanced representation of animal anatomy, including bones, inner organs and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of three-dimensional graphical representations of internal structures. PMID:21445356

  8. Image analysis for estimating the weight of live animals

    NASA Astrophysics Data System (ADS)

    Schofield, C. P.; Marchant, John A.

    1991-02-01

    Many components of animal production have been automated. For example weighing feeding identification and yield recording on cattle pigs poultry and fish. However some of these tasks still require a considerable degree of human input and more effective automation could lead to better husbandry. For example if the weight of pigs could be monitored more often without increasing labour input then this information could be used to measure growth rates and control fat level allowing accurate prediction of market dates and optimum carcass quality to be achieved with improved welfare at minimum cost. Some aspects of animal production have defied automation. For example attending to the well being of housed animals is the preserve of the expert stockman. He gathers visual data about the animals in his charge (in more plain words goes and looks at their condition and behaviour) and processes this data to draw conclusions and take actions. Automatically collecting data on well being implies that the animals are not disturbed from their normal environment otherwise false conclusions will be drawn. Computer image analysis could provide the data required without the need to disturb the animals. This paper describes new work at the Institute of Engineering Research which uses image analysis to estimate the weight of pigs as a starting point for the wider range of applications which have been identified. In particular a technique has been developed to

  9. Image-based red cell counting for wild animals blood.

    PubMed

    Mauricio, Claudio R M; Schneider, Fabio K; Dos Santos, Leonilda Correia

    2010-01-01

    An image-based red blood cell (RBC) automatic counting system is presented for wild animals blood analysis. Images with 2048×1536-pixel resolution acquired on an optical microscope using Neubauer chambers are used to evaluate RBC counting for three animal species (Leopardus pardalis, Cebus apella and Nasua nasua) and the error found using the proposed method is similar to that obtained for inter observer visual counting method, i.e., around 10%. Smaller errors (e.g., 3%) can be obtained in regions with less grid artifacts. These promising results allow the use of the proposed method either as a complete automatic counting tool in laboratories for wild animal's blood analysis or as a first counting stage in a semi-automatic counting tool. PMID:21096766

  10. Anatomic and functional imaging of tagged molecules in animals

    DOEpatents

    Weisenberger, Andrew G.; Majewski, Stanislaw; Paulus, Michael J.; Gleason, Shaun S.

    2007-04-24

    A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.

  11. Measurements of natural radionuclides in human teeth and animal bones as markers of radiation exposure from soil in the Northern Malaysian Peninsula

    NASA Astrophysics Data System (ADS)

    Almayahi, B. A.; Tajuddin, A. A.; Jaafar, M. S.

    2014-04-01

    This study aimed to estimate the radioactive accumulation of the radionuclides 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th in extracted human teeth, animal bones, and soil. The natural radionuclides were measured by high-purity germanium spectroscopy in extracted human teeth and animal bones from people and animals living in different states in the Northern Malaysian Peninsula. The average 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th concentrations in teeth were found to be 12.31±7.27 Bq g-1, 0.48±0.21 Bq g-1, 0.56±0.21 Bq g-1, 0.55±0.23 Bq g-1, 1.82±1.28 Bq g-1, and 0.50±0.14 Bq g-1, respectively. The corresponding concentrations in bones were found to be 3.79±0.81 Bq g-1, 0.07±0.02 Bq g-1, 0.08±0.02 Bq g-1, 0.16±0.04 Bq g-1, 0.51±1.08 Bq g-1, and 0.06±0.02 Bq g-1, respectively. The corresponding radionuclide concentrations in teeth from smokers were higher than those in non-smokers, and the corresponding radionuclide concentrations were higher in female teeth than in male teeth. The corresponding radionuclide concentrations were higher in teeth than in bones. A positive correlation was found between radionuclides in both teeth and bone samples.

  12. Femoral head viability following hip fracture. Prognostic role of radionuclide bone imaging

    SciTech Connect

    Drane, W.E.; Rudd, T.G.

    1985-03-01

    A retrospective study was made of all radionuclide (RN) bone images performed at our institution over a two-year period to evaluate femoral head viability after nonpathologic fracture of the femoral neck. Twelve patients had avascular femoral heads during the perioperative period, of which nine had adequate follow-up. Seven of these nine patients had follow-up bone images. Revascularization occurred in four patients, while three had persistent absence of femoral head uptake. With clinical follow-up ranging from four to 29 months (median: 14 months), only two of these nine patients developed clinical or radiographic evidence of osteonecrosis. RN bone imaging performed in the perioperative period does not reliably predict the development of post-traumatic osteonecrosis of the femoral head and, at present, should not be used to determine prospectively method of treatment of femoral neck fracture.

  13. Radionuclide imaging of myocardial perfusion and viability in assessment of acute myocardial infarction

    SciTech Connect

    Berman, D.S.; Kiat, H.; Maddahi, J.; Shah, P.K.

    1989-07-18

    Technical advances in radionuclide imaging have important implications for the management of patients with acute myocardial infarction. Single-photon emission computerized tomography with thallium 201 (TI-201) offers greater accuracy than planar imaging in detecting, localizing and sizing myocardial perfusion defects. Use of single-photon emission computerized tomography with TI-201 should allow for a more accurate assessment of prognosis after myocardial infarction. A new radiopharmaceutical, technetium 99-m methoxyisobutyl isonitrile, provides a number of advantages over TI-201, including higher quality images, lack of redistribution, and the ability to assess first-pass ventricular function. Applications of TI-201 and technetium 99-m methoxyisobutyl isonitrile include assessment of arterial patency and myocardial salvage immediately after thrombolytic therapy, detection of resting ischemia after thrombolytic therapy, targeting of subsets of patients for further intervention, and predischarge assessment to predict the future course of patients after an acute myocardial infarction.

  14. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    SciTech Connect

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.

  15. Compact CT/SPECT Small-Animal Imaging System

    PubMed Central

    Kastis, George A.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.; Barber, H. Bradford; Barrett, Harrison H.

    2015-01-01

    We have developed a dual-modality CT/SPECT imaging system for small-animal imaging applications. The X-ray system comprises a commercially available micro-focus X-ray tube and a CCD-based X-ray camera. X-ray transmission measurements are performed based on cone-beam geometry. Individual projections are acquired by rotating the animal about a vertical axis in front of the CCD detector. A high-resolution CT image is obtained after reconstruction using an ordered subsets-expectation maximization (OS-EM) reconstruction algorithm. The SPECT system utilizes a compact semiconductor camera module previously developed in our group. The module is mounted perpendicular to the X-ray tube/CCD combination. It consists of a 64×64 pixellated CdZnTe detector and a parallel-hole tungsten collimator. The field of view is 1 square inch. Planar projections for SPECT reconstruction are obtained by rotating the animal in front of the detector. Gamma-ray and X-ray images are presented of phantoms and mice. Procedures for merging the anatomical and functional images are discussed. PMID:26538684

  16. In vivo imaging of small animal models by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Shuoqi; Yang, Ran; Xiong, Jingwei; Shung, K. Kirk; Zhou, Qifa; Li, Changhui; Ren, Qiushi

    2012-02-01

    Small animal models, such as zebrafish, drosophila, C. elegan, is considered to be important models in comparative biology and diseases researches. Traditional imaging methods primarily employ several optical microscopic imaging modalities that rely on fluorescence labeling, which may have potential to affect the natural physiological progress. Thus a label-free imaging method is desired. Photoacoustic (PA) microscopy (PAM) is an emerging biomedical imaging method that combines optical contrast with ultrasonic detection, which is highly sensitive to the optical absorption contrast of living tissues, such as pigments, the vasculature and other optically absorbing organs. In this work, we reported the whole body label-free imaging of zebrafish larvae and drosophila pupa by PAM. Based on intrinsic optical absorption contrast, high resolution images of pigments, microvasculature and several other major organs have been obtained in vivo and non-invasively, and compared with their optical counterparts. We demonstrated that PAM has the potential to be a powerful non-invasive imaging method for studying larvae and pupa of various animal models.

  17. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy.

    PubMed

    Sjögreen-Gleisner, K; Rueckert, D; Ljungberg, M

    2009-10-21

    For radionuclide therapy, individual patient pharmacokinetics can be measured in three dimensions by sequential SPECT imaging. Accurate registration of the time series of images is central for voxel-based calculations of the residence time and absorbed dose. In this work, rigid and non-rigid methods are evaluated for registration of 6-7 SPECT/CT images acquired over a week, in anatomical regions from the head-and-neck region down to the pelvis. A method for calculation of the absorbed dose, including a voxel mass determination from the CT images, is also described. Registration of the SPECT/CT images is based on a CT-derived spatial transformation. Evaluation is focused on the CT registration accuracy, and on its impact on values of residence time and absorbed dose. According to the CT evaluation, the non-rigid method produces a more accurate registration than the rigid one. For images of the residence time and absorbed dose, registration produces a sharpening of the images. For volumes-of-interest, the differences between rigid and non-rigid results are generally small. However, the non-rigid method is more consistent for regions where non-rigid patient movements are likely, such as in the head-neck-shoulder region. PMID:19794243

  18. Intrinsic Feature Pose Measurement for Awake Animal SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F

    2009-01-01

    New developments have been made in optical motion tracking for awake animal imaging that measures 3D position and orientation (pose) for a single photon emission computed tomography (SPECT) imaging system. Ongoing SPECT imaging research has been directed towards head motion measurement for brain studies in awake, unrestrained mice. In contrast to previous results using external markers, this work extracts and tracks intrinsic features from multiple camera images and computes relative pose from the tracked features over time. Motion tracking thus far has been limited to measuring extrinsic features such as retro-reflective markers applied to the mouse s head. While this approach has been proven to be accurate, the additional animal handling required to attach the markers is undesirable. A significant improvement in the procedure is achieved by measuring the pose of the head without extrinsic markers using only the external surface appearance. This approach is currently being developed with initial results presented here. The intrinsic features measurement extracts discrete, sparse natural features from 2D images such as eyes, nose, mouth and other visible structures. Stereo correspondence between features for a camera pair is determined for calculation of 3D positions. These features are also tracked over time to provide continuity for surface model fitting. Experimental results from live images are presented.

  19. Transfer coefficients of selected radionuclides to animal products. I. Comparison of milk and meat from dairy cows and goats

    SciTech Connect

    Johnson, J.E.; Ward, G.M.; Ennis, M.E. Jr.; Boamah, K.N.

    1988-02-01

    The diet-milk transfer coefficient, Fm (Bq L-1 output in milk divided by Bq d-1 intake to the animal) was studied for eight radionuclides that previously had been given little attention. The Fm values for cows and goats, respectively, were: 2.3 x 10(-5) and 1.5 x 10(-4) for /sup 99m/Tc, 1.4 x 10(-4) and 8.5 x 10(-4) for /sup 95m/Tc, 1.1 x 10(-2) for /sup 99/Tc (goats only); 1.7 x 10(-3) and 9 x 10(-3) for /sup 99/Mo; 4.8 x 10(-4) and 4.4 x 10(-3) for /sup 123m/Te; 4.8 x 10(-4) and 4.6 x 10(-3) for /sup 133/Ba; 5.5 x 10(-7) and 5.5 x 10(-6) for /sup 95/Zr; and 4.1 x 10(-7) and 6.4 x 10(-6) for /sup 95/Nb. The goat/cow transfer coefficient ratios for milk were approximately 10, but the goat/cow ratios for meat varied by three orders of magnitude.

  20. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  1. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    PubMed Central

    2014-01-01

    Background In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results. Methods An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors. Results Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence). Conclusions We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images. PMID:25386389

  2. Integration of optical imaging with a small animal irradiator

    SciTech Connect

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-10-15

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  3. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  4. Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.

    2014-12-01

    The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction

  5. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease

    PubMed Central

    Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau

    2014-01-01

    In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966

  6. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    Lee, Seung Joon; Weisenberger, A G; McKisson, J; Goddard Jr, James Samuel; Baba, Justin S; Smith, M F

    2011-01-01

    Abstract- Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  7. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    S. Lee, B. Kross, D. Weisenberger, J. McKisson, J.S. Goddard, J.S. Baba, M.S. Smith

    2012-02-01

    Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  8. A Time Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Raymond, Scott B.; Dunn, Andrew K.; Bacskai, Brian J.; Boas, David A.

    2010-01-01

    We describe the application of a time domain diffuse fluorescence tomography system for whole body small animal imaging. The key features of the system are the use of point excitation in free space using ultrashort laser pulses and noncontact detection using a gated, intensified charge-coupled device (CCD) camera. Mouse shaped epoxy phantoms, with embedded fluorescent inclusions, were used to verify the performance of a recently developed asymptotic lifetime-based tomography algorithm. The asymptotic algorithm is based on a multiexponential analysis of the decay portion of the data. The multiexponential model is shown to enable the use of a global analysis approach for a robust recovery of the lifetime components present within the imaging medium. The surface boundaries of the imaging volume were acquired using a photogrammetric camera integrated with the imaging system, and implemented in a Monte-Carlo model of photon propagation in tissue. The tomography results show that the asymptotic approach is able to separate axially located fluorescent inclusions centered at depths of 4 and 10 mm from the surface of the mouse phantom. The fluorescent inclusions had distinct lifetimes of 0.5 and 0.95 ns. The inclusions were nearly overlapping along the measurement axis and shown to be not resolvable using continuous wave (CW) methods. These results suggest the practical feasibility and advantages of a time domain approach for whole body small animal fluorescence molecular imaging, particularly with the use of lifetime as a contrast mechanism. PMID:18672432

  9. Improvements in Intrinsic Feature Pose Measurement for Awake Animal Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; McKisson, J; Smith, M F; Stolin, Alexander

    2010-01-01

    Development has continued with intrinsic feature optical motion tracking for awake animal imaging to measure 3D position and orientation (pose) for motion compensated reconstruction. Prior imaging results have been directed towards head motion measurement for SPECT brain studies in awake unrestrained mice. This work improves on those results in extracting and tracking intrinsic features from multiple camera images and computing pose changes from the tracked features over time. Previously, most motion tracking for 3D imaging has been limited to measuring extrinsic features such as retro-reflective markers applied to an animal s head. While this approach has been proven to be accurate, the use of external markers is undesirable for several reasons. The intrinsic feature approach has been further developed from previous work to provide full pose measurements for a live mouse scan. Surface feature extraction, matching, and pose change calculation with point tracking and accuracy results are described. Experimental pose calculation and 3D reconstruction results from live images are presented.

  10. Improvements in intrinsic feature pose measurement for awake animal imaging

    SciTech Connect

    J.S. Goddard, J.S. Baba, S.J. Lee, A.G. Weisenberger, A. Stolin, J. McKisson, M.F. Smith

    2011-06-01

    Development has continued with intrinsic feature optical motion tracking for awake animal imaging to measure 3D position and orientation (pose) for motion compensated reconstruction. Prior imaging results have been directed towards head motion measurement for SPECT brain studies in awake unrestrained mice. This work improves on those results in extracting and tracking intrinsic features from multiple camera images and computing pose changes from the tracked features over time. Previously, most motion tracking for 3D imaging has been limited to measuring extrinsic features such as retro-reflective markers applied to an animal's head. While this approach has been proven to be accurate, the use of external markers is undesirable for several reasons. The intrinsic feature approach has been further developed from previous work to provide full pose measurements for a live mouse scan. Surface feature extraction, matching, and pose change calculation with point tracking and accuracy results are described. Experimental pose calculation and 3D reconstruction results from live images are presented.

  11. Animal models and high field imaging and spectroscopy

    PubMed Central

    Öz, Gülin; Tkáč, Ivan; Uğurbil, Kamil

    2013-01-01

    A plethora of magnetic resonance (MR) techniques developed in the last two decades provide unique and noninvasive measurement capabilities for studies of basic brain function and brain diseases in humans. Animal model experiments have been an indispensible part of this development. MR imaging and spectroscopy measurements have been employed in animal models, either by themselves or in combination with complementary and often invasive techniques, to enlighten us about the information content of such MR methods and/or verify observations made in the human brain. They have also been employed, with or independently of human efforts, to examine mechanisms underlying pathological developments in the brain, exploiting the wealth of animal models available for such studies. In this endeavor, the desire to push for ever-higher spatial and/or spectral resolution, better signal-to-noise ratio, and unique image contrast has inevitably led to the introduction of increasingly higher magnetic fields. As a result, today, animal model studies are starting to be conducted at magnetic fields ranging from ~ 11 to 17 Tesla, significantly enhancing the armamentarium of tools available for the probing brain function and brain pathologies. PMID:24174899

  12. Image guidance, treatment planning and evaluation of cancer interstitial focal therapy using liposomal radionuclides

    NASA Astrophysics Data System (ADS)

    Ware, Steve William

    Focally ablative therapy of cancer has gained significant interest recently. Improvements in diagnostic techniques have created possibilities for treatment which were once clinically unfeasible. Imaging must be capable of allowing accurate diagnosis, staging and planning upon initiation of therapy. Recent improvements in MRI and molecular imaging techniques have made it possible to accurately localize lesions and in so doing, improve the accuracy of proposed focal treatments. Using multimodality imaging it is now possible to target, plan and evaluate interstitial focal treatment using liposome encapsulated beta emitting radionuclides in a variety of cancer types. Since most absorbed dose is deposited early and heterogeneously in beta-radionuclide therapy, investigation of the resultant molecular and cellular events during this time is important for evaluating treatment efficacy. Additionally, investigating a multifocal entity such as prostate cancer is helpful for determining whether MRI is capable of discriminating the proper lesion for therapy. Correlation of MRI findings with histopathology can further improve the accuracy of interstitial focal radionuclide therapy by providing non-invasive surrogates for tissue compartment sizes. In the application of such therapies, compartmental sizes are known to heavily influence the distribution of injected agents. This has clear dosimetric implications with the potential to significantly alter the efficacy of treatment. The hypothesis of this project was that multimodality imaging with magnetic resonance imaging (MRI), autoradiography (AR), and single photon emission computed tomography (SPECT) could be used to target, plan, and evaluate interstitial focal therapy with non-sealed source, liposome-encapsulated 186Re beta emitting radionuclides. The specific aims of this project were to 1) Identify suitable targets for interstitial focal therapy. This was done by retrospectively analyzing MRI data to characterize the tumor

  13. Quantum Dots for In Vivo Small-Animal Imaging

    PubMed Central

    Bentolila, Laurent A.; Ebenstein, Yuval; Weiss, Shimon

    2011-01-01

    Nanotechnology is poised to transform research, prevention, and treatment of cancer through the development of novel diagnostic imaging methods and targeted therapies. In particular, the use of nanoparticles for imaging has gained considerable momentum in recent years. This review focuses on the growing contribution of quantum dots (QDs) for in vivo imaging in small-animal models. Fluorescent QDs, which are small nanocrystals (1–10 nm) made of inorganic semiconductor materials, possess several unique optical properties best suited for in vivo imaging. Because of quantum confinement effects, the emission color of QDs can be precisely tuned by size from the ultraviolet to the near-infrared. QDs are extremely bright and photostable. They are also characterized by a wide absorption band and a narrow emission band, which makes them ideal for multiplexing. Finally, the large surface area of QDs permits the assembly of various contrast agents to design multimodality imaging probes. To date, biocompatible QD conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Here we consider these novel breakthroughs in light of their potential clinical applications and discuss how QDs might offer a suitable platform to unite disparate imaging modalities and provide information along a continuum of length scales. PMID:19289434

  14. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.

    PubMed

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-12-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour. PMID:16306643

  15. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    NASA Astrophysics Data System (ADS)

    Chaudhari, Abhijit J.; Darvas, Felix; Bading, James R.; Moats, Rex A.; Conti, Peter S.; Smith, Desmond J.; Cherry, Simon R.; Leahy, Richard M.

    2005-12-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.

  16. Computer-aided pulmonary image analysis in small animal models

    SciTech Connect

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.; Bagci, Ulas; Kramer-Marek, Gabriela; Luna, Brian; Kubler, Andre; Dey, Bappaditya; Jain, Sanjay; Foster, Brent; Papadakis, Georgios Z.; Camp, Jeremy V.; Jonsson, Colleen B.; Bishai, William R.; Udupa, Jayaram K.

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  17. Computer-aided pulmonary image analysis in small animal models

    PubMed Central

    Xu, Ziyue; Bagci, Ulas; Mansoor, Awais; Kramer-Marek, Gabriela; Luna, Brian; Kubler, Andre; Dey, Bappaditya; Foster, Brent; Papadakis, Georgios Z.; Camp, Jeremy V.; Jonsson, Colleen B.; Bishai, William R.; Jain, Sanjay; Udupa, Jayaram K.; Mollura, Daniel J.

    2015-01-01

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases. PMID:26133591

  18. Imaging of hepatic low density lipoprotein receptors by radionuclide scintiscanning in vivo.

    PubMed

    Huettinger, M; Corbett, J R; Schneider, W J; Willerson, J T; Brown, M S; Goldstein, J L

    1984-12-01

    The low density lipoprotein (LDL) receptor mediates the cellular uptake of plasma lipoproteins that are derived from very low density lipoproteins (VLDL). Most of the functional LDL receptors in the body are located in the liver. Here, we describe a radionuclide scintiscanning technique that permits the measurement of LDL receptors in the livers of intact rabbits. 123I-labeled VLDL were administered intravenously, and scintigraphic images of the liver and heart were obtained at intervals thereafter. In seven normal rabbits, radioactivity in the liver increased progressively between 1 and 20 min after injection, while radioactivity in the heart (reflecting that in plasma) decreased concomitantly. In Watanabe-heritable hyperlipidemic rabbits, which lack LDL receptors on a genetic basis, there was little uptake of 123I-labeled VLDL into the liver and little decrease in cardiac radioactivity during this interval. These findings demonstrate that the LDL receptor is necessary for the hepatic uptake of VLDL-derived lipoproteins in the rabbit. Two conditions that diminish hepatic LDL receptor activity, cholesterol-feeding and prolonged fasting, also reduced the uptake of 123I-labeled VLDL in the liver as measured by scintiscanning. The data suggest that radionuclide scintiscanning can be used as a noninvasive method to quantify the number of LDL receptors expressed in the liver in vivo. PMID:6594702

  19. Radionuclide scrotal imaging: further experience with 210 patients. Part I. Anatomy, pathophysiology, and methods

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Melloul, M.

    1983-08-01

    Ten years' experience with radionuclide scrotal imaging (RSI) to evaluate perfusion of the scrotal contents has confirmed the value of this examination. In 1973, Nadel et al. first proposed using sodium pertechnetate (Tc-99m) to diagnose testicular torsion. By the end of 1982, more than thirty articles have been published on this topic, with most emphasizing the usefulness of RSI in managing patients with acute scrotal pain. The present communication describes our findings in 210 patients, not previously reported. There were four groups with relatively distinct clinical presentations: (a) acute scrotal pain, (b) chronic scrotal pain, (c) scrotal injury, and (d) scrotal mass. The anatomic and pathophysiologic bases for the scan findings will be emphasized. We discuss the staging of testicular torsion; viability of the compromised testicle; variability in the presentation of acute infection; anatomy of trauma, varicocele, and inguinal hernia; and the correlation with scrotal sonography.

  20. Analysis of serial radionuclide bone images in osteosarcoma and breast carcinoma

    SciTech Connect

    McNeil, B.J.; Hanley, J.

    1980-04-01

    The authors first describe and illustrate didactically the use of the Kaplan-Meier actuarial technique for serial diagnostic studies. They then present an analysis of previously published data on the results of serial radionuclide bone images in patients with osteosarcoma or breast carcinoma, using this technique. The data indicate that patients with osteosarcoma show an almost linear increase in the occurrence of bone metastates between 5 and 29 months after diagnosis; the rate is approximately 1% per month. Patients with breast cancer, on the other hand, show a biphasic rate of development, averaging only 0.5% per month during the first year after diagnosis but increasing rapidly to approximately 2% per month after 15 months.

  1. Review of Russian-language studies on radionuclide behaviour in agricultural animals: part 4. Transfer to poultry.

    PubMed

    Fesenko, S; Howard, B J; Isamov, N; Beresford, N A; Barnett, C L; Sanzharova, N; Voigt, G

    2009-10-01

    Data on radionuclide transfer to domestic chickens and ducks obtained from research performed in the former Soviet Union were reviewed to provide transfer coefficient values (Ff) to poultry and edible egg contents. The majority of the data are from experiments with (90)Sr and (137)Cs, reflecting the importance of these radionuclides after global fallout and major radiation accidents. Data for (3)H, (54)Mn, (59)Fe, (60)Co, (22)Na (65)Zn, (131)I and U are also given. The values derived have been compared with those in the current IAEA Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) and the recent revision which incorporates the values from this paper. The Russian-language data give improved estimates for many radionuclides and the revised handbook is now based on the better quality data given for chronic administration. PMID:19632750

  2. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  3. Television image compression and small animal remote monitoring

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Jackson, Robert W.

    1990-01-01

    It was shown that a subject can reliably discriminate a difference in video image quality (using a specific commercial product) for image compression levels ranging from 384 kbits per second to 1536 kbits per second. However, their discriminations are significantly influenced by whether or not the TV camera is stable or moving and whether or not the animals are quiescent or active, which is correlated with illumination level (daylight versus night illumination, respectively). The highest video rate used here was 1.54 megabits per second, which is about 18 percent of the so-called normal TV resolution of 8.4MHz. Since this video rate was judged to be acceptable by 27 of the 34 subjects (79 percent), for monitoring the general health and status of small animals within their illuminated (lights on) cages (regardless of whether the camera was stable or moved), it suggests that an immediate Space Station Freedom to ground bandwidth reduction of about 80 percent can be tolerated without a significant loss in general monitoring capability. Another general conclusion is that the present methodology appears to be effective in quantifying visual judgments of video image quality.

  4. Television image compression and small animal remote monitoring

    NASA Astrophysics Data System (ADS)

    Haines, Richard F.; Jackson, Robert W.

    1990-04-01

    It was shown that a subject can reliably discriminate a difference in video image quality (using a specific commercial product) for image compression levels ranging from 384 kbits per second to 1536 kbits per second. However, their discriminations are significantly influenced by whether or not the TV camera is stable or moving and whether or not the animals are quiescent or active, which is correlated with illumination level (daylight versus night illumination, respectively). The highest video rate used here was 1.54 megabits per second, which is about 18 percent of the so-called normal TV resolution of 8.4MHz. Since this video rate was judged to be acceptable by 27 of the 34 subjects (79 percent), for monitoring the general health and status of small animals within their illuminated (lights on) cages (regardless of whether the camera was stable or moved), it suggests that an immediate Space Station Freedom to ground bandwidth reduction of about 80 percent can be tolerated without a significant loss in general monitoring capability. Another general conclusion is that the present methodology appears to be effective in quantifying visual judgments of video image quality.

  5. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf . PMID:26290421

  6. A Gamma Ray Imaging Device for Small-Animal Studies

    NASA Astrophysics Data System (ADS)

    Saunders, Robert; Bradley, Eric; Majewski, Stan; Saha, Margaret S.; Weisenberger, Andrew G.; Welsh, Robert E.

    1999-11-01

    A novel, modular nuclear imaging device for in vivo imaging of small animals is described. A segmented scintillator is coupled to a position-sensitive photomultiplier. This combination is used to view the living system under study with a variety of collimators employed to limit the angular acceptance. A personal computer is coupled to a CAMAC electronic system for event-by-event data acquisition and subsequent selective data analysis. The system has been designed to exploit the availability of a wide range of ligands tagged with the isotope 125I. It has most recently been employed for a study of the transport of the cocaine analog, RTI-55, to the brain of a mouse. Results of studies to date and options for future expansion of the system will be described.

  7. Effect of Radionuclide Activity Concentration on PET-CT Image Uniformity

    PubMed Central

    Hasford, Francis; Wyk, Bronwin Van; Mabhengu, Thulani; Vangu, Mboyo Di Tamba; Kyere, Augustine Kwame; Amuasi, John Humphrey

    2016-01-01

    Assessment of radionuclide activity concentration on positron emission tomography-computedr tomography (PET-CT) image uniformity has been carried out quantitatively. Tomographic PET-CT images of cylindrical phantom containing F-18 fluorodeoxyglucose (FDG) activity concentration was acquired and used for the assessment. Activity concentrations were varied and PET-CT images were acquired at the constant acquisition parameters of time, matrix size, and reconstruction algorithm, respectively. Using midtransaxial image slices, quantitative index of nonuniformity (NU), and coefficient of uniformity variation were estimated for the different activity concentrations. Maximum NUs of 17.6%, 26.3%, 32.7%, 36.2%, and 38.5% were estimated for activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL, respectively. The coefficient of uniformity variation established an inverse quadratic relationship with activity concentration. Activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL produced uniformity variations of 1.47%, 2.52%, 4.23%, 5.12%, and 4.98%, respectively. Increasing activity concentration resulted in decreasing coefficient of uniformity and hence, an increase in image uniformity. The uniformity estimates compared well with the standards set internationally. PMID:27134558

  8. Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies

    NASA Astrophysics Data System (ADS)

    Zhang, Mutian; Huang, Minming; Le, Carl; Zanzonico, Pat B.; Claus, Filip; Kolbert, Katherine S.; Martin, Kyle; Ling, C. Clifton; Koutcher, Jason A.; Humm, John L.

    2008-10-01

    Dedicated small-animal imaging devices, e.g. positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) scanners, are being increasingly used for translational molecular imaging studies. The objective of this work was to determine the positional accuracy and precision with which tumors in situ can be reliably and reproducibly imaged on dedicated small-animal imaging equipment. We designed, fabricated and tested a custom rodent cradle with a stereotactic template to facilitate registration among image sets. To quantify tumor motion during our small-animal imaging protocols, 'gold standard' multi-modality point markers were inserted into tumor masses on the hind limbs of rats. Three types of imaging examination were then performed with the animals continuously anesthetized and immobilized: (i) consecutive microPET and MR images of tumor xenografts in which the animals remained in the same scanner for 2 h duration, (ii) multi-modality imaging studies in which the animals were transported between distant imaging devices and (iii) serial microPET scans in which the animals were repositioned in the same scanner for subsequent images. Our results showed that the animal tumor moved by less than 0.2-0.3 mm over a continuous 2 h microPET or MR imaging session. The process of transporting the animal between instruments introduced additional errors of ~0.2 mm. In serial animal imaging studies, the positioning reproducibility within ~0.8 mm could be obtained.

  9. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  10. Bioluminescence imaging of fungal biofilm development in live animals.

