Science.gov

Sample records for anion gap metabolic

  1. Diagnostic Challenge in a Patient with Severe Anion Gap Metabolic Acidosis

    PubMed Central

    Tan, Eugene M.; Kalimullah, Ejaaz; Sohail, M. Rizwan; Ramar, Kannan

    2015-01-01

    The approach to the patient with acute renal failure and elevated anion and osmolal gap is difficult. Differential diagnoses include toxic alcohol ingestion, diabetic or starvation ketoacidosis, or 5-oxoproline acidosis. We present a 76-year-old female with type 2 diabetes mellitus, who was found at home in a confused state. Laboratory analysis revealed serum pH 6.84, bicarbonate 5.8?mmol/L, pCO2 29?mmHg, anion gap 22.2?mmol/L, osmolal gap 17.4?mOsm/kg, elevated beta-hydroxybutyrate (4.2?mmol/L), random blood sugar 213?mg/dL, creatinine 2.1?mg/dL, and potassium 7.5?mmol/L with no electrocardiogram (EKG) changes. Fomepizole and hemodialysis were initiated for presumed ethylene glycol or methanol ingestion. Drug screens returned negative for ethylene glycol, alcohols, and acetaminophen, but there were elevated urine levels of acetone (11?mg/dL). The acetaminophen level was negative, and 5-oxoproline was not analyzed. After 5 days in the intensive care unit (ICU), her mental status improved with supportive care. She was discharged to a nursing facility. Though a diagnosis was not established, our patient's presentation was likely due to starvation ketosis combined with chronic acetaminophen ingestion. Acetone ingestion is less likely. Overall, our case illustrates the importance of systematically approaching an elevated osmolal and anion gap metabolic acidosis. PMID:26113997

  2. Approach to the Patient With a Negative Anion Gap.

    PubMed

    Emmett, Michael

    2016-01-01

    When anion gap calculation generates a very small or negative number, an explanation must be sought. Sporadic (nonreproducible) measurement errors and systematic (reproducible) laboratory errors must be considered. If an error is ruled out, 2 general possibilities exist. A true anion gap reduction can be generated by either reduced concentrations of unmeasured anions such as albumin or increased concentrations of unmeasured cations such as magnesium, calcium, or lithium. This teaching case describes a patient with aspirin (salicylate) poisoning whose anion gap was markedly reduced (-47 mEq/L). The discussion systematically reviews the possibilities and provides the explanation for this unusual laboratory result. PMID:26363848

  3. Self-induced abortion and an elevated anion gap.

    PubMed

    Newell, G C

    1989-04-30

    A 19-year old woman who developed rapid nausea, vomiting, tachypnea, and alkalosis within 90 min of taking 3.25 g quinine S04 to induce abortion, was found to have an elevated anion gap and other electrolyte abnormalities. She was normovolemic, and had benign findings on drug screen except for quinine. Her abnormal laboratory values were high serum anion gap of 20 (normal 8-14), high urine anion gap of 171, low HC03- of 29 mEq/L, high Pa)@ of 130 mm Hg, alkalotic pH of 7.5, and hypokalemia of 2.6 mEq/L. Her hypokalemia was judged due to diuresis and vomiting. She was successfully treated with intravenous fluids and supportive care and was discharged on the third day. Quinine intoxication can also cause cinchonism, which is marked by tinnitus, vertigo, blurred vision and scotomata, and possible optic atrophy or death. The toxic dose is 2 g, and the lethal dose 8 g. PMID:2495293

  4. Use of anion gap for the quality control of electrolyte analyzers.

    PubMed

    Cembrowski, G S; Westgard, J O; Kurtycz, D F

    1983-06-01

    A simple model for the simulation of patient Na, CO2, Cl, and anion gap was formulated from patient electrolyte data. Analytical error, either random or systematic, was incorporated into the simulation of the electrolyte data and allowed study of the response of anion gap to error. Power functions, plots of probability of error detection vs. size of analytical error, were constructed and indicated a low probability of error detection when single patient specimens with abnormal anion gaps were reanalyzed. These power functions showed that pooling of the anion gap data by averaging consecutive anion gaps resulted in a high probability for detecting systematic error. We recommend, as a useful quality control procedure, averaging at least eight consecutive anion gaps and testing for a significant difference between the average and the established mean gap. PMID:6846259

  5. Near-fatal persistent anion- and osmolal-gap acidosis due to massive gamma-butyrolactone/ethanol intoxication.

    PubMed

    Heytens, Luc; Neels, Hugo; Van Regenmortel, Niels; van den Brink, Wim; Henckes, Manu; Schouwers, Sofie; Dockx, Greet; Crunelle, Cleo L

    2015-03-01

    We report a case of an ethanol and massive gamma-butyrolactone (GBL) intoxication, the precursor of the recreational drug gamma-hydroxybutyric acid (GHB), resulting in life-threatening metabolic acidosis (pH 6.5) with a highly increased anion- and osmolal gap. Rapid analysis using gas chromatography revealed a GHB plasma concentration of 4400?mg/L, far above the upper limit concentration of 1000?mg/L found in adult fatalities attributed to GBL. Full recovery was established following supportive treatment including haemodialysis. This is the first report of a combined ethanol/GBL intoxication as a cause of high serum anion- and osmolal-gap metabolic acidosis. PMID:25205856

  6. Wide variation in serum anion gap measurements by chemistry analyzers.

    PubMed

    Paulson, W D; Roberts, W L; Lurie, A A; Koch, D D; Butch, A W; Aguanno, J J

    1998-12-01

    The traditional anion gap [AG = Na-Cl-(total CO2)] mean value of 12 mEq/L was established during the 1970s with analyzer methods that are no longer used widely. No studies have systematically compared mean AG values from analyzers in current use. We used data from healthy subjects obtained from 27 clinical laboratories, 5 manufacturers, and 8 publications to compute mean AG values from 1970s analyzers and 8 current analyzers. We also compared mean AG values by evaluating Na, Cl, and total CO2 data from the College of American Pathologists Chemistry Surveys (1990-1996). Data from healthy subjects showed that overall mean AG values of the 9 analyzers ranged from 5.9 to 12.4 mEq/L. The pooled (i.e., average) AG SD was 2.3 mEq/L. We then used the data of the Surveys and the mean value from 1 analyzer to compute predicted mean values for the other 7 current analyzers. Almost all mean AG values predicted from the Surveys agreed (within 1.5 mEq/L) with mean values from healthy subjects. These results show that mean values of analyzers vary widely, indicating that analytic bias strongly influences the AG. The results should be a useful guide for the AG measurements that can be expected from different analyzers. PMID:9844585

  7. Correcting the anion gap for hypoalbuminaemia does not improve detection of hyperlactataemia

    PubMed Central

    Dinh, C H; Ng, R; Grandinetti, A; Joffe, A; Chow, D C

    2006-01-01

    Background An elevated lactate level reflects impaired tissue oxygenation and is a predictor of mortality. Studies have shown that the anion gap is inadequate as a screen for hyperlactataemia, particularly in critically ill and trauma patients. A proposed explanation for the anion gap's poor sensitivity and specificity in detecting hyperlactataemia is that the serum albumin is frequently low. This study therefore, sought to compare the predictive values of the anion gap and the anion gap corrected for albumin (cAG) as an indicator of hyperlactataemia as defined by a lactate ?2.5?mmol/l. Methods A retrospective review of 639 sets of laboratory values from a tertiary care hospital. Patients' laboratory results were included in the study if serum chemistries and lactate were drawn consecutively. The sensitivity, specificity, and predictive values were obtained. A receiver operator characteristics curve (ROC) was drawn and the area under the curve (AUC) was calculated. Results An anion gap ?12 provided a sensitivity, specificity, positive predictive value, and negative predictive value of 39%, 89%, 79%, and 58%, respectively, and a cAG ?12 provided a sensitivity, specificity, positive predictive value, and negative predictive value of 75%, 59%, 66%, and 69%, respectively. The ROC curves between anion gap and cAG as a predictor of hyperlactataemia were almost identical. The AUC was 0.757 and 0.750, respectively. Conclusions The sensitivities, specificities, and predictive values of the anion gap and cAG were inadequate in predicting the presence of hyperlactataemia. The cAG provides no additional advantage over the anion gap in the detection of hyperlactataemia. PMID:16858097

  8. Mammalian Metabolism of ?-Carotene: Gaps in Knowledge

    PubMed Central

    Shete, Varsha; Quadro, Loredana

    2013-01-01

    ?-carotene is the most abundant provitamin A carotenoid in human diet and tissues. It exerts a number of beneficial functions in mammals, including humans, owing to its ability to generate vitamin A as well as to emerging crucial signaling functions of its metabolites. Even though ?-carotene is generally considered a safer form of vitamin A due to its highly regulated intestinal absorption, detrimental effects have also been ascribed to its intake, at least under specific circumstances. A better understanding of the metabolism of ?-carotene is still needed to unequivocally discriminate the conditions under which it may exert beneficial or detrimental effects on human health and thus to enable the formulation of dietary recommendations adequate for different groups of individuals and populations worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor in mammals with the aim of identifying the gaps in knowledge that call for immediate attention. We highlight the main questions that remain to be answered in regards to the cleavage, uptake, extracellular and intracellular transport of ?-carotene as well as the interactions between the metabolism of ?-carotene and that of other macronutrients such as lipids. PMID:24288025

  9. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  10. Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells.