    PubMed

    Vande Velde, Greetje; Kucharíková, Soňa; Van Dijck, Patrick; Himmelreich, Uwe

    2014-01-01

    Fungal biofilms formed on various types of medical implants represent a major problem for hospitalized patients. These biofilms and related infections are usually difficult to treat because of their resistance to the classical antifungal drugs. Animal models are indispensable for investigating host-pathogen interactions and for identifying new antifungal targets related to biofilm development. A limited number of animal models is available that can be used for testing novel antifungal drugs in vivo against C. albicans, one of the most common pathogens causing fungal biofilms. Fungal load in biofilms in these models is traditionally analyzed postmortem, requiring host sacrifice and enumeration of microorganisms from individual biofilms in order to evaluate the amount of colony forming units and the efficacy of antifungal treatment. Bioluminescence imaging (BLI) made compatible with small animal models for in vivo biofilm formation is a valuable noninvasive tool to follow-up biofilm development and its treatment longitudinally, reducing the number of animals needed for such studies. Due to the nondestructive and noninvasive nature of BLI, the imaging procedure can be repeated in the same animal, allowing follow-up of the biofilm growth in vivo without removing the implanted device or detaching the biofilm from its substrate. The method described here introduces BLI of C. albicans biofilm formation in vivo on subcutaneously implanted catheters in mice. One of the main challenges to overcome for BLI of fungi is the hampered intracellular substrate delivery through the fungal cell wall, which is managed by using extracellularly located Gaussia luciferase. Although detecting a quantifiable in vivo BLI signal from biofilms formed on the inside of implanted catheters is challenging, BLI proved to be a practical tool in the study of fungal biofilms. This method describing the use of BLI for in vivo follow-up of device-related fungal biofilm formation has the potential for

  11. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images

    SciTech Connect

    Ao, Edwin C. I.; Mok, Greta S. P.; Wu, Nien-Yun; Wang, Shyh-Jen; Song, Na

    2015-02-15

    Purpose: Voxel-level and patient-specific 3D dosimetry for targeted radionuclide therapy (TRT) typically involves serial nuclear medicine scans. Misalignment of the images can result in reduced dosimetric accuracy. Since the scans are typically performed over a period of several days, there will be patient movement between scans and possible nonrigid organ deformation. This work aims to implement and evaluate the use of nonrigid image registration on a series of quantitative SPECT (QSPECT) images for TRT dosimetry. Methods: A population of 4D extended cardiac torso phantoms, comprised of three In-111 Zevalin biokinetics models and three anatomical variations, was generated based on the patient data. The authors simulated QSPECT acquisitions at five time points. At each time point, individual organ and whole-body deformation between scans were modeled by translating/rotating organs and the body up to 5°/voxels, keeping ≤5% difference in organ volume. An analytical projector was used to generate realistic noisy projections for a medium energy general purpose collimator. Projections were reconstructed using OS-EM algorithm with geometric collimator detector response, attenuation, and scatter corrections. The QSPECT images were registered using organ-based nonrigid image registration method. The cumulative activity in each voxel was obtained by integrating the activity over time. Dose distribution images were obtained by convolving the cumulative activity images with a Y-90 dose kernel. Dose volume histograms (DVHs) for organs-of-interest were analyzed. Results: After nonrigid registration, the mean differences in organ doses compared to the case without misalignment were improved from (−15.50 ± 5.59)% to (−2.12 ± 1.05)% and (−7.28 ± 2.30)% to (−0.23 ± 0.71)% for the spleen and liver, respectively. For all organs, the cumulative DVHs showed improvement after nonrigid registration and the normalized absolute error of differential DVHs ranged from 6.79% to

  12. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

    PubMed Central

    Zhao, Yanyu; Tabassum, Syeda; Piracha, Shaheer; Nandhu, Mohan Sobhana; Viapiano, Mariano; Roblyer, Darren

    2016-01-01

    Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g. the tumor edge). We propose a modified Lambertian angle correction, adapted from the Minnaert correction method for satellite imagery, to account for tissue surface angles up to 75°. The method was tested in a hemisphere phantom study as well as a small animal tumor model. The proposed method reduced µa and µs` extraction errors by an average of 64% and 16% respectively compared to performing no angle correction, and provided more physiologically agreeable optical property and chromophore values on tumors. PMID:27375952

  13. Scintillating Balloon-Enabled Fiber-Optic System for Radionuclide Imaging of Atherosclerotic Plaques

    PubMed Central

    Zaman, Raiyan T.; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V.; Xing, Lei

    2015-01-01

    Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radio-nuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using 18F-FDG, a marker of vascular inflammation, and tested it in a murine model. Methods The fiber-optic system uses a Complementary Metal-Oxide Silicon (CMOS) camera with a distal ferrule terminated with a wide-angle lens. The novelty of this system is a scintillating balloon in the front of the wide-angle lens to image light from the decay of 18F-FDG emission signal. To identify the optimal scintillating materials with respect to resolution, we calculated the modulation transfer function of yttrium–aluminum–garnet doped with cerium, anthracene, and calcium fluoride doped with europium (CaF2:Eu) phosphors using an edge pattern and a thin-line optical phantom. The scintillating balloon was then fabricated from 10 mL of silicone RTV catalyst mixed with 1 mL of base and 50 mg of CaF2:Eu per mL. The addition of a lutetium oxyorthosilicate scintillating crystal (500 μm thick) to the balloon was also investigated. The SBRI system was tested in a murine atherosclerosis model: carotid-ligated mice (n = 5) were injected with 18F-FDG, followed by ex vivo imaging of the macrophage-rich carotid plaques and nonligated controls. Confirmatory imaging of carotid plaques and controls was also performed by an external optical imaging system and autoradiography. Results Analyses of the different phosphors showed that CaF2:Eu enabled the best resolution of 1.2 μm. The SBRI system detected almost a 4-fold-higher radioluminescence signal from the ligated left carotid artery than the nonligated right carotid: 1.63 × 102 ± 4.01 × 101 vs. 4.21 × 101 ± 2.09 × 100 (photon counts), P = 0.006. We found no significant benefit to adding a

  14. Image animation for theme enhancement and change detection. [LANDSAT 1

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1976-01-01

    Animated displays are useful in enhancing subtle temporally related changes in scenes viewed by satellites capable of providing repetitive coverage. The detectability of fixed features is also improved through the help of the powerful visual integration process. To expedite the process of assembling and displaying well-registered, time-lapse sequences and to provide means for making quantitative measurements of radiances, displacements, and areas, an electronic satellite image analysis console was constructed. During the LANDSAT-1 program, this equipment was applied to the needs of a number of earth resource investigators with interests principally related to dynamic hydrology. The measurement of the areal extent of snow cover within defined drainage basins is discussed as a representative applications example.

  15. Bioluminescence Imaging of an Immunocompetent Animal Model for Glioblastoma

    PubMed Central

    Clark, Aaron J.; Fakurnejad, Shayan; Ma, Quanhong; Hashizume, Rintaro

    2016-01-01

    In contrast to commonly reported human glioma xenograft animal models, GL261 murine glioma xenografts recapitulate nearly all relevant clinical and histopathologic features of the human disease. When GL261 cells are implanted intracranially in syngeneic C57BL/6 mice, the model has the added advantage of maintaining an intact immune microenvironment. Stable expression of luciferase in GL261 cells allows non-invasive cost effective bioluminescence monitoring of intracranial tumor growth. We have recently demonstrated that luciferase expression in GL261 cells does not affect the tumor growth properties, tumor cell immunomodulatory cytokine expression, infiltration of immune cells into the tumor, or overall survival of animals bearing the intracranial tumor. Therefore, it appears that the GL261 luciferase glioma model can be useful in the study of novel chemotherapeutic and immunotherapeutic modalities. Here we report the technique for generating stable luciferase expression in GL261 cells and how to study the in vitro and in vivo growth of the tumor cells by bioluminescence imaging. PMID:26863490

  16. Identification of hip surface arthroplasty failures with TcSC/TcmDP radionuclide imaging

    SciTech Connect

    Thomas, B.J.; Amstutz, H.C.; Mai, L.L.; Webber, M.M.

    1982-07-01

    The roentgenographic identification of femoral component loosening after hip surface arthroplasty is often impossible because the metallic femoral component obscures the bone-cement interface. The use of combined technetium sulfur colloid and technetium methylene diphosphonate radionuclide imaging has been especially useful in the diagnosis of loosening. In 40 patients, follow-up combined TcSC and TcmDP scans at an average of three, nine, and 27 months postoperation revealed significant differences in the isotope uptakes in patients who had loose prostheses compared with those without complications. Scans were evaluated by first dividing them into eight anatomical regions and then rating the uptake in each region or 'zone' on a five-point scale. Results were compared using the Student's t-test and differences were noted between normal controls and patients who had femoral component loosening. Combining both TcSC and TcmDP studies increased the statistical significance obtained when comparing patients who had complications to those in the control group.

  17. A High Spatial Resolution CT Scanner for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  18. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  19. A method of image registration for small animal, multi-modality imaging.

    PubMed

    Chow, Patrick L; Stout, David B; Komisopoulou, Evangelia; Chatziioannou, Arion F

    2006-01-21

    Many research institutions have a full suite of preclinical tomographic scanners to answer biomedical questions in vivo. Routine multi-modality imaging requires robust registration of images generated by various tomographs. We have implemented a hardware registration method for preclinical imaging that is similar to that used in the combined positron emission tomography (PET)/computed tomography (CT) scanners in the clinic. We designed an imaging chamber which can be rigidly and reproducibly mounted on separate microPET and microCT scanners. We have also designed a three-dimensional grid phantom with 1288 lines that is used to generate the spatial transformation matrix from software registration using a 15-parameter perspective model. The imaging chamber works in combination with the registration phantom synergistically to achieve the image registration goal. We verified that the average registration error between two imaging modalities is 0.335 mm using an in vivo mouse bone scan. This paper also estimates the impact of image misalignment on PET quantitation using attenuation corrections generated from misregistered images. Our technique is expected to produce PET quantitation errors of less than 5%. The methods presented are robust and appropriate for routine use in high throughput animal imaging facilities. PMID:16394345

  20. Assessment of single vessel coronary artery disease: results of exercise electrocardiography, thallium-201 myocardial perfusion imaging and radionuclide angiography

    SciTech Connect

    Port, S.C.; Oshima, M.; Ray, G.; McNamee, P.; Schmidt, D.H.

    1985-07-01

    The sensitivity of the commonly used stress tests for the diagnosis of coronary artery disease was analyzed in 46 patients with significant occlusion (greater than or equal to 70% luminal diameter obstruction) of only one major coronary artery and no prior myocardial infarction. In all patients, thallium-201 perfusion imaging (both planar and seven-pinhole tomographic) and 12 lead electrocardiography were performed during the same graded treadmill exercise test and radionuclide angiography was performed during upright bicycle exercise. Exercise rate-pressure (double) product was 22,307 +/- 6,750 on the treadmill compared with 22,995 +/- 5,622 on the bicycle (p = NS). Exercise electrocardiograms were unequivocally abnormal in 24 patients (52%). Qualitative planar thallium images were abnormal in 42 patients (91%). Quantitative analysis of the tomographic thallium images were abnormal in 41 patients (89%). An exercise ejection fraction of less than 0.56 or a new wall motion abnormality was seen in 30 patients (65%). Results were similar for the right (n = 11) and left anterior descending (n = 28) coronary arteries while all tests but the planar thallium imaging showed a lower sensitivity for isolated circumflex artery disease (n = 7). The specificity of the tests was 72, 83, 89 and 72% for electrocardiography, planar thallium imaging, tomographic thallium imaging and radionuclide angiography, respectively. The results suggest that exercise thallium-201 perfusion imaging is the most sensitive noninvasive stress test for the diagnosis of single vessel coronary artery disease.

  1. Radionuclide imaging in myocardial sarcoidosis. Demonstration of myocardial uptake of /sup 99m/Tc pyrophosphate and gallium

    SciTech Connect

    Forman, M.B.; Sandler, M.P.; Sacks, G.A.; Kronenberg, M.W.; Powers, T.A.

    1983-03-01

    A patient had severe congestive cardiomyopathy secondary to myocardial sarcoidosis. The clinical diagnosis was confirmed by radionuclide ventriculography, /sup 201/Tl, /sup 67/Ga, and /sup 99m/Tc pyrophosphate (TcPYP) scintigraphy. Myocardial TcPYP uptake has not been reported previously in sarcoidosis. In this patient, TcPYP was as useful as gallium scanning and thallium imaging in documenting the myocardial process.

  2. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  3. Synthesis, radiolabeling and preliminary in vivo evaluation of multimodal radiotracers for PET imaging and targeted radionuclide therapy of pigmented melanoma.

    PubMed

    Billaud, Emilie M F; Maisonial-Besset, Aurélie; Rbah-Vidal, Latifa; Vidal, Aurélien; Besse, Sophie; Béquignat, Jean-Baptiste; Decombat, Caroline; Degoul, Françoise; Audin, Laurent; Deloye, Jean-Bernard; Dollé, Frédéric; Kuhnast, Bertrand; Madelmont, Jean-Claude; Tarrit, Sébastien; Galmier, Marie-Josèphe; Borel, Michèle; Auzeloux, Philippe; Miot-Noirault, Elisabeth; Chezal, Jean-Michel

    2015-03-01

    Melanin pigment represents an attractive target to address specific treatment to melanoma cells, such as cytotoxic radionuclides. However, less than half of the patients have pigmented metastases. Hence, specific marker is required to stratify this patient population before proceeding with melanin-targeted radionuclide therapy. In such a context, we developed fluorinated analogues of a previously studied melanin-targeting ligand, N-(2-diethylaminoethyl)-6-iodoquinoxaline-2-carboxamide (ICF01012). These latter can be labeled either with (18)F or (131)I/(125)I for positron emission tomography imaging (melanin-positive patient selection) and targeted radionuclide therapy purposes. Here we describe the syntheses, radiosyntheses and preclinical evaluations on melanoma-bearing mice model of several iodo- and fluoro(hetero)aromatic derivatives of the ICF01012 scaffold. After preliminary planar gamma scintigraphic and positron emission tomography imaging evaluations, [(125)I]- and [(18)F]-N-[2-(diethylamino)ethyl]-4-fluoro-3-iodobenzamides ([(125)I]4, [(18)F]4) were found to be chemically and biologically stable with quite similar tumor uptakes at 1 h p.i. (9.7 ± 2.6% ID/g and 6.8 ± 1.9% ID/g, respectively). PMID:25637883

  4. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  5. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  6. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  7. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  8. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Yidong; Armour, Michael; Kang-Hsin Wang, Ken; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  9. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively

  10. Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo

    NASA Astrophysics Data System (ADS)

    Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.

    2007-02-01

    Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.

  11. The detection of coronary artery disease: a comparison of exercise thallium imaging and exercise equilibrium radionuclide ventriculography.

    PubMed

    McGhie, I; Martin, W; Tweddel, A; Hutton, I

    1987-01-01

    This study compared the accuracy of rest and exercise gated equilibrium technetium ventriculography with exercise thallium imaging in 50 consecutive male patients undergoing routine coronary angiography for the evaluation of chest pain. No patients were excluded on the basis of prior myocardial infarction, nature of angiographically defined coronary disease or symptoms. Antianginal therapy was continued in all patients. Eight patients had normal coronary arteries, 9 had single vessel, disease, 20 had double vessel disease and 13 had triple vessel disease. Sixteen patients had previously documented myocardial infarction. Using exercise radionuclide ventriculography, 34 patients with coronary disease were detected resulting in a sensitivity of 81%; 6 patients with normal coronary arteries had normal scans, a specificity of 75%, with a predictive accuracy of 80%. In comparison, thallium imaging detected 42 patients with coronary disease resulting in a sensitivity of 100%. Six patients with normal coronary arteries had normal thallium images resulting in a specificity of 75% and a predictive accuracy of 96%. These results suggest that exercise thallium imaging is a more accurate investigation than exercise equilibrium radio-nuclide ventriculography and is the investigation of choice in the noninvasive detection of coronary artery disease. PMID:3036530

  12. Teaching Geoscience with Visualizations: Using Images, Animations and Models Effectively

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hall-Wallace, M.; Mogk, D.; Tversky, B.; Slotta, J.; Crabaugh, J.

    2004-05-01

    Visualizing the Earth, its processes, and its evolution through time is a fundamental aspect of geoscience. Geoscientists use a wide variety of tools to assist them in creating their own mental images. For example, we now use multilayered visualizations of geographically referenced data to analyze the relationships between different variables and we create animations to look at changes in data or model output through time. An NAGT On the Cutting Edge emerging theme workshop focused on the use of visualization tools in teaching geoscience by addressing the question "How do we teach geoscience with visualizations effectively?" The workshop held February 26-29 at Carleton College brought together geoscientists who are leaders in using visualizations in their teaching, learning scientists who study how we perceive and learn from visualizations, and creators of visualizations and visualization tools. Participants considered what we know about using visualizations effectively to teach geoscience, what important questions need to be answered to improve our ability to teach effectively, and what resources are needed to increase the capability of teaching with visualizations in the geosciences. Discussion focused on how we use visualizations in our teaching to describe and explain geoscience concepts and to explore and understand data. In addition, a section of the workshop focused on powerful emerging tools and technologies for visualization and their use in geoscience education. Workshop leaders and participants have created a web-site that includes visualizations useful in teaching, an annotated bibliography of research about teaching and learning with visualizations, essays by workshop participants about their work with visualizations, and information for visualization creators. Further information can be found at serc.carleton.edu/NAGTWorkshops/visualize04.

  13. Comparison of the effects of inhaled {sup 239}PuO{sub 2} and {beta}- emitting radionuclides on the incidence of lung carcinomas in laboratory animals

    SciTech Connect

    Hahn, F.F.; Griffith, W.C.; Boecker, B.B.; Muggenburg, B.A.; Lundgren, D.L.

    1991-12-31

    The health effects of inhaling radioactive particles when the lung is the primary organ irradiated were studied in rats and Beagle dogs. The animals were exposed to aerosols of {sup 239}PuO{sub 2} or fission-product radionuclides in insoluble forms and observed for their life span. Lung carcinomas were the primary late-occuring effect. The incidence rate for lung carcinomas was modeled using a proportional hazard rate model. Linear functions predominated below 5 Gy to the lung. The life-time risk for lung carcinomas per 10{sup 4} Gy for beta emitters was 60 for rats and 65 for dogs, and for {sup 239}PuO{sub 2} it was 1500 for rats and 2300 for dogs.

  14. The Imaging of Insulinomas Using a Radionuclide-Labelled Molecule of the GLP-1 Analogue Liraglutide: A New Application of Liraglutide

    PubMed Central

    Li, Xiao; Cheng, Dengfeng; Liu, Shuai; Shi, Hongcheng; Zhang, Yifan

    2014-01-01

    Objective This study explores a new, non-invasive imaging method for the specific diagnosis of insulinoma by providing an initial investigation of the use of 125I-labelled molecules of the glucagon-like peptide-1 (GLP-1) analogue liraglutide for in vivo and in vitro small-animal SPECT/CT (single-photon emission computed tomography/computed tomography) imaging of insulinomas. Methods Liraglutide was labelled with 125I by the Iodogen method. The labelled 125I-liraglutide compound and insulinoma cells from the INS-1 cell line were then used for in vitro saturation and competitive binding experiments. In addition, in a nude mouse model, the use of 125I-liraglutide for the in vivo small-animal SPECT/CT imaging of insulinomas and the resulting distribution of radioactivity across various organs were examined. Results The labelling of liraglutide with 125I was successful, yielding a labelling rate of approximately 95% and a radiochemical purity of greater than 95%. For the binding between 125I-liraglutide and the GLP-1 receptor on the surface of INS-1 cells, the equilibrium dissociation constant (Kd) was 128.8±30.4 nmol/L(N = 3), and the half-inhibition concentration (IC50) was 542.4±187.5 nmol/L(N = 3). Small-animal SPECT/CT imaging with 125I-liraglutide indicated that the tumour imaging was clearest at 90 min after the 125I-liraglutide treatment. An examination of the in vivo distribution of radioactivity revealed that at 90 min after the 125I-liraglutide treatment, the target/non-target (T/NT) ratio for tumour and muscle tissue was 4.83±1.30(N = 3). Our study suggested that 125I-liraglutide was predominantly metabolised and cleared by the liver and kidneys. Conclusion The radionuclide 125I-liraglutide can be utilised for the specific imaging of insulinomas, representing a new non-invasive approach for the in vivo diagnosis of insulinomas. PMID:24805918

  15. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  16. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  17. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  18. Radionuclides in haematology

    SciTech Connect

    Lewis, S.M.; Bayly, R.J.

    1986-01-01

    This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.

  19. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. PMID:26297736

  20. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  1. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    PubMed Central

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric. C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulation and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter modeling

  2. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  3. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator.

    PubMed

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  4. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  5. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT. PMID:26215085

  6. Functional imaging of tumor vascular network in small animal models

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Madar-Balakirski, Noa; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2011-07-01

    In current report we present synchronized in vivo imaging of tumor vascular network and tumor microenvironment obtained by combined use of Dynamic Light Scattering Imaging, Spectrally Enhanced Microscopy, and Fluorescence Intravital Microscopy. Dynamic Light Scattering Imaging is used for functional imaging of the vascular network and blood microcirculation. Spectrally Enhanced Microscopy provides information regarding blood vessel topography. Fluorescence Intravital Microscopy is used for imaging of tumor microvasculature and tumor microenvironment. These well known modalities have been comprehensively validated in the past and are widely used in various bio-medical applications. As shown here, their combined application has great potential for studies of vascular biology. This multi-modal non-invasive diagnostic technique expands our current capacity to investigate blood microcirculation and tumor angiogenesis in vivo, thereby contributing to the development of cancer research and treatment.

  7. Oral and dental imaging equipment and techniques for small animals.

    PubMed

    Coffman, Curt R; Brigden, Glenn M

    2013-05-01

    In the diagnosis and treatment of oral and dental diseases in dogs and cats, digital intraoral radiography offers many advantages over the use of standard dental radiographic film, including rapid image generation, easier exposure correction, enhancement, and paperless storage. Digital image receptors can be divided into 2 main types, direct digital systems using charged coupled devices and complementary metal oxide semiconductor sensors, and indirect digital systems using phosphor plates with a computerized scanner. Each system is paired with a computer software system to allow handling, visualization, enhancement, sharing, and archiving of the images. PMID:23643018

  8. Innovations in Small-Animal PET/MR Imaging Instrumentation.

    PubMed

    Tsoumpas, Charalampos; Visvikis, Dimitris; Loudos, George

    2016-04-01

    Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed. PMID:26952725

  9. In vivo photoacoustic imaging of osteosarcoma on animal model

    NASA Astrophysics Data System (ADS)

    Yu, Menglei; Ye, Fei; Hu, Jun

    2011-01-01

    Osteosarcoma is the commonest primary malignant tumor of bone, and the second highest cause of cancer-related death in the paediatric age group. Although there are several methods for osteosarcoma detection, e.g. X-ray, CT, MRI and bone scan, they are not satisfied methods because they can hardly detect osteosarcoma in early stage. Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that is noninvasive, nonionizing, with high sensitivity, satisfactory imaging depth and good temporal and spatial resolution. In order to explore this new method to detect osteosarcoma, we established SD rat models with osteosarcoma and utilized PAI to reconstruct the osteosarcoma image in vivo. This is the first time detecting osteosarcoma in vivo using PAI, and the results suggested that PAI has potential clinical application for detecting osteosarcoma in the early stage.

  10. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  11. SPECT-CT system for small animal imaging

    SciTech Connect

    Andrew Weisenberger; Randolph Wojcik; E.L. Bradley; Paul Brewer; Stanislaw Majewski; Jianguo Qian; Amoreena Ranck; Arunava Saha; Mark Smith; Robert Welsh

    2003-02-01

    The Detector Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the Biology, Physics, and Applied Sciences Departments at the College of William and Mary are collaborating on the development of a miniature dual modality SPECT-CT system for mouse imaging. The detector heads of the SPECT sub-system are designed to be capable of imaging the gamma- and X-ray emissions (28-35 keV) of the radioactive isotope iodine-125 (I-125). Two different sets of I-125 imaging detectors are configured on a gantry that has an open-barrel type design. One set of detector heads is based on the 1-in square Hamamatsu R5900-M64 position sensitive photomultiplier tube coupled to crystal scintillator arrays. The other detector heads configured on the gantry are two 5-in diameter Hamamatsu R3292-based compact gamma cameras. The X-ray radiographic projections are obtained using a LIXI Inc. model LF-85-503-OS X-ray imaging system that has an active area of 5.5 cm in diameter. The open-barrel shaped gantry facilitates the positioning of various mini gamma-ray imaging detectors and the X-ray system. The data acquisition and gantry control is interfaced through a Macintosh G3 workstation. Preliminary SPECT reconstruction results using the R5900 based detector are presented.

  12. SPECT-CT System for Small Animal Imaging

    SciTech Connect

    A.G. Weisenberger; R. Wojcik; E.L. Bradley; P. Brewer; S. Majewski; J. Qian; A. Ranck; M.S. Saha; K. Smith; M.F. Smith; R.E. Welsh

    2001-11-01

    The Detector Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the Biology, Physics and Applied Sciences Departments at the College of William and Mary are collaborating on the development of a miniature dual modality SPECT-CT system for mouse imaging. The detector heads of the SPECT sub-system are capable of imaging the gamma- and x-ray emissions (28-35 keV) of the radioactive isotope iodine-125 (I-125). Two different sets of I-125 imaging detectors are configured on a gantry which has an open-barrel type design. One set of detector heads is based on the 1 inch square Hamamatsu R5900-M64 position sensitive photomultiplier tube coupled to crystal scintillator arrays. The other detector heads configured on the gantry are two 5-inch diameter Hamamatsu R3292-based compact gamma cameras. The x-ray radiographic projections will be obtained using a LIXI Inc. model LF-85-503-OS x-ray imaging system that has an active area of 5.5 cm in diameter. The open-barrel shaped gantry facilitates the positioning of various mini gamma-ray imaging detectors and the x-ray system. The data acquisition and gantry control is interfaced through a Macintosh G3 workstation. SPECT reconstruction results using the R5900 based detector are presented.

  13. Optoacoustic imaging of an animal model of prostate cancer

    NASA Astrophysics Data System (ADS)

    Patterson, Michelle P.; Arsenault, Michel; Riley, Chris; Kolios, Michael; Whelan, William M.

    2010-02-01

    Prostate cancer is currently the most common cancer among Canadian men. Due to an increase in public awareness and screening, prostate cancer is being detected at earlier stages and in much younger men. This is raising the need for better treatment monitoring approaches. Optoacoustic imaging is a new technique that involves exposing tissues to pulsed light and detecting the acoustic waves generated by the tissue. Optoacoustic images of a tumour bearing mouse and an agematched control were acquired for a 775 nm illumination using a reverse-mode imaging system. A murine model of prostate cancer, TRAMP (transgenetic adenocarcinoma of mouse prostate), was investigated. The results show an increase in optoacoustic signal generated by the tumour compared to that generated by the surrounding tissues with a contrast ratio of 3.5. The dimensions of the tumour in the optoacoustic image agreed with the true tumour dimensions to within 0.5 mm. In this study we show that there are detectable changes in optoacoustic signal strength that arise from the presence of a tumour in the prostate, which demonstrates the potential of optoacoustic imaging for the monitoring of prostate cancer therapy.

  14. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  15. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  16. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging.

    PubMed

    Bentz, Brian Z; Chavan, Anmol V; Lin, Dergan; Tsai, Esther H R; Webb, Kevin J

    2016-01-10

    This work demonstrates the usefulness of 3D printing for optical imaging applications. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects for testing and evaluation. There is therefore high demand for what have become known as tissue-simulating "phantoms." We present a new optical phantom fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in complex or anatomically realistic geometries, as opposed to previous phantoms, which were limited to simple shapes formed by molds or machining. We use diffuse optical imaging to reconstruct optical parameters in 3D space within a printed mouse to show the applicability of the phantoms for developing whole animal optical imaging methods. This phantom fabrication approach is versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. PMID:26835763

  17. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    PubMed Central

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey

    2012-01-01

    Abstract. With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  18. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography.

    PubMed

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  19. Optical methods and integrated systems for brain imaging in awake, untethered animals

    NASA Astrophysics Data System (ADS)

    Murari, Kartikeya

    Imaging is a powerful tool for biomedical research offering non-contact and minimally or non-invasive means of investigating at multiple scales---from single molecules to large populations of cells. Imaging in awake, behaving animals is an emerging field that offers the additional advantage of being able to study physiological processes and structures in a more natural state than what is possible in tissue slices or even in anesthetized animals. To date, most imaging in awake animals has used optical fiber bundles or electrical cables to transfer signals to traditional imaging-system components. However, the fibers or cables tether the animal and greatly limit the kind and duration of animal behavior that can be studied using imaging methods. This work involves three distinct yet related approaches to fulfill the goal of imaging in unanesthetized, unrestrained animals---optical techniques for functional and structural imaging, development of novel photodetectors and the design of miniaturized imaging systems. I hypothesized that the flow within vessels might act as a contrast-enhancing agent and improve the visualization of vascular architecture using laser speckle imaging. When imaging rodent cerebral vasculature I saw a two to four fold increase in the contrast-to-noise ratios and was able to visualize 10--30% more vascular features over reflectance techniques. I designed a complementary metal oxide semiconductor (CMOS) photodetector array that was comparable in sensitivity and noise performance to cooled CCD sensors, able to image fluorescence from a single cell, while running at faster frame rates. Next, I designed an imaging system weighing under 6 grams and occupying less than 4 cm3. The system incorporated multispectral illumination, adjustable focusing optics and the high-sensitivity CMOS imager. I was able to implement a variety of optical modalities with the system and performed reflectance, fluorescence, spectroscopic and laser speckle imaging with my

  20. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  1. A Semi-Automated Single Day Image Differencing Technique to Identify Animals in Aerial Imagery

    PubMed Central

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates. PMID:24454827

  2. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    SciTech Connect

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique.

  3. Animal models and molecular imaging tools to investigate lymph node metastases

    PubMed Central

    Servais, Elliot L.; Colovos, Christos; Bograd, Adam J.; White, Julie; Sadelain, Michel

    2012-01-01

    Lymph node metastasis is a strong predictor of poor outcome in cancer patients. Animal studies of lymph node metastasis are constrained by difficulties in the establishment of appropriate animal models, limitations in the noninvasive monitoring of lymph node metastasis progression, and challenges in the pathologic confirmation of lymph node metastases. In this comprehensive review, we summarize available preclinical animal cancer models for noninvasive imaging and identification of lymph node metastases of non-hematogenous cancers. Furthermore, we discuss the strengths and weaknesses of common noninvasive imaging modalities used to identify tumor-bearing lymph nodes and provide guidelines for their pathological confirmation. PMID:21556810

  4. Improved Pose Measurement and Tracking System for Motion Correction of Awake, Unrestrained Small Animal SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Weisenberger, A G; Smith, M F

    2007-01-01

    An improved optical landmark-based pose measurement and tracking system has been developed to provide 3D animal pose data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained laboratory animals. The six degree of freedom animal position and orientation measurement data are time synchronized with the SPECT list mode data to provide for motion correction after the scan and before reconstruction. The tracking system employs infrared (IR) markers placed on the animal's head along with synchronized, strobed IR LEDs to illuminate the reflectors and freeze motion while minimizing reflections. A new design trinocular stereo image acquisition system using IEEE 1394 CMOS cameras acquires images of the animal with markers contained within a transparent enclosure. The trinocular configuration provides improved accuracy, range of motion, and robustness over the binocular stereo used previously. Enhanced software detects obstructions, automatically segments the markers, rejects reflections, performs marker correspondence, and calculates the 3D pose of the animal's head using image data from three cameras. The new hardware design provides more compact camera positioning with enhanced animal viewing through the 360 degree SPECT scan. This system has been implemented on a commercial scanner and tested using live mice and has been shown to be more reliable with higher accuracy than the previous system. Experimental results showing the improved motion tracking results are given.

  5. Visually evoked activity in cortical cells imaged in freely moving animals

    PubMed Central

    Sawinski, Juergen; Wallace, Damian J.; Greenberg, David S.; Grossmann, Silvie; Denk, Winfried; Kerr, Jason N. D.

    2009-01-01

    We describe a miniaturized head-mounted multiphoton microscope and its use for recording Ca2+ transients from the somata of layer 2/3 neurons in the visual cortex of awake, freely moving rats. Images contained up to 20 neurons and were stable enough to record continuously for >5 min per trial and 20 trials per imaging session, even as the animal was running at velocities of up to 0.6 m/s. Neuronal Ca2+ transients were readily detected, and responses to various static visual stimuli were observed during free movement on a running track. Neuronal activity was sparse and increased when the animal swept its gaze across a visual stimulus. Neurons showing preferential activation by specific stimuli were observed in freely moving animals. These results demonstrate that the multiphoton fiberscope is suitable for functional imaging in awake and freely moving animals. PMID:19889973

  6. Animated Depth Images for Interactive Remote Visualization of Time-Varying Data Sets.

    PubMed

    Cui, Jian; Ma, Zhiqiang; Popescu, Voicu

    2014-11-01

    Remote visualization has become both a necessity, as data set sizes have grown faster than computer network performance, and an opportunity, as laptop, tablet, and smartphone mobile computing platforms have become ubiquitous. However, the conventional remote visualization (CRV) approach of sending a new image from the server to the client for every view parameter change suffers from reduced interactivity. One problem is high latency, as the network has to be traversed twice, once to communicate the view parameters to the server and once to transmit the new image to the client. A second problem is reduced image quality due to aggressive compression or low resolution. We address these problems by constructing and transmitting enhanced images that are sufficient for quality output frame reconstruction at the client for a range of view parameter values. The client reconstructs thousands of frames locally, without any additional data from the server, which avoids latency and aggressive compression. We introduce animated depth images, which not only store a color and depth sample at every pixel, but also store the trajectory of the samples for a given time interval. Sample trajectories are stored compactly by partitioning the image into semi-rigid sample clusters and by storing one sequence of rigid body transformations per cluster. Animated depth images leverage sample trajectory coherence to achieve a good compression of animation data, with a small and user-controllable approximation error. We demonstrate animated depth images in the context of finite element analysis and SPH data sets. PMID:26355328

  7. Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1987-01-01

    A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  8. Imaging cell biology in live animals: Ready for prime time

    PubMed Central

    Porat-Shliom, Natalie; Amornphimoltham, Panomwat

    2013-01-01

    Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology. PMID:23798727

  9. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  10. MREIT conductivity imaging based on the local harmonic Bz algorithm: Animal experiments

    NASA Astrophysics Data System (ADS)

    Jeon, Kiwan; Lee, Chang-Ock; Woo, Eung Je; Kim, Hyung Joong; Seo, Jin Keun

    2010-04-01

    From numerous numerical and phantom experiments, MREIT conductivity imaging based on harmonic Bz algorithm shows that it could be yet another useful medical imaging modality. However, in animal experiments, the conventional harmonic Bz algorithm gives poor results near boundaries of problematic regions such as bones, lungs, and gas-filled stomach, and the subject boundary where electrodes are not attached. Since the amount of injected current is low enough for the safety for in vivo animal, the measured Bz data is defected by severe noise. In order to handle such problems, we use the recently developed local harmonic Bz algorithm to obtain conductivity images in our ROI(region of interest) without concerning the defected regions. Furthermore we adopt a denoising algorithm that preserves the ramp structure of Bz data, which informs of the location and size of anomaly. Incorporating these efficient techniques, we provide the conductivity imaging of post-mortem and in vivo animal experiments with high spatial resolution.

  11. In vivo macroscopic HPD fluorescence reflectance imaging on small animals bearing surface ARO/NPA tumor

    NASA Astrophysics Data System (ADS)

    Autiero, Maddalena; Celentano, Luigi; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Montesi, Maria C.; Riccio, Patrizia; Russo, Paolo; Roberti, Giuseppe

    2005-08-01

    Recently multimodal imaging systems have been devised because the combination of different imaging modalities results in the complementarity and integration of the techniques and in a consequent improvement of the diagnostic capabilities of the multimodal system with respect to each separate imaging modality. We developed a simple and reliable HematoPorphyrin (HP) mediated Fluorescence Reflectance Imaging (FRI) system that allows for in vivo real time imaging of surface tumors with a large field of view. The tumor cells are anaplastic human thyroid carcinoma-derived ARO cells, or human papillary thyroid carcinoma-derived NPA cells. Our measurements show that the optical contrast of the tumor region image is increased by a simple digital subtraction of the background fluorescence and that HP fluorescence emissivity of ARO tumors is about 2 times greater than that of NPA tumors, and about 4 times greater than that of healthy tissues. This is also confirmed by spectroscopic measurements on histological sections of tumor and healthy tissues. It was shown also the capability of this system to distinguish the tumor type on the basis of the different intensity of the fluorescence emission, probably related to the malignancy degree. The features of this system are complementary with those ones of a pixel radionuclide detection system, which allows for relatively time expensive, narrow field of view measurements, and applicability to tumors also deeply imbedded in tissues. The fluorescence detection could be used as a large scale and quick analysis tool and could be followed by narrow field, higher resolution radionuclide measurements on previously determined highly fluorescent regions.

  12. Small animal lung imaging with an in-line X-ray phase contrast benchtop system

    NASA Astrophysics Data System (ADS)

    Garson, A. B.; Gunsten, S.; Guan, H.; Vasireddi, S.; Brody, S.; Anastasio, M. A.

    2015-03-01

    We present the results from a benchtop X-ray phase-contrast (XPC) method for lung imaging that represents a paradigm shift in the way small animal lung imaging is performed. In our method, information regarding airway microstructure that is encoded within speckle texture of a single XPC radiograph is decoded to spatially resolve changes in lung properties such as microstructure sizes, air volumes, and compliance, to name a few. Such functional information cannot be derived from conventional lung radiography or any other 2D imaging modality. By computing these images at different time points within a breathing cycle, dynamic functional imaging can be potentially achieved without the need for tomography.

  13. Potential clinical impact of radionuclide imaging technologies: highlights of the ITBS 2003 meeting

    NASA Astrophysics Data System (ADS)

    Itti, Roland

    2004-07-01

    Radiopharmaceuticals are major determinants of progress in Nuclear Medicine. Besides 18FDG, the most common PET tracer, several other molecules are under evaluation, such as 18F-fluoride for bone studies, numerous ligands for neurotransmission, 18F-DOPA for neuro-endocrine tumors or generator produced 68Ga-peptides for various cancers. Nuclear medicine gradually changes for "molecular imaging" and medical imaging, which was at the beginning mainly anatomic, has progressed in the direction of functional and metabolic imaging. The present challenge is to achieve some degree of "in vivo" biochemistry or even histology or genetics. The importance of anatomic/functional image fusion justifies the development of combined PET-CT instrumentation, whose objectives have to be discussed in terms of anatomical landmarks and/or additional clinical information. The question of "hard" or "soft" image co-registration remains open, involving not only CT, but also SPECT or MRI. Development of dedicated imaging devices, whether single photon or positron, is of major interest for breast imaging, allowing optimal imaging conditions, with results definitely superior to classical gamma-cameras or PET. The patient population concerned with scintimammography is still controversial, as well as the imaging modalities: FDG or sestaMIBI, planar or tomographic, scintillators or semi-conductors, and the research field remains open. This is also valid for external or per-operative probe systems for tumor or lymph nodes localization.

  14. A comparison of animated versus static images in an instructional multimedia presentation.

    PubMed

    Daly, C J; Bulloch, J M; Ma, M; Aidulis, D

    2016-06-01

    Sophisticated three-dimensional animation and video compositing software enables the creation of complex multimedia instructional movies. However, if the design of such presentations does not take account of cognitive load and multimedia theories, then their effectiveness as learning aids will be compromised. We investigated the use of animated images versus still images by creating two versions of a 4-min multimedia presentation on vascular neuroeffector transmission. One version comprised narration and animations, whereas the other animation comprised narration and still images. Fifty-four undergraduate students from level 3 pharmacology and physiology undergraduate degrees participated. Half of the students watched the full animation, and the other half watched the stills only. Students watched the presentation once and then answered a short essay question. Answers were coded and marked blind. The "animation" group scored 3.7 (SE: 0.4; out of 11), whereas the "stills" group scored 3.2 (SE: 0.5). The difference was not statistically significant. Further analysis of bonus marks, awarded for appropriate terminology use, detected a significant difference in one class (pharmacology) who scored 0.6 (SE: 0.2) versus 0.1 (SE: 0.1) for the animation versus stills group, respectively (P = 0.04). However, when combined with the physiology group, the significance disappeared. Feedback from students was extremely positive and identified four main themes of interest. In conclusion, while increasing student satisfaction, we do not find strong evidence in favor of animated images over still images in this particular format. We also discuss the study design and offer suggestions for further investigations of this type. PMID:27105738

  15. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  16. Imaging Techniques for Small Animal Models of Pulmonary Disease: MR Microscopy

    PubMed Central

    Driehuys, Bastiaan; Hedlund, Laurence W.

    2009-01-01

    In vivo magnetic resonance microscopy (MRM) of the small animal lung has become a valuable research tool, especially for preclinical studies. MRM offers a noninvasive and nondestructive tool for imaging small animals longitudinally and at high spatial resolution. We summarize some of the technical and biologic problems and solutions associated with imaging the small animal lung and describe several important pulmonary disease applications. A major advantage of MR is direct imaging of the gas spaces of the lung using breathable gases such as helium and xenon. When polarized, these gases become rich MR signal sources. In animals breathing hyperpolarized helium, the dynamics of gas distribution can be followed and airway constrictions and obstructions can be detected. Diffusion coefficients of helium can be calculated from diffusion-sensitive images, which can reveal micro-structural changes in the lungs associated with pathologies such as emphysema and fibrosis. Unlike helium, xenon in the lung is absorbed by blood and exhibits different frequencies in gas, tissue, or erythrocytes. Thus, with MR imaging, the movement of xenon gas can be tracked through pulmonary compartments to detect defects of gas transfer. MRM has become a valuable tool for studying morphologic and functional changes in small animal models of lung diseases. PMID:17325972

  17. Phantom feet on digital radionuclide images and other scary computer tales

    SciTech Connect

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.; Ponto, R. )

    1989-09-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.

  18. NanoLuc reporter for dual luciferase imaging in living animals.

    PubMed

    Stacer, Amanda C; Nyati, Shyam; Moudgil, Pranav; Iyengar, Rahul; Luker, Kathryn E; Rehemtulla, Alnawaz; Luker, Gary D

    2013-10-01

    Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development. PMID:24371848

  19. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  20. Attenuation correction for small animal SPECT imaging using x-ray CT data

    SciTech Connect

    Hwang, Andrew B.; Hasegawa, Bruce H.

    2005-09-15

    Photon attenuation in small animal nuclear medicine scans can be significant when using isotopes that emit lower energy photons such as iodine-125. We have developed a method to use microCT data to perform attenuation corrected small animal single-photon emission computed tomography (SPECT). A microCT calibration phantom was first imaged, and the resulting calibration curve was used to convert microCT image values to linear attenuation coefficient values that were then used in an iterative SPECT reconstruction algorithm. This method was applied to reconstruct a SPECT image of a uniform phantom filled with {sup 125}I-NaI. Without attenuation correction, the image suffered a 30% decrease in intensity in the center of the image, which was removed with the addition of attenuation correction. This reduced the relative standard deviation in the region of interest from 10% to 6%.

  1. Direct Imaging of Gene-Carrier Complexes in Animal Cells

    NASA Astrophysics Data System (ADS)

    Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; Matsumoto, Brian; Safinya, Cyrus R.

    1998-03-01

    Cationic lipids are promising gene carriers for DNA transfection. Establishing the correlations between structures of cationic lipid/DNA complexes (CL-DNA) and pathways of transfection will greatly aid us in achieving the optimal CL-DNA transfections. Our first step is to determine the uptake mechanism of DNA by studying the interactions and structures of DNA and cationic lipids. X-ray diffraction shows that the CL-DNA undergoes structural phase transitions from lamellar( J. Raedler, I. Koltover, T. Salditt, C. R. Safinya, Science 275, 810 (1997).) to inverted hexagonal self-assemblies as we change the lipid composition. X-ray diffraction and optical microscopy techniques are used to directly image the progress of the CL-DNA in mouse L-cells and unravel the complex structure in-situ. Fluorescence and confocal optical microscopy techniques allow us to monitor the interactions between the complexes and different organelles in the cell cytoplasm. Current results indicate that once inside cells, complexes containing DOPE follow a different pathway from those containing DOPC. This research is funded by NSF-DMR-9624091, PRF-31352-AC7, and Los Alamos-STB/UC:96-108.

  2. An automated robot arm system for small animal tissue biopsy under dual-image modality

    NASA Astrophysics Data System (ADS)

    Huang, Y. H.; Wu, T. H.; Lin, M. H.; Yang, C. C.; Guo, W. Y.; Wang, Z. J.; Chen, C. L.; Lee, J. S.

    2006-12-01

    The ability to non-invasively monitor cell biology in vivo is one of the most important goals of molecular imaging. Imaging procedures could be inter-subject performed repeatedly at different investigating stages; thereby need not sacrifice small animals during the entire study period. Thus, the ultimate goal of this study was to design a stereotactic image-guided system for small animals and integrated it with an automatic robot arm for in vivo tissue biopsy analysis. The system was composed of three main parts, including one small animal stereotactic frame, one imaging-fusion software and an automatic robot arm system. The system has been thoroughly evaluated with three components; the robot position accuracy was 0.05±0.02 mm, the image registration accuracy was 0.37±0.18 mm and the system integration was satisfactorily within 1.20±0.39 mm of error. From these results, the system demonstrated sufficient accuracy to guide the micro-injector from the planned delivery routes into practice. The entire system accuracy was limited by the image fusion and orientation procedures, due to its nature of the blurred PET imaging obtained from the small objects. The primary improvement is to acquire as higher resolution as possible the fused imaging for localizing the targets in the future.

  3. Precise image-guided irradiation of small animals: a flexible non-profit platform.

    PubMed

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Rimarzig, Bernd; Sobiella, Manfred; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang

    2016-04-21

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. PMID:27008208

  4. Precise image-guided irradiation of small animals: a flexible non-profit platform

    NASA Astrophysics Data System (ADS)

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Rimarzig, Bernd; Sobiella, Manfred; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang

    2016-04-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks.

  5. A Protective Eye Shield for Prevention of Media Opacities during Small Animal Ocular Imaging

    PubMed Central

    Bell, Brent A.; Kaul, Charles; Hollyfield, Joe G.

    2014-01-01

    Optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO) and other non-invasive imaging techniques are increasingly used in eye research to document disease-related changes in rodent eyes. Corneal dehydration is a major contributor to the formation of ocular opacities that can limit the repeated application of these techniques to individual animals. General anesthesia is usually required for imaging, which is accompanied by the loss of the blink reflex. As a consequence, the tear film cannot be maintained, drying occurs and the cornea becomes dehydrated. Without supplemental hydration, structural damage to the cornea quickly follows. Soon thereafter, anterior lens opacities can also develop. Collectively these changes ultimately compromise image quality, especially for studies involving repeated use of the same animal over several weeks or months. To minimize these changes, a protective shield was designed for mice and rats that prevent ocular dehydration during anesthesia. The eye shield, along with a semi-viscous ophthalmic solution, is placed over the corneas as soon as the anesthesia immobilizes the animal. Eye shields are removed for only the brief periods required for imaging and then reapplied before the fellow eye is examined. As a result, the corneal surface of each eye is exposed only for the time required for imaging. The device and detailed methods described here minimize the corneal and lens changes associated with ocular surface desiccation. When these methods are used consistently, high quality images can be obtained repeatedly from individual animals. PMID:25245081

  6. Hyperspectral Imaging for Burn Depth Assessment in an Animal Model

    PubMed Central

    Chin, Michael S.; Babchenko, Oksana; Lujan-Hernandez, Jorge; Nobel, Lisa; Ignotz, Ronald; Lalikos, Janice F.

    2015-01-01

    Abstract Background: Differentiating between superficial and deep-dermal (DD) burns remains challenging. Superficial-dermal burns heal with conservative treatment; DD burns often require excision and skin grafting. Decision of surgical treatment is often delayed until burn depth is definitively identified. This study’s aim is to assess the ability of hyperspectral imaging (HSI) to differentiate burn depth. Methods: Thermal injury of graded severity was generated on the dorsum of hairless mice with a heated brass rod. Perfusion and oxygenation parameters of injured skin were measured with HSI, a noninvasive method of diffuse reflectance spectroscopy, at 2 minutes, 1, 24, 48 and 72 hours after wounding. Burn depth was measured histologically in 12 mice from each burn group (n = 72) at 72 hours. Results: Three levels of burn depth were verified histologically: intermediate-dermal (ID), DD, and full-thickness. At 24 hours post injury, total hemoglobin (tHb) increased by 67% and 16% in ID and DD burns, respectively. In contrast, tHb decreased to 36% of its original levels in full-thickness burns. Differences in deoxygenated and tHb among all groups were significant (P < 0.001) at 24 hours post injury. Conclusions: HSI was able to differentiate among 3 discrete levels of burn injury. This is likely because of its correlation with skin perfusion: superficial burn injury causes an inflammatory response and increased perfusion to the burn site, whereas deeper burns destroy the dermal microvasculature and a decrease in perfusion follows. This study supports further investigation of HSI in early burn depth assessment. PMID:26894016

  7. Magnetic Resonance-based imaging in animal models of Fetal Alcohol Spectrum Disorder

    PubMed Central

    O'Leary-Moore, Shonagh K.; Parnell, Scott E.; Lipinski, Robert J.; Sulik, Kathleen K.

    2012-01-01

    Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work. PMID:21445552

  8. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Miao, Peng; Liu, Qi; Li, Yao; Tong, Shanbao

    2011-11-01

    Optical intrinsic signals (OIS) and laser speckle contrast imaging (LSCI) have been used for years in the study of the cerebral blood flow (CBF) and hemodynamic responses to the neural activity under functional stimulation. So far, most in vivo rodent experiments are based on the anesthesia model when the animals are in unconscious and restrained conditions. The influences of anesthesia on the neural activity have been documented in literature. In this study, we designed a miniature head-mounted dual-modal imager in freely moving animals that could monitor in real time the coupling of local oxygen consumption and blood perfusion of CBF by integrating different imaging modalities of OIS and LSCI. The system facilitates the study the cortical hemodynamics and neural-hemodynamic coupling in real time in freely moving animals.

  9. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Miao, Peng; Liu, Qi; Li, Yao; Tong, Shanbao

    2012-03-01

    Optical intrinsic signals (OIS) and laser speckle contrast imaging (LSCI) have been used for years in the study of the cerebral blood flow (CBF) and hemodynamic responses to the neural activity under functional stimulation. So far, most in vivo rodent experiments are based on the anesthesia model when the animals are in unconscious and restrained conditions. The influences of anesthesia on the neural activity have been documented in literature. In this study, we designed a miniature head-mounted dual-modal imager in freely moving animals that could monitor in real time the coupling of local oxygen consumption and blood perfusion of CBF by integrating different imaging modalities of OIS and LSCI. The system facilitates the study the cortical hemodynamics and neural-hemodynamic coupling in real time in freely moving animals.

  10. Optical brain imaging in vivo: techniques and applications from animal to man

    PubMed Central

    Hillman, Elizabeth M. C.

    2008-01-01

    Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions. PMID:17994863

  11. Relative prognostic value of rest thallium-201 imaging, radionuclide ventriculography and 24 hour ambulatory electrocardiographic monitoring after acute myocardial infarction

    SciTech Connect

    Hakki, A.H.; Nestico, P.F.; Heo, J.; Unwala, A.A.; Iskandrian, A.S.

    1987-07-01

    Rest thallium-201 scintigraphy, radionuclide ventriculography and 24 hour Holter monitoring are acceptable methods to assess myocardial necrosis, performance and electrical instability. This study examined the relative value of the three tests, when obtained a mean of 7 days after acute myocardial infarction, in predicting 1 year mortality in 93 patients. Planar thallium-201 images were obtained in three projections and were scored on a scale of 0 to 4 in 15 segments (normal score = 60). Patients were classified as having high risk test results as follows: thallium score less than or equal to 45 (33 patients), left ventricular ejection fraction less than or equal to 40% (51 patients) and complex ventricular arrhythmias on Holter monitoring (36 patients). During the follow-up of 6.4 +/- 3.4 months (mean +/- SD), 15 patients died of cardiac causes. All three tests were important predictors of survival by univariate Cox survival analysis; the thallium score, however, was the only important predictor by multivariate analysis. The predictive power of the thallium score was comparable with that of combined ejection fraction and Holter monitoring (chi-square = 21 versus chi-square = 22). Thus, rest thallium-201 imaging performed before hospital discharge provides important prognostic information in survivors of acute myocardial infarction which is comparable with that provided by left ventricular ejection fraction and Holter monitoring. Patients with a lower thallium score (large perfusion defects) are at high risk of cardiac death during the first year after infarction.

  12. The translational role of diffusion tensor image analysis in animal models of developmental pathologies.

    PubMed

    Oguz, Ipek; McMurray, Matthew S; Styner, Martin; Johns, Josephine M

    2012-01-01

    Diffusion tensor magnetic resonance imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in-depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers. PMID:22627095

  13. TU-F-12A-06: BEST IN PHYSICS (IMAGING) - A Novel Catheter-Based Radionuclide Imaging System to Characterize Atherosclerotic Plaque

    SciTech Connect

    Zaman, R; Kosuge, H; Carpenter, C; Pratx, G; Sun, C; McConnell, M; Xing, L

    2014-06-15

    Purpose: Atherosclerosis underlies coronary artery diseases, the leading cause of death in the United States and worldwide. In this study, we developed a novel catheter-based radionuclide imaging (CRI) system to image 18F-fluorodeoxyglucose (18F-FDG), a radionuclide, a marker of vascular inflammation, in murine carotid arteries and characterized the system for spatial resolution from multiple scintillating materials. Methods: The catheter system includes 35 mm and 8 mm fixed focal length lenses, which are subsequently connected to a CMOS camera and fiber holder. The distal ferrule of an image bundle is terminated with a wide-angle lens. The novelty of this system is a scintillating balloon with a crystal tip in the front of the wide angle lens to image light from the decay of 18F-FDG emission signal. The scintillating balloon is fabricated from 1mL of silicone RTV catalyst mixed with 1 mL base and 50 mg/mL calcium fluoride doped with Europium (CaF2:Eu). To identify the optimal scintillating materials with respect to resolution, we calculated modulation transfer function (MTF) of Yttrium Aluminum Garnet doped with Cerium (YAG:Ce), anthracene, and CaF2:Eu phosphors using a thin line optical phantom (Fig. 1a-1b). Macrophage-rich FVB murine atherosclerotic carotid plaque model (n = 4) was used in ex vivo experiments. Confirmatory imaging was also performed by an external optical imaging system (IVIS-200). Results: Analysis of the different phosphors (Fig 1b) showed that CaF2:Eu enabled the best resolution of 1.2μm. The CRI system visualized 18F-FDG in atherosclerotic plaques (Fig. 1d). The ligated left carotid (LR) artery exhibited 4× higher 18F-FDG signal intensity compared to the non-ligated right carotid (negative control) artery (1.65×10{sup 2} ±4.07×10{sup 1} vs. 4.44×10{sup 1}±2.17×10{sup 0}, A.U., p = 0.005) and confirmed with IVIS-200 (Fig. 1d). Conclusion: This CRI system enables high-resolution and sensitive detection of 18F-FDG uptake by murine

  14. A Novel Restraining Device for Small Animal Imaging Exams: Validation in Rabbits

    PubMed Central

    Barbosa, Carlos Henrique; Carvalho, Antonio Carlos; de Souza, Sérgio; Machado, Fernanda; Guedes, Fábio; Monteiro, André; Schanaider, Alberto

    2015-01-01

    Objective. To develop, validate, and patent a Restraining Device for Small Animal Imaging Exams (RDSAIE) that allows exams to be comfortably conducted without risks to animals and professionals. Methods. A RDSAIE with a mobile cover and shelf was built with transparent acrylic material. A total of six anesthetized rabbits were used to perform the following imaging exams of the skull: Cone Beam Computed Tomography, Magnetic Resonance Imaging, and Scintigraphy. Results. The device showed great functionality and full visibility of the animal behavior, which remained fully stabilized and immobilized in either the horizontal or vertical position without the need for a person to remain in the test room to assist them. The procedures were performed without difficulty, and images of good resolution and without artifacts were obtained. Conclusion. The RDSAIE is comfortable, safe, efficient, and ergonomic. It allows the easy placement of animals in different body positions, including the vertical, the maintenance of postural stability, and full visibility. It may be constructed for animals heavier than 4 kg and it is adaptable for translational studies in anima nobile. PMID:26114109

  15. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging

    PubMed Central

    Mandal, Subhamoy; Nasonova, Elena; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    In tomographic optoacoustic imaging, multiple parameters related to both light and ultrasound propagation characteristics of the medium need to be adequately selected in order to accurately recover maps of local optical absorbance. Speed of sound in the imaged object and surrounding medium is a key parameter conventionally assumed to be uniform. Mismatch between the actual and predicted speed of sound values may lead to image distortions but can be mitigated by manual or automatic optimization based on metrics of image sharpness. Although some simple approaches based on metrics of image sharpness may readily mitigate distortions in the presence of highly contrasting and sharp image features, they may not provide an adequate performance for smooth signal variations as commonly present in realistic whole-body optoacoustic images from small animals. Thus, three new hybrid methods are suggested in this work, which are shown to outperform well-established autofocusing algorithms in mouse experiments in vivo. PMID:25431756

  16. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

    NASA Astrophysics Data System (ADS)

    Conover, David L.; Ning, Ruola; Yu, Yong; Lu, Xianghua; Wood, Ronald W.; Reeder, Jay E.; Johnson, Aimee M.

    2005-04-01

    Flat panel detector-based cone beam CT (FPD-CBCT) imaging system prototypes have been constructed based on modified clinical CT scanners (a modified GE 8800 CT system and a modified GE HighSpeed Advantage (HSA) spiral CT system) each with a Varian PaxScan 2520 imager. The functions of the electromechanical and radiographic subsystems of the CT system were controlled through specially made hardware, software and data acquisition modules to perform animal cone beam CT studies. Small animal (mouse) imaging studies were performed to demonstrate the feasibility of an optimized CBCT imaging system to have the capability to perform longitudinal studies to monitor the progression of cancerous tumors or the efficacy of treatments. Radiographic parameters were optimized for fast (~10 second) scans of live mice to produce good reconstructed image quality with dose levels low enough to avoid any detectable radiation treatment to the animals. Specifically, organs in the pelvic region were clearly imaged and contrast studies showed the feasibility to visualize small vasculature and space-filling bladder tumors. In addition, prostate and mammary tumors were monitored in volume growth studies.

  17. Design of a multimodal fibers optic system for small animal optical imaging.

    PubMed

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. PMID:25465071

  18. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  19. Multimodality imaging combination in small animal via point-based registration

    NASA Astrophysics Data System (ADS)

    Yang, C. C.; Wu, T. H.; Lin, M. H.; Huang, Y. H.; Guo, W. Y.; Chen, C. L.; Wang, T. C.; Yin, W. H.; Lee, J. S.

    2006-12-01

    We present a system of image co-registration in small animal study. Marker-based registration is chosen because of its considerable advantage that the fiducial feature is independent of imaging modality. We also experimented with different scanning protocols and different fiducial marker sizes to improve registration accuracy. Co-registration was conducted using rat phantom fixed by stereotactic frame. Overall, the co-registration accuracy was in sub-millimeter level and close to intrinsic system error. Therefore, we conclude that the system is an accurate co-registration method to be used in small animal studies.

  20. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction.

    PubMed

    Sohlberg, Antti; Lensu, Sanna; Jolkkonen, Jukka; Tuomisto, Leena; Ruotsalainen, Ulla; Kuikka, Jyrki T

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with (123)I-epidepride and (99m)Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. PMID:14991246

  1. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    SciTech Connect

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  2. Small-animal whole-body imaging using a photoacoustic full ring array system

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  3. Continuous monitoring of arthritis in animal models using optical imaging modalities

    NASA Astrophysics Data System (ADS)

    Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk

    2014-10-01

    Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.

  4. Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints.

    PubMed

    Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath

    2015-01-01

    The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560

  5. Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints

    PubMed Central

    Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath

    2015-01-01

    The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560

  6. Radionuclide imaging in the nonsurgical treatment of liver and spleen trauma

    SciTech Connect

    Lutzker, L.G.; Chun, K.J.