    PubMed

    Maldonado, Eduardo N; Lemasters, John J

    2012-09-01

    The bioenergetics of cancer cells is characterized by a high rate of aerobic glycolysis and suppression of mitochondrial metabolism (Warburg phenomenon). Mitochondrial metabolism requires inward and outward flux of hydrophilic metabolites, including ATP, ADP and respiratory substrates, through voltage-dependent anion channels (VDACs) in the mitochondrial outer membrane. Although VDACs were once considered to be constitutively open, closure of the VDAC is emerging as an adjustable limiter (governator) of mitochondrial metabolism. Studies of VDACs reconstituted into planar lipid bilayers show that tubulin at nanomolar concentrations decreases VDAC conductance. In tumor cell lines, microtubule-destabilizing agents increase cytoplasmic free tubulin and decrease mitochondrial membrane potential (??(m)), whereas microtubule stabilization increases ??(m). Tubulin-dependent suppression of ??(m) is further potentiated by protein kinase A activation and glycogen synthase kinase-3? inhibition. Knockdown of different VDAC isoforms, especially of the least abundant isoform, VDAC3, also decreases ??(m), cellular ATP, and NADH/NAD+, suggesting that VDAC1 and VDAC2 are most inhibited by free tubulin. The brake on mitochondrial metabolism imposed by the VDAC governator probably is released when spindles form and free tubulin decreases as cells enter mitosis, which better provides for the high ATP demands of chromosome separation and cytokinesis. In conclusion, tubulin-dependent closure of VDACs represents a new mechanism contributing to the suppression of mitochondrial metabolism in the Warburg phenomenon. PMID:22700429

  11. Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells

    PubMed Central

    Maldonado, Eduardo N.; Sheldon, Kely L.; DeHart, David N.; Patnaik, Jyoti; Manevich, Yefim; Townsend, Danyelle M.; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Lemasters, John J.

    2013-01-01

    Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms — VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism. PMID:23471966

  12. Band-gap-confinement and image-state-recapture effects in the survival of anions scattered from metal surfaces

    SciTech Connect

    Schmitz, Andrew; Shaw, John; Chakraborty, Himadri S.; Thumm, Uwe

    2010-04-15

    The resonant charge transfer process in the collision of hydrogen anions with metal surfaces is described within a single-active-electron wave-packet propagation method. The ion-survival probability is found to be strongly enhanced at two different surface-specific perpendicular velocities of the ion. It is shown that, while the low-velocity enhancement is induced from a dynamical confinement of the ion level inside the band gap, the high-velocity enhancement is due to electron recapture from transiently populated image states. Results are presented for Li(110), Cu(111), and Pd(111) surfaces.

  13. Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures.

    PubMed

    Wu, Zhengcui; Wang, Baohua; He, Jian; Chen, Tao

    2016-01-01

    We demonstrate the synthesis of cuboid MAPbBr3 (MA=CH3NH3) microcrystals and subsequent conversion into open-box-like MAPb(Br1-xIx)3 (0?x?1) microcrystals by anion exchange in MAI solution. During the substitution of Br(-) with I(-), the initial cuboid framework of MAPbBr3 crystals is retained. The preferential internal dissolution of MAPbBr3 due to the surface coverage and protection of MAPb(Br1-xIx)3 induces voids inside the cuboid crystals, finally leading to open-box-like iodide-rich MAPb(Br1-xIx)3. By controlling the degree of anion exchange, the intense light absorption of the product is able to be tuned in specific wavelengths throughout the visible range. This solution-phase anion exchange approach provides a synthetic strategy in designing sophisticated organolead halide perovskites structures as well as tuning the band gaps for further applications across a range of possible domains. PMID:26397923

  14. Molecular Basis for Cooperative Binding of Anionic Phospholipids to the PH Domain of the Arf GAP ASAP1.

    PubMed

    Jian, Xiaoying; Tang, Wai-Kwan; Zhai, Peng; Roy, Neeladri Sekhar; Luo, Ruibai; Gruschus, James M; Yohe, Marielle E; Chen, Pei-Wen; Li, Yifei; Byrd, R Andrew; Xia, Di; Randazzo, Paul A

    2015-11-01

    We have defined the molecular basis for association of the PH domain of the Arf GAP ASAP1 with phospholipid bilayers. Structures of the unliganded and dibutyryl PtdIns(4,5)P2-bound PH domain were solved. PtdIns(4,5)P2 made contact with both a canonical site (C site) and an atypical site (A site). We hypothesized cooperative binding of PtdIns(4,5)P2 to the C site and a nonspecific anionic phospholipid to the A site. PtdIns(4,5)P2 dependence of binding to large unilamellar vesicles and GAP activity was sigmoidal, consistent with cooperative sites. In contrast, PtdIns(4,5)P2 binding to the PH domain of PLC ?1 was hyperbolic. Mutation of amino acids in either the C or A site resulted in decreased PtdIns(4,5)P2-dependent binding to vesicles and decreased GAP activity. The results support the idea of cooperative phospholipid binding to the C and A sites of the PH domain of ASAP1. We propose that the mechanism underlies rapid switching between active and inactive ASAP1. PMID:26365802

  15. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.

    PubMed Central

    Ramos, A; Poolman, B; Santos, H; Lolkema, J S; Konings, W N

    1994-01-01

    The mechanism and energetics of citrate transport in Leuconostoc oenos were investigated. Resting cells of L. oenos generate both a membrane potential (delta psi) and a pH gradient (delta pH) upon addition of citrate. After a lag time, the internal alkalinization is followed by a continuous alkalinization of the external medium, demonstrating the involvement of proton-consuming reactions in the metabolic breakdown of citrate. Membrane vesicles of L. oenos were prepared and fused to liposomes containing cytochrome c oxidase to study the mechanism of citrate transport. Citrate uptake in the hybrid membranes is inhibited by a membrane potential of physiological polarity, inside negative, and driven by an inverted membrane potential, inside positive. A pH gradient, inside alkaline, leads to the accumulation of citrate inside the membrane vesicles. Kinetic analysis of delta pH-driven citrate uptake over a range of external pHs suggests that the monovalent anionic species (H2cit-) is the transported particle. Together, the data show that the transport of citrate is an electrogenic process in which H2cit- is translocated across the membrane via a uniport mechanism. Homologous exchange (citrate/citrate) was observed, but no evidence for a heterologous antiport mechanism involving products of citrate metabolism (e.g., acetate and pyruvate) was found. It is concluded that the generation of metabolic energy by citrate utilization in L. oenos is a direct consequence of the uptake of the negatively charged citrate anion, yielding a membrane potential, and from H(+)-consuming reactions involved in subsequent citrate metabolism, yielding a pH gradient. The uptake of citrate is driven by its own concentration gradient, which is maintained by efficient metabolic breakdown (metabolic pull). PMID:8051003

  16. A 44-year-old woman with metabolic acidosis, high anion gap, and delayed neurologic deterioration.

    PubMed

    Vakil, Abhay; Upadhyay, Hinesh; Sherani, Khalid; Cervellione, Kelly; Trepeta, Scott; Patel, Mahendra C

    2015-01-01

    A 44-year-old woman was brought to the ED from John F. Kennedy International Airport. The patient was returning with her son from a 3-month visit to Bangladesh. Her journey started with a 4-h flight from Dhaka, Bangladesh to Dubai, United Arab Emirates. She consumed 240 mL of whiskey during the flight. This was followed by a 14-h flight from Dubai to New York. According to the patient's son, she did not consume any alcohol during the second flight. The patient was in her usual state of health with normal mentation throughout her journey. Upon landing, she started complaining of shortness of breath. After disembarking, she was witnessed to have seizure-like activity with involuntary passage of urine, following which she collapsed. The patient was intubated by emergency medical services in the field. PMID:25560868

  17. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    SciTech Connect

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.

  18. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE PAGESBeta

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore »and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.« less

  19. Gitelman’s syndrome complicated by mild renal insufficiency and high anion gap acidosis; a rare presentation in a young female

    PubMed Central

    Hassan Jafry, Nazrul; Ahmed, Ejaz; Mubarak, Muhammed

    2015-01-01

    Background: Gitelman’s syndrome (GS) is a rare autosomal recessive renal tubular disorder that is characterized by episodic clinical manifestations and persistent biochemical abnormalities. The disorder manifests in adolescent or adult age and is characterized by transient episodes of muscle weakness and tetany. Its diagnosis requires a high index of suspicion and skillful interpretation of laboratory investigations. Case Presentation: We herein present a case of a 20-year-old female patient who presented with generalized muscle weakness and mild renal insufficiency. Laboratory investigations revealed mild azotemia, high anion gap acidosis, hypokalemia, hypomagnesemia, and hypocalciuria. She recovered her renal functions and muscle power with appropriate management and is doing well seven months after her first presentation to our hospital. Conclusions: This case highlights the need to create high index of suspicion among the general practitioners about this syndrome and an early referral of such patients to nephrologists for an accurate diagnosis and appropriate management. PMID:25964887

  20. [Water-electrolyte and acid-base imbalance. VI. Metabolic acidosis].