    1981-01-01

    As part of evaluation in patients with abdominal trauma severe enough to require hospital admission but not sufficiently severe to warrant immediate surgery, liver-spleen imaging with Tc-99m sulfur coloid was performed in 30 patients in the following age ranges: 10 mo-5 yr (3 patients), 6-10 yr (11), 11-15 yr (7), and 16-40 yr (9). Routine projections by gamma camera were acquired in the anterior, posterior, lateral, anterior oblique, and posterior oblique projections, supplemented with caudally angulated or upright views when indicated. Scintigraphically, there was a linear defect in ten patients, a round, intraparenchymal or wedge defect in 12, and an edge defect in eight. In 24 patients that underwent subsequent studies, the initial image was positive in 21 and equivocal in three. Of the 21 patients, partial resolution of the defects was seen on the images 2 wk to 7 mo following trauma in 14 patients, and nearly complete resolution in 2 wk to 10 mo in nine patients. Complete resolution was seen in 1-13 mo in nine patients. No defects enlarged over time. These authors presented a decision tree for the initial evaluation and subsequent studies in patients with liver-spleen trauma. They feel that consideration of clinical signs and serial liver-spleen imaging can eliminate some surgery when there is a question of delayed or missed splenic rupture.

  7. Preliminary experience with small animal SPECT imaging on clinical gamma cameras.

    PubMed

    Aguiar, P; Silva-Rodríguez, J; Herranz, M; Ruibal, A

    2014-01-01

    The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets. PMID:24963478

  8. Development of visible and NIR imaging equipment for small animals with smart pad.

    PubMed

    Eum, Nyeon Sik; Han, Jung Hyun; Seong, Ki Woong; Lee, Jong Ha; Park, Hee Joon

    2014-01-01

    The portable visible and near-infrared (NIR) imaging equipment for a pre-clinical test with small animals was designed and developed in this paper. The developed equipment is composed of a CCD camera, a focusing lens, an objective lens, a NIR band pass filter and a NIR filter driving motor. An NIR ray is mainly used for imaging equipment because it has high light penetration depth in biological tissue. Therefore, NIR fluorescent agents are available for chemical conjugation to targeting molecules in vivo. This equipment can provide a visible image, NIR image and merged image simultaneously. A communication system was specifically established to check obtained images through a smart pad in real time. It is less dependent on space and time than the conventional system. PMID:25227011

  9. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    PubMed Central

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  10. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors.

    PubMed

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-11-21

    We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer. PMID:26477402

  11. Imaging of radionuclide emissions with a low-noise charge-coupled device

    SciTech Connect

    Karellas, A.; Hong Liu; Harris, L.J. . Dept. of Radiology); Reinhardt, C.; Brill, A.B. . Dept. of Nuclear Medicine)

    1993-08-01

    Autoradiography is an extremely powerful tool for imaging the distribution of a radiolabeled compound within tissues. This is especially the case in microdosimetry for radioimmunotherapy and for radiopharmaceutical dosimetry. Film-based autoradiography provides excellent spatial resolution but presents some problems with regard to sensitivity, dynamic range, and quantitation. Although film as an image receptor can produce excellent resolution, it is time consuming and presents many problems in quantitative measurements due to its non-linearity of response and limited dynamic range. In this work the authors are investigating the adaptation of a cooled charge-coupled device (CCD) for some autoradiographic applications which may alleviate some of the problems encountered with film. The proposed approach uses a scientific-grade CCD which is optically coupled via a lens to a scintillator without intermediate amplification. On the basis of the experience with the lens coupling, the performance of the CCD is investigated with the option of a fiber optic coupling between the scintillator and CCD. The attainable performance by operating the CCD in the charge integration mode is explored experimentally and computations are presented in order to predict the performance of a modified imaging system operating in the counting pulse-height mode for energy discrimination.

  12. Use of radionuclide imaging to determine gastric emptying of carbohydrate solutions during exercise.

    PubMed Central

    MacLaren, D; Miles, A; O'Neill, I; Critchley, M; Grime, S; Stockdale, H

    1996-01-01

    OBJECTIVE--To investigate the repeatability of continual assessment of the gastric emptying rates of carbohydrate solutions in exercising subjects using 99mtechnetium labelling. METHODS--Gastric emptying of a 5% glucose solution and an iso-osmotic maltodextrin solution was measured using 3 MBq of 99mtechnetium labelled diethylene triamine penta-acetic acid (DTPA) and continuous gamma camera imaging in five male subjects. The subjects performed four 1 h trials at 70% VO2 peak on a cycle ergometer. After 15 min, 200 ml of a radiolabelled solution of glucose or maltodextrin were ingested in a blind crossover protocol. The two solutions were each ingested on separate occasions (trial 1 and trial 2) to establish repeatability. RESULTS--Statistical analysis showed no differences between trial 1 and trial 2 for both solutions. There were no significant differences for the emptying rates between the two test solutions. CONCLUSIONS--Posterior imaging using a computer linked gamma camera following the ingestion of 99mtechnetium labelled DTPA mixed with carbohydrate solutions provides a repeatable method of assessing gastric emptying characteristics in exercising subjects. This technique showed no significant differences between the emptying rates of a single dose of iso-osmotic glucose or maltodextrin solution. Images Fig 1 PMID:8665111

  13. The Effects of Image and Animation in Enhancing Pedagogical Agent Persona

    ERIC Educational Resources Information Center

    Baylor, Amy L.; Ryu, Jeeheon

    2003-01-01

    The purpose of this experimental study was to test the role of image and animation on: a) learners' perceptions of pedagogical agent persona characteristics (i.e., extent to which agent was person-like, engaging, credible, and instructor-like); b) agent value; and c) performance. The primary analysis consisted of two contrast comparisons: 1)…

  14. Refinement and reduction in animal experimentation: options for new imaging techniques.

    PubMed

    Heindl, Cornelia; Hess, Andreas; Brune, Kay

    2008-01-01

    Attempts to substitute animal experiments with in vitro or in silico methods were of limited success when complex (regulatory) processes, e.g. of the cardiovascular, metabolic or neuronal system, were to be analysed. Consequently, strategies to reduce the number of and the burden placed on experimental animals in these fields of research are required. One option consists in the application of non-invasive imaging techniques like (functional) magnetic resonance imaging ((f)MRI), positron emission tomography (PET), and optical imaging (OI). All these methods allow for the observation of functional changes within the body of e.g. genetically modified animals without pain, suffering or (premature) termination. The use of these methods has now reached new dimensions of resolution and precision. With this article we would like to demonstrate a few options of these techniques. We hope that our enthusiasm becomes contagious, thus motivating more scientists to make use of the still expensive equipment which has become available in "small animal imaging" centres. On the basis of four examples--three from our group--we would like to highlight some merits of the new technologies. PMID:18551236

  15. A Fourier transform infrared microspectroscopic imaging investigation into an animal model exhibiting glioblastoma multiforme.

    PubMed

    Bambery, K R; Schültke, E; Wood, B R; Rigley MacDonald, S T; Ataelmannan, K; Griebel, R W; Juurlink, B H J; McNaughton, D

    2006-07-01

    Glioblastoma multiforme (GBM) is a highly malignant human brain tumour for which no cure is available at present. Numerous clinical studies as well as animal experiments are under way with the goal being to understand tumour biology and develop potential therapeutic approaches. C6 cell glioma in the adult rat is a frequently used and well accepted animal model for the malignant human glial tumour. By combining standard analytical methods such as histology and immunohistochemistry with Fourier Transform Infrared (FTIR) microspectroscopic imaging and multivariate statistical approaches, we are developing a novel approach to tumour diagnosis which allows us to obtain information about the structure and composition of tumour tissues that could not be obtained easily with either method alone. We have used a "Stingray" FTIR imaging spectrometer to analyse and compare the compositions of coronal brain tissue sections of a tumour-bearing animal and those from a healthy animal. We have found that the tumour tissue has a characteristic chemical signature, which distinguishes it from tumour-free brain tissue. The physical-chemical differences, determined by image and spectral comparison are consistent with changes in total protein absorbance, phosphodiester absorbance and physical dispersive artefacts. The results indicate that FTIR imaging analysis could become a valuable analytic method in brain tumour research and possibly in the diagnosis of human brain tumours. PMID:16815240

  16. Aerial-image enables diagrams and animation to be inserted in motion pictures

    NASA Technical Reports Server (NTRS)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  17. Investigating the dopaminergic synapse in vivo. II. Molecular imaging studies in small laboratory animals.

    PubMed

    Nikolaus, Susanne; Larisch, Rolf; Beu, Markus; Antke, Christina; Kley, Konstantin; Forutan, Farhad; Wirrwar, Andreas; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. The performance of animal studies allows the induction of specific short-term or long-term synaptic conditions via pharmacological challenges or infliction of neurotoxic lesions. Therefore, small laboratory animals such as rats and mice have become invaluable models for a variety of human disorders. This article gives an overview of those small animal studies which have been performed so far on dopaminergic neurotransmission using in vivo imaging methods, with a special focus on the relevance of findings within the functional entity of the dopaminergic synapse. Taken together, in vivo investigations on animal models of Parkinson's disease showed decreases of dopamine storage, dopamine release and dopamine transporter binding, no alterations of dopamine synthesis and DA release, and either increases or no alterations of D2 receptor binding, while in vivo investigations of animal models of Huntington's disease. showed decreases of DAT and D1 receptor binding. For D2 receptor binding, both decreases and increases have been reported, dependent on the radioligand employed. Substances of abuse, such as alcohol, amphetamine and methylphenidate, led to an increase of dopamine release in striatal regions. This held for the acute application of substances to both healthy animals and animal models of drug abuse. Findings also showed that chronic application of cocaine induced long-term reductions of both D1 and D2 receptor binding, which disappeared after several weeks of withdrawal. Finally, preliminary results yielded the first

  18. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery.

    PubMed

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor. PMID:26720879

  19. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei

    2015-12-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  20. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    PubMed Central

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  1. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  2. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    SciTech Connect

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  3. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  4. Analyzer-based imaging of spinal fusion in an animal model

    NASA Astrophysics Data System (ADS)

    Kelly, M. E.; Beavis, R. C.; Fiorella, David; Schültke, E.; Allen, L. A.; Juurlink, B. H.; Zhong, Z.; Chapman, L. D.

    2008-05-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs.

  5. Scatter correction in scintillation camera imaging of positron-emitting radionuclides

    SciTech Connect

    Ljungberg, M.; Danfelter, M.; Strand, S.E.

    1996-12-31

    The use of Anger scintillation cameras for positron SPECT has become of interest recently due to their use with imaging 2-{sup 18}F deoxyglucose. Due to the special crystal design (thin and wide), a significant amount of primary events will be also recorded in the Compton region of the energy spectra. Events recorded in a second Compton window (CW) can add information to the data in the photopeak window (PW), since some events are correctly positioned in the CW. However, a significant amount of the scatter is also included in CW which needs to be corrected. This work describes a method whereby a third scatter window (SW) is used to estimate the scatter distribution in the CW and the PW. The accuracy of estimation has been evaluated by Monte Carlo simulations in a homogeneous elliptical phantom for point and extended sources. Two examples of clinical application are also provided. Results from simulations show that essentially only scatter from the phantom is recorded between the 511 keV PW and 340 keV CW. Scatter projection data with a constant multiplier can estimate the scatter in the CW and PW, although the scatter distribution in SW corresponds better to the scatter distribution in the CW. The multiplier k for the CW varies significantly more with depth than it does for the PW. Clinical studies show an improvement in image quality when using scatter corrected combined PW and CW.

  6. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  7. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    PubMed Central

    Hwang, Andrew B; Franc, Benjamin L; Gullberg, Grant T; Hasegawa, Bruce H

    2009-01-01

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution

  8. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    SciTech Connect

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  9. Comparison of two radionuclide doses in melanoma imaging with anti P-97 monoclonal antibody

    SciTech Connect

    Murray, J.L.; Lamki, L.; Haynie, T.P.; Glenn, H.J.; Hersh, E.M.

    1985-05-01

    38 patients were included in phase I study of localization of melanoma with Indium-111 labeled P96.5 monoclonal antibody reactive to melanoma antigen P97. 21 patients were studied using 2.5 mCi of In-111 and 17 patients using 5 mCi of In-111. Results of the two doses of In-111 were compared with results of scans. In 9 pats. receiving doses of 2.5 mCi In-111/20 mg stable antibody, out of 54 evaluable sites of disease, 19 sites were seen on scans performed 48 to 72 h after injection (Sensitivity 35%). In 12 pats. studied with 5.0 mCi of In-111/20 mg stable antibody there were 43 known sites of disease of which 30 were identified giving a sensitivity of 70%. As there was a high percentage of lesions greater than 1 cm in diameter in the group receiving 5 mCi and since tumor size has been previously shown to be related to sensitivity of imaging, the data was reanalyzed after excluding lesions less than 1 cm. When only lesions > 2 cm in diameter were considered there were 17 out of 21 (81%) imaged with the 2.5 mCi tracer dose and 27 out of 29 (93%) with 5.0 mCi dose. These differences are significant by chi square test with P < 0.05. Absorbed radiation dose from a 5 mCi dose of In-111 antibody has been calculated at 1.36 rads for the total body and 6.96 rads for the liver (critical organ). Although these doses could be lowered by using lower tracer dose, the results reported here suggest that the sensitivity would be significantly impaired at the smaller dose of 2.5 mCi. We conclude that the current maximum dose of 5.0 mCi should be used in evaluating In-111 labeled anti-P97 antibody imaging of melanoma.

  10. The role of radionuclide imaging in the surgical management of primary hyperparathyroidism.

    PubMed

    Hindié, Elif; Zanotti-Fregonara, Paolo; Tabarin, Antoine; Rubello, Domenico; Morelec, Isabelle; Wagner, Tristan; Henry, Jean-François; Taïeb, David

    2015-05-01

    Primary hyperparathyroidism is a frequent and potentially debilitating endocrine disorder for which surgery is the only curative treatment. The modalities of parathyroid surgery have changed over the last 2 decades, as conventional bilateral neck exploration is no longer the only surgical approach. Parathyroid scintigraphy plays a major role in defining the surgical strategy, given its ability to orient a targeted (focused) parathyroidectomy and to recognize ectopic locations or multiglandular disease. This review, which represents a collaborative effort between nuclear physicians, endocrinologists, and endocrine surgeons, emphasizes the importance of performing imaging before any surgery for primary hyperparathyroidism, even in the case of conventional bilateral neck exploration. We discuss the advantages and drawbacks of targeted parathyroidectomy and the performance of various scintigraphic protocols to guide limited surgery. We also discuss the optimal strategy to localize the offending gland before reoperation for persistent or recurrent hyperparathyroidism. Finally, we describe the potential applications of novel PET tracers, with special emphasis on (18)F-fluorocholine. PMID:25858040

  11. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    SciTech Connect

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Possible explanations for the discordant findings are: (a) normal bone metabolism at the site of an old spondylolysis and (b) radiographically inapparent stress fractures. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  12. The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86.

    PubMed

    Ikotun, Oluwatayo F; Lapi, Suzanne E

    2011-04-01

    Positron emission tomography, with its high sensitivity and resolution, is growing rapidly as an imaging technology for the diagnosis of many disease states. The success of this modality is reliant on instrumentation and the development of effective and novel targeted probes. Initially, research in this area was focused on what we will define in this article as 'standard' PET isotopes (carbon-11, nitrogen-13, oxygen-15 and fluorine-18), but the short half-lives of these isotopes limit radiopharmaceutical development to those that probe rapid biological processes. To overcome these limitations, there has been a rise in nonstandard isotope probe development in recent years. This review focuses on the biological probes and processes that have been examined, in additiom to the preclinical and clinical findings with nonstandard radiometals: copper-64, zirconium-89, and yttrium-86. PMID:21526898

  13. Dynamic studies of small animals with a four-color diffuse optical tomography imager

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Graber, Harry L.; Pei, Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu, Yong; Barbour, Randall L.

    2005-09-01

    We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals.

  14. Real-time Awake Animal Motion Tracking System for SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F

    2008-01-01

    Enhancements have been made in the development of a real-time optical pose measurement and tracking system that provides 3D position and orientation data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained small animals. Three optical cameras with infrared (IR) illumination view the head movements of an animal enclosed in a transparent burrow. Markers placed on the head provide landmark points for image segmentation. Strobed IR LED s are synchronized to the cameras and illuminate the markers to prevent motion blur for each set of images. The system using the three cameras automatically segments the markers, detects missing data, rejects false reflections, performs trinocular marker correspondence, and calculates the 3D pose of the animal s head. Improvements have been made in methods for segmentation, tracking, and 3D calculation to give higher speed and more accurate measurements during a scan. The optical hardware has been installed within a Siemens MicroCAT II small animal scanner at Johns Hopkins without requiring functional changes to the scanner operation. The system has undergone testing using both phantoms and live mice and has been characterized in terms of speed, accuracy, robustness, and reliability. Experimental data showing these motion tracking results are given.

  15. Using human brain imaging studies as a guide toward animal models of schizophrenia.

    PubMed

    Bolkan, S S; Carvalho Poyraz, F; Kellendonk, C

    2016-05-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  16. Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish.

    PubMed

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G; Chiarotti, Flavia; Butail, Sachit; Macrì, Simone; Porfiri, Maurizio

    2015-06-01

    Emotional disturbances constitute a major health issue affecting a considerable portion of the population in western countries. In this context, animal models offer a relevant tool to address the underlying biological determinants and to screen novel therapeutic strategies. While rodents have traditionally constituted the species of choice, zebrafish are now becoming a viable alternative. As zebrafish gain momentum in biomedical sciences, considerable efforts are being devoted to developing high-throughput behavioral tests. Here, we present a comparative study of zebrafish behavioral response to fear-evoking stimuli offered via three alternative methodologies. Specifically, in a binary-choice test, we exposed zebrafish to an allopatric predator Astronotus ocellatus, presented in the form of a live subject, a robotic replica, and a computer-animated image. The robot's design and operation were inspired by the morphology and tail-beat motion of its live counterpart, thereby offering a consistent three-dimensional stimulus to focal fish. The computer-animated image was also designed after the live subject to replicate its appearance. We observed that differently from computer-animated images, both the live predator and its robotic replica elicited robust avoidance response in zebrafish. In addition, in response to the robot, zebrafish exhibited increased thrashing behavior, which is considered a valid indicator of fear. Finally, inter-individual response to a robotic stimulus is more consistent than that shown in response to live stimuli and animated images, thereby increasing experimental statistical power. Our study supports the view that robotic stimuli can constitute a promising experimental tool to elicit targeted behavioral responses in zebrafish. PMID:25734228

  17. High Resolution, High Sensitivity Detectors for Molecular Imaging of Small Animals and Tumor Detection

    NASA Astrophysics Data System (ADS)

    Magliozzi, M. L.; Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lo Meo, S.; Lucentini, M.; Santavenere, F.; Veneroni, P.; Schillaci, O.; Simonetti, G.; Majewsky, S.; Cinti, M. N.; de Vincentis, G.; Pani, R.; Pellegrini, R.; Scopinaro, F.

    2006-04-01

    Imaging techniques with radionuclides provide very sensitive measures of a wide range of specific processes underying disease in the body. Detection of very small tumors with high specificity is therefore possible but the tecnique requires both high spatial resolution and high sensitivity. We present the first simulations, performed by means of GEANT4 code, of breast tumors, imaged by different configurations of a compact discrete gamma camera, in order to optimize the performances of dedicated detectors for these tasks. Simulated planar images from 6 to 10 mm diameter tumors, placed at 5 mm from the collimator, were generated for NaI scintillator pixel sizes of 1.0×1.0 and 1.2×1.2 mm2, hexagonal hole Pb collimators with hole size of 1.5 and 1.9 mm. The generated photons have been sampled by two modelled Hamamatsu H8500 and H9500 PMT. Tumor to background uptake ratio from 1:6 to 1:12 has been considered. The preliminary results in terms of spatial resolution and SNR show a slightly better performance of the high efficiency collimator, larger crystal size and H9500 combination.

  18. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Yao, Rutao; Deng, Xiao; Liu, Yaqiang; Wang, Shi; Ma, Tianyu

    2013-02-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme.

  19. Comparison of two detector systems for cone beam CT small animal imaging - a preliminary study

    PubMed Central

    Meng, Yang; Shaw, Chris C.; Liu, Xinming; Altunbas, Mustafa C.; Wang, Tianpeng; Chen, Lingyun; Tu, Shu-Ju; Kappadath, S. Cheenu; Lai, Chao-Jen

    2007-01-01

    Purpose To compare two detector systems - one based on the charge-coupled device (CCD) and image amplifier, the other based on a-Si/CsI flat panel, for cone beam computed-tomography (CT) imaging of small animals. A high resolution, high framing rate detector system for the cone beam CT imaging of small animals was developed. The system consists of a 2048×3072×12 bit CCD optically coupled to an image amplifier and an x-ray phosphor screen. The CCD has an intrinsic pixel size of 12 μm but the effective pixel size can be adjusted through the magnification adjustment of the optical coupling systems. The system is used in conjunction with an x-ray source and a rotating stage for holding and rotating the scanned object in the cone beam CT imaging experiments. The advantages of the system include but are not limited to the ability to adjust the effective pixel size and to achieve extremely high spatial resolution and temporal resolution. However, the need to use optical coupling compromises the detective quanta efficiency (DQE) of the system. In this paper, the imaging characteristics of the system were presented and compared with those of an a-Si/CsI flat-panel detector system. PMID:18160972

  20. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    NASA Astrophysics Data System (ADS)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  1. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    NASA Astrophysics Data System (ADS)

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio

    2010-07-01

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  2. Cardiac sarcoidosis mimicking hypertrophic cardiomyopathy: clinical utility of radionuclide imaging for differential diagnosis.

    PubMed

    Yazaki, Y; Isobe, M; Hayasaka, M; Tanaka, M; Fujii, T; Sekiguchi, M

    1998-06-01

    A 62-year-old woman with skin sarcoidosis was admitted to our hospital to ascertain whether she had cardiac involvement. Although she displayed no cardiac signs or symptoms, the electrocardiogram showed first-degree atrioventricular block, right bundle branch block with left anterior fascicular block, and giant negative T waves in the V3 lead. Echocardiography revealed marked hypertrophy localized in the basal portion of the interventricular septum (IVS) without systolic dysfunction, mimicking hypertrophic cardiomyopathy (HCM). Exercise thallium-201 myocardial imaging revealed redistribution in the anteroseptal region. Both gallium-67 (67Ga) and technetium-99m pyrophosphate (99mTc-PYP) scintigraphy revealed abnormal uptake in the myocardium. These findings disappeared after 2 months of steroid treatment. Reports of cardiac sarcoidosis mimicking HCM are rare. However, hypertrophy in the basal portion of the IVS is an important sign of early cardiac involvement in sarcoidosis. 67Ga and 99mTc-PYP scintigraphy were useful and necessary to differentiate this type of cardiac sarcoidosis from HCM. PMID:9652326

  3. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-11-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.

  4. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  5. Multiple routes to mental animation: language and functional relations drive motion processing for static images.

    PubMed

    Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred

    2013-08-01

    When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation. PMID:23774464

  6. Time-gated perturbation Monte Carlo for whole body functional imaging in small animals

    PubMed Central

    Chen, Jin; Intes, Xavier

    2015-01-01

    This paper explores a time-resolved functional imaging method based on Monte Carlo model for whole-body functional imaging of small animals. To improve the spatial resolution and quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed approach are employed on an anatomically accurate mouse model where the optical properties range and volume limitations of the diffusion equation model exist. We investigate the performances of using time-gated data type and spatial priors to quantitatively image the functional parameters of multiple organs. Accurate reconstructions of the two main functional parameters of the blood volume and the relative oxygenation are demonstrated by using our method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to imaging small organs such as the heart. PMID:19997176

  7. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  8. Whole-animal Imaging, Gene Function, and the Zebrafish Phenome Project

    PubMed Central

    Cheng, Keith C.; Xin, Xuying; Clark, Darin; La Riviere, Patrick

    2011-01-01

    Imaging can potentially make a major contribution to the zebrafish phenome project, which will probe the functions of vertebrate genes through the generation and phenotyping of mutants. Imaging of whole animals at different developmental stages through adulthood will be used to infer biological function. Cell resolutions will be required to identify cellular mechanism and to detect a full range of organ effects. Light-based imaging of live zebrafish embryos is practical only up to ~2 days of development, due to increasing pigmentation and diminishing tissue lucency with age. The small size of the zebrafish makes possible whole-animal imaging at cell resolutions by histology and micron-scale tomography (microCT). The histological study of larvae is facilitated by the use of arrays, and histology’s standard use in the study of human disease enhances its translational value. Synchrotron microCT with X-rays of moderate energy (10-25 keV) is unimpeded by pigmentation or the tissue thicknesses encountered in zebrafish of larval stages and beyond, and is well-suited to detecting phenotypes that may require 3D modeling. The throughput required for this project will require robotic sample preparation and loading, increases in the dimensions and sensitivity of scintillator and CCD chips, increases in computer power, and the development of new approaches to image processing, segmentation, and quantification. PMID:21963132

  9. Assessment and interpretation of radiopharmaceutical joint imaging in an animal model of arthritis

    SciTech Connect

    Rosenspire, K.L.; Blau, M.; Kennedy, A.C.; Green, F.A.

    1981-05-01

    An animal model of arthritis in the rabbit was employed to assess the radioactivity contribution of joint tissues to externally monitored scintigram positivity. Bone contained the greatest total amount of radioactivity whether the imaging agent was technetium pertechnetate or pyrophosphate, although the greatest percent increase in the arthritis joints over control joints was seen in synovium. Mid-shaft bone in the same region as the arthritic joint also showed increased radioactivity compared with control.

  10. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals

    PubMed Central

    Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika

    2016-01-01

    In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393

  11. Edge co-occurrences can account for rapid categorization of natural versus animal images

    NASA Astrophysics Data System (ADS)

    Perrinet, Laurent U.; Bednar, James A.

    2015-06-01

    Making a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization. We first extracted the edges from images using a scale-space analysis coupled with a sparse coding algorithm. We then computed the “association field” for different categories (natural, man-made, or containing an animal) by computing the statistics of edge co-occurrences. These differed strongly, with animal images having more curved configurations. We show that this geometry alone is sufficient for categorization, and that the pattern of errors made by humans is consistent with this procedure. Because these statistics could be measured as early as the primary visual cortex, the results challenge widely held assumptions about the flow of computations in the visual system. The results also suggest new algorithms for image classification and signal processing that exploit correlations between low-level structure and the underlying semantic category.

  12. [Small animal image-guided radiotherapy: A new era for preclinical studies].

    PubMed

    Delpon, G; Frelin-Labalme, A-M; Heinrich, S; Beaudouin, V; Noblet, C; Begue, M; Le Deroff, C; Pouzoulet, F; Chiavassa, S

    2016-02-01

    Preclinical external beam radiotherapy irradiations used to be delivered with a static broad beam. To promote the transfer from animal to man, the preclinical treatment techniques dedicated to the animal have been optimized to be similar to those delivered to patients in clinical practice. In this context, preclinical irradiators have been developed. Due to the small sizes of the animals, and the irradiation beams, the scaling to the small animal dimensions involves specific problems. Reducing the size and energy of the irradiation beams require very high technical performance, especially for the mechanical stability of the irradiator and the spatial resolution of the imaging system. In addition, the determination of the reference absorbed dose rate must be conducted with a specific methodology and suitable detectors. To date, three systems are used for preclinical studies in France. The aim of this article is to present these new irradiators dedicated to small animals from a physicist point of view, including the commissioning and the quality control. PMID:26856635

  13. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  14. Gradient-Based Algorithm for Determining Tumor Volumes in Small Animals Using Planar Fluorescence Imaging Platform

    PubMed Central

    Miller, Jessica P.; Egbulefu, Christopher; Prior, Julie L.; Zhou, Mingzhou; Achilefu, Samuel

    2016-01-01

    Planar fluorescence imaging is widely used in biological research because of its simplicity, use of non-ionizing radiation, and high-throughput data acquisition. In cancer research, where small animal models are used to study the in vivo effects of cancer therapeutics, the output of interest is often the tumor volume. Unfortunately, inaccuracies in determining tumor volume from surface-weighted projection fluorescence images undermine the data, and alternative physical or conventional tomographic approaches are prone to error or are tedious for most laboratories. Here, we report a method that uses a priori knowledge of a tumor xenograft model, a tumor-targeting near infrared probe, and a custom-developed image analysis planar view tumor volume algorithm (PV-TVA) to estimate tumor volume from planar fluorescence images. Our algorithm processes images obtained using near infrared light for improving imaging depth in tissue in comparison with light in the visible spectrum. We benchmarked our results against the actual tumor volume obtained from a standard water volume displacement method. Compared with a caliper-based method that has an average deviation from an actual volume of 18% (204.34 ± 115.35 mm3), our PV-TVA average deviation from the actual volume was 9% (97.24 ± 70.45 mm3; P < .001). Using a normalization-based analysis, we found that bioluminescence imaging and PV-TVA average deviations from actual volume were 36% and 10%, respectively. The improved accuracy of tumor volume assessment from planar fluorescence images, rapid data analysis, and the ease of archiving images for subsequent retrieval and analysis potentially lend our PV-TVA method to diverse cancer imaging applications. PMID:27200417

  15. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  16. Multimodal fluorescence mediated tomography and SPECT/CT for small animals imaging

    PubMed Central

    Solomon, Metasebya; Nothdruft, Ralph E.; Akers, Walter; Edwards, W. Barry; Liang, Kexian; Xu, Baogang; Suddlow, Gail P.; Deghani, Hamid; Tai, Yuan-Chuan; Eggebrecht, Adam T.; Achilefu, Samuel; Culver, Joseph P.

    2014-01-01

    Spatial and temporal co-registration of nuclear and optical images would enable the fusion of the information from theses complementary molecular imaging modalities. A critical challenge in integration is fitting optical hardware into the nuclear imaging platforms. Flexible fiber-based fluorescence mediated tomography (FMT) systems provide a viable solution because the various imaging bore sizes of small animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. Further, FMT imaging facilitates co-registering the nuclear and optical contrasts in time. Herein, we combine a fiber based FMT system with a preclinical NanoSPECT/CT platform. Feasibility of in vivo imaging is demonstrated by tracking the accumulation of a monomolecular multimodal imaging agent (MOMIA) in a sentinel lymph node (SLN) of a rat. Methods The fiber-based, video-rate FMT imaging system is composed of 12 alternating sources (785nm and 830nm LDs) and 13 detectors. To maintain high temporal sampling, the system simultaneously acquires ratio-metric data at each detector. The data is reconstructed using the normalized Born approach with a three-dimensional finite element model derived from an anatomical CT image of a rat for accurate light propagation modeling. Nuclear and optical contrasts are integrated by using a MOMIA. Data collection begins immediately after injection of the MOMIA intradermally into the forepaw with the FMT data acquired simultaneously with both the SPECT and CT. Results Fluorescence and radioactivity from the MOMIA were co-localized in a spatially coincident region. Intravital imaging with surgical exposure of the lymph node validated the localization of the optical contrast. The optical and nuclear contrasts where integrated by incorporating SPECT as a prior in the DOT reconstruction. Conclusion The feasibility of integrating a fiber-based, video-rate FMT system with a commercial preclinical NanoSPECT/CT platform was established. The co

  17. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  18. Feasibility study of small animal imaging using clinical PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  19. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  20. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    SciTech Connect

    Solis, S. E.; Tomasi, D.; Rodriguez, A. O.

    2008-08-11

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  1. Phase contrast x-ray velocimetry of small animal lungs: optimising imaging rates

    PubMed Central

    Murrie, R. P.; Paganin, D. M.; Fouras, A.; Morgan, K. S.

    2015-01-01

    Chronic lung diseases affect a vast portion of the world’s population. One of the key difficulties in accurately diagnosing and treating chronic lung disease is our inability to measure dynamic motion of the lungs in vivo. Phase contrast x-ray imaging (PCXI) allows us to image the lungs in high resolution by exploiting the difference in refractive indices between tissue and air. Combining PCXI with x-ray velocimetry (XV) allows us to track the local motion of the lungs, improving our ability to locate small regions of disease under natural ventilation conditions. Via simulation, we investigate the optimal imaging speed and sequence to capture lung motion in vivo in small animals using XV on both synchrotron and laboratory x-ray sources, balancing the noise inherent in a short exposure with motion blur that results from a long exposure. PMID:26819819

  2. Simultaneous fluorescence and positron emission tomography for in vivo imaging of small animals

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Shuangquan; Liu, Fei; Zhang, Xiaochun; Xu, Yanyan; Luo, Jianwen; Shan, Baoci; Bai, Jing

    2011-12-01

    Simultaneous positron emission tomography (PET) and fluorescence tomography (FT) for in vivo imaging of small animals is proposed by a dual-modality system. This system combines a charge-coupled device-based near-infrared fluorescence imaging with a planar detector pair-based PET. With [18F]-2-fluoro-2-deoxy-d-glucose radioactive tracer and the protease activated fluorescence probe, on the one hand, the simultaneous metabolic activity and protease activity in tumor region are revealed by the PET and FT, respectively. On the other hand, the protease activity both on the surface layer and the deep tissue of the tumor is provided by the fluorescence reflection imaging and FT, respectively.

  3. Post-acquisition small-animal respiratory gated imaging using micro cone-beam CT

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.

    2004-04-01

    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function.

  4. A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging

    NASA Astrophysics Data System (ADS)

    Kepshire, Dax; Mincu, Niculae; Hutchins, Michael; Gruber, Josiah; Dehghani, Hamid; Hypnarowski, Justin; Leblond, Frederic; Khayat, Mario; Pogue, Brian W.

    2009-04-01

    A prototype small animal imaging system was created for coupling fluorescence tomography (FT) with x-ray microcomputed tomography (microCT). The FT system has the potential to provide synergistic information content resultant from using microCT images as prior spatial information and then allows overlay of the FT image onto the original microCT image. The FT system was designed to use single photon counting to provide maximal sensitivity measurements in a noncontact geometry. Five parallel detector locations are used, each allowing simultaneous sampling of the fluorescence and transmitted excitation signals through the tissue. The calibration and linearity range performance of the system are outlined in a series of basic performance tests and phantom studies. The ability to image protoporphyrin IX in mouse phantoms was assessed and the system is ready for in vivo use to study biological production of this endogenous marker of tumors. This multimodality imaging system will have a wide range of applications in preclinical cancer research ranging from studies of the tumor microenvironment and treatment efficacy for emerging cancer therapeutics.

  5. A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging

    SciTech Connect

    Kepshire, Dax; Gruber, Josiah; Hypnarowski, Justin; Leblond, Frederic; Pogue, Brian W.; Mincu, Niculae; Hutchins, Michael; Khayat, Mario; Dehghani, Hamid

    2009-04-15

    A prototype small animal imaging system was created for coupling fluorescence tomography (FT) with x-ray microcomputed tomography (microCT). The FT system has the potential to provide synergistic information content resultant from using microCT images as prior spatial information and then allows overlay of the FT image onto the original microCT image. The FT system was designed to use single photon counting to provide maximal sensitivity measurements in a noncontact geometry. Five parallel detector locations are used, each allowing simultaneous sampling of the fluorescence and transmitted excitation signals through the tissue. The calibration and linearity range performance of the system are outlined in a series of basic performance tests and phantom studies. The ability to image protoporphyrin IX in mouse phantoms was assessed and the system is ready for in vivo use to study biological production of this endogenous marker of tumors. This multimodality imaging system will have a wide range of applications in preclinical cancer research ranging from studies of the tumor microenvironment and treatment efficacy for emerging cancer therapeutics.

  6. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    NASA Astrophysics Data System (ADS)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.

  7. A Molecular Imaging Paradigm to Rapidly Profile Response to Angiogenesis-directed Therapy in Small Animals

    PubMed Central

    Virostko, John; Xie, Jingping; Hallahan, Dennis E.; Arteaga, Carlos L.; Gore, John C.; Manning, H. Charles

    2009-01-01

    Purpose The development of novel angiogenesis-directed therapeutics is hampered by the lack of non-invasive imaging metrics capable of assessing treatment response. We report the development and validation of a novel molecular imaging paradigm to rapidly assess response to angiogenesis-directed therapeutics in preclinical animal models. Procedures A monoclonal antibody-based optical imaging probe targeting vascular endothelial growth factor receptor-2 (VEGFR2) expression was synthesized and evaluated in vitro and in vivo via multispectral fluorescence imaging. Results The optical imaging agent demonstrated specificity for the target receptor in cultured endothelial cells and in vivo. The agent exhibited significant accumulation within 4T1 xenograft tumors. Mice bearing 4T1 xenografts and treated with sunitinib exhibited both tumor growth arrest and decreased accumulation of NIR800-αVEGFR2ab compared to untreated cohorts (p=0.0021). Conclusions Molecular imaging of VEGFR2 expression is a promising non-invasive biomarker for assessing angiogenesis and evaluating the efficacy of angiogenesis-directed therapies. PMID:19130143

  8. Phase-selective image reconstruction of the lungs in small animals using micro-CT

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Perez, B. A.; Kirsch, D. G.; Badea, C. T.

    2010-04-01

    Gating in small animal imaging can compensate for artifacts due to physiological motion. This paper presents a strategy for sampling and image reconstruction in the rodent lung using micro-CT. The approach involves rapid sampling of freebreathing mice without any additional hardware to detect respiratory motion. The projection images are analyzed postacquisition to derive a respiratory signal, which is used to provide weighting factors for each projection that favor a selected phase of the respiration (e.g. end-inspiration or end-expiration) for the reconstruction. Since the sampling cycle and the respiratory cycle are uncorrelated, the sets of projections corresponding to any of the selected respiratory phases do not have a regular angular distribution. This drastically affects the image quality of reconstructions based on simple filtered backprojection. To address this problem, we use an iterative reconstruction algorithm that combines the Simultaneous Algebraic Reconstruction Technique with Total Variation minimization (SART-TV). At each SART-TV iteration, backprojection is performed with a set of weighting factors that favor the desired respiratory phase. To reduce reconstruction time, the algorithm is implemented on a graphics processing unit. The performance of the proposed approach was investigated in simulations and in vivo scans of mice with primary lung cancers imaged with our in-house developed dual tube/detector micro-CT system. We note that if the ECG signal is acquired during sampling, the same approach could be used for phase-selective cardiac imaging.

  9. Preclinical imaging and treatment of cancer: the use of animal models beyond rodents.

    PubMed

    Axiak-Bechtel, S M; Maitz, C A; Selting, K A; Bryan, J N

    2015-09-01

    The development of novel radiopharmaceutical agents for imaging and therapy of neoplastic diseases relies on accurate and reproducible animal models. Rodent models are often used to demonstrate the proof-of-principle tracer and therapeutic agent development, but their small size can make tissue sampling challenging. The dosimetry of decay emissions in the much smaller rodent tumors do not model dosimetry in human tumors well. In addition, rodent models of cancer represent a simplified version of a very complex process. Spontaneous tumors are heterogenous and the response to intervention can be unpredictable; tumor cells can adopt alternate signaling pathways and modify their interaction with the microenvironment. These inconsistencies, while present in humans, are difficult to fully reproduce in a genetically-engineered rodent model. Companion animals, primarily dogs and cats, offer translational models that more accurately reflect the intricate nature of spontaneous neoplasia in humans. Their larger size facilitates tissue and blood sampling when needed, and allows radiopharmaceutical tracers to be studied on human-scale imaging systems to better mimic the clinical application of the agent. This article will review the growing body of literature surrounding the use of radiopharmaceutical agents for both imaging and therapy in companion dogs and cats. Previous investigations have been performed both for the advancement of routine, high-level veterinary care, and in the context of translational research from which the results of imaging and treatment can be readily applied to people. Studies utilizing the spontaneously occurring cancer model in companion animals involving positron emission tomography, radiotracers, dosimetry, theranostics, targeted radiopharmaceuticals, brachytherapy, and boron neutron capture therapy are discussed. PMID:26200223

  10. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment. PMID:26188609

  11. Coronary Computed Tomography Versus Radionuclide Myocardial Perfusion Imaging in Chest Pain Patients Admitted to Telemetry: A Randomized, Controlled Trial

    PubMed Central

    Levsky, Jeffrey M.; Spevack, Daniel M.; Travin, Mark I.; Menegus, Mark A.; Huang, Paul W.; Clark, Elana T.; Kim, Choo-won; Hirschhorn, Esther; Freeman, Katherine D.; Tobin, Jonathan N.; Haramati, Linda B.

    2016-01-01

    BACKGROUND Coronary computed tomography angiography plays an expanding role managing symptomatic patients with suspected coronary artery disease. Prospective intermediate-term outcomes are lacking. OBJECTIVE To compare coronary CT angiography with conventional non-invasive testing. DESIGN Randomized, controlled comparative effectiveness trial. SETTING Telemetry-monitored wards of one inner-city medical center. PATIENTS 400 acute chest pain patients (mean age 57); 63% women; 54% Hispanic, 37% African-American; low socioeconomic status. INTERVENTION Coronary CT angiography (CT) or radionuclide stress myocardial perfusion imaging (MPI). MEASUREMENTS The primary outcome was cardiac catheterization not leading to revascularization within one year. Secondary outcomes included length of stay, resource utilization and patient experience. Safety outcomes included death, major cardiovascular events and radiation exposure. RESULTS 30(15%) CT patients and 32(16%) MPI patients underwent cardiac catheterization within one year, of which 15(7.5%) and 20(10%), respectively, were not revascularized (-2.5% difference, 95%CI −8.6%–+3.5%; hazard ratio 0.77, 95%CI 0.40–1.49, p=0.44). Median length of stay was 28.9 hours for CT and 30.4 hours for MPI (p=0.057). Median follow-up was 40.4 months. For CT and MPI, the incidences of death (0.5% vs 3%, p=0.12), non-fatal cardiovascular events (4.5% vs 4.5%), re-hospitalization (43% vs 49%), emergency visit (63% vs 58%) and outpatient cardiology visit (23% vs 21%) were not different. Long-term, all-cause radiation was lower for CT (24 vs 29 milliSieverts, p<0.001). More CT patients graded their experience favorably (p=0.001) and would undergo the exam again (p=0.003). LIMITATIONS Single site study; primary outcome dependent on clinical management decisions. CONCLUSIONS There were no significant differences between CT and MPI in outcomes or resource utilization over 40 months. CT had lower associated radiation and was more positively

  12. System calibration and image reconstruction for a new small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun

    A novel small-animal SPECT imager, FastSPECT II, was recently developed at the Center for Gamma-Ray Imaging. FastSPECT II consists of two rings of eight modular scintillation cameras and list-mode data-acquisition electronics that enable stationary and dynamic imaging studies. The instrument is equipped with exchangeable aperture assemblies and adjustable camera positions for selections of magnifications, pinhole sizes, and fields of view (FOVs). The purpose of SPECT imaging is to recover the radiotracer distribution in the object from the measured image data. Accurate knowledge of the imaging system matrix (referred to as H) is essential for image reconstruction. To assure that all of the system physics is contained in the matrix, experimental calibration methods for the individual cameras and the whole imaging system were developed and carefully performed. The average spatial resolution over the FOV of FastSPECT II in its low-magnification (2.4X) configuration is around 2.4 mm, computed from the Fourier crosstalk matrix. The system sensitivity measured with a 99mTc point source at the center of the FOV is about 267 cps/MBq. The system detectability was evaluated by computing the ideal-observer performance on SKE/BKE (signal-known-exactly/background-known-exactly) detection tasks. To reduce the system-calibration time and achieve finer reconstruction grids, two schemes for interpolating H were implemented and compared: these are centroid interpolation with Gaussian fitting and Fourier interpolation. Reconstructed phantom and mouse-cardiac images demonstrated the effectiveness of the H-matrix interpolation. Tomographic reconstruction can be formulated as a linear inverse problem and solved using statistical-estimation techniques. Several iterative reconstruction algorithms were introduced, including maximum-likelihood expectation-maximization (ML-EM) and its ordered-subsets (OS) version, and some least-squares (LS) and weighted-least-squares (WLS) algorithms such

  13. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare

    PubMed Central

    2012-01-01

    The implementation of imaging technologies has dramatically increased the efficiency of preclinical studies, enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time and testing new therapies. The ability to image live animals is one of the most important advantages of these technologies. However, this also represents an important challenge as, in contrast to human studies, imaging of animals generally requires anaesthesia to restrain the animals and their gross motion. Anaesthetic agents have a profound effect on the physiology of the animal and may thereby confound the image data acquired. It is therefore necessary to select the appropriate anaesthetic regime and to implement suitable systems for monitoring anaesthetised animals during image acquisition. In addition, repeated anaesthesia required for longitudinal studies, the exposure of ionising radiations and the use of contrast agents and/or imaging biomarkers may also have consequences on the physiology of the animal and its response to anaesthesia, which need to be considered while monitoring the animals during imaging studies. We will review the anaesthesia protocols and monitoring systems commonly used during imaging of laboratory rodents. A variety of imaging modalities are used for imaging rodents, including magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computed tomography, high frequency ultrasound and optical imaging techniques such as bioluminescence and fluorescence imaging. While all these modalities are implemented for non-invasive in vivo imaging, there are certain differences in terms of animal handling and preparation, how the monitoring systems are implemented and, importantly, how the imaging procedures themselves can affect mammalian physiology. The most important and critical adverse effects of anaesthetic agents are depression of respiration, cardiovascular system disruption and

  14. Imaging Circulating Tumor Cells in Freely Moving Awake Small Animals Using a Miniaturized Intravital Microscope

    PubMed Central

    Sasportas, Laura Sarah; Gambhir, Sanjiv Sam

    2014-01-01

    Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals. PMID:24497977

  15. A restraint-free small animal SPECT imaging system with motion tracking

    SciTech Connect

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  16. [The image of animal magnetism in fictional literature: the cases of Poe, Doyle and Du Maurier].

    PubMed

    Bonet Safont, Juan Marcos

    2014-01-01

    In this article, we focus on the social image of the phenomenon known as mesmerism, or animal magnetism, through analysis of the works: The Facts in the Case of M. Valdemar (1845) by Edgar Allan Poe, The Great Keinplatz Experiment (1885) by Conan Doyle and Trilby (1894) by George Du Maurier. We describe the stereotype of the mesmerist and the uses of mesmerism observed. We pay attention to the spaces and actors of the mesmeric transcript presented in the stories. We consider the reception of these stories by the public and the relationship of the authors with mesmeric and hypnotic knowledge. Nowadays, academic researchers in the discipline of psychology publish articles and books on popular myths about hypnosis in attempts to depict the distorted images related to this phenomenon. This distorted image of the hypnotic process and the hypnotist derives from "circus" hypnotism shows (stage hypnosis), the cinema, television and fictional literature. Works of fiction represent a unique and invaluable source of information, ideas, speculations, concerns and opportunities around animal magnetism and hypnosis, and the exploration and analysis of this literature is an essential chapter in any historical study of this topic. We see how the literary use of mesmerism by Poe, Doyle and Du Maurier is not chance or peripheral, with all three being intellectually interested in and stimulated by these ideas. PMID:25508821

  17. [The image of animal magnetism in fictional literature: the cases of Poe, Doyle and Du Maurier].

    PubMed

    Bonet Safont, Juan Marcos

    2014-01-01

    In this article, we focus on the social image of the phenomenon known as mesmerism, or animal magnetism, through analysis of the works: The Facts in the Case of M. Valdemar (1845) by Edgar Allan Poe, The Great Keinplatz Experiment (1885) by Conan Doyle and Trilby (1894) by George Du Maurier. We describe the stereotype of the mesmerist and the uses of mesmerism observed. We pay attention to the spaces and actors of the mesmeric transcript presented in the stories. We consider the reception of these stories by the public and the relationship of the authors with mesmeric and hypnotic knowledge. Nowadays, academic researchers in the discipline of psychology publish articles and books on popular myths about hypnosis in attempts to depict the distorted images related to this phenomenon. This distorted image of the hypnotic process and the hypnotist derives from "circus" hypnotism shows (stage hypnosis), the cinema, television and fictional literature. Works of fiction represent a unique and invaluable source of information, ideas, speculations, concerns and opportunities around animal magnetism and hypnosis, and the exploration and analysis of this literature is an essential chapter in any historical study of this topic. We see how the literary use of mesmerism by Poe, Doyle and Du Maurier is not chance or peripheral, with all three being intellectually interested in and stimulated by these ideas. PMID:25481969

  18. Noise reduction in small-animal PET images using a multiresolution transform.

    PubMed

    Mejia, Jose M; Ochoa Domínguez, Humberto de Jesús; Vergara Villegas, Osslan Osiris; Ortega Máynez, Leticia; Mederos, Boris

    2014-10-01

    In this paper, we address the problem of denoising reconstructed small animal positron emission tomography (PET) images, based on a multiresolution approach which can be implemented with any transform such as contourlet, shearlet, curvelet, and wavelet. The PET images are analyzed and processed in the transform domain by modeling each subband as a set of different regions separated by boundaries. Homogeneous and heterogeneous regions are considered. Each region is independently processed using different filters: a linear estimator for homogeneous regions and a surface polynomial estimator for the heterogeneous region. The boundaries between the different regions are estimated using a modified edge focusing filter. The proposed approach was validated by a series of experiments. Our method achieved an overall reduction of up to 26% in the %STD of the reconstructed image of a small animal NEMA phantom. Additionally, a test on a simulated lesion showed that our method yields better contrast preservation than other state-of-the art techniques used for noise reduction. Thus, the proposed method provides a significant reduction of noise while at the same time preserving contrast and important structures such as lesions. PMID:24951682

  19. Behavioral Effects of Acclimatization To Restraint Protocol Used for Awake Animal Imaging

    PubMed Central

    Reed, Michael D.; Pira, Ashley S.; Febo, Marcelo

    2013-01-01

    Functional MRI of awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 minutes per day) on the emission of 22-kHz ultrasonic vocalizations and performance on a forced swim test (FST). Our results show that USV calls are reduced significantly by day 3, 4 and 5 of acclimatization. Although rats show less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference is gone once animals are given a 2 week hiatus. Overall, we show that animals adapt to the restraint over the five day period, however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrant further testing of the effects of MRI restraint on behavior. PMID:23562621

  20. Behavioral effects of acclimatization to restraint protocol used for awake animal imaging.

    PubMed

    Reed, Michael D; Pira, Ashley S; Febo, Marcelo

    2013-07-15

    Functional MRI in awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 min per day) on the emission of 22-kHz ultrasonic vocalizations and performance in a forced swim test (FST). Our results showed that USV calls are reduced significantly by days 3, 4 and 5 of acclimatization. Although the rats showed less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference was not detected once the animals were given a 2-week hiatus. Overall, we showed that animals adapt to the restraint over a five-day period; however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrants further testing of the effects of MRI restraint on behavior. PMID:23562621

  1. Let There Be Light! Bioluminescent Imaging to Study Bacterial Pathogenesis in Live Animals and Plants.

    PubMed

    Kassem, Issmat I; Splitter, Gary A; Miller, Sally; Rajashekara, Gireesh

    2016-01-01

    : Bioluminescence imaging (BLI) of bacteria was primarily designed to permit real-time, sensitive, and noninvasive monitoring of the progression of infection in live animals. Generally, BLI relies on the construction of bacterial strains that possess the lux operon. The lux operon is composed of a set of genes that encode the luciferase enzyme and its cognate substrate, which interact to produce light-a phenomenon that is referred to as bioluminescence. Bioluminescence emitted by the bacteria can then be detected and imaged within a living host using sensitive charge-coupled device (CCD) cameras. In comparison to traditional host-pathogen studies, BLI offers the opportunity for extended monitoring of infected animals without resorting to euthanasia and extensive tissue processing at each time point. Therefore, BLI can reduce the number of animals required to generate meaningful data, while significantly contributing to the understanding of pathogenesis in the host and, subsequently, the development and evaluation of adequate vaccines and therapeutics. BLI is also useful in characterizing the interactions of pathogens with plants and the para-host environment. In this chapter, we demonstrate the broad application of BLI for studying bacterial pathogens in different niches. Furthermore, we will specifically focus on the use of BLI to characterize the following: (1) the pathogenesis of Brucella melitensis in mice (animal host), and (2) the progression of infection of Clavibacter michiganensis subsp. michiganensis in tomatoes (plant host). These studies will provide an overview of the wide potential of BLI and its role in enhancing the study of unique-and sometimes difficult-to-characterize-bacterial pathogens. PMID:25395174

  2. Bacterial Thymidine Kinase as a Non-Invasive Imaging Reporter for Mycobacterium tuberculosis in Live Animals

    PubMed Central

    Davis, Stephanie L.; Be, Nicholas A.; Lamichhane, Gyanu; Nimmagadda, Sridhar; Pomper, Martin G.; Bishai, William R.; Jain, Sanjay K.

    2009-01-01

    Background Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2′deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-[125I]-iodouracil ([125I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis. Methodology/Principal Findings We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 - a strong constitutive mycobacterial promoter. [125I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis Phsp60 TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis Phsp60 TK strain actively accumulated [125I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis Phsp60 TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested. Conclusion We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research. PMID:19606217

  3. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    PubMed Central

    Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  4. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging.

    PubMed

    Greco, A; Mancini, M; Gargiulo, S; Gramanzini, M; Claudio, P P; Brunetti, A; Salvatore, M

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  5. An x-ray image guidance system for small animal stereotactic irradiation

    NASA Astrophysics Data System (ADS)

    Song, K. H.; Pidikiti, R.; Stojadinovic, S.; Speiser, M.; Seliounine, S.; Saha, D.; Solberg, T. D.

    2010-12-01

    An x-ray image-guided small animal stereotactic irradiator was developed and characterized to enable tumor visualization and accurate target localization for small field, high dose irradiation. The system utilizes a custom collimation system, a motorized positioning system (x, y, θ), a digital imaging panel and operating software, and is integrated with a commercial x-ray unit. The essential characteristics of the irradiator include small radiation fields (1-10 mm), high dose rate (>10 Gy min-1) and submillimeter target localization. The software enables computer-controlled image acquisition, stage motion and target localization providing simple and precise automated target localization. The imaging panel was characterized in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and spatial resolution. Overall localization accuracy and precision were assessed. SNR, CNR and spatial resolution are 24 dB, 21 dB and 2.8 lp mm-1, respectively, and localization accuracy is approximately 65 µm with 6 µm precision. With the aid of image guidance, system performance was subsequently used to evaluate radiation response in a rat orthotopic lung tumor effectively sparing normal tissues and in a mouse normal lung. The capabilities of 3D treatment and cone-beam computed tomography are presented for 3D localization and delivery as a work in progress.

  6. An x-ray image guidance system for small animal stereotactic irradiation.

    PubMed

    Song, K H; Pidikiti, R; Stojadinovic, S; Speiser, M; Seliounine, S; Saha, D; Solberg, T D

    2010-12-01

    An x-ray image-guided small animal stereotactic irradiator was developed and characterized to enable tumor visualization and accurate target localization for small field, high dose irradiation. The system utilizes a custom collimation system, a motorized positioning system (x, y, θ), a digital imaging panel and operating software, and is integrated with a commercial x-ray unit. The essential characteristics of the irradiator include small radiation fields (1-10 mm), high dose rate (>10 Gy min(-1)) and submillimeter target localization. The software enables computer-controlled image acquisition, stage motion and target localization providing simple and precise automated target localization. The imaging panel was characterized in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and spatial resolution. Overall localization accuracy and precision were assessed. SNR, CNR and spatial resolution are 24 dB, 21 dB and 2.8 lp mm(-1), respectively, and localization accuracy is approximately 65 µm with 6 µm precision. With the aid of image guidance, system performance was subsequently used to evaluate radiation response in a rat orthotopic lung tumor effectively sparing normal tissues and in a mouse normal lung. The capabilities of 3D treatment and cone-beam computed tomography are presented for 3D localization and delivery as a work in progress. PMID:21081818

  7. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    PubMed Central

    Lin, Jenny B.; Phillips, Evan H.; Riggins, Ti’Air E.; Sangha, Gurneet S.; Chakraborty, Sreyashi; Lee, Janice Y.; Lycke, Roy J.; Hernandez, Clarissa L.; Soepriatna, Arvin H.; Thorne, Bradford R. H.; Yrineo, Alexa A.; Goergen, Craig J.

    2015-01-01

    Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic. PMID:25993289

  8. In search of optimal fear inducing stimuli: Differential behavioral responses to computer animated images in zebrafish

    PubMed Central

    Luca, Ruxandra M.; Gerlai, Robert

    2011-01-01

    Zebrafish has been gaining popularity in behavioral genetics and behavioral neuroscience as this species offers an excellent compromise between system complexity and practical simplicity for mechanistic analyses of brain and behavior function. Recently, a number of studies started to investigate methods with which fear responses may be induced reliably in zebrafish. The ultimate goal of these studies has been to develop zebrafish models of pathological processes and to investigate the mechanisms of fear and to eventually translate the findings to the human clinic. Previously, animated image of a sympatric predator of zebrafish was shown to induce fear responses. Here we expand on this recently gained knowledge and investigate whether other moving images may induce more robust fear responses. The images investigated include the original sympatric predator, the Indian leaf fish, another sympatric predator, the needle fish, a bird silhouette moved on the side or above the tank, an expanding dot mimicking rapid approach of an object shown on the side and from above the tank, as well as non-fear inducing images including a single and a group of zebrafish. Our results indicate that although the sympatric predators do induce some fear responses, the other images, particularly the expanding dot but also the bird silhouette shown from above are more effective. The results also reveal a stimulus dependent motor pattern response repertoire of zebrafish demonstrating that perhaps univariate quantification methods may not be appropriate for uncovering the complexity of fear or anxiety related phenotypical changes in this species. PMID:21920389

  9. A small animal image guided irradiation system study using 3D dosimeters

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Admovics, John; Wuu, Cheng-Shie

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  10. The implications of cost-effectiveness analysis of medical technology. Background paper number 2: case studies of medical technologies. Case study number 13: cardiac radionuclide imaging and cost effectiveness

    SciTech Connect

    Not Available

    1982-05-01

    Cardiac radionuclide imaging is a new and rapidly expanding diagnostic technology that promises to make significant contributions to the diagnosis and management of heart disease. Dynamic changes are occurring in the technology at the same time diffusion is taking place. The combination of diffusion and technological development creates an imperative for careful evaluation and prospective planning. Clinical applications of cardiac imaging include the diagnosis of coronary artery disease, evaluation of cardiac function abnormalities, verification of the diagnosis of acute myocardial infarction (heart attack), and monitoring of patients under treatment for establishing cardiac disease. The report describes the dimensions of the technology of cardiac radionuclide imaging. Information is summarized on the industry producing radionuclide imaging equipment, on clinical applications of technology, and on the costs and efficacies of the various techniques. Finally, formulation of some of the issues involved in the assessment of the technology's cost effectiveness is presented.

  11. Genetically encoded molecular biosensors to image histone methylation in living animals.

    PubMed

    Sekar, Thillai V; Foygel, Kira; Gelovani, Juri G; Paulmurugan, Ramasamy

    2015-01-20

    Post-translational addition of methyl groups to the amino terminal tails of histone proteins regulates cellular gene expression at various stages of development and the pathogenesis of cellular diseases, including cancer. Several enzymes that modulate these post-translational modifications of histones are promising targets for development of small molecule drugs. However, there is no promising real-time histone methylation detection tool currently available to screen and validate potential small molecule histone methylation modulators in small animal models. With this in mind, we developed genetically encoded molecular biosensors based on the split-enzyme complementation approach for in vitro and in vivo imaging of lysine 9 (H3-K9 sensor) and lysine 27 (H3-K27 sensor) methylation marks of histone 3. These methylation sensors were validated in vitro in HEK293T, HepG2, and HeLa cells. The efficiency of the histone methylation sensor was assessed by employing methyltransferase inhibitors (Bix01294 and UNC0638), demethylase inhibitor (JIB-04), and siRNA silencing at the endogenous histone K9-methyltransferase enzyme level. Furthermore, noninvasive bioluminescence imaging of histone methylation sensors confirmed the potential of these sensors in monitoring histone methylation status in response to histone methyltransferase inhibitors in living animals. Experimental results confirmed that the developed H3-K9 and H3-K27 sensors are specific and sensitive to image the drug-induced histone methylation changes in living animals. These novel histone methylation sensors can facilitate the in vitro screening and in vivo characterization of new histone methyltransferase inhibitors and accelerate the pace of introduction of epigenetic therapies into the clinic. PMID:25506787

  12. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.