    PubMed

    Velásquez-Jones, L

    1990-03-01

    Metabolic acidosis results from a disequilibrium between production and excretion of acid. Loss of base from the body through the gastrointestinal tract or in the urine or an increase in metabolic acid production are the three major mechanisms from which metabolic acidosis is generated. Uncomplicated metabolic acidosis is manifested by an increase in blood acidity, hypobicarbonatemia, and hypocapnea. The magnitude of these changes defines the severity wf the acidosis. It is convenient to divide metabolic acidosis into two general categories (hyperchloremic and normochloremic), based on the observed anion gap, as this serves to narrow the differential diagnosis. The normal anion gap is that amount of plasma anion not measure by routine laboratory screening that accounts for the difference between the measured sodium cation (Na+) and anions (Cl +/- HCO3-). Metabolic acidosis; causes; diagnosis; clinical manifestations. PMID:2193653

  1. Propylparaben-induced disruption of energy metabolism in human HepG2 cell line leads to increased synthesis of superoxide anions and apoptosis.

    PubMed

    Szel?g, S; Zab?ocka, A; Trzeciak, K; Drozd, A; Baranowska-Bosiacka, I; Kolasa, A; Goschorska, M; Chlubek, D; Gutowska, I

    2016-03-01

    The effect of propylparaben (in final concentrations 0.4ng/ml, 2.3ng/ml and 4.6ng/ml) on the energy metabolism of HepG2 hepatocytes, superoxide anion synthesis, apoptosis and necrosis is described. Propylparaben can be toxic to liver cells due to the increased production of superoxide anions, which can contribute to a reduced concentration of superoxide dismutase in vivo and impairment of the body's antioxidant mechanisms. Finally, a further reduction in the mitochondrial membrane potential and uncoupling of the respiratory chain resulting in a reduction in ATP concentration as a result of mitochondrial damage may lead to cell death by apoptosis. PMID:26616278

  2. METABOLIC RESPONSES OF TRANSITION HOLSTEIN COWS FED ANIONIC SALTS AND SUPPLEMENTED AT CALVING WITH CALCIUM AND ENERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the concentrations of plasma Ca, P, Mg, nonesterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), and glucose in transition cows fed anionic salts prepartum and provided with calcium and energy supplements at calving. The study was conducted on a Fl...

  3. Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti

    PubMed Central

    2013-01-01

    Background Metabolic reconstruction is the computational-based process that aims to elucidate the network of metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic methods for solving this problem have been previously developed, there are many situations where manual curation is still needed. Results We introduce a general definition of gap metabolite that allows its detection in a straightforward manner. Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions connected through gap metabolites, is proposed. The method has been successfully applied to the curation of iCG238, the genome-scale metabolic model for the bacterium Blattabacterium cuenoti, obligate endosymbiont of cockroaches. Conclusion We found the proposed approach to be a valuable tool for the curation of genome-scale metabolic models. The outcome of its application to the genome-scale model B. cuenoti iCG238 is a more accurate model version named as B. cuenoti iMP240. PMID:24176055

  4. AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability

    PubMed Central

    Yang, Yoon Mee; Han, Chang Yeob; Kim, Yoon Jun; Kim, Sang Geon

    2010-01-01

    The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function. PMID:20698033

  5. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    PubMed

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production. PMID:26289745

  6. Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics

    PubMed Central

    2014-01-01

    Regions of close apposition between two organelles, often referred to as membrane contact sites (MCSs), mostly form between the endoplasmic reticulum and a second organelle, although contacts between mitochondria and other organelles have also begun to be characterized. Although these contact sites have been noted since cells first began to be visualized with electron microscopy, the functions of most of these domains long remained unclear. The last few years have witnessed a dramatic increase in our understanding of MCSs, revealing the critical roles they play in intracellular signaling, metabolism, the trafficking of metabolites, and organelle inheritance, division, and transport. PMID:24958771

  7. Metabolism

    MedlinePLUS

    ... Metabolic Disorders Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  8. Metabolism

    MedlinePLUS

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  9. Metabolism

    MedlinePLUS

    ... Some metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum) . Hypothyroidism is caused ...

  10. Anionic Salt Programs for Close-Up Dry Cows 

    E-print Network

    Stokes, Sandra R.

    1998-12-17

    , thereby inducing milk fever. However, recent research suggests that potassium may play a significant, if not primary, role in sub- clinical and clinical hypocalcemia. If prepartum di- ets are high in calcium or potassium, consider an anionic salt program... of anions and cations in a feed should be near neutral. However, certain cations and anions greatly af- fect the body?s metabolic processes. In particular, the cations sodium and potassium and the anions chloride and sulfur are considered to greatly influ...

  11. Molecular Anions Jack Simons

    E-print Network

    Simons, Jack

    Than Neutrals and Cations II. Anions Are Difficult to Prepare and Study as Isolated Species A. Making1 Molecular Anions Jack Simons Chemistry Department Henry Eyring Center for Theoretical Chemistry contributed much to the study of molecular anions. It also offers many literature references pertaining

  12. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels.

    PubMed

    Ding, Haiyan; Lu, Haiping; Lavoie, Michel; Xie, Jun; Li, Yali; Lv, Xiaolu; Fu, Zhengwei; Qian, Haifeng

    2014-11-01

    Residual soil concentrations of the herbicide diclofop-methyl (DM) can be toxic to other nontarget plant species, but the toxicity mechanisms at play are not fully understood. In the present study, we analyzed the toxic effect of DM on root growth and metabolism in the rice species Oryza sativa. The results show that a 48-h exposure to a trace level (5 ?g/L) of DM inhibits rice root growth by almost 70%. A 48-h exposure to 5 ?g/L DM also leads to an ?2.5-fold increase in citrate synthase (CS) activity (and CS gene transcription) and an ?2-fold decrease in the citrate lyase gene transcripts, which lead to an increase in the intracellular concentration of citrate and in citrate exudation rate. Addition of a specific inhibitor of cell membrane anion channel, anthracene-9-carboxylic acid, decreased citrate release in the culture, suggesting that DM-induced citrate loss from the cells is mediated by a specific membrane-bound channel protein. This study brings new insights into the key biochemical mechanisms leading to DM toxicity in rice. PMID:25307187

  13. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  14. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  15. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    SciTech Connect

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and �¢����omics�¢���� techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our observed fermentative metabolites. Intriguingly, over half of the most differentially regulated genes are of unknown function.

  16. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  17. R type anion channel

    PubMed Central

    Diatloff, Eugene; Peyronnet, Rémi; Colcombet, Jean; Thomine, Sébastien; Barbier-Brygoo, Hélène

    2010-01-01

    Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles. PMID:21051946

  18. Final Report: Filling Knowledge Gaps in Biological Networks: Integrated Global Approaches to Understand H{sub 2} Metabolism in Chlamydomonas Reinhardtii

    SciTech Connect

    Grossman, Arthur

    2012-05-01

    The major goal of our part of this project has been to generate mutants in fermentation metabolism and begin to decipher how lesions in the pathways associated with fermentation metabolism impact both H{sub 2} production and the production of other metabolites that accumulate as cells become anoxic. We are also trying to understand how metabolic pathways are regulated as O{sub 2} in the environment becomes depleted.

  19. Prevalence of Metformin Use and the Associated Risk of Metabolic Acidosis in US Diabetic Adults With CKD

    PubMed Central

    Kuo, Chin-Chi; Yeh, Hung-Chieh; Chen, Bradley; Tsai, Ching-Wei; Lin, Yu-Sheng; Huang, Chiu-Ching

    2015-01-01

    Abstract The use of metformin in chronic kidney disease (CKD) population has been intensely debated with conflicting evidence. Large population studies are needed to inform risk assessment and therapeutic decision-making. We evaluated the associations among metformin, metabolic acidosis, and CKD in a 10-year nationally representative noninstitutionalized civilian population in the United States. In this cross-sectional study, a total of 2279 diabetic adults aged 20 years or older in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012 were included and had measurements of serum bicarbonate, sodium, potassium, and chloride. The exposure was metformin use. The outcome was subclinical and severe metabolic acidosis defined by serum bicarbonate <23?mEq/L and anion gap > 16mEq/L and by serum bicarbonate < 20?mEq/L, respectively. The prevalence of metformin use decreased from 67.2% among CKD-1 and -2, 40.6% among CKD-3, to 1.3% among advanced CKD-4 and -5. Across CKD stages up to CKD-3b, we observed a tendency of lower levels of serum bicarbonate that was significant in metformin users with CKD-2 and CKD-3a and marginally significant with CKD-3b compared to nonmetformin users. The corresponding tendency of higher anion gap in metformin users with the estimated glomerular filtration rate >60?mL/min/1.73?m2 was also observed. In multiple linear regression analysis, metformin was significantly associated with decreased serum bicarbonate levels (??=??0.45, 95% CI: ?0.73, ?0.17) and increased serum anion gap levels (??=?0.40, 95% CI: 0.19, 0.61). The adjusted odds ratio of subclinical high anion gap and severe metabolic acidosis for metformin users was 1.68 (95% CI: 1.11, 2.55) and 1.31 (0.49, 3.47), respectively. The association between metformin and serum bicarbonate was significantly modified by CKD status. No interaction was found between metformin and CKD stages for serum anion gap and acidosis. Metformin is associated with subclinical metabolic acidosis but not with severe metabolic acidosis. The propensity of serum bicarbonate-lowering effect was intensified in advanced CKD; however, such tendency was not associated with the risk of clinically defined acidosis. Our findings highlight a potential of cautious expansion of metformin use among CKD-3b patients with diabetes meriting further investigations. PMID:26705203

  20. Bridging the gap between protein-tyrosine phosphorylation networks, metabolism and physiology in liver-specific PTP1b deletion mice

    E-print Network

    Miraldi, Emily R. (Emily Rae)

    2012-01-01

    Metabolic syndrome describes a complex set of obesity-related disorders that enhance diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase lb (PTPlb) deletion mice (L-PTPlb-/-) ...