    PubMed

    Wang, Kemin; He, Xiaoxiao; Yang, XiaoHai; Shi, Hui

    2013-07-16

    Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires specialized imaging techniques. The diversity, composition, and temporal-spatial variation of life activities from cells to the whole body require the analysis techniques to be fast-response, noninvasive, highly sensitive, and stable, in situ and in real-time. Functionalized nanoparticle-based fluorescence imaging techniques have the potential to meet such needs through real-time and noninvasive visualization of biological events in vivo. Functionalized silica nanoparticles (SiNPs) doped with fluorescent dyes appear to be an ideal and flexible platform for developing fluorescence imaging techniques used in living cells and the whole body. We can select and incorporate different dyes inside the silica matrix either noncovalently or covalently. These form the functionalized hybrid SiNPs, which support multiplex labeling and ratiometric sensing in living systems. Since the silica matrix protects dyes from outside quenching and degrading factors, this enhances the photostability and biocompatibility of the SiNP-based probes. This makes them ideal for real-time and long-time tracking. One nanoparticle can encapsulate large numbers of dye molecules, which amplifies their optical signal and temporal-spatial resolution response. Integrating fluorescent dye-doped SiNPs with targeting ligands using various surface modification techniques can greatly improve selective recognition. Along with the endocytosis, functionalized SiNPs can be efficiently internalized into cells for noninvasive localization, assessment, and monitoring. These unique characteristics of functionalized SiNPs substantially support their applications in fluorescence imaging in vivo. In this Account, we summarize our efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels. We first discuss how to design and

  13. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  14. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.

    PubMed

    Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J

    2015-03-01

    There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly

  15. A diurnal animation of thermal images from a day-night pair

    USGS Publications Warehouse

    Watson, K.

    2000-01-01

    Interpretation of thermal images is often complicated because the physical property information is contained in both the spatial and temporal variations of the data and thermal models are necessary to extract and display this information. A linearized radiative transfer solution to the surface flux has been used to derive a function that is invariant with respect to thermal inertia. This relationship makes it possible to predict the temperature variation at any time in the diurnal cycle using only two distinct measurements (e.g., noon and midnight). An animation can then be constructed from a pair of day-night images to view both the spatial and temporal temperature changes throughout the diurnal cycle. A more complete solution for the invariant function, using the method of Laplace transforms and based on the linearized solution, was introduced. These results indicate that the linear model does not provide a sufficiently accurate estimate. Using standard conditions (latitude 30??, solar declination 0??, acquisition times at noon and midnight), this new relationship was used to predict temperature throughout the diurnal cycle to an rms error of 0.2??C, which is close to the system noise of most thermal scanners. The method was further extended to include the primary effects of topographic slope with similar accuracy. The temperature was computed at 48 equally spaced times in the diurnal cycle with this algorithm using a co-registered day and night TIMS (Thermal Infrared Multispectral Scanner) data pair (330 pixels, 450 lilies) acquired of the Carlin, Nevada, area and a co-registered DEM (Digital Elevation Model). (Any reader can view the results by downloading the animation file from an identified tip site). The results illustrate the power of animation to display subtle temporal and spatial temperature changes, which can provide clues to structural controls and material property differences. This 'visual change' approach could significantly increase the use of

  16. Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient and high-throughput analyses to evaluate therapeutics. PMID:26084404

  17. NEIGHBOUR-IN: Image processing software for spatial analysis of animal grouping

    PubMed Central

    Caubet, Yves; Richard, Freddie-Jeanne

    2015-01-01

    Abstract Animal grouping is a very complex process that occurs in many species, involving many individuals under the influence of different mechanisms. To investigate this process, we have created an image processing software, called NEIGHBOUR-IN, designed to analyse individuals’ coordinates belonging to up to three different groups. The software also includes statistical analysis and indexes to discriminate aggregates based on spatial localisation of individuals and their neighbours. After the description of the software, the indexes computed by the software are illustrated using both artificial patterns and case studies using the spatial distribution of woodlice. The added strengths of this software and methods are also discussed. PMID:26261448

  18. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Habib, A.; Fouras, A.; Dubsky, S.; Lewis, R. A.; Wallace, M. J.; Hooper, S. B.

    2010-02-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  19. High- Tc superconducting rf receiver coils for magnetic resonance imaging of small animals

    NASA Astrophysics Data System (ADS)

    Wosik, J.; Nesteruk, K.; Xie, L.-M.; Strikovski, M.; Wang, F.; Miller, J. H.; Bilgen, M.; Narayana, P. A.

    We report on an HTS rf receiver surface probe designed for 2-Tesla MRI imaging of spinal cord injuries in small animals. The 2-T probe is used in lieu of an implanted copper coil being currently used in research on spinal cord injuries. The HTS probe was designed with a virtual ground plane, thus reducing the coil-to-ground losses and making its unloaded quality factor and resonant frequency less sensitive to body proximity. Each coil was fabricated using patterned double-sided YBa 2Cu 3O x (YBCO) films deposited either on sapphire or LaAlO 3 substrates. The signal-to-noise ratio (SNR) was analyzed numerically using complete solutions to Maxwell's equations and the reciprocity principle for a rectangular coil next to a finite lossy dielectric cylinder. A comparison of images obtained with superconducting and cooled copper probes is shown.

  20. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer.

    PubMed

    Josefsson, Anders; Nedrow, Jessie R; Park, Sunju; Banerjee, Sangeeta Ray; Rittenbach, Andrew; Jammes, Fabien; Tsui, Benjamin; Sgouros, George

    2016-01-15

    The programmed cell death ligand 1 (PD-L1) participates in an immune checkpoint system involved in preventing autoimmunity. PD-L1 is expressed on tumor cells, tumor-associated macrophages, and other cells in the tumor microenvironment. Anti-PD-L1 antibodies are active against a variety of cancers, and combined anti-PD-L1 therapy with external beam radiotherapy has been shown to increase therapeutic efficacy. PD-L1 expression status is an important indicator of prognosis and therapy responsiveness, but methods to precisely capture the dynamics of PD-L1 expression in the tumor microenvironment are still limited. In this study, we developed a murine anti-PD-L1 antibody conjugated to the radionuclide Indium-111 ((111)In) for imaging and biodistribution studies in an immune-intact mouse model of breast cancer. The distribution of (111)In-DTPA-anti-PD-L1 in tumors as well as the spleen, liver, thymus, heart, and lungs peaked 72 hours after injection. Coinjection of labeled and 100-fold unlabeled antibody significantly reduced spleen uptake at 24 hours, indicating that an excess of unlabeled antibody effectively blocked PD-L1 sites in the spleen, thus shifting the concentration of (111)In-DTPA-anti-PD-L1 into the blood stream and potentially increasing tumor uptake. Clearance of (111)In-DTPA-anti-PD-L1 from all organs occurred at 144 hours. Moreover, dosimetry calculations revealed that radionuclide-labeled anti-PD-L1 antibody yielded tolerable projected marrow doses, further supporting its use for radiopharmaceutical therapy. Taken together, these studies demonstrate the feasibility of using anti-PD-L1 antibody for radionuclide imaging and radioimmunotherapy and highlight a new opportunity to optimize and monitor the efficacy of immune checkpoint inhibition therapy. PMID:26554829

  1. Noninvasive cardiac risk stratification of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography

    SciTech Connect

    Brown, K.A.; Rimmer, J.; Haisch, C. )

    1989-11-01

    The ability of noninvasive risk stratification using dipyridamole-thallium-201 (Tl-201) imaging and radionuclide ventriculography to predict perioperative and long-term cardiac events (myocardial infarction or cardiac death) was evaluated in 36 uremic diabetic and 29 nondiabetic candidates for renal allograft surgery. Of the 35 patients who underwent renal allograft surgery 8 +/- 7 months after the study, none had transient Tl-201 defects (although 13 had depressed left ventricular ejection fraction) and none developed perioperative cardiac events. During a mean follow-up of 23 +/- 11 months, 6 (9%) patients developed cardiac events. Logistic regression analysis was used to compare the predictive value of clinical data (including age, sex, diabetes, chest pain history, allograft recipient) and radionuclide data. Presence of transient Tl-201 defect and left ventricular ejection fraction were the only significant predictors of future cardiac events (p less than 0.01). No other patient variables, including diabetes or receiving a renal allograft, had either univariate or multivariate predictive value. All 3 patients with transient Tl-201 defects had cardiac events compared with only 3 of 62 (5%) patients without transient Tl-201 defect (p less than 0.0001). Mean left ventricular ejection fraction was lower in patients with cardiac events (44 +/- 13%) compared with patients without cardiac events (57 +/- 9%, p less than 0.005). Overall, 5 of 6 patients with cardiac events had either transient Tl-201 defects or depressed left ventricular ejection fraction. Dipyridamole-Tl-201 imaging and radionuclide ventriculography may be helpful in identifying uremic candidates for renal allograft surgery who are at low risk for perioperative and long-term cardiac events.

  2. Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoquan; Gong, Hui; Quan, Guotao; Deng, Yong; Luo, Qingming

    2010-05-01

    We developed a dual-modality system that combines fluorescence diffuse optical tomography (fDOT) and flat panel detector-based microcomputed tomography (micro-CT) to simultaneously reveal molecular and structural information in small animals. In fDOT, a 748 nm diode laser was used as an excitation source, while a cooled charge coupled device camera was adopted to collect transmission fluorescence. In micro-CT, a flat panel detector based on amorphous silicon, with active area of 13×13 cm2, and a microfocus x-ray tube were used. The fDOT system was mounted orthogonally to the micro-CT and the projection images were acquired without rotation of the sample, which is different from the method used for micro-CT alone. Both the finite element method and the algebraic reconstruction technique were used to reconstruct images from the fDOT. Phantom data showed that the resolution of the fDOT system was about 3 mm at an imaging depth of 7 mm. Quantitative error was no more than 5% and imaging sensitivity for 1,1'-dioctadecyl-3,3,3',3'-etramethylindotricarbocyanine iodide bis-oleate (DiR-BOA) was estimated to be higher than 100 nM at a depth of 7 mm. Calculations of the phantom's center of mass showed that the location accuracy of fDOT was about 0.7 mm. We applied a Feldkamp algorithm to reconstruct the micro-CT image. By measuring the presampled modulation transfer function with a 30 μm tungsten thread, we estimated that the micro-CT has a resolution of 5 mm-1 when the field of view was 6.5 cm. Our results indicate the uniformity of the transaxial micro-CT image and the contrast-to-noise ratio was measured as 1.95 for a radiation dose of 1 cGy. A non-image-based method was employed for merging images from the two imaging modalities. A nude mouse with DiR-BOA, imaged ex vivo, was used to validate the feasibility of the dual-modality system.

  3. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast

    NASA Astrophysics Data System (ADS)

    Hillman, Elizabeth M. C.; Moore, Anna

    2007-09-01

    Optical molecular imaging in small animals harnesses the power of highly specific and biocompatible contrast agents for drug development and disease research. However, the widespread adoption of in vivo optical imaging has been inhibited by its inability to clearly resolve and identify targeted internal organs. Optical tomography and combined X-ray and micro-computed tomography (micro-CT) approaches developed to address this problem are generally expensive, complex or incapable of true anatomical co-registration. Here, we present a remarkably simple all-optical method that can generate co-registered anatomical maps of a mouse's internal organs, while also acquiring in vivo molecular imaging data. The technique uses a time series of images acquired after injection of an inert dye. Differences in the dye's in vivo biodistribution dynamics allow precise delineation and identification of major organs. Such co-registered anatomical maps permit longitudinal organ identification irrespective of repositioning or weight gain, thereby promising greatly improved accuracy and versatility for studies of orthotopic disease, diagnostics and therapies.

  4. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    NASA Astrophysics Data System (ADS)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  5. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    PubMed

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. PMID:26427958

  6. Preliminary evaluation of the tomographic performance of the mediSPECT small animal imaging system

    NASA Astrophysics Data System (ADS)

    Accorsi, Roberto; Curion, Assunta Simona; Frallicciardi, Paola; Lanza, Richard C.; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2007-02-01

    We report on the tests of a prototype (MediSPECT) system developed at University & INFN Napoli, for Single Photon Emission Computed Tomography (SPECT) imaging on small animals with a small Field of View (FoV) and high spatial resolution. MediSPECT is a SPECT imaging system based on a 1-mm-thick CdTe pixel detector, bump-bonded to the Medipix2 CMOS readout circuit operating in single-photon counting. The CdTe detector has 256×256 square array of pixels arranged with a 55 μm pitch, for a sensitive area of 14×14 mm 2. In its present version, this system implements a single detector head, mounted on a rotating gantry. For preliminary testing and calibration of the acquisition equipment and image reconstruction algorithms, 90 projections of a γ-ray point source ( 109Cd) through a single pinhole (diameter 0.4 mm; radius of rotation about 2.5 cm; focal length about 4.5 cm) were acquired for 20 min each in a step-and-shoot mode. Capillaries, 800 μm in diameter, were arranged in a Y-shape to form a more complex phantom ( 125I, 1 mm pinhole diameter, 45 projections, each acquired for 25 min). Images were reconstructed with a custom algorithm implementing standard OS-EM with center of rotation correction and spatial resolution of 0.2 mm over a FoV of 2 mm was obtained.

  7. Design and implementation of a calibrated hyperspectral small-animal imager: Practical and theoretical aspects of system optimization

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas Josiah

    Pre-clinical imaging has been an important development within the bioscience and pharmacology fields. A rapidly growing area within these fields is small animal fluorescence imaging, in which molecularly targeted fluorescent probes are used to non-invasively image internal events on a gross anatomical scale. Small-animal fluorescence imaging has transitioned from a research technique to pre-clinical technology very quickly, due to its molecular specificity, low cost, and relative ease of use. In addition, its potential uses in gene therapy and as a translational technology are becoming evident. This thesis outlines the development of an alternative modality for small animal/tissue imaging, using hyperspectral techniques to enable the collection of fluorescence images at different excitation and emission wavelengths. In specific, acousto-optical tunable filters (AOTFs) were used to construct emission-wavelength-scanning and excitation-wavelength-scanning small animal fluorescence imagers. Statistical, classification, and unmixing algorithms have been employed to extract specific fluorescent-dye information from hyperspectral image sets. In this work, we have designed and implemented hyperspectral imaging and analysis techniques to remove background autofluorescence from the desired fluorescence signal, resulting in highly specific and localized fluorescence. Therefore, in practice, it is possible to more accurately pin-point the location and size of diagnostic anatomical markers (e.g. tumors) labeled with fluorescent probes. Furthermore, multiple probes can be individually distinguished. In addition to imaging hardware and acquisition and analysis software, we have designed an optical tissue phantom for quality control and inter-system comparison. The phantom has been modeled using Monte Carlo techniques. The culmination of this work results in an understanding of the advantages and complexities in applying hyperspectral techniques to small animal fluorescence

  8. Endoscopic Cerenkov luminescence imaging: in vivo small animal tumor model validation

    NASA Astrophysics Data System (ADS)

    Song, Tianming; Bao, Chengpeng; Hu, Zhenhua; Wang, Kun; Liu, Xia; Tian, Jie

    2015-03-01

    Background: Cerenkov luminescence imaging (CLI) provides a great potential for clinical translation of optical molecular imaging techniques through using clinical approved radiotracers. However, it is difficult to obtain the Cerenkov luminescence signal of deeper biological tissues due to the small magnitude of the signal. To efficiently acquire the weak Cerenkov luminescence, we developed an endoscopic Cerenkov luminescence imaging (ECLI) system to reduce the in vivo imaging depth with minimum invasion, and validated the system on small animal tumor models. Methods: For the ECLI system, the laparoscope was connected to a high sensitive charge-couple device (CCD) camera (DU888+, Andor, UK) by a custom made adapter. We conducted a series of in vitro and in vivo experiments by use of the system. In the in vitro experiment, the endoscopic luminescence images of the 18F-FDG with various activities in EP tubes were acquired using ECLI system, and the sensitivity was compared with conventional CLI system. In the in vivo tumor experiment, 18F-FDG with the activity of 200μCi were intravenously injected into 3 tumor mice. Then the ECLI system was used to acquire the optical images for both non-invasive and invasive conditions. Conclusion: Experimental data showed the ECLI system could detect the 18F-FDG with the activity as low as 1μCi. Furthermore, our preliminary results indicated the possibility of ECLI technique for detecting Cerenkov signals inside the tumor tissue with deeper depth and guiding the surgical operation of tumor excision. We believe that this technique can help to accelerate the clinical translation of CLI.

  9. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.

    2015-01-01

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor

  10. Characterization of a rotating slat collimator system dedicated to small animal imaging

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Bekaert, V.; El Bitar, Z.; Wurtz, J.; Steibel, J.; Brasse, D.

    2011-03-01

    Some current investigations based on small animal models are dedicated to functional cerebral imaging. They represent a fundamental tool to understand the mechanisms involved in neurodegenerative diseases. In the radiopharmaceutical development approach, the main challenge is to measure the radioactivity distribution in the brain of a subject with good temporal and spatial resolutions. Classical SPECT systems mainly use parallel hole or pinhole collimators. In this paper we investigate the use of a rotating slat collimator system for small animal brain imaging. The proposed prototype consists of a 64-channel multi-anode photomultiplier tube (H8804, Hamamatsu Corp.) coupled to a YAP:Ce crystal highly segmented into 32 strips of 0.575 × 18.4 × 10 mm3. The parameters of the rotating slat collimator are optimized using GATE Monte Carlo simulations. The performance of the proposed prototype in terms of spatial resolution, detection efficiency and signal-to-noise ratio is compared to that obtained with a gamma camera equipped with a parallel hole collimator. Preliminary experimental results demonstrate that a spatial resolution of 1.54 mm can be achieved with a detection efficiency of 0.012% for a source located at 20 mm, corresponding to the position of the brain in the prototype field of view.

  11. Diffuse fluorescence tomography based on the radiative transfer equation for small animal imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Zhang, Limin; Zhao, Huijuan; Gao, Feng; Li, Jiao

    2014-02-01

    Diffuse florescence tomography (DFT) as a high-sensitivity optical molecular imaging tool, can be applied to in vivo visualize interior cellular and molecular events for small-animal disease model through quantitatively recovering biodistributions of specific molecular probes. In DFT, the radiative transfer equation (RTE) and its approximation, such as the diffuse equation (DE), have been used as the forward models. The RTE-based DFT methodology is more suitable for biological tissue having void-like regions and the near-source area as in the situations of small animal imaging. We present a RTE-based scheme for the steady state DFT, which combines the discrete solid angle method and the finite difference method to obtain numerical solutions of the 2D steady RTE, with the natural boundary condition and collimating light source model. The approach is validated using the forward data from the Monte Carlo simulation for its better performances in the spatial resolution and reconstruction fidelity compared to the DE-based scheme.

  12. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  13. Diffusion Tensor Imaging of the Spinal Cord: Insights From Animal and Human Studies

    PubMed Central

    Vedantam, Aditya; Jirjis, Michael B.; Schmit, Brian D.; Wang, Marjorie C.; Ulmer, John L.; Kurpad, Shekar N.

    2016-01-01

    Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indices within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a non-invasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indices are visualized in regions of the cord, which appear normal on conventional MRI and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord, and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans, and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders. PMID:24064483

  14. Radionuclide cisternogram

    MedlinePlus

    A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems with the flow of spinal fluid. ... a lumbar puncture include pain at the injection site, bleeding, and ... used during the nuclear scan is very small. Almost all of the ...

  15. A Shift From Cell Cultures to Creatures: In Vivo Imaging of Small Animals in Experimental Regenerative Medicine

    PubMed Central

    Studwell, Anna J; Kotton, Darrell N

    2011-01-01

    Although the use of small animals for in vivo experimentation has been widespread, only recently has there been easy availability of techniques that allow noninvasive in vivo imaging of small animals. Because these techniques allow the same individual subject to be followed longitudinally throughout the duration of an experiment, their use is rapidly changing the way small animals are employed in the laboratory. In this review, we focus on six imaging modalities that are increasingly employed for small animal in vivo imaging: optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), single-photon emission tomography (SPECT), ultrasound (US), and positron-emission tomography (PET). Each modality allows for the noninvasive tracking of cells and cell products in vivo. In addition, multimodality imaging, combining two or more of these techniques, has also been increasingly employed to overcome the limitations of each independent technique. After reviewing these available imaging modalities, we detail their experimental application, exemplified by the emerging field of regenerative medicine, referring to publications whose conclusions would otherwise be difficult to support without the availability of in vivo imaging. PMID:21952170

  16. Development of a MicroCT-Based Image-Guided Conformal Radiotherapy System for Small Animals

    PubMed Central

    Zhou, Hu; Rodriguez, Manuel; van den Haak, Fred; Nelson, Geoffrey; Jogani, Rahil; Xu, Jiali; Zhu, Xinzhi; Xian, Yongjiang; Tran, Phuoc T.; Felsher, Dean W.; Keall, Paul J.; Graves, Edward E.

    2009-01-01

    Purpose The need for clinically-relevant radiation therapy technology for the treatment of preclinical models of disease has spurred the development of a variety of dedicated platforms for small animal irradiation. Our group has taken the approach of adding the ability to deliver conformal radiotherapy to an existing 120 kVp micro-computed tomography (microCT) scanner. Methods A GE eXplore RS120 microCT scanner was modified by the addition of a two-dimensional subject translation stage and a variable aperture collimator. Quality assurance protocols for these devices, including measurement of translation stage positioning accuracy, collimator aperture accuracy, and collimator alignment with the x-ray beam, were devised. Use of this system for image-guided radiotherapy was assessed by irradiation of a solid water phantom as well as of two mice bearing spontaneous MYC-induced lung tumors. Radiation damage was assessed ex vivo by immunohistochemical detection of γH2AX foci. Results The positioning error of the translation stage was found to be less than 0.05 mm, while after alignment of the collimator with the x-ray axis through adjustment of its displacement and rotation, the collimator aperture error was less than 0.1 mm measured at isocenter. CT image-guided treatment of a solid water phantom demonstrated target localization accuracy to within 0.1 mm. γH2AX foci were detected within irradiated lung tumors in mice, with contralateral lung tissue displaying background staining. Conclusions Addition of radiotherapy functionality to a microCT scanner is an effective means of introducing image-guided radiation treatments into the preclinical setting. This approach has been shown to facilitate small animal conformal radiotherapy while leveraging existing technology. PMID:20395069

  17. Quantitative analysis of L-SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2016-03-01

    This paper aims to investigate the performance of a newly proposed L-SPECT system for small animal brain imaging. The L-SPECT system consists of an array of 100 × 100 micro range diameter pinholes. The proposed detector module has a 48 mm by 48 mm active area and the system is based on a pixelated array of NaI crystals (10×10×10 mm elements) coupled with an array of position sensitive photomultiplier tubes (PSPMTs). The performance of this system was evaluated with pinhole radii of 50 μm, 60 μm and 100 μm. Monte Carlo simulation studies using the Geant4 Application for Tomographic Emission (GATE) software package validate the performance of this novel dual head L-SPECT system where a geometric mouse phantom is used to investigate its performance. All SPECT data were obtained using 120 projection views from 0° to 360° with a 3° step. Slices were reconstructed using conventional filtered back projection (FBP) algorithm. We have evaluated the quality of the images in terms of spatial resolution (FWHM) based on line spread function, the system sensitivity, the point source response function and the image quality. The sensitivity of our newly proposed L- SPECT system was about 4500 cps/μCi at 6 cm along with excellent full width at half-maximum (FWHM) using 50 μm pinhole aperture at several radii of rotation. The analysis results show the combination of excellent spatial resolution and high detection efficiency over an energy range between 20-160 keV. The results demonstrate that SPECT imaging using a pixelated L-SPECT detector module is applicable in a quantitative study of mouse brain imaging.

  18. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    PubMed

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. PMID:24986422

  19. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    SciTech Connect

    Angelis, Georgios I. Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  20. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  1. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  2. Stable Small Animal Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    PubMed Central

    Jacob, Richard E.; Lamm, Wayne J.

    2011-01-01

    Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics. PMID:22087338

  3. An animal model allowing controlled receptor expression for molecular ultrasound imaging.

    PubMed

    Saini, Reshu; Sorace, Anna G; Warram, Jason M; Mahoney, Marshall J; Zinn, Kurt R; Hoyt, Kenneth

    2013-01-01

    Reported in this study is an animal model system for evaluating targeted ultrasound (US) contrast agents binding using adenoviral (Ad) vectors to modulate cellular receptor expression. An Ad vector encoding an extracellular hemagglutinin (HA) epitope tag and a green fluorescent protein (GFP) reporter was used to regulate receptor expression. A low and high receptor density (in breast cancer tumor bearing mice) was achieved by varying the Ad dose with a low plaque forming unit (PFU) on day 1 and high PFU on day 2 of experimentation. Targeted US contrast agents, or microbubbles (MB), were created by conjugating either biotinylated anti-HA or IgG isotype control antibodies to the MB surface with biotin-streptavidin linkage. Targeted and control MBs were administered on both days of experimentation and contrast-enhanced US (CEUS) was performed on each mouse using MB flash destruction technique. Signal intensities from MBs retained within tumor vasculature were analyzed through a custom Matlab program. Results showed intratumoral enhancement attributable to targeted MB accumulation was significantly increased from the low Ad vector dosing and the high Ad vector dosing (p = 0.001). Control MBs showed no significant differences between day 1 and day 2 imaging (p = 0.96). Additionally, targeted MBs showed a 10.5-fold increase in intratumoral image intensity on day 1 and an 18.8-fold increase in image intensity on day 2 compared with their control MB counterparts. PMID:23122640

  4. Development of a PET scanner for simultaneously imaging small animals with MRI and PET.

    PubMed

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  5. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals

    PubMed Central

    Cheng, Ju-Chieh (Kevin); Shoghi, Kooresh; Laforest, Richard

    2012-01-01

    Purpose: Iterative reconstruction algorithms are becoming more commonly employed in positron emission tomography (PET) imaging; however, the quantitative accuracy of the reconstructed images still requires validation for various levels of contrast and counting statistics. Methods: The authors present an evaluation of the quantitative accuracy of the 3D maximum a posteriori (3D-MAP) image reconstruction algorithm for dynamic PET imaging with comparisons to two of the most widely used reconstruction algorithms: the 2D filtered-backprojection (2D-FBP) and 2D-ordered subsets expectation maximization (2D-OSEM) on the Siemens microPET scanners. The study was performed for various levels of count density encountered in typical dynamic scanning as well as the imaging of cardiac activity concentration in small animal studies on the Focus 120. Specially designed phantoms were used for evaluation of the spatial resolution, image quality, and quantitative accuracy. A normal mouse was employed to evaluate the accuracy of the blood time activity concentration extracted from left ventricle regions of interest (ROIs) within the images as compared to the actual blood activity concentration measured from arterial blood sampling. Results: For MAP reconstructions, the spatial resolution and contrast have been found to reach a stable value after 20 iterations independent of the β values (i.e., hyper parameter which controls the weight of the penalty term) and count density within the frame. The spatial resolution obtained with 3D-MAP reaches values of ∼1.0 mm with a β of 0.01 while the 2D-FBP has value of 1.8 mm and 2D-OSEM has a value of 1.6 mm. It has been observed that the lower the hyper parameter β used in MAP, more iterations are needed to reach the stable noise level (i.e., image roughness). The spatial resolution is improved by using a lower β value at the expense of higher image noise. However, with similar noise level the spatial resolution achieved by 3D-MAP was

  6. Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition

    PubMed Central

    Lee, Jong Hwan; Kim, Hyun Keol; Chandhanayingyong, Chandhanarat; Lee, Francis Young-In; Hielscher, Andreas H.

    2014-01-01

    We present a novel non-contact small animal fluorescent molecular tomography (FMT) imaging system. At the heart of the system is a new mirror-based imaging head that was designed to provide 360-degree measurement data from an entire animal surface in one step. This imaging head consists of two conical mirrors, which considerably reduce multiple back reflections between the animal and mirror surfaces. These back reflections are common in existing mirror-based imaging heads and tend to degrade the quality of raw measurement data. In addition, the introduction of a novel ray-transfer operator allows for the inclusion of the angular dependent data in the image reconstruction process, which results in higher image resolution. We describe in detail the system design and implementation of the hardware components as well as the transport-theory-based image reconstruction algorithm. Using numerical simulations, measurements on a well-defined phantom and a live animal, we evaluate the system performance and show the advantages of our approach. PMID:25071965

  7. Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition.

    PubMed

    Lee, Jong Hwan; Kim, Hyun Keol; Chandhanayingyong, Chandhanarat; Lee, Francis Young-In; Hielscher, Andreas H

    2014-07-01

    We present a novel non-contact small animal fluorescent molecular tomography (FMT) imaging system. At the heart of the system is a new mirror-based imaging head that was designed to provide 360-degree measurement data from an entire animal surface in one step. This imaging head consists of two conical mirrors, which considerably reduce multiple back reflections between the animal and mirror surfaces. These back reflections are common in existing mirror-based imaging heads and tend to degrade the quality of raw measurement data. In addition, the introduction of a novel ray-transfer operator allows for the inclusion of the angular dependent data in the image reconstruction process, which results in higher image resolution. We describe in detail the system design and implementation of the hardware components as well as the transport-theory-based image reconstruction algorithm. Using numerical simulations, measurements on a well-defined phantom and a live animal, we evaluate the system performance and show the advantages of our approach. PMID:25071965

  8. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Ding, Xuan; Dutta, Debaditya; Singh, Vijay P.; Kim, Kang

    2014-02-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ˜3 s and ˜9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (-0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (-0.124 ± 0

  9. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    SciTech Connect

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  10. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion

    PubMed Central

    Crall, James D.; Gravish, Nick; Mountcastle, Andrew M.; Combes, Stacey A.

    2015-01-01

    A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames. These tags can be located within images that are visually complex, making them particularly well suited for longitudinal studies of animal behavior and movement in naturalistic environments. While several software packages have been developed that use computer vision to identify visual tags, these software packages are either (a) not optimized for identification of single tags, which is generally of the most interest for biologists, or (b) suffer from licensing issues, and therefore their use in the study of animal behavior has been limited. Here, we present BEEtag, an open-source, image-based tracking system in Matlab that allows for unique identification of individual animals or anatomical markers. The primary advantages of this system are that it (a) independently identifies animals or marked points in each frame of a video, limiting error propagation, (b) performs well in images with complex backgrounds, and (c) is low-cost. To validate the use of this tracking system in animal behavior, we mark and track individual bumblebees (Bombus impatiens) and recover individual patterns of space use and activity within the nest. Finally, we discuss the advantages and limitations of this software package and its application to the study of animal movement, behavior, and ecology. PMID:26332211

  11. Investigations on x-ray luminescence CT for small animal imaging

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Stanton, I. N.; Johnston, S. M.; Johnson, G. A.; Therien, M. J.

    2012-03-01

    X-ray Luminescence CT (XLCT) is a hybrid imaging modality combining x-ray and optical imaging in which x-ray luminescent nanophosphors (NPs) are used as emissive imaging probes. NPs are easily excited using common CT energy x-ray beams, and the NP luminescence is efficiently collected using sensitive light-based detection systems. XLCT can be recognized as a close analog to fluorescence diffuse optical tomography (FDOT). However, XLCT has remarkable advantages over FDOT due to the substantial excitation penetration depths provided by x-rays relative to laser light sources, long-term photo-stability of NPs, and the ability to tune NP emission within the NIR spectral window. Since XCLT uses an x-ray pencil beam excitation, the emitted light can be measured and back-projected along the x-ray path during reconstruction, where the size of the x-ray pencil beam determines the resolution for XLCT. In addition, no background signal competes with NP luminescence (i.e., no auto fluorescence) in XLCT. Currently, no small animal XLCT system has been proposed or tested. This paper investigates an XLCT system built and integrated with a dual source micro-CT system. A novel sampling paradigms that results in more efficient scanning is proposed and tested via simulations. Our preliminary experimental results in phantoms indicate that a basic CT-like reconstruction is able to recover a map of the NP locations and differences in NP concentrations. With the proposed dual source system and faster scanning approaches, XLCT has the potential to revolutionize molecular imaging in preclinical studies.

  12. Small Animal In Vivo X-Ray Tomosynthesis: Anatomical Relevance of the Reconstructed Images.

    PubMed

    Barquero, H; Brasse, D

    2016-02-01

    Whole body X-ray micro-Digital Tomosynthesis (micro-DT) for small animal imaging is introduced in this work. Such a system allows to deal with geometrical constraints that do not allow to use a micro-CT system as well as to reduce the radiological dose compared to a micro-CT scan. Data was simulated using the Digimouse anatomical model of the mouse with the designed system. An algebraic reconstruction algorithm regularized by Total Variation norm (TV) minimization was used to reconstruct images. Parameters for the reconstruction were optimized and the algorithm performance was evaluated quantitatively. High contrast tissues were subsequently segmented by thresholding the image. Quantitative analysis of the segmented domains indicates that a relevant anatomical information can possibly be extracted from micro-DT images. Indeed the Dice's coefficient values are greater than 0.8 for the segmented High Contrast Tissues compared to the phantom, which indicates an important overlap between the domains. The volume of the segmented tissues is over-estimated for the bones and skin-with 1.313 and 1.113 ratios of the estimated over reference volumes, respectively-and under-estimated in the case of the lungs with a 0.762 ratio. The mean point to surface distance is inferior to the voxel size of 400 μm, for the three segmented tissues. These results are very encouraging and let us consider micro-DT as an alternative to micro-CT to deal with geometrical constraints. PMID:26302512

  13. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  14. Non-invasive optical imaging of tumor growth in intact animals

    NASA Astrophysics Data System (ADS)

    Lu, Jinling; Li, Pengcheng; Luo, Qingming; Zhu, Dan

    2003-12-01

    We describe here a system for rapidly visualizing tumor growth in intact rodent mice that is simple, rapid, and eminently accessible and repeatable. We have established new rodent tumor cell line -- SP2/0-GFP cells that stably express high level of green fluorescent protein (GFP) by transfected with a plasmid that encoded GFP using electroporation and selected with G418 for 3 weeks. 1 x 104 - 1x107 SP2/0-GFP mouse melanoma cells were injected s.c. in the ears and legs of 6- to 7-week-old syngeneic male BALB/c mice, and optical images visualized real-time the engrafted tumor growth. The tumor burden was monitored over time by cryogenically cooled charge coupled device (CCD) camera focused through a stereo microscope. The results show that the fluorescence intensity of GFP-expressing tumor is comparably with the tumor growth and/or depress. This in vivo optical imaging based on GFP is sensitive, external, and noninvasive. It affords continuous visual monitoring of malignant growth within intact animals, and may comprise an ideal tool for evaluating antineoplastic therapies.

  15. Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals.

    PubMed

    Sekar, Thillai V; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy

    2015-01-16

    Lysine methylation of histone H3 and H4 has been identified as a promising therapeutic target in treating various cellular diseases. The availability of an in vivo assay that enables rapid screening and preclinical evaluation of drugs that potentially target this cellular process will significantly expedite the pace of drug development. This study is the first to report the development of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation status of a specific histone lysine methylation mark (H3-K9) in live animals. The sensitivity of this sensor was assessed in various cell lines, in response to down-regulation of methyltransferase EHMT2 by specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase inhibitors BIX01294 and Chaetocin in mice reveals the potential of this sensor for preclinical drug evaluation. This biosensor thus has demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development. PMID:25489787

  16. Degron Protease Blockade Sensor to Image Epigenetic Histone Protein Methylation in Cells and Living Animals

    PubMed Central

    2015-01-01

    Lysine methylation of histone H3 and H4 has been identified as a promising therapeutic target in treating various cellular diseases. The availability of an in vivo assay that enables rapid screening and preclinical evaluation of drugs that potentially target this cellular process will significantly expedite the pace of drug development. This study is the first to report the development of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation status of a specific histone lysine methylation mark (H3-K9) in live animals. The sensitivity of this sensor was assessed in various cell lines, in response to down-regulation of methyltransferase EHMT2 by specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase inhibitors BIX01294 and Chaetocin in mice reveals the potential of this sensor for preclinical drug evaluation. This biosensor thus has demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development. PMID:25489787

  17. Design and engineering aspects of a high resolution positron tomograph for small animal imaging

    SciTech Connect

    Lecomte, R.; Cadorette, J.; Richard, P.; Rodrique, S.; Rouleau, D. . Dept. of Nuclear Medicine and Radiobiology)

    1994-08-01

    The authors describe the Sherbrooke positron emission tomograph, a very high resolution device dedicated to dynamic imaging of small laboratory animals. Its distinctive features are: small discrete scintillation detectors based on avalanche photodiodes (APD) to achieve uniform, isotropic, very high spatial resolution; parallel processing for low deadtime and high count rate capability; multispectral data acquisition hardware to improve sensitivity and scatter correction; modularity to allow design flexibility and upgradability. The system implements the clam-shell'' sampling scheme and a rotating rod transmission source. All acquisition parameters can be adjusted under computer control. Temperature stability at the detector site is ensured by the use of thermoelectric modules. The initial system consists of one layer of 256 modules (two rings of detectors) defining 3 image slices in a 118 mm diameter by 10.5 mm thick field. The axial field can be extended to 50 mm using 4 layers of modules (8 rings of detectors). The design constraints and engineering aspects of an APD-based PET scanner are reviewed and preliminary results are reported.

  18. Real-time landmark-based unrestrained animal tracking system for motion-corrected PET/SPECT imaging

    SciTech Connect

    J.S. Goddard; S.S. Gleason; M.J. Paulus; Stanislaw Majewski; Vladimir Popov; Mark Smith; Andrew Weisenberger; Benjamin Welch; Randolph Wojcik

    2003-08-01

    Oak Ridge National Laboratory (ORNL) and Jefferson Lab and are collaborating to develop a new high-resolution single photon emission tomography (SPECT) instrument to image unrestrained laboratory animals. This technology development will allow functional imaging studies to be performed on the animals without the use of anesthetic agents. This technology development could have eventual clinical applications for performing functional imaging studies on patients that cannot remain still (Parkinson's patients, Alzheimer's patients, small children, etc.) during a PET or SPECT scan. A key component of this new device is the position tracking apparatus. The tracking apparatus is an integral part of the gantry and designed to measure the spatial position of the animal at a rate of 10-15 frames per second with sub-millimeter accuracy. Initial work focuses on brain studies where anesthetic agents or physical restraint can significantly impact physiologic processes.

  19. Dosimetry for spectral molecular imaging of small animals with MARS-CT

    NASA Astrophysics Data System (ADS)

    Ganet, Noémie; Anderson, Nigel; Bell, Stephen; Butler, Anthony; Butler, Phil; Carbonez, Pierre; Cook, Nicholas; Cotterill, Tony; Marsh, Steven; Panta, Raj Kumar; Laban, John; Walker, Sophie; Yeabsley, Adam; Damet, Jérôme

    2015-03-01

    The Medipix All Resolution Scanner (MARS) spectral CT is intended for small animal, pre-clinical imaging and uses an x-ray detector (Medipix) operating in single photon counting mode. The MARS system provides spectrometric information to facilitate differentiation of tissue types and bio-markers. For longitudinal studies of disease models, it is desirable to characterise the system's dosimetry. This dosimetry study is performed using three phantoms each consisting of a 30 mm diameter homogeneous PMMA cylinder simulating a mouse. The imaging parameters used for this study are derived from those used for gold nanoparticle identification in mouse kidneys. Dosimetry measurement are obtained with thermo-luminescent Lithium Fluoride (LiF:CuMgP) detectors, calibrated in terms of air kerma and placed at different depths and orientations in the phantoms. Central axis TLD air kerma rates of 17.2 (± 0.71) mGy/min and 18.2 (± 0.75) mGy/min were obtained for different phantoms and TLD orientations. Validation measurements were acquired with a pencil ionization chamber, giving an air-kerma rate of 20.3 (±1) mGy/min and an estimated total air kerma of 81.2 (± 4) mGy for a 720 projection acquisition. It is anticipated that scanner design improvements will significantly decrease future dose requirements. The procedures developed in this work will be used for further dosimetry calculations when optimizing image acquisition for the MARS system as it undergoes development towards human clinical applications.

  20. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    NASA Astrophysics Data System (ADS)

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-03-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2-1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/μCi and 1.25 cps/μCi, respectively. The corresponding values were 1.18 cps/μCi and 1.02 cps/μCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  1. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  2. Development of automatic movement analysis system for a small laboratory animal using image processing

    NASA Astrophysics Data System (ADS)

    Nagatomo, Satoshi; Kawasue, Kikuhito; Koshimoto, Chihiro

    2013-03-01

    Activity analysis in a small laboratory animal is an effective procedure for various bioscience fields. The simplest way to obtain animal activity data is just observation and recording manually, even though this is labor intensive and rather subjective. In order to analyze animal movement automatically and objectivity, expensive equipment is usually needed. In the present study, we develop animal activity analysis system by means of a template matching method with video recorded movements in laboratory animal at a low cost.

  3. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  4. A method to quantify movement activity of groups of animals using automated image analysis

    NASA Astrophysics Data System (ADS)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  5. In vivo small animal imaging for early assessment of therapeutic efficacy of photodynamic therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Wang, Hesheng; Chen, Xiang; Meyers, Joseph; Mulvilhill, John; Feyes, Denise; Edgehouse, Nancy; Duerk, Jeffrey L.; Pretlow, Thomas G.; Oleinick, Nancy L.

    2007-03-01

    We are developing in vivo small animal imaging techniques that can measure early effects of photodynamic therapy (PDT) for prostate cancer. PDT is an emerging therapeutic modality that continues to show promise in the treatment of cancer. At our institution, a new second-generation photosensitizing drug, the silicon phthalocyanine Pc 4, has been developed and evaluated at the Case Comprehensive Cancer Center. In this study, we are developing magnetic resonance imaging (MRI) techniques that provide therapy monitoring and early assessment of tumor response to PDT. We generated human prostate cancer xenografts in athymic nude mice. For the imaging experiments, we used a highfield 9.4-T small animal MR scanner (Bruker Biospec). High-resolution MR images were acquired from the treated and control tumors pre- and post-PDT and 24 hr after PDT. We utilized multi-slice multi-echo (MSME) MR sequences. During imaging acquisitions, the animals were anesthetized with a continuous supply of 2% isoflurane in oxygen and were continuously monitored for respiration and temperature. After imaging experiments, we manually segmented the tumors on each image slice for quantitative image analyses. We computed three-dimensional T2 maps for the tumor regions from the MSME images. We plotted the histograms of the T2 maps for each tumor pre- and post-PDT and 24 hr after PDT. After the imaging and PDT experiments, we dissected the tumor tissues and used the histologic slides to validate the MR images. In this study, six mice with human prostate cancer tumors were imaged and treated at the Case Center for Imaging Research. The T2 values of treated tumors increased by 24 +/- 14% 24 hr after the therapy. The control tumors did not demonstrate significant changes of the T2 values. Inflammation and necrosis were observed within the treated tumors 24 hour after the treatment. Preliminary results show that Pc 4-PDT is effective for the treatment of human prostate cancer in mice. The small animal MR

  6. Spectral domain optical coherence tomography for in-vivo three-dimensional retinal imaging of small animals

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Wehbe, Hassan; Jiao, Shuliang; Gregori, Giovanni; Jockovich, Maria E.; Hackam, Abigail; Duan, Yuanli; Puliafito, Carmen A.

    2007-02-01

    The purpose of this study is to demonstrate the application of ultrahigh-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) for non contact in vivo imaging of the retina of small animals and quantitative retinal information extraction using 3D segmentation of the OCT images. An ultrahigh-resolution SD-OCT system was specifically designed for in vivo retinal imaging of small animal. En face fundus image was constructed from the measured OCT data, which enables precise registration of the OCT images on the fundus. 3D segmentation algorithms were developed for the calculation of retinal thickness map. High quality OCT images of the retina of mice (B6/SJLF2 for normal retina, Rho -/- for photoreceptor degeneration and LH BETAT AG for retinoblastoma) and rats (Wistar for normal retina) were acquired, where all the retinal layers can be clearly recognized. The calculated retinal thickness map makes successful quantitative comparison of the retinal thickness distribution between normal and degenerative mouse retina. The capabilities of the OCT system provide a valuable tool for longitudinal studies of small animal models of ocular diseases.

  7. Monitoring of small lymphatics function under different impact on animal model by integrated optical imaging

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Chowdhury, Parimal; Zharov, Vladimir P.

    2004-08-01

    The digital transmission microscopy is very informative, noninvasive for vessels, simple and available method for studying and measuring lymph microvessels function in vivo. Rat mesentery can use as promising animal model of lymph microvessels in vivo. Such imaging system allowed visualizing the entire lymphangion (with input and output valves), its wall, lymphatic valves, lymph flow as well as single cells in flow; obtaining anew basic information on lymph microcirculation and quantitative data on lymphatic function including indexes of phasic contractions and valve function, the quantitative parameters of lymph-flow velocity. Rat mesentery is good model to create different types of lymphedemas in acute and chronic experiments. The obtained data revealed that significant edema started immediately after lymph node dissection in one-half of cases and was accompanied by lymphatic disturbances. The greatest degree of edema was found after 1 week. After 4 weeks, the degree of edema sometimes decreased, but functional lymphatic disturbances progressed. Nicotine had significant direct dose-dependent effect on microlymphatic function at the acute local application, but the same dose of this drug was not effect on microcirculation in chronic intoxication. Despite yielding interesting data, transmittance microscopy had some limitations when applied to microcirculation studies. The problems could be solved at the application of integrated measuring technique.

  8. MALDI imaging mass spectrometry to investigate endogenous peptides in an animal model of Usher's disease.

    PubMed

    Chatterji, Bijon; Dickhut, Clarissa; Mielke, Svenja; Krüger, Jonas; Just, Ingo; Glage, Silke; Meier, Martin; Wedekind, Dirk; Pich, Andreas

    2014-07-01

    Imaging MS (MSI) has emerged as a valuable tool to study the spatial distribution of biomolecules in the brain. Herein, MALDI-MSI was used to determine the distribution of endogenous peptides in a rat model of Usher's disease. This rare disease is considered as a leading cause of deaf-blindness in humans worldwide. Cryosections of brain tissue were analyzed by MALDI-MSI to differentiate between healthy and diseased rats. MSI results were highly reproducible. Tissue-specific peptides were identified by MS/MS using LC-Orbitrap and MALDI-TOF/TOF analyses. These peptides were proposed for histological classification due to their particular spatial distribution in the brain, for example, substantia nigra, corpus callosum, and hippocampus. Several endogenous peptides showed significantly increased ion densities, particularly in the colliculi superiores and in the substantia nigra of diseased rats, including peptides derived from Fsd1, dystrobrevin-β, and ProSAAS. Furthermore, several proteolytic degradation products of the myelin basic protein were identified, of which one peptide is most likely mediated by calpain-2. Our findings contribute to the characterization of this animal model and include possible peptide markers of disease. PMID:24841751

  9. Ultrafast micro-CT for in vivo small animal imaging and industrial applications

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A new, ultra-fast microCT instrument with scanning+reconstruction cycle under 50 seconds for full 3D-volume has been created. The scanner based on the scanning geometry with static object and rotation of source-camera pair(s), which allows using it for industrial applications as well as for low-dose in-vivo imaging of small laboratory animals where rotation of the object is not acceptable. Acquisition part contains two pairs of x-ray sources and cameras for data collection from complementary directions simultaneously. Reconstruction engine (cone-beam reconstruction by modified Feldkamp algotithm) includes 1, 2 or 4 dual Intel-Xeon computers working in parallel under control of the host PC through local network. The instrument specifications are following: voxel size is 48 or 96 um for corresponding 1024x1024x1024 or 512x512x512 reconstruction array; scanning time with parallel reconstruction is 50 seconds for 96um resolution. X-ray sources peak energy can be adjusted in the range of 20-65kV. Typical scanning dose is 0.4Gy. The scanner itself is a compact desktop instrument, which contains all x-ray parts and necessary shielding for safe operations in the normal laboratory environments.

  10. Determination of subsurface tumor localization in animal models with near-infrared (NIR) fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Blessington, Dana M.; Zhang, Zhihong; Liu, Qian; Zhou, Lanlan; Mu, Chenpeng; Intes, Xavier; Achilefu, Samuel I.; Li, Hui; Zhang, Min Z.; Zheng, Gang; Chance, Britton

    2003-07-01

    We have developed a novel imaging system for determining the localization of tumors labeled by fluorescent contrast agents and embedded several centimeters inside the highly scattered medium. This frequency-domain system utilizes the phased cancellation configuration with a goniometric probe. The instrumentation performance on the phantom test can detect 3 mm diameter sphere filled with 1 nM fluorescent dye, Indocyanine Green (ICG), and 3 cm deep inside the scattering medium with similar optical properties as human breast tissue within a 1 mm localization confidence. Mouse tumor model immersed in appropriate scattering/absorbing medium is used for animal test. Intra-tumor injection of ICG demonstrates the localization of the tumor (5 mm in diameter) submerged 3 cm deep inside the highly scattered medium with 2 mm position error. Results with NIR804-D-Glucosamide on the AR42J tumor bearing nude mouse are also presented with 3 mm localization error. The accuracy of the localization suggest that this system would be helpful to guide the clinical fine-needle biopsy for early breast cancer detection.

  11. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies

    PubMed Central

    Chatalic, Kristell L.S.; Konijnenberg, Mark; Nonnekens, Julie; de Blois, Erik; Hoeben, Sander; de Ridder, Corrina; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; van Gent, Dik C.; Nock, Berthold A.; Maina, Theodosia; van Weerden, Wytske M.; de Jong, Marion

    2016-01-01

    A single tool for early detection, accurate staging, and personalized treatment of prostate cancer (PCa) would be a major breakthrough in the field of PCa. Gastrin-releasing peptide receptor (GRPR) targeting peptides are promising probes for a theranostic approach for PCa overexpressing GRPR. However, the successful application of small peptides in a theranostic approach is often hampered by their fast in vivo degradation by proteolytic enzymes, such as neutral endopeptidase (NEP). Here we show for the first time that co-injection of a NEP inhibitor (phosphoramidon (PA)) can lead to an impressive enhancement of diagnostic sensitivity and therapeutic efficacy of the theranostic 68Ga-/177Lu-JMV4168 GRPR-antagonist. Co-injection of PA (300 µg) led to stabilization of 177Lu-JMV4168 in murine peripheral blood. In PC-3 tumor-bearing mice, PA co-injection led to a two-fold increase in tumor uptake of 68Ga-/177Lu-JMV4168, 1 h after injection. In positron emission tomography (PET) imaging with 68Ga-JMV4168, PA co-injection substantially enhanced PC-3 tumor signal intensity. Radionuclide therapy with 177Lu-JMV4168 resulted in significant regression of PC-3 tumor size. Radionuclide therapy efficacy was confirmed by production of DNA double strand breaks, decreased cell proliferation and increased apoptosis. Increased survival rates were observed in mice treated with 177Lu-JMV4168 plus PA as compared to those without PA. This data shows that co-injection of the enzyme inhibitor PA greatly enhances the theranostic potential of GRPR-radioantagonists for future application in PCa patients. PMID:26722377

  12. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas.

    PubMed

    Zhao, Lingzhou; Zhu, Jingyi; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Guo, Lilei; Shi, Xiangyang; Zhao, Jinhua

    2015-09-01

    Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas. PMID:26291070

  13. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design.

    PubMed

    Li, Changqing; Mitchell, Gregory S; Dutta, Joyita; Ahn, Sangtae; Leahy, Richard M; Cherry, Simon R

    2009-04-27

    We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse. PMID:19399136

  14. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    NASA Astrophysics Data System (ADS)

    Pierce, Greg; Wang, Kevin; Battista, Jerry; Lee, Ting-Yim

    2012-06-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  15. Choline molecular imaging with small-animal PET for monitoring tumor cellular response to photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Wang, Hesheng; Wu, Chunying; Meyers, Joseph; Xue, Liang-Yan; MacLennan, Gregory; Schluchter, Mark

    2009-02-01

    We are developing and evaluating choline molecular imaging with positron emission tomography (PET) for monitoring tumor response to photodynamic therapy (PDT) in animal models. Human prostate cancer (PC-3) was studied in athymic nude mice. A second-generation photosensitizer Pc 4 was used for PDT in tumor-bearing mice. MicroPET images with 11C-choline were acquired before PDT and 48 h after PDT. Time-activity curves of 11C-choline uptake were analyzed before and after PDT. For treated tumors, normalized choline uptake decreased significantly 48 h after PDT, compared to the same tumors pre-PDT (p <~ 0.001). However, for the control tumors, normalized choline uptake increased significantly (p <~ 0.001). PET imaging with 11C-choline is sensitive to detect early tumor response to PDT in the animal model of human prostate cancer.

  16. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-01

    We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging. Electronic supplementary information (ESI) available: Details of general experimental procedures, TEM image. See DOI: 10.1039/c4nr07255c

  17. Tumor immunotargeting using innovative radionuclides.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  18. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  19. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.

    PubMed

    Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

    2012-12-21

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging. PMID:23171509

  20. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Darne, Chinmay D.; Lu, Yujie; Tan, I.-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M.

    2012-12-01

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  1. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

    PubMed Central

    Darne, Chinmay D.; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M

    2012-01-01

    The work presented herein describes system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens microPET/CT commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 μM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. 3-D mesh generation and anatomical referencing was accomplished through CT. A simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate FDPM approach. Finally, PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The results obtained validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging. PMID:23171509

  2. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    SciTech Connect

    Lindsay, P. E.; Granton, P. V.; Hoof, S. van; Hermans, J.; Gasparini, A.; Jelveh, S.; Clarkson, R.; Kaas, J.; Wittkamper, F.; Sonke, J.-J.; Verhaegen, F.; Jaffray, D. A.

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the

  3. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    SciTech Connect

    Kamp, J; Malyarenko, E; Chen, D; Wydra, A; Maev, R

    2015-06-15

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  4. Whole-animal imaging of bacterial infection using endoscopic excitation of β-lactamase (BlaC)-specific fluorogenic probe

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-03-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.

  5. Evaluation of liver function and electroacupuncture efficacy of animals with alcoholic liver injury by the novel imaging methods

    PubMed Central

    Zhang, Dong; Song, Xiao-jing; Li, Shun-yue; Wang, Shu-you; Chen, Bing-jun; Bai, Xiao-Dong; Tang, Li-mei

    2016-01-01

    Imaging methods to evaluate hepatic microcirculation (HM) and liver function (LF) by directly monitoring overall liver tissue remain lacking. This study establish imaging methods for LF that combines Laser speckle perfusion imaging (LSPI) and in vivo optical imaging (IVOI) technologies to investigate changes of hepatic microcirculation and reserve function in the animals gavaged with 50% ethanol (15 ml/kg·bw) for a model of acute alcoholic liver injury (ALI), and for evaluation of electroacupuncture (EA) effect. The liver blood perfusion and indocyanine green (ICG) distribution were observe by LSPI and IVOI separately. After EA, the livers were collected to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), thromboxane A (TXA2), prostacyclin (PGI2) and endothelin (ET). The acquisitions of newly established LSPI of liver and ICG in vivo fluorescence imaging (ICG-IVFI), combining the results of other indexes showed: hepatic microcirculation perfusion (HMP) significantly reduced, ICG metabolism reduced, and ALT/AST increased in animal model with acute ALI. EA can reverse these changes. The use of LSPI of liver and ICG-IVFI, which was novel imaging methods for LF established in this study, could display the LF characteristics of ALI and the EA efficacy. PMID:27443832

  6. Evaluation of liver function and electroacupuncture efficacy of animals with alcoholic liver injury by the novel imaging methods.

    PubMed

    Zhang, Dong; Song, Xiao-Jing; Li, Shun-Yue; Wang, Shu-You; Chen, Bing-Jun; Bai, Xiao-Dong; Tang, Li-Mei

    2016-01-01

    Imaging methods to evaluate hepatic microcirculation (HM) and liver function (LF) by directly monitoring overall liver tissue remain lacking. This study establish imaging methods for LF that combines Laser speckle perfusion imaging (LSPI) and in vivo optical imaging (IVOI) technologies to investigate changes of hepatic microcirculation and reserve function in the animals gavaged with 50% ethanol (15 ml/kg·bw) for a model of acute alcoholic liver injury (ALI), and for evaluation of electroacupuncture (EA) effect. The liver blood perfusion and indocyanine green (ICG) distribution were observe by LSPI and IVOI separately. After EA, the livers were collected to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), thromboxane A (TXA2), prostacyclin (PGI2) and endothelin (ET). The acquisitions of newly established LSPI of liver and ICG in vivo fluorescence imaging (ICG-IVFI), combining the results of other indexes showed: hepatic microcirculation perfusion (HMP) significantly reduced, ICG metabolism reduced, and ALT/AST increased in animal model with acute ALI. EA can reverse these changes. The use of LSPI of liver and ICG-IVFI, which was novel imaging methods for LF established in this study, could display the LF characteristics of ALI and the EA efficacy. PMID:27443832

  7. View-based matching can be more than image matching: The importance of considering an animal's perspective

    PubMed Central

    Wystrach, Antoine; Graham, Paul

    2012-01-01

    Using vision for navigation is important for many animals and a common debate is the extent to which spatial performance can be explained by “simple” view-based matching strategies. We discuss, in the context of recent work, how confusion between image-matching algorithms and the broader class of view-based navigation strategies, is hindering the debate around the use of vision in spatial cognition. A proper consideration of view-based matching strategies requires an understanding of the visual information available to a given animal within a particular experiment. PMID:23145308

  8. Integration of the denoising, inpainting and local harmonic B(z) algorithm for MREIT imaging of intact animals.

    PubMed

    Jeon, Kiwan; Kim, Hyung Joong; Lee, Chang-Ock; Seo, Jin Keun; Woo, Eung Je

    2010-12-21

    Conductivity imaging based on the current-injection MRI technique has been developed in magnetic resonance electrical impedance tomography. Current injected through a pair of surface electrodes induces a magnetic flux density distribution inside an imaging object, which results in additional magnetic field inhomogeneity. We can extract phase changes related to the current injection and obtain an image of the induced magnetic flux density. Without rotating the object inside the bore, we can measure only one component B(z) of the magnetic flux density B = (B(x), B(y), B(z)). Based on a relation between the internal conductivity distribution and B(z) data subject to multiple current injections, one may reconstruct cross-sectional conductivity images. As the image reconstruction algorithm, we have been using the harmonic B(z) algorithm in numerous experimental studies. Performing conductivity imaging of intact animal and human subjects, we found technical difficulties that originated from the MR signal void phenomena in the local regions of bones, lungs and gas-filled tubular organs. Measured B(z) data inside such a problematic region contain an excessive amount of noise that deteriorates the conductivity image quality. In order to alleviate this technical problem, we applied hybrid methods incorporating ramp-preserving denoising, harmonic inpainting with isotropic diffusion and ROI imaging using the local harmonic B(z) algorithm. These methods allow us to produce conductivity images of intact animals with best achievable quality. We suggest guidelines to choose a hybrid method depending on the overall noise level and existence of distinct problematic regions of MR signal void. PMID:21098914

  9. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging

    PubMed Central

    2013-01-01

    Background Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers’ understanding of infectious diseases. Methods We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal

  10. Radionuclide cystogram

    MedlinePlus

    ... Jenson HB, Stanton BF, eds. Nelson Textbook of Pediatrics. 19th ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 533. Fulgham PF, Bishoff JT. Urinary tract imaging: Basic principles. In: Wein AJ, ed. Campbell-Walsh ...

  11. Radionuclide imaging of the spleen with heat denatured technetium-99m RBC when the splenic reticuloendothelial system seems impaired

    SciTech Connect

    Owunwanne, A.; Halkar, R.; Al-Rasheed, A.; Abubacker, K.C.; Abdel-Dayem, H.

    1988-03-01

    Imaging of the spleen of 10 patients who had been hematologically diagnosed with sickle-cell anemia (SCA) was studied with (/sup 99m/Tc)tin colloid and heat denatured (/sup 99m/Tc)RBCs. In all ten patients, there was faint or nonvisualization of the spleen with (/sup 99m/Tc)tin colloid. However, with heat denatured (/sup 99m/Tc)RBCs, nine spleens were well visualized, and the uptake was homogenous. One spleen had two patchy areas of uptake. The results indicate that when splenic phagocytic function is impaired as reflected by nonvisualization of the spleen with (/sup 99m/Tc)tin colloid, it is still possible to image such a spleen with heat denatured (/sup 99m/Tc)RBCs

  12. A comparison of radionuclide hepatobiliary imaging and real-time ultrasound for the detection of acute cholecystitis

    SciTech Connect

    Samuels, B.I.; Freitas, J.E.; Bree, R.L.; Schwab, R.E.; Heller, S.T.

    1983-04-01

    The relative value of hepatobiliary scintigraphy vs. real-time ultrasound for the identification of acute cholecystitis was evaluated. No significant difference in sensitivity (97% vs. 97%) existed between the two modalities. Scintigraphy demonstrated better specificity (93% vs. 64%) and predictive value (77% vs. 40%). Although real-time ultrasound provided improved sensitivity over static gray-scale imaging for identification of gallbadder disease, hepatobiliary scintigraphy remains the procedure of choice for acute cholecystitis detection.