  1. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  2. Prevalence of Metformin Use and the Associated Risk of Metabolic Acidosis in US Diabetic Adults With CKD: A National Cross-Sectional Study.

    PubMed

    Kuo, Chin-Chi; Yeh, Hung-Chieh; Chen, Bradley; Tsai, Ching-Wei; Lin, Yu-Sheng; Huang, Chiu-Ching

    2015-12-01

    The use of metformin in chronic kidney disease (CKD) population has been intensely debated with conflicting evidence. Large population studies are needed to inform risk assessment and therapeutic decision-making. We evaluated the associations among metformin, metabolic acidosis, and CKD in a 10-year nationally representative noninstitutionalized civilian population in the United States.In this cross-sectional study, a total of 2279 diabetic adults aged 20 years or older in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012 were included and had measurements of serum bicarbonate, sodium, potassium, and chloride. The exposure was metformin use. The outcome was subclinical and severe metabolic acidosis defined by serum bicarbonate <23?mEq/L and anion gap > 16mEq/L and by serum bicarbonate < 20?mEq/L, respectively.The prevalence of metformin use decreased from 67.2% among CKD-1 and -2, 40.6% among CKD-3, to 1.3% among advanced CKD-4 and -5. Across CKD stages up to CKD-3b, we observed a tendency of lower levels of serum bicarbonate that was significant in metformin users with CKD-2 and CKD-3a and marginally significant with CKD-3b compared to nonmetformin users. The corresponding tendency of higher anion gap in metformin users with the estimated glomerular filtration rate >60?mL/min/1.73?m was also observed. In multiple linear regression analysis, metformin was significantly associated with decreased serum bicarbonate levels (??=?-0.45, 95% CI: -0.73, -0.17) and increased serum anion gap levels (??=?0.40, 95% CI: 0.19, 0.61). The adjusted odds ratio of subclinical high anion gap and severe metabolic acidosis for metformin users was 1.68 (95% CI: 1.11, 2.55) and 1.31 (0.49, 3.47), respectively. The association between metformin and serum bicarbonate was significantly modified by CKD status. No interaction was found between metformin and CKD stages for serum anion gap and acidosis.Metformin is associated with subclinical metabolic acidosis but not with severe metabolic acidosis. The propensity of serum bicarbonate-lowering effect was intensified in advanced CKD; however, such tendency was not associated with the risk of clinically defined acidosis. Our findings highlight a potential of cautious expansion of metformin use among CKD-3b patients with diabetes meriting further investigations. PMID:26705203

  3. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  4. Macrocyclic Weakly Coordinating Anions.

    PubMed

    Landskron, Kai

    2015-10-01

    Herein, the concept of macrocyclic weakly coordinating anions (M-WCAs) is introduced. Synthetic methodologies are described how to access M-WCAs by thermodynamically controlled self-assembly in high yields, in particular through condensation and alkyne metathesis reactions. The anticipated properties and applications of M-WCAs in solid state and in solution are discussed, specifically for gas storage and separation, homogeneous and heterogeneous catalysis, and as liquid and solid electrolytes. PMID:26272789

  5. Citrate metabolism in blood transfusions and its relationship due to metabolic alkalosis and respiratory acidosis

    PubMed Central

    Li, Kai; Xu, Yuan

    2015-01-01

    Metabolic alkalosis commonly results from excessive hydrochloric acid (HCl), potassium (K+) and water (H2O) loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalent on albumin and the free ionized calcium (Ca++) content of plasma decreases. The mean citrate load in all patients was 8740±7027 mg from 6937±6603 mL of transfused blood products. The citrate load was significantly higher in patients with alkalosis (9164±4870 vs. 7809±3967, P < 0.05). The estimated mean total citrate administered via blood and blood products was calculated as 43.2±34.19 mg/kilogram/day. In non-massive and frequent blood transfusions, the elevated carbon dioxide output has been shown to occur. Due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis + respiratory acidosis and electrolyte imbalance may develop, blood transfusions may result in certain complications. PMID:26131288

  6. Formation of interstellar anions

    NASA Astrophysics Data System (ADS)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H ? CnH and Cn- +H ? CnH-) and associative detachment processes (Cn- +H ? CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M.L.Senent, N.Feautrier, Chem. Phys. Lett., 533, 6 (2012) [11] M.L.Senent, M.Hochlaf, submitted

  7. The ‘gap’ in the ‘plasma osmolar gap

    PubMed Central

    Arora, Alok

    2013-01-01

    Ethylene glycol poisoning is a medical emergency that presents challenges for clinicians and clinical laboratories. If left untreated, it may cause morbidity and death, but effective therapy is available if diagnosed in time. The diagnosis of ethylene glycol poisoning is not always straightforward and the commonly quoted ‘plasma osmolar gap’ is not sufficiently sensitive to exclude a small ingestion and has been reported to be normal in a number of serious exposures. The ‘plasma osmolar gap’ cannot distinguish among ethanol, isopropyl alcohol, methanol or ethylene glycol. Thus, the measurement of serum ethylene glycol and, ideally, glycolic acid, its major toxic metabolite in serum, is definitive. This also holds true for methanol and its metabolite formic acid. Ethylene glycol metabolites target the kidney and lead to reversible oliguric or anuric injury, which in turn slows the elimination of ethylene glycol. The therapeutic options include reversal of metabolic acidosis, inhibition of alcohol dehydrogenase and early haemodialysis. PMID:23929610

  8. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  9. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ? e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  10. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  11. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  12. Kinetics of Anionic Surfactant Anoxic Degradation 

    E-print Network

    Camacho, Julianna G.

    2010-07-14

    commonly present in personal cleansing products and detergents; anionic, nonionic, and amphoteric. The surfactant used in this study is an anionic surfactant. Anionic synthetic detergents may be classified into sulfates and sulfonates (Figure 1). R...

  13. Bound Anionic States of Aadenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation,wehave demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  14. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  15. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  16. Anion-exchange nanospheres as titration reagents for anionic analytes.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-08-18

    We present here anion-exchange nanospheres as novel titration reagents for anions. The nanospheres contain a lipophilic cation for which the counterion is initially Cl(-). Ion exchange takes place between Cl(-) in the nanospheres and a more lipophilic anion in the sample, such as ClO4(-) and NO3(-). Consecutive titration in the same sample solution for ClO4(-) and NO3(-) were demonstrated. As an application, the concentration of NO3(-) in spinach was successfully determined using this method. PMID:26201018

  17. Microbial Metabolism Metabolic Engineering

    E-print Network

    Huang, Ching-Tsan

    1 Microbial Metabolism Metabolic Engineering in Post-Genomic Era Ching-Tsan Huang () Office of recombinant DNA technology. Alteration of metabolic pathways to better understand and use cellular pathways Physiology Metabolic Engineering #12;4 http://ocw.osaka-u.ac.jp/contents/19/Prof.%20Shimizu%201.pdf Systems

  18. Gap Resolution

    Energy Science and Technology Software Center (ESTSC)

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more »In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  19. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gda?sk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE OBER and located at PNNL, which is operated by Battelle for the US DOE. The MSCF resources were available through a Computational Grand Challenge Application grant. The experimental material in this paper (K.H.B.) is based upon work supported by the National Science Foundation under Grant No. CHE-0517337.

  20. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  1. Metabolic Syndrome

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Metabolic Syndrome KidsHealth > Teens > Diabetes Center > Treatment & Prevention > Metabolic Syndrome ... applies to a condition known as metabolic syndrome. Metabolic Syndrome Is an Early Warning Sign Metabolic syndrome isn' ...

  2. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  3. Anions in Nucleic Acid Crystallography.

    PubMed

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments. PMID:26227054

  4. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  5. ATP release via anion channels.

    PubMed

    Sabirov, Ravshan Z; Okada, Yasunobu

    2005-12-01

    ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed. PMID:18404516

  6. Metabolic Syndrome

    MedlinePLUS

    ... page from the NHLBI on Twitter. What Is Metabolic Syndrome? Metabolic syndrome is the name for a group of risk ... three metabolic risk factors to be diagnosed with metabolic syndrome. A large waistline. This also is called abdominal ...

  7. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  8. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D. (Los Alamos, NM); Marsh, S. Fredric (Los Alamos, NM); Bartsch, Richard A. (Lubbock, TX)

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  9. Plasmalemmal VDAC controversies and maxi-anion channel puzzle.

    PubMed

    Sabirov, Ravshan Z; Merzlyak, Petr G

    2012-06-01

    The maxi-anion channel has been observed in many cell types from the very beginning of the patch-clamp era. The channel is highly conductive for chloride and thus can modulate the resting membrane potential and play a role in fluid secretion/absorption and cell volume regulation. A wide nanoscopic pore of the maxi-anion channel permits passage of excitatory amino acids and nucleotides. The channel-mediated release of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression and physiological/pathophysiological significance, the molecular identity of the maxi-anion channel is still obscure. VDAC is primarily a mitochondrial protein; however several groups detected it on the cellular surface. VDAC in lipid bilayers reproduced the most important biophysical properties of the maxi-anion channel, such as a wide nano-sized pore, closure in response to moderately high voltages, ATP-block and ATP-permeability. However, these similarities turned out to be superficial, and the hypothesis of plasmalemmal VDAC as the maxi-anion channel did not withstand the test by genetic manipulations of VDAC protein expression. VDAC on the cellular surface could also function as a ferricyanide reductase or a receptor for plasminogen kringle 5 and for neuroactive steroids. These ideas, as well as the very presence of VDAC on plasmalemma, remain to be scrutinized by genetic manipulations of the VDAC protein expression. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism. PMID:21986486

  10. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  11. Laser Cooling of Molecular Anions

    NASA Astrophysics Data System (ADS)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C2 - , the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C2 - , are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  12. Laser cooling of molecular anions.

    PubMed

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics. PMID:26066432

  13. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  14. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  15. Metabolic neuropathies

    MedlinePLUS

    Neuropathy - metabolic ... can be caused by many different things. Metabolic neuropathy may be caused by: A problem with the ... one of the most common causes of metabolic neuropathies. People who are at the highest risk of ...

  16. Metabolic Syndrome

    MedlinePLUS

    ... Th M e etabolic Syndrome What is the metabolic syndrome? The term metabolic syndrome describes a cluster of risk factors that increase ... high blood sugar). The exact cause of the metabolic syndrome is not known but genetic factors, too much ...

  17. Metabolic Panel

    MedlinePLUS

    A metabolic panel is a group of tests that measures different chemicals in the blood. These tests are usually done on ... and liver. There are two types: basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP ...

  18. Organic anion transporter (Slc22a) family members as mediators of toxicity

    SciTech Connect

    Sweet, Douglas H. . E-mail: sweetd@musc.edu

    2005-05-01

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents.

  19. J. Mol. Biol. (1985) 184, 81-98 Gap Junction Structures

    E-print Network

    Baker, Timothy S.

    1985-01-01

    - averaged images of the negatively stained gap junctions have been self-consistently scaled to identifyJ. Mol. Biol. (1985) 184, 81-98 Gap Junction Structures VII?. Analysis of Connexon Images Obtained with Cationic and Anionic Negative Stains T. S. Bakert, G. E. Sosinsky, D. L. D. Casparg Rosen&e1 Basic Medical

  20. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    PubMed

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio-hydrogen. PMID:26551237

  1. Ionic liquids based on azolate anions.

    PubMed

    Smiglak, Marcin; Hines, C Corey; Wilson, Timothy B; Singh, Shailendra; Vincek, Adam S; Kirichenko, Kostyantyn; Katritzky, Alan R; Rogers, Robin D

    2010-02-01

    Compartmentalized molecular level design of new energetic materials based on energetic azolate anions allows for the examination of the effects of both cation and anion on the physiochemical properties of ionic liquids. Thirty one novel salts were synthesized by pairing diverse cations (tetraphenylphosphonium, ethyltriphenylphosphonium, N-phenyl pyridinium, 1-butyl-3-methylimidazolium, tetramethyl-, tetraethyl-, and tetrabutylammonium) with azolate anions (5-nitrobenzimidazolate, 5-nitrobenzotriazolate, 3,5-dinitro-1,2,4-triazolate, 2,4-dinitroimidazolate, 4-nitro-1,2,3-triazolate, 4,5-dinitroimidazolate, 4,5-dicyanoimidazolate, 4-nitroimidazolate, and tetrazolate). These salts have been characterized by DSC, TGA, and single crystal X-ray crystallography. The azolates in general are surprisingly stable in the systems explored. Ionic liquids were obtained with all combinations of the 1-butyl-3-methylimidazolium cation and the heterocyclic azolate anions studied, and with several combinations of tetraethyl- or tetrabutylammonium cations and the azolate anions. Favorable structure-property relationships were most often achieved when changing from 4- and 4,5-disubstituted anions to 3,5- and 2,4-disubstituted anions. The most promising anion for use in energetic ionic liquids of those studied here, was 3,5-dinitro-1,2,4-triazolate, based on its contributions to the entire set of target properties. PMID:20039339

  2. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  3. Exploring the Underachievement Gap

    ERIC Educational Resources Information Center

    Carpenter, Dick M., II; Ramirez, Al

    2012-01-01

    Prevalent definitions of the achievement gap conceptualize it as the difference in achievement between white and minority students. Recent research, however, points to numerous gaps both within and between groups. This study explores a further conceptualization of achievement gaps by looking at the "underachievement gap"--the difference between…

  4. Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.

    PubMed

    Islam, Md Rafiqul; Uramoto, Hiromi; Okada, Toshiaki; Sabirov, Ravshan Z; Okada, Yasunobu

    2012-11-01

    The maxi-anion channel plays a classically recognized role in controlling the membrane potential through the chloride conductance. It also has novel functions as a regulated pathway for the release of the anionic signaling molecules ATP and excitatory amino acids from cells subjected to osmotic perturbation, ischemia, or hypoxia. Because hemichannels formed by pannexins and connexins have been reported to mediate ATP release from a number of cell types, these hemichannels may represent the molecular correlate of the maxi-anion channel. Here, we found that L929 fibrosarcoma cells express functional maxi-anion channels which mediate a major portion of swelling-induced ATP release, and that ATP released via maxi-anion channels facilitates the regulatory volume decrease after osmotic swelling. Also, it was found that the cells express the mRNA for pannexin 1, pannexin 2, and connexin 43. Hypotonicity-induced ATP release was partially suppressed not only by known blockers of the maxi-anion channel but also by several blockers of pannexins including the pannexin 1-specific blocking peptide (10)Panx1 and small interfering (si)RNA against pannexin 1 but not pannexin 2. The inhibitory effects of maxi-anion channel blockers and pannexin 1 antagonists were additive. In contrast, maxi-anion channel activity was not affected by pannexin 1 antagonists and siRNAs against pannexins 1 and 2. Although a connexin 43-specific blocking peptide, Gap27, slightly suppressed hypotonicity-induced ATP release, maxi-anion channel activity was not affected by Gap27 or connexin 43-specific siRNA. Thus, it is concluded that the maxi-anion channel is a molecular entity distinct from pannexin 1, pannexin 2, and connexin 43, and that the maxi-anion channel and the hemichannels constitute separate pathways for swelling-induced ATP release in L929 cells. PMID:22785119

  5. Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells.

    PubMed

    Frachisse, J M; Thomine, S; Colcombet, J; Guern, J; Barbier-Brygoo, H

    1999-09-01

    On the basis of the anion content of in vitro-cultured Arabidopsis plantlets, we explored the selectivity of the voltage-dependent anion channel of the plasma membrane of hypocotyl cells. In the whole-cell configuration, substitution of cytosolic Cl(-) by different anions led to the following sequence of relative permeabilities: NO(3)(-) (2.6) >/= SO(4)(2-) (2.0) > Cl(-) (1.0) > HCO(3)(-) (0.8) > malate(2-) (0.03). Large whole-cell currents were measured for NO(3)(-) and SO(4)(2-), about five to six times higher than the equivalent Cl(-) currents. Since SO(4)(2-) is usually considered to be a weakly permeant or non-permeant ion, the components of the large whole-cell current were explored in more detail. Aside from its permeation through the channel with a unitary conductance, about two-thirds that of Cl(-), SO(4)(2-) had a regulatory effect on channel activity by preventing the run-down of the anion current both in the whole-cell and the outside-out configuration, increasing markedly the whole-cell current. The fact that the voltage-dependent plasma membrane anion channel of hypocotyl cells can mediate large NO(3)(-) and SO(4)(2-) currents and is regulated by nucleotides favors the idea that this anion channel can contribute to the cellular homeostasis of important metabolized anions. PMID:10482681

  6. Metabolic Syndrome

    MedlinePLUS

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  7. Metabolic syndrome

    MedlinePLUS

    Metabolic syndrome is a name for a group of risk factors that occur together and increase the chance ... Metabolic syndrome is becoming very common in the United States. Doctors are not sure whether the syndrome is ...

  8. Determination of Anion Ordering in Mixed Apatites via Multinuclear Solid-State NMR & X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Vaughn, J. S.; Phillips, B. L.; Hughes, J. M.; Nekvasil, H.; Ustunisik, G. K.; Lindsley, D. H.; Coraor, A. E.; McCubbin, F. M.; Woerner, W. R.

    2013-12-01

    Subtle changes in crystallographic anion position in apatite sensu latu Ca5(PO4)3(F,OH,Cl) are known to affect greatly its macroscopic physical properties, such as acid resistivity and hardness. While the anion positions in endmember compositions are well described, there exist substantial gaps in our understanding of anion ordering in mixed binary and ternary compositions because of potential steric anion interactions and symmetry changes. X-ray diffraction analysis of these binary/ternary mixtures is well-suited to address the atomic positions and average occupancies of these anion sites for well-ordered systems. Multinuclear solid-state NMR methods complement XRD structure studies if there exist column ordering reversals or disorder in the atomic positions of the anions, as NMR is sensitive to the atomic arrangement within short distances of the nucleus (<4Å). Using these analytical techniques the anion ordering along the F-Cl solid-solution join is reported, and features an off-mirror fluorine site at (0,0,0.167). The migration of fluorine away from its end-member site within the {00l} mirror plane and subsequent migration of chlorine in the opposing direction results in acceptable F-Cl distances in the anion column. Exceptionally low H content in the anion channel was afforded via high-temperature (1200°C) solid-state reaction under vacuum. The speciation of H was determined by 1H{31P} REDOR experiments, from which the REDOR difference spectrum features a single resonance at ?H = 1.6 ppm which can be assigned to OH groups. The abundance of OH was confirmed by comparison of single-pulse (SP) 31P and cross-polarization 31P{1H} NMR (CP) spectral intensities to those of a crystalline synthetic hydroxylapatite, and showed that only 0.4 mol% of the 31P in the composition occurs in hydroxylapatite-like configurations.