  13. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae

    2011-08-01

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  14. Multispectral and Photoplethysmography Optical Imaging Techniques Identify Important Tissue Characteristics in an Animal Model of Tangential Burn Excision.

    PubMed

    Thatcher, Jeffrey E; Li, Weizhi; Rodriguez-Vaqueiro, Yolanda; Squiers, John J; Mo, Weirong; Lu, Yang; Plant, Kevin D; Sellke, Eric; King, Darlene R; Fan, Wensheng; Martinez-Lorenzo, Jose A; DiMaio, J Michael

    2016-01-01

    Burn excision, a difficult technique owing to the training required to identify the extent and depth of injury, will benefit from a tool that can cue the surgeon as to where and how much to resect. We explored two rapid and noninvasive optical imaging techniques in their ability to identify burn tissue from the viable wound bed using an animal model of tangential burn excision. Photoplethysmography (PPG) imaging and multispectral imaging (MSI) were used to image the initial, intermediate, and final stages of burn excision of a deep partial-thickness burn. PPG imaging maps blood flow in the skin's microcirculation, and MSI collects the tissue reflectance spectrum in visible and infrared wavelengths of light to classify tissue based on a reference library. A porcine deep partial-thickness burn model was generated and serial tangential excision accomplished with an electric dermatome set to 1.0 mm depth. Excised eschar was stained with hematoxylin and eosin to determine the extent of burn remaining at each excision depth. We confirmed that the PPG imaging device showed significantly less blood flow where burn tissue was present, and the MSI method could delineate burn tissue in the wound bed from the viable wound bed. These results were confirmed independently by a histological analysis. We found these devices can identify the proper depth of excision, and their images could cue a surgeon as to the preparedness of the wound bed for grafting. These image outputs are expected to facilitate clinical judgment in the operating room. PMID:26594863

  15. Multi-modal molecular diffuse optical tomography system for small animal imaging

    PubMed Central

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-01-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977

  16. Small-animal microangiography using phase-contrast X-ray imaging and gas as contrast agent

    NASA Astrophysics Data System (ADS)

    Lundström, Ulf; Larsson, Daniel H.; Westermark, Ulrica K.; Burvall, Anna; Hertz, Hans M.

    2014-03-01

    We use propagation-based phase-contrast X-ray imaging with gas as contrast agent to visualize the microvasculature in small animals like mice and rats. The radiation dose required for absorption X-ray imaging is proportional to the minus fourth power of the structure size to be detected. This makes small vessels impossible to image at reasonable radiation doses using the absorption of conventional iodinated contrast agents. Propagation-based phase contrast gives enhanced contrast for high spatial frequencies by moving the detector away from the sample to let phase variations in the transmitted X-rays develop into intensity variations at the detector. Blood vessels are normally difficult to observe in phase contrast even with iodinated contrast agents as the density difference between blood and most tissues is relatively small. By injecting gas into the blood stream this density difference can be greatly enhanced giving strong phase contrast. One possible gas to use is carbon dioxide, which is a clinically accepted X-ray contrast agent. The gas is injected into the blood stream of patients to temporarily displace the blood in a region and thereby reduce the X-ray absorption in the blood vessels. We have shown that this method can be used to image blood vessels down to 8 μm in diameter in mouse ears. The low dose requirements of this method indicate a potential for live small-animal imaging and longitudinal studies of angiogenesis.

  17. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-06-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  18. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies.

    PubMed

    Verhaegen, Frank; van Hoof, Stefan; Granton, Patrick V; Trani, Daniela

    2014-12-01

    Recently, precision irradiators integrated with a high-resolution CT imaging device became available for pre-clinical studies. These research platforms offer significant advantages over older generations of animal irradiators in terms of precision and accuracy of image-guided radiation targeting. These platforms are expected to play a significant role in defining experiments that will allow translation of research findings to the human clinical setting. In the field of radiotherapy, but also others such as neurology, the platforms create unique opportunities to explore e.g. the synergy between radiation and drugs or other agents. To fully exploit the advantages of this new technology, accurate methods are needed to plan the irradiation and to calculate the three-dimensional radiation dose distribution in the specimen. To this end, dedicated treatment planning systems are needed. In this review we will discuss specific issues for precision irradiation of small animals, we will describe the workflow of animal treatment planning, and we will examine several dose calculation algorithms (factorization, superposition-convolution, Monte Carlo simulation) used for animal irradiation with kilovolt photon beams. Issues such as dose reporting methods, photon scatter, tissue segmentation and motion will also be discussed briefly. PMID:24629309

  19. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    PubMed Central

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system. PMID:26347197

  20. Making Animations

    ERIC Educational Resources Information Center

    Robinson, James

    2007-01-01

    In this article, the author provides simple instructions for making an animation using "PowerPoint". He describes the process by walking readers through it for a sample image. (Contains 1 figure and 1 note.)

  1. Non-Invasive imaging of small-animal tumors: high-frequency ultrasound vs. MicroPET.

    PubMed

    Liao, Ai-Ho; Li, Chen-Han; Cheng, Weng-Fang; Li, Pai-Chi

    2005-01-01

    Tumor volume measurement on small animals is important but currently invasive. We employ ultrasonic micro-imaging (UMI) in this study and demonstrate its feasibility. In addition, we use small animal positron emission tomography (microPET) as a preliminary effort to develop multi-modality small animal imaging techniques. The tumor growth curve from UMI is also compared to radioactivity from microPET. Both UMI and [18F] FDG microPET imaging were performed on C57BL/6J black mice bearing WF-3 ovary cancer cells at various stages from the second week till up to the eighth week. Segmentation and 3D reconstruction were also done. The growth curve was obtained in vivo noninvasively by UMI. The cell doubling time was 7.46 days according to UMI. This result was compared with vernier caliper measurement and radioactivity counting by microPET. In microPET, we obtained the time-activity curves from the tumor and the tumor-surrounding tissue. The tumor-to-normal-tissues ratios reached maximum at the fifth week after tumor cell implantation. PMID:17281549

  2. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  3. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I. J.; George, G. N.; Gupta, M.; Chapman, D.

    2008-09-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a "background" image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor.

  4. Update on radionuclide imaging in hepatobiliary disease. [/sup 99m/Tc-labelled acetanilide iminodracetic acid analogues

    SciTech Connect

    Rosenthall, L.

    1981-05-01

    The recent introduction of technetium Tc 99m-labeled acetanilide iminodiacetic acid (/sup 99m/Tc-IDA) analogues has facilitated the clincal study of the bile flow pathways. A variety of /sup 99m/Tc-IDA derivaties are under investigation. Basically all are metabolized by the hepatocyte and immediately thereafter excreted unconjugated into the biliary tract. Of the various derivatives tested, e.g., dimethyl (lidofenin), diethyl, paraisopropyl (iprofenin), parabutyl (butilfenin), and diisopropyl (disofenin), the last named is the best universal agent at this time. By serial liver imaging the patency of the cystic duct and the integrity of altered cholangiointestinal anatomy can be assessed, leakage of bile and gastric reflux can be disclosed, and medical and surgical jaundice can be distinguished.

  5. Multi-modal molecular diffuse optical tomography system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-10-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near-infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to two-dimensional (2D) planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localized to within 1.5 mm for a range of target locations and depths, indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15%, which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented, demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images.

  6. Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals

    PubMed Central

    Kim, Jun Ki; Lee, Woei Ming; Kim, Pilhan; Choi, Myunghwan; Jung, Keehoon; Kim, Seonghoon; Yun, Seok Hyun

    2013-01-01

    Intravital fluorescence microscopy has emerged as a powerful technique to visualize cellular processes in vivo. However, the size of the objective lenses has limited physical accessibility to various tissue sites in the internal organs of small animals. The use of small-diameter probes using graded-index (GRIN) lenses expands the capabilities of conventional intravital microscopes into minimally invasive internal organs imaging. In this protocol, we describe the detailed steps for the fabrication of front- and side-view GRIN probes and the integration and operation of the probes in a confocal microscope for visualizing fluorescent cells and microvasculature in various murine organs. We further present longitudinal imaging of immune cells in renal allografts and the tumor development in the colon. The fabrication and integration can be completed in 5–7 hours, and a typical in vivo imaging session takes 1–2 hours. PMID:22767088

  7. Radionuclide lung imaging in respiratory decompression sickness: potential role in the diagnosis and evaluation of hyperbaric therapy.

    PubMed

    Radaideh, M M; Lamki, L M; Barron, B J; Elshazly, S M

    2001-04-01

    Of the more than 3.5 million trained divers in the United States, many will experience various illnesses specific to divers. Most of these illnesses are related to the changes in absolute pressure that divers experience while diving. During and after ascent, a diver is at risk for decompression sickness and pulmonary barotrauma. A very rare casualty is pulmonary decompression sickness from immersion. This is a literature review and case report of a young woman with acute respiratory decompression sickness who had defects on perfusion lung imaging after a diving accident and after hyperbaric oxygen therapy. However, the perfusion defects reverted to normal in less than 24 hours. Possible explanations for the changes in the appearances of the scans are offered and discussed. This case report shows the potential utility of lung scanning in the diagnostic examination of these patients and the evaluation of the adequacy of treatment with hyperbaric oxygen therapy. A greater use of ventilation-perfusion lung scans in the treatment of such patients may establish its role more definitely. PMID:11290892

  8. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues

    PubMed Central

    Metscher, Brian D

    2009-01-01

    Background Comparative, functional, and developmental studies of animal morphology require accurate visualization of three-dimensional structures, but few widely applicable methods exist for non-destructive whole-volume imaging of animal tissues. Quantitative studies in particular require accurately aligned and calibrated volume images of animal structures. X-ray microtomography (microCT) has the potential to produce quantitative 3D images of small biological samples, but its widespread use for non-mineralized tissues has been limited by the low x-ray contrast of soft tissues. Although osmium staining and a few other techniques have been used for contrast enhancement, generally useful methods for microCT imaging for comparative morphology are still lacking. Results Several very simple and versatile staining methods are presented for microCT imaging of animal soft tissues, along with advice on tissue fixation and sample preparation. The stains, based on inorganic iodine and phosphotungstic acid, are easier to handle and much less toxic than osmium, and they produce high-contrast x-ray images of a wide variety of soft tissues. The breadth of possible applications is illustrated with a few microCT images of model and non-model animals, including volume and section images of vertebrates, embryos, insects, and other invertebrates. Each image dataset contains x-ray absorbance values for every point in the imaged volume, and objects as small as individual muscle fibers and single blood cells can be resolved in their original locations and orientations within the sample. Conclusion With very simple contrast staining, microCT imaging can produce quantitative, high-resolution, high-contrast volume images of animal soft tissues, without destroying the specimens and with possibilities of combining with other preparation and imaging methods. Such images are expected to be useful in comparative, developmental, functional, and quantitative studies of morphology. PMID:19545439

  9. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    PubMed Central

    Qian, Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small animal single photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ~35 keV photons from the decay of 125I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1×1×5 mm3/pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five 1 mm diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications. PMID:19701447

  10. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    NASA Astrophysics Data System (ADS)

    Qian, Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-08-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ˜35 keV photons from the decay of 125I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1×1×5 mm 3/pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications.

  11. An optical biopsy system with miniaturized Raman and spectral imaging probes; in vivo animal and ex vivo clinical application studies

    NASA Astrophysics Data System (ADS)

    Sato, Hidetoshi; Suzuki, Toshiaki; Andriana, Bibin B.; Morita, Shin'ichi; Maruyama, Atsushi; Shinzawa, Hideyuki; Komachi, Yuichi; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Matsuura, Yuji; Toi, Masakazu; Shimosegawa, Toru; Ozaki, Yukihiro

    2009-02-01

    An optical biopsy system which equips miniaturized Raman probes, a miniaturized endoscope and a fluorescent image probe has been developed for in vivo studies of live experimental animals. The present report describes basic optical properties of the system and its application studies for in vivo cancer model animals and ex vivo human cancer tissues. It was developed two types of miniaturized Raman probes, micro Raman probe (MRP) made of optical fibers and ball lens hollow optical fiber Raman probe (BHRP) made of single hollow optical fiber (HOF) with a ball lens. The former has rather large working distance (WD), up to one millimeter. The latter has small WD (~300μm) which depends on the focal length of the ball lens. Use of multiple probes with different WD allows one to obtain detailed information of subsurface tissues in the totally noninvasive manner. The probe is enough narrow to be inserted into a biopsy needle (~19G), for observations of the lesion at deeper inside bodies. The miniaturized endoscope has been applied to observe progression of a stomach cancer in the same rat lesion. It was succeeded to visualize structure of non-stained cancer tissue in live model animals by the fluorescent image technique. The system was also applied to ex vivo studies of human breast and stomach cancers.

  12. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    PubMed

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. PMID:26232562

  13. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy.

    PubMed

    Dooley, Kathryn A; Lomax, Suzanne; Zeibel, Jason G; Miliani, Costanza; Ricciardi, Paola; Hoenigswald, Ann; Loew, Murray; Delaney, John K

    2013-09-01

    In situ chemical imaging techniques are being developed to provide information on the spatial distribution of artists' pigments used in polychrome works of art such as paintings. The new methods include reflectance imaging spectroscopy and X-ray fluorescence mapping. Results from these new methods have extended the knowledge obtained from site-specific chemical analyses widely in use. While these mapping methods have aided in determining the distribution of pigments, there is a growing interest to develop methods capable of identifying and mapping organic paint binders as well. Near infrared (NIR) reflectance spectroscopy has been extensively used in the remote sensing field as well as in the chemical industry to detect organic compounds. NIR spectroscopy provides a rapid method to assay organics by utilizing vibrational overtones and combination bands of fundamental absorptions that occur in the mid-IR. Here we explore the utility of NIR reflectance imaging spectroscopy to map organic binders in situ by examining a series of panel paintings known to have been painted using distemper (animal skin glue) and tempera (egg yolk) binders as determined by amino acid analysis of samples taken from multiple sites on the panels. In this report we demonstrate the success in identifying and mapping these binders by NIR reflectance imaging spectroscopy in situ. Three of the four panel paintings from Cosimo Tura's The Annunciation with Saint Francis and Saint Louis of Toulouse (ca. 1475) are imaged using a highly sensitive, line-scanning hyperspectral imaging camera. The results show an animal skin glue binder was used for the blue skies and blue robe of the Virgin Mary, and egg yolk tempera was used for the red robes and brown landscape. The mapping results show evidence for the use of both egg yolk and animal skin glue in the faces of the figures. The strongest absorption associated with lipidic egg yolk features visually correlates with areas that appear to have white

  14. Identification of a Novel Indoline Derivative for in Vivo Fluorescent Imaging of Blood-Brain Barrier Disruption in Animal Models

    PubMed Central

    2013-01-01

    Disruption of the blood-brain barrier (BBB) can occur in various pathophysiological conditions. Administration of extraneous tracers that can pass the disrupted, but not the intact, BBB and detection of the extravasation have been widely used to assess BBB disruption in animal models. Although several fluorescent tracers have been successfully used, the administration of these tracers basically requires intravascular injection, which can be laborious when using small animals such as zebrafish. To identify fluorescent tracers that could be easily administered into various animal models and visualize the BBB disruption in vivo, we prepared nine structurally related indoline derivatives (IDs) as a minimum set of diverse fluorescent compounds. We found that one ID, ZMB741, had the highest affinity for serum albumin and emitted the strongest fluorescence in the presence of serum albumin of the nine IDs tested. The affinity to serum albumin and the fluorescence intensity was superior to those of Evans blue and indocyanine green that have been conventionally used to assess the BBB disruption. We showed that ZMB741 could be administered into zebrafish by static immersion or mice by intraperitoneal injection and visualizes the active disruption of their BBB. These results suggest that ZMB741 can be a convenient and versatile tool for in vivo fluorescent imaging of BBB disruption in various animal models. The strategy used in this study can also be applied to diversity-oriented libraries to identify novel fluorescent tracers that may be superior to ZMB741. PMID:23668665

  15. Magnetic Resonance Imaging of Cerebral Blood Flow in Animal Stroke Models

    PubMed Central

    Shen, Qiang; Duong, Timothy Q

    2016-01-01

    Perfusion could provide useful information on metabolic and functional status of tissue and organs. This review summarizes the most commonly used perfusion measurement methods: dynamic susceptibility weighted contrast (DSC) and arterial spin labeling (ASL) and their applications in experimental stroke. Some new developments of CBF techniques in animal models are also discussed. PMID:26998527

  16. Images of Couples and Families in Disney Feature-Length Animated Films.

    ERIC Educational Resources Information Center

    Tanner, Litsa Renee; Haddock, Shelley A.; Zimmerman, Toni Schindler; Lund, Lori K.

    2003-01-01

    Examines themes about couples and families portrayed in 26 Disney animated classics and recent movies. Four overarching themes were identified: family relationships are a strong priority; families are diverse, but the diversity is often simplified; fathers are elevated, while mothers are marginalized; and couple relationships are created by "love…

  17. Fostering Multimedia Learning of Science: Exploring the Role of an Animated Agent's Image

    ERIC Educational Resources Information Center

    Dunsworth, Qi; Atkinson, Robert K.

    2007-01-01

    Research suggests that students learn better when studying a picture coupled with narration rather than on-screen text in a computer-based multimedia learning environment. Moreover, combining narration with the visual presence of an animated pedagogical agent may also encourage students to process information deeper than narration or on-screen…

  18. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  19. In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals

    PubMed Central

    Morgounova, Ekaterina; Jiang, Chunlan; Choi, Jeunghwan; Bischof, John; Ashkenazi, Shai

    2013-01-01

    Abstract. Tumor hypoxia is an important factor in assessment of both cancer progression and cancer treatment efficacy. This has driven a substantial effort toward development of imaging modalities that can directly measure oxygen distribution and therefore hypoxia in tissue. Although several approaches to measure hypoxia exist, direct measurement of tissue oxygen through an imaging approach is still an unmet need. To address this, we present a new approach based on in vivo application of photoacoustic lifetime imaging (PALI) to map the distribution of oxygen partial pressure (pO2) in tissue. This method utilizes methylene blue, a dye widely used in clinical applications, as an oxygen-sensitive imaging agent. PALI measurement of oxygen relies upon pO2-dependent excitation lifetime of the dye. A multimodal imaging system was designed and built to achieve ultrasound (US), photoacoustic, and PALI imaging within the same system. Nude mice bearing LNCaP xenograft hindlimb tumors were used as the target tissue. Hypoxic regions were identified within the tumor in a combined US/PALI image. Finally, the statistical distributions of pO2 in tumor, normal, and control tissues were compared with measurements by a needle-mounted oxygen probe. A statistically significant drop in mean pO2 was consistently detected by both methods in tumors. PMID:23877772

  20. Young's modulus reconstruction for elasticity imaging of deep venous thrombosis: animal studies

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Xie, Hua; Kim, Kang; Rubin, Jonathan M.; O'Donnell, Matthew; Wakefield, T. W.; Myers, D.; Emelianov, Stanislav Y.

    2004-04-01

    Recently, it was suggested that ultrasound elasticity imaging can be used to age deep vein thrombosis (DVT) since blood clot hardness changes with fibrin content. The main components of ultrasound elasticity imaging are deformation of the object, speckle or internal boundary tracking and evaluation of tissue motion, measurement of strain tensor components, and reconstruction of the spatial distribution of elastic modulus using strain images. In this paper, we investigate a technique for Young's modulus reconstruction to quantify ultrasound elasticity imaging of DVT. In-vivo strain imaging experiments were performed using Sprague-Dawley rats with surgically induced clots in the inferior vena cavas (IVC). In this model, the clot matures from acute to chronic in less than 10 days. Therefore, nearly every 24 hours the strain imaging experiments were performed to reveal temporal transformation of the clot. The measured displacement and strain images were then converted into maps of elasticity using model-based elasticity reconstruction where the blood clot within an occluded vein was approximated as a layered elastic cylinder surrounded by incompressible tissue. Results of this study demonstrate that Young's modulus gradually increases with clot maturity and can be used to differentiate clots providing a desperately needed clinical tool of DVT staging.

  1. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    NASA Astrophysics Data System (ADS)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  2. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  3. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections

    PubMed Central

    Cronan, Mark R.; Rosenberg, Allison F.; Oehlers, Stefan H.; Saelens, Joseph W.; Sisk, Dana M.; Jurcic Smith, Kristen L.; Lee, Sunhee; Tobin, David M.

    2015-01-01

    ABSTRACT Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  4. Development and testing of a restraint free small animal SPECT imaging system with infrared based motion tracking

    SciTech Connect

    Weisenberger, A.G.; Kross, B.; Gleason, S.S.; Goddard, J.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2003-10-01

    The development and initial evaluation of a high-resolution single photon emission tomography (SPECT) based system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/un-anesthetized mice. An infrared (IR) based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with sub-millimeter accuracy. The high resolution, gamma imaging detectors are based on pixelated NaI(Tl) crystal scintillator arrays, arrays of compact position-sensitive photomultiplier tubes and novel readout circuitry for lower device cost while retaining high spatial resolution. Two SPECT gamma camera detector heads based on a 4 /spl times/ 8 array of Hamamatsu R8520-C12 position sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the IR tracking system is used for motion correction during the tomographic image reconstruction.

  5. SemiSPECT: A Small-animal Imaging System Based on Eight CdZnTe Pixel Detectors

    PubMed Central

    Peterson, Todd E.; Kim, Hyunki; Crawford, Michael J.; Gershman, Benjamin M.; Hunter, William C.J.; Barber, H. Bradford; Furenlid, Lars R.; Wilson, Donald W.; Woolfenden, James M.; Barrett, Harrison H.

    2015-01-01

    We have constructed a SPECT system for small animals that utilizes eight CdZnTe pixel detectors. The eight detectors are arranged in a single octagonal ring, where each views the object to be imaged through a single pinhole. Additional projections are obtained via rotation of the animal. Each CdZnTe detector is approximately 2 mm in thickness and is patterned on one surface into a 64×64 array of pixels with 380 micron pitch. We have designed an electronic readout system capable of collecting data from the eight detectors in listmode. In this scheme each event entry for a gamma-ray hit includes the pulse height of the pixel with the largest signal and the pulse height for each of its eight nearest neighbors. We present details of the overall design, the electronics, and system performance. PMID:26568674

  6. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging.

    PubMed

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:T1 (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 microm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 1p/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 1p/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented. PMID:14727760

  7. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    SciTech Connect

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  8. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging

    PubMed Central

    Kinnear, Ekaterina; Caproni, Lisa J.; Tregoning, John S.

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy. PMID:26091084

  9. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    SciTech Connect

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  10. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging.

    PubMed

    Li, Changqing; Martínez-Dávalos, Arnulfo; Cherry, Simon R

    2014-04-01

    X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algorithms, conventional filtered backprojection (FBP) and a new algorithm, x-ray luminescence optical tomography with excitation priors (XLOT-EP), in which photon propagation is modeled with the diffusion equation and the x-ray beam positions are used as reconstruction priors. Numerical simulations based on dose calculations were used to validate the proposed XLOT imaging system and the reconstruction algorithms. Simulation results showed nanoparticle concentrations reconstructed with XLOT-EP are much less dependent on scan depth than those obtained with FBP. Measurements at just two orthogonal projections are sufficient for XLOT-EP to reconstruct an XLOT image for simple source distributions. The heterogeneity of x-ray energy deposition is included in the XLOT-EP reconstruction and improves the reconstruction accuracy, suggesting that there is a need to calculate the x-ray energy distribution for experimental XLOT imaging. PMID:24695846

  11. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury*

    PubMed Central

    Bayly, Philip V.; Black, Erin E.; Pedersen, Rachel C.; Leister, Elizabeth P.; Genin, Guy M.

    2005-01-01

    In traumatic brain injury (TBI) rapid deformation of brain tissue leads to axonal injury and cell death. In vivo quantification of such fast deformations is extremely difficult, but important for understanding the mechanisms of degeneration post-trauma and for development of numerical models of injury biomechanics. In this paper, strain fields in the brain of the perinatal rat were estimated from data obtained in vivo during rapid indentation. Tagged magnetic resonance (MR) images were obtained with high spatial (0.2 mm) and temporal (3.9 ms) resolution by gated image acquisition during and after impact. Impacts were repeated either 64 or 128 times to obtain images of horizontal and vertical tag lines in coronal and sagittal planes. Strain fields were estimated by harmonic phase (HARP) analysis of the tagged images. The original MR data was filtered and Fourier-transformed to obtain HARP images, following a method originally developed by Osman et al. (IEEE Trans. Med. Imaging 19(3) (2000) 186). The displacements of material points were estimated from intersections of HARP contours and used to generate estimates of the deformation gradient and Lagrangian strain tensors. Maximum principal Lagrangian strains of >0.20 at strain rates >40/s were observed during indentations of 2 mm depth and 21 ms duration. PMID:16549098

  12. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  13. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGESBeta

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  14. Brain Maps on the Go: Functional Imaging During Motor Challenge in Animals

    PubMed Central

    Holschneider, DP; Maarek, J-M I

    2008-01-01

    Brain mapping in the freely-moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (∼100 microns) appropriate for the rat or mouse brain, and a temporal resolution (seconds – minutes) sufficient for capturing acute brain changes. Here we summarize the application of these methods to the functional brain mapping of behaviors involving locomotion of small animals, methods for the three dimensional reconstruction of the brain from autoradiographic sections, voxel based analysis of the whole brain, and generation of maps of the flattened rat cortex. Application of these methods in animal models promises utility in improving our understanding of motor function in the normal brain, and of the effects of neuropathology and treatment interventions such as exercise have on the reorganization of motor circuits. PMID:18554522

  15. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance

    PubMed Central

    Gan, Qi; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Hu, Chuanzhen; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD) camera, a host computer, a projector, a proximity sensor and a Complementary metal–oxide–semiconductor (CMOS) camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG). The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery. PMID:27391764

  16. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance.

    PubMed

    Gan, Qi; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Hu, Chuanzhen; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD) camera, a host computer, a projector, a proximity sensor and a Complementary metal-oxide-semiconductor (CMOS) camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG). The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery. PMID:27391764

  17. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Kimura, Hiroyuki; Amano, Hiroo; Nakamoto, Yuji; Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki; Kawashima, Hidekazu; Ueda, Masashi; Okada, Tomohisa; Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki; Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji; Ogawa, Koichi; Togashi, Kaori; Saji, Hideo; Tanimori, Toru

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  18. Detecting inflammation and fibrosis in bowel wall with photoacoustic imaging in a Crohn's disease animal model

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding

    2015-03-01

    Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.

  19. Preliminary tests of a high performance LaBr3 gamma imager for small animals .

    NASA Astrophysics Data System (ADS)

    Qian, Jianguo; Bradley, Eric; Majewski, Stan; McKisson, John; Popov, Vladimir; Proffitt, James; Saha, Margaret; Sutton, Jonathan; Weisenberger, Andrew; Welsh, Robert; Yazdi, Amir

    2007-10-01

    A novel medical gamma ray imager comprised of an array of four Hamamatsu H9500 position sensitive photomultiplier tubes (PSPMT) coupled directly to a single slab of LaBr3 scintillator has been designed and tested. The phototube-scintillator array, fabricated by Bicron-St. Gobain Inc (France), is the first such device made. A special resistive readout array designed here permits signals from the 256 anode pads in each PSPMT to be read out on only 16 data lines. Preliminary tests of uniformity, sensitivity and resolution will be described along with initial images of mice obtained with this new device.

  20. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    NASA Astrophysics Data System (ADS)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  1. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  2. Regional, kinetic [18F]FDG PET imaging of a unilateral Parkinsonian animal model

    PubMed Central

    Silva, Matthew D; Glaus, Charles; Hesterman, Jacob Y; Hoppin, Jack; Puppa, Geraldine Hill della; Kazules, Timothy; Orcutt, Kelly M; Germino, Mary; Immke, David; Miller, Silke

    2013-01-01

    Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [18F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Following a bolus injection of 18.5 ± 1 MBq [18F]FDG and a 60-minute PET scan, image-derived input functions from the vena cava and left ventricle were used with three models, including Patlak graphical analysis, to estimate the influx constant and the metabolic rate in ten brain regions. We observed statistically significant changes in [18F]FDG uptake ipsilateral to the 6-OHDA injection in the basal ganglia, olfactory bulb, and amygdala regions; and these changes are of biological relevance to the disease. These experiments provide further validation for the use of [18F]FDG PET imaging in this model for drug discovery and development. PMID:23526185

  3. Quantitative Characterization of Cerenkov Luminescence Imaging

    NASA Astrophysics Data System (ADS)

    Gill, Ruby

    An optical imaging modality for small animal cancer studies using Cerenkov radiation is currently being developed in the Cherry lab at the University of California, Davis. Cerenkov radiation is a well-known phenomenon, in which optical photons are emitted when a charged particle moves faster than the speed of light in a medium. This emerging modality is referred to as Cerenkov Luminescence Imaging. The significance of this work is that it enables imaging on widely available small animal optical imaging systems of radionuclides being developed for therapeutic applications and positron emitting radiotracers developed for diagnostic purposes. A Monte Carlo based simulation was performed to predict the number of photons expected for a given radionuclide decay. The simulations calculated Cerenkov light intensity produced by radionuclides of interest for nuclear imaging and radionuclide therapy treatments. A quantitative understanding of Cerenkov light levels using parameters that are representative of situations encountered in vivo will help guide future applications and possible clinical implementation of Cerenkov luminescence imaging.

  4. Single and multiplexed immunoassays for the chemiluminescent imaging detection of animal glues in historical paint cross-sections.

    PubMed

    Sciutto, G; Dolci, L S; Guardigli, M; Zangheri, M; Prati, S; Mazzeo, R; Roda, A

    2013-01-01

    The characterization of the organic components in a complex, multilayered paint structure is fundamental for studying painting techniques and for authentication and restoration purposes. Proteinaceous materials, such as animal glue, are of particular importance since they are widely used as binders, adhesives and for gilding. Even though proteins are usually detected by chromatographic and proteomic techniques, immunological methods represent an alternative powerful approach to protein analysis thanks to the high specificity of antigen-antibody reactions. Our previous studies demonstrated that ovalbumin and casein could be localized in paint cross-sections with high sensitivity and good spatial resolution (i.e. within the single painting layers) by using chemiluminescent (CL) immunochemical microscope imaging. In the present research work, we describe for the first time the immunolocalization of collagen (the main protein of animal glue) in paint cross-sections by CL imaging microscopy. Two different analytical protocols have been developed, allowing either the detection of collagen or the simultaneous detection of collagen and ovalbumin in the same paint sample. The assay