  9. NATIONAL GAP ANALYSIS PROGRAM

    EPA Science Inventory

    GAP Analysis is a rapid conservation evaluation method for assessing the current status of biodiversity at large spatial scales. GAP Analysis provides a systematic approach for evaluating the protection afforded biodiversity in given areas. It uses Geographic Information System (...

  10. Confirmation of enhanced anion concentration at the liquid water surface

    E-print Network

    Cohen, Ronald C.

    anions to reside at the surface, whereas the cations and non-polar- izable anions remain in the interiorConfirmation of enhanced anion concentration at the liquid water surface Poul B. Petersen, Richard anions. Here we present the first direct experimental veri- fication of this prediction. Enhanced azide ð

  11. Behind the Pay Gap

    ERIC Educational Resources Information Center

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  12. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  13. Effect of dietary potassium and anionic salts on acid-base and mineral status in periparturient cows.

    PubMed

    Rérat, M; Schlegel, P

    2014-06-01

    Dry cow diets based on grassland forage from intensive production contain high amounts of K and could be responsible for a reduced ability to maintain Ca homoeostasis. The aim of this study was to determine whether a moderate anionic salt supplementation to a forage-based pre-calving diet with varying native K content affects the mineral and acid-base status in transition cows. Twenty-four dry and pregnant Holstein cows, without antecedent episodes of clinical hypocalcemia, were assigned to two diets during the last 4 weeks before estimated calving date. Twelve cows were fed a hay-based diet low in K (18 g K/kg DM), and 12, a hay-based diet high in K (35 g K/kg DM). Within each diet, six cows received anionic salts during the last 2 weeks before the estimated calving day. After calving, all cows received the high K diet ad libitum. Blood samples were taken daily from day 11 pre-partum to day 5 post-partum. Urine samples were taken on days 7 and 2 pre-partum and on day 2 post-partum. The anionic salt did not alter feed intake during the pre-partum period. Serum Ca was not influenced by the dietary treatments. Feeding pre-partum diets with low K concentrations induced a reduced metabolic alkalotic charge, as indicated by reduced pre-partum urinary base-acid quotient. Transition cows fed the low K diet including anionic salts induced a mild metabolic acidosis before calving, as indicated by higher urinary Ca, lower urinary pH and net acid-base excretion. Although serum Ca during the post-partum period was not affected by dietary treatment, feeding a low K diet moderately supplemented with anionic salts to reach a dietary cation-anion difference close to zero permitted to obtain a metabolic response in periparturient cows without altering the dry matter intake. PMID:23796109

  14. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    PubMed

    Jakusová, Klaudia; Donovalová, Jana; Cigá?, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-01

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. PMID:24418689

  15. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  16. Strong anion determination in biological fluids by capillary electrophoresis for clinical diagnostics.

    PubMed

    de Macedo, Adriana Nori; Jiwa, Muhammad Irfan Yasin; Macri, Joseph; Belostotsky, Vladimir; Hill, Stephen; Britz-McKibbin, Philip

    2013-11-19

    New methods for quantitative analysis of strong anions are required for diagnostic testing of human diseases. Current techniques suffer from poor selectivity and/or long analysis times that are not amenable for labile anions in high-saline or volume-restricted samples. We introduce a rapid assay (<5 min) based on capillary electrophoresis (CE) with indirect UV detection for simultaneous analysis of sulfate, sulfite, and chloride in human urine, plasma, and sweat specimens. Remarkable selectivity for strong anions is achieved by using an acidic background electrolyte under reversed polarity that results in electrokinetic rejection of matrix interferences at the capillary inlet. A dual co-ion probe system consisting of 5 mM naphthalene disulfonate (NDS) and 5 mM naphthalene trisulfonate (NTS) in 0.4 M formic acid, pH 2.0 is developed for detection of UV transparent anions (S/N ? 3, 60 ?M with a 25 ?m inner diameter fused-silica capillary) with good peak symmetry and baseline stability. Due to the chemical reactivity of sulfite, dilute formaldehyde is used as a reagent to form an acid-stable hydroxymethylsulfonate adduct. Method validation confirmed excellent linearity (R(2) > 0.999), good accuracy (mean bias ?7%), and acceptable long-term reproducibility (CV < 10%) over 20 days. The assay allows for artifact-free determination of sulfate and sulfite with consistent results for chloride when compared to standard electrochemical methods (R(2) > 0.975). Preliminary data suggest that kidney-stone formers have lower urinary sulfate excretion relative to non-kidney-stone patient controls (p = 0.0261). CE offers a selective yet robust platform for routine analysis of strong anions that is needed for confirmatory testing of cystic fibrosis, sulfite oxidase deficiency, urolithiasis, and other disorders of sulfur metabolism and/or anion transport. PMID:24127785

  17. Development of an In Silico Metabolic Simulator and Searchable Metabolism Database for Chemical Risk Assessments

    EPA Science Inventory

    The US EPA is faced with long lists of chemicals that need to be assessed for hazard, and a gap in evaluating chemical risk is accounting for metabolic activation resulting in increased toxicity. The goals of this project are to develop a capability to predict metabolic maps of x...

  18. Metabolic ecology.

    PubMed

    Humphries, Murray M; McCann, Kevin S

    2014-01-01

    Ecological theory that is grounded in metabolic currencies and constraints offers the potential to link ecological outcomes to biophysical processes across multiple scales of organization. The metabolic theory of ecology (MTE) has emphasized the potential for metabolism to serve as a unified theory of ecology, while focusing primarily on the size and temperature dependence of whole-organism metabolic rates. Generalizing metabolic ecology requires extending beyond prediction and application of standardized metabolic rates to theory focused on how energy moves through ecological systems. A bibliometric and network analysis of recent metabolic ecology literature reveals a research network characterized by major clusters focused on MTE, foraging theory, bioenergetics, trophic status, and generalized patterns and predictions. This generalized research network, which we refer to as metabolic ecology, can be considered to include the scaling, temperature and stoichiometric models forming the core of MTE, as well as bioenergetic equations, foraging theory, life-history allocation models, consumer-resource equations, food web theory and energy-based macroecology models that are frequently employed in ecological literature. We conclude with six points we believe to be important to the advancement and integration of metabolic ecology, including nomination of a second fundamental equation, complementary to the first fundamental equation offered by the MTE. PMID:24028511

  19. Anion exchange in ionic liquid mixtures.

    PubMed

    Cha, Seoncheol; Kim, Doseok

    2015-11-28

    Advantage of ionic liquids as designer solvents can be maximized by mixing different ionic liquids (ILs) for a possibility of continuous tunability of material properties. The property of these mixed ILs would be determined by their microscopic conformation between cations and anions. The mixtures of two ILs having 1-butyl-3-methylimidaolium cations and different anions were investigated by IR and NMR spectroscopy, utilizing that the vibrational frequencies of the C-H stretching and bending modes of the most acidic proton in the imidazolium ring of the cation and the NMR chemical shift for the corresponding proton were clearly distinct between the ILs having different anions. The IR absorption spectra of the IL mixtures at different concentrations were well-matched to weighted sums of the two spectra of the pure ILs. In contrast, the two distinct peaks in the NMR spectra of the pure ILs coalesced into a single peak, which shifted continuously following the relative portion of two different ILs in the mixture. IR spectroscopy in the optical frequency range seems to take the instantaneous snapshot of the cation-anion interaction, while NMR spectroscopy in the radio-frequency (?500 MHz) range samples over a much longer timescale, enough for the cation to interact with different anion species in the mixture. PMID:26487276

  20. Electron impact induced anion production in acetylene.

    PubMed

    Szyma?ska, Ewelina; ?adež, Iztok; Krishnakumar, E; Mason, Nigel J

    2014-02-28

    A detailed experimental investigation of electron induced anion production in acetylene, C2H2, in the energy range between 1 and 90 eV is presented. The anions are formed by two processes in this energy range: dissociative electron attachment (DEA) and dipolar dissociation (DD). DEA in C2H2 is found to lead to the formation of H(-) and C2(-)/C2H(-) through excitation of resonances in the electron energy range 1-15 eV. These anionic fragments are formed with super thermal kinetic energy and reveal no anisotropy in the angular distributions. DD in C2H2 leads to the formation of H(-), C(-)/CH(-) and C2(-)/C2H(-) with threshold energies of 15.7, 20.0 and 16.5 eV respectively. The measured anion yields have been used to calculate anion production rates for H(-), C(-)/CH(-) and C2(-)/C2H(-) in Titan's ionosphere. PMID:24343432

  1. Identification and characterization of anion binding sites in RNA

    SciTech Connect

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L.

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  2. Infrared spectroscopy of hydrated naphthalene cluster anions

    NASA Astrophysics Data System (ADS)

    Knurr, Benjamin J.; Adams, Christopher L.; Weber, J. Mathias

    2012-09-01

    We present infrared spectra of mass-selected C10H8-.(H2O)n.Arm cluster anions (n = 1-6) obtained by Ar predissociation spectroscopy. The experimental spectra are compared with predicted spectra from density functional theory calculations. The OH groups of the water ligands are involved in H-bonds to other water molecules or to the ? system of the naphthalene anion, which accommodates the excess electron. The interactions in the water network are generally found to be more important than those between water molecules and the ion. For 2 ? n ? 4 the water molecules form single layer water networks on one side of the naphthalene anion, while for n = 5 and 6, cage and multilayer structures become more energetically favorable. For cluster sizes with more than 3 water molecules, multiple conformers are likely to be responsible for the experimental spectra.

  3. Electron scattering on p-benzoquinone anions

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.; Svendsen, Annette; Bluhme, Henrik; Nielsen, Steen Brøndsted; Andersen, Lars H.

    2005-04-01

    Electron scattering on p-benzoquinone anions was studied in a storage ring and the detachment cross-section measured as a function of electron energy. From a fit to a classical model developed for spherical symmetric anions, the threshold was found at 8.4 eV. According to the electron-binding energy, a much lower value, 4.4 eV, is predicted. The deviation is attributed to neglect in the model of the large polarizability of the ?-conjugated anion. Ab initio calculations predict a resonance state below 3 eV but its identification is not within reach of the technique due to the thick repulsive Coulomb barrier.

  4. Infrared Spectroscopy of Hydrated Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Weber, J. Mathias

    2009-06-01

    The hydration of molecular anions is still not as thoroughly explored as for atomic anions. We present IR spectra and quantum chemical calculations of hydrated nitromethane anions. In the monohydrate, the nitro group of the ion interacts with the water molecule via two hydrogen bonds, one from each O atom. This motif is partially conserved in the dihydrate. Adding the third water molecule results in a ring-like structure of the water ligands, each of which forms one H bond to one of the O atoms of the nitro group and another to a neighboring water ligand, reminiscent of the hydration motif of the heavier halides. Interestingly, while the methyl group is not directly involved in the interaction with the water ligands, its infrared signature is strongly affected by the changes in the intramolecular charge distribution through hydration.

  5. An anionic surfactant for EOR applications

    NASA Astrophysics Data System (ADS)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  6. Theoretical characterization of a series of N5-based aromatic hyperhalogen anions.

    PubMed

    Sun, Wei-Ming; Hou, Dan; Wu, Di; Li, Xiang-Hui; Li, Ying; Chen, Jing-Hua; Li, Chun-Yan; Li, Zhi-Ru

    2015-11-18

    Hyperhalogens are a class of highly electronegative molecules whose electron affinities even exceed those of their superhalogen ligands. Such species can serve as new oxidizing agents, biocatalysts, and building blocks of unusual salts, and hence are important to the chemical industry. Utilizing stable N5(-) as the ligand, a series of aromatic hyperhalogen anions, namely mononuclear M(N5)k+1(-) (M = Li, Be, B) and dinuclear M2(N5)2k+1(-) (M = Li, Be), have been reported here for the first time. Calculation results based on the density functional theory revealed that all the N5(-) subunits preserve their structural and electronic integrity as well as aromatic characteristics in these anions. Especially, these anionic molecules exhibit larger vertical electron detachment energies (6.76-7.86 eV) than that of the superhalogen ligand N5(-), confirming their hyperhalogen nature. The stability of these studied anions is guaranteed by their large HOMO-LUMO gaps, and positive dissociation energies of predetermined fragmentation pathways. We hope this work will not only provide evidence of a new type of hyperhalogen molecule but also stimulate more research interest and efforts in the amazing superatom realm. PMID:26513608

  7. The gap gene network

    PubMed Central

    2010-01-01

    Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution. PMID:20927566

  8. Further studies on the clinical features and clinicopathological findings of a syndrome of metabolic acidosis with minimal dehydration in neonatal calves.

    PubMed Central

    Kasari, T R; Naylor, J M

    1986-01-01

    A syndrome of metabolic acidosis of unknown etiology was diagnosed in twelve beef calves 7 to 31 days old. Principal clinical signs were unconsciousness or depression concomitant with weakness and ataxia. Other signs included weak or absent suckle and menace reflexes, succussable nontympanic fluid sounds in the anterior abdomen, and a slow, deep thoracic and abdominal pattern of respiration. The variation in clinical signs between calves was highly correlated (r = 0.87, P less than 0.001) with their acid-base (base deficit) status. Abnormal laboratory findings included reduced venous blood pH, pCO2 and bicarbonate ion concentration as well as hyperchloremia, elevated blood urea nitrogen, increased anion gap and neutrophilic leukocytosis with a left shift. Sodium bicarbonate solution administered intravenously effectively raised blood pH and improved demeanor, ambulation and appetite. All calves did well following a return to a normal acid-base status. PMID:3024795

  9. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–? interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–? interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl?, Br?, I?, linear thiocyanate SCN?, trigonal planar nitrate NO??, pyramidic iodate IO??, and tetrahedral sulfate SO?²?). The binding energies of the resultant gaseous 1:1 complexes (1•Cl?,1•Br?, 1•I?, 1•SCN?, 1•NO??, 1•IO?? and 1•SO?²?) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl?, NO??, IO?? with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO?²?. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–? binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–? binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron spectroscopy combined with theoretical calculations represent a powerful technique to probe intrinsic anion–? interactions and has potential to provide quantitative guest-host molecular binding strengths and unravel fundamental insights in specific anion recognitions.

  10. Photoelectron spectroscopy and theoretical studies of anion-? interactions: binding strength and anion specificity.

    PubMed

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-? interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-? interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1?:?1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-? binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-? binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron spectroscopy combined with theoretical calculations represents a powerful technique to probe anion-? interactions and has potential to provide quantitative guest-host molecular binding strengths and unravel fundamental insights in specific anion recognitions. PMID:25515705

  11. GAP ACTIVITY TRACKING MATRIX

    EPA Science Inventory

    Resource Purpose:The information collected serves the following purposes: (1) provides a summary of funds allocated by tribe for the GAP Program, (2) provides an overview in the types of activities the tribes are engaged in with GAP funds, and (3) allows OW to document the...

  12. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  13. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various student demographic…

  14. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  15. Understanding the Gender Gap.

    ERIC Educational Resources Information Center

    Goldin, Claudia

    1985-01-01

    Despite the great influx of women into the labor market, the gap between men's and women's wages has remained stable at 40 percent since 1950. Analysis of labor data suggests that this has occurred because women's educational attainment compared to men has declined. Recently, however, the wage gap has begun to narrow, and this will probably become…

  16. Advanced rapidity gap trigger

    E-print Network

    Abramovsky, V A

    2004-01-01

    Nubmer of phisically interesting processes is charachterized by the rapidity gaps. In reality, this gaps is filled by uderlying events with high (more than 0.75 for higgs) probability. In this paper we purpose a way to detect this shadowed events with aim to raise the number of rare events.

  17. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  18. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  19. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  20. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  1. Anion reorientation in Na 3PO 4

    NASA Astrophysics Data System (ADS)

    Wilmer, D.; Banhatti, R. D.; Fitter, J.; Funke, K.; Jansen, M.; Korus, G.; Lechner, R. E.

    The reorientational motion of phosphate anions in the high-temperature phase of Na 3PO 4 has been investigated with a coherent quasielastic neutron-scattering experiment. Our study aimed at clarifying the relevance of the so-called “paddle-wheel” mechanism, i.e., the influence of the anion motion on the translational Na + ion conduction. In the Q range between 0.3 and 2.3 Å -1, the data could be fitted by the sum of a ? function and a single Lorentzian whose width exhibits an Arrhenius behavior with an activation energy of 0.184 eV. We have calculated Sq( Q, ?), the coherent quasielastic structure factor of the oxygen ions, based on several models. A comparison of the model predictions with our experimental data shows that only three oxygen atoms per anion are rotationally mobile. The experiment yields an additional small maximum around 1.5 Å -1, which appears more pronounced at higher temperatures. Its position on the Q scale suggests that sodium ions, further away from the center of rotation, are involved in the reorientational anion motion.

  2. Anion reorientation in Na3PO4

    NASA Astrophysics Data System (ADS)

    Wilmer, D.; Banhatti, R. D.; Fitter, J.; Funke, K.; Jansen, M.; Korus, G.; Lechner, R. E.

    1998-04-01

    The reorientational motion of phosphate anions in the high-temperature phase of Na3PO4 has been investigated with a coherent quasielastic neutron-scattering experiment. Our study aimed at clarifying the relevance of the so-called ``paddle-wheel'' mechanism, i.e., the influence of the anion motion on the translational Na+ ion conduction. In the Q range between 0.3 and 2.3 Å-1, the data could be fitted by the sum of a ? function and a single Lorentzian whose width exhibits an Arrhenius behavior with an activation energy of 0.184 eV. We have calculated Sq(Q,?), the coherent quasielastic structure factor of the oxygen ions, based on several models. A comparison of the model predictions with our experimental data shows that only three oxygen atoms per anion are rotationally mobile. The experiment yields an additional small maximum around 1.5 Å-1, which appears more pronounced at higher temperatures. Its position on the Q scale suggests that sodium ions, further away from the center of rotation, are involved in the reorientational anion motion.

  3. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  4. The role of anions in surface electrochemistry.

    SciTech Connect

    Tripkovic, D. V.; Strmcnik, D.; van der Vliet, D.; Stamenkovic, V,; Markovic, N. M.; Materials Science Division; Univ. of Chicago

    2008-01-01

    Some issues of the current state of understanding in the surface electrochemistry are discussed, with emphases on the role of specifically adsorbing anions in hydrogen adsorption and oxide formation, adsorption and ordering of molecular adsorbates and metal ions, metal deposition, restructuring and stability of surface atoms, and kinetics of electrochemical reactions.

  5. Synthesis and study of frustrated oxide and mixed anion materials 

    E-print Network

    Clark, Lucy

    2013-11-28

    Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this ...

  6. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    The supramolecular chemistry of selective anion recognition by synthetic polyammonium macrocycles will be explored in a comprehensive, long term program designed to provide new solutions to problems critical to the environmental initiative of DOE. Highly shape- and charge selecti...

  7. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion

    SciTech Connect

    Kim, Sung Kuk; Lee, Juhoon; Williams, Neil J; Lynch, Vincent M.; Hay, Benjamin; Moyer, Bruce A; Sessler, Jonathan L.

    2014-01-01

    Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA+ salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C8-10)ammonium (A336+) salt)) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).

  8. Why Metabolic Syndrome Matters

    MedlinePLUS

    ... High Blood Pressure Tools & Resources Stroke More Why Metabolic Syndrome Matters Updated:Jul 24,2014 Metabolic syndrome may ... Diabetes High Blood Pressure My Life Check Heart360® Metabolic Syndrome • Home • About Metabolic Syndrome • Why Metabolic Syndrome Matters • ...

  9. Metabolic Syndrome

    MedlinePLUS

    ... to Web version Metabolic Syndrome Overview What is insulin resistance? Your body changes most of the food you ... to insulin. Doctors refer to this condition as insulin resistance. If you have insulin resistance, your body will ...

  10. Metabolic Myopathies

    MedlinePLUS

    ... muscles. Metabolic refers to chemical reactions that provide energy, nutrients and substances necessary for health and growth. ... occur when muscle cells don’t get enough energy. Without enough energy, the muscle lacks enough fuel ...

  11. Anion conductance of the human red cell is carried by a maxi-anion channel.

    PubMed

    Glogowska, Edyta; Dyrda, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Thomas, Serge L Y

    2010-04-15

    Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3. PMID:20226698

  12. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  13. Detection of Perchlorate Anion on Functionalized Silver Colloids Using Surface-Enhanced Raman Scattering

    SciTech Connect

    Tio, J.; Wang, W.; Gu, B.

    2005-01-01

    Perchlorate anion interferes with the uptake of iodide by the human thyroid gland and consequently disrupts the regulation of metabolism. Chronic exposure to high levels of perchlorate may lead to the formation of thyroid gland tumors. Although the Environmental Protection Agency (EPA) has not set a maximum contaminant level (MCL) for perchlorate, a draft drinking water range of 4-18 ppb based on 2 liter daily consumption of water has been established. The current EPA approved method for detecting perchlorate uses ion chromatography which has a detection limit of ~1ppb and involves lengthy analytical time in the laboratory. A unique combination of the surface-enhanced Raman scattering (SERS) effect and the bifunctional anion exchange resin’s high selectivity may provide an alternative way to detect perchlorate at such low concentrations and with high specificity. SERS, which uses laser excitation of adsorbed perchlorate anions on silver nanoparticles, has been shown to detect perchlorate anions at concentrations as low as 50 ppb. Normal micro-Raman analysis of perchlorate sorbed onto the resin beads has detected an even lower concentration of 10 ppb. In an effort to integrate these two effects, silver nanoparticles were coated with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride, a functional group similar to that found on the resin bead, and subsequently inserted into different perchlorate concentration environments. This method has resulted in perchlorate detection down to ~10 ppb and a more consistent detection of perchlorate anion at ~50 ppb than that of earlier methods. As suggested by the direct insertion of functionalized silver colloids into perchlorate samples, this technique may potentially allow for the development of a probe using on-site Raman spectrometry to detect significantly low concentrations of perchlorate in situ rather than in the laboratory.

  14. Generation gaps in engineering?

    E-print Network

    Kim, David J. (David Jinwoo)

    2008-01-01

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  15. Gaps in Oncology

    Cancer.gov

    The first plenary of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version provides background for the curriculum and identifies gaps in current and desired comprehensive cancer care.

  16. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E. (Livermore, CA); Groves, Scott E. (Brentwood, CA); Larsen, Greg J. (Brentwood, CA); Sanchez, Roberto J. (Pleasanton, CA)

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  17. Anion photoelectron spectroscopy of radicals and clusters

    SciTech Connect

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  18. Specific anion effects in Artemia salina.

    PubMed

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina. PMID:25978674

  19. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  20. Opioid metabolism and clinical aspects.

    PubMed

    Mercadante, Sebastiano

    2015-12-15

    Opioids are are commonly used for the management of acute and chronic pain. Opioids have different physicochemical and pharmacokinetic characteristics, which explain the profound changes in the clinical effect in several clinical conditions. Pharmacokinetics influences the opioid response affecting bioavailability, production of metabolites with residual clinical activity, and elimination. Generality of opioid metabolism and clinical implications for specific opioids in different clinical conditions were reviewed to bridge the gap between pharmacokinetics and clinical response. The knowledge of opioid metabolism is essential, particularly for older and complicated patients who receive multiple medications and may have impaired of renal and hepatic function. The recognition of possible metabolic problems and the consideration of adverse drug-drug interactions are fundamental to optimize the use of opioids in clinical practice. PMID:26522929

  1. Do coinage metal anions interact with substituted benzene derivatives?

    PubMed

    Aliakbar Tehrani, Zahra; Jamshidi, Zahra; Farhangian, Hossein

    2013-11-01

    The nature of the anion-? interaction has been investigated by carrying out ab initio calculations of the complexes of coinage metal anions (Au(-), Ag(-), and Cu(-)) with different kinds of ?-systems. The binding energies indicate that gold anion has the highest and copper anion has the lowest affinity for interactions with ?-systems. Different aspects of the anion-? interaction in these systems have been investigated, including charge-transfer effects (using the Merz-Kollman method), "atoms-in-molecules" (AIM) topological parameters, and interaction energies (using energy decomposition analysis, EDA). Our results indicated that, for most M(-)···? interactions, the electrostatic term provides the dominant contribution, whereas polarization, charge transfer, and dispersion effects contribute less than 25 % of the interaction. We believe that the present results should lead to a greater understanding of the basis for anion-? interactions of coinage metal anions. PMID:23989771

  2. Squarylium-based chromogenic anion sensors

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A.; Kim, Sung-Hoon

    2012-09-01

    A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN- as compared with F-, CHCO2-, Br-, HPO4-, Cl-, and NO3- in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN- coordination complex, the formation of which was supported by the calculated geometry of the complex.

  3. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  4. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  5. Anion formation by neutral resonant ionization

    NASA Astrophysics Data System (ADS)

    Vogel, John S.

    2015-10-01

    A collision-radiation model of the cesium plasma that forms within a pitted or recessed sample in a Middleton-type sputter ion source showed that excited states of Cs formed. These excited states of neutral Cs undergo resonant electron transfer with neutral sputtered atoms of AMS samples to produce the accelerated anions. Numerous reported effects from over 30 years are readily explained by this mechanism, including several that puzzled Middleton.

  6. Nitroxyl anion regulation of the NMDA receptor.

    PubMed

    Colton, C A; Gbadegesin, M; Wink, D A; Miranda, K M; Espey, M G; Vicini, S

    2001-09-01

    Nitric oxide (NO) is an important regulator of NMDA channel function in the CNS. Recent findings suggest that nitroxyl anion (NO(-)) may also be generated by nitric oxide synthase, which catalyzes production of NO. Using recombinant NMDA receptors (NMDA-r) transfected into human embryonic kidney cells, our data demonstrate that the nitroxyl anion donor, Angeli's salt (AS; Na(2)N(2)O(3)) dramatically blocked glycine-independent desensitization in NMDA-r containing NR1-NR2A subunits. AS did not affect glycine-dependent desensitization, calcium dependent inactivation or glutamate affinity for the NMDA-r. This effect could be mimicked by treatment with DPTA, a metal chelator and was not evident under hypoxic conditions. In contrast, receptors containing the NR1-NR2B subunits demonstrated an approximate 25% reduction in whole cell currents in the presence of AS with no apparent change in desensitization. Our data suggest that the regulation of NMDA-r function by nitroxyl anion is distinctly different from NO and may result in different cellular outcomes compared with NO. PMID:11553686

  7. Atomic-scale structure and band-gap bowing in Cu(In,Ga)Se2

    NASA Astrophysics Data System (ADS)

    Schnohr, C. S.; Kämmer, H.; Stephan, C.; Schorr, S.; Steinbach, T.; Rensberg, J.

    2012-06-01

    Mixed systems such as the Cu(In,Ga)Se2 chalcopyrite semiconductor consist of different local atomic arrangements, that is, of different combinations of first-nearest-neighbor cations surrounding the Se anions. The anion position of Cu-III-VI2 compounds is predicted to strongly influence the material band gap. We therefore used extended x-ray absorption fine structure spectroscopy to study the atomic-scale structure of Cu(In,Ga)Se2 as a function of composition. Based on these results, the anion position was modeled for all first-nearest-neighbor configurations using a valence force-field approach. We show that the atomic-scale structure strongly depends on the kind of first-nearest-neighbor atoms. Structural relaxation of the anion occurs with respect to both (i) Cu and group III atoms and (ii) In and Ga atoms. In both cases, the average anion displacement exhibits a nonlinear behavior with changing composition and thus results in two separate but significant contributions to the band gap bowing observed in Cu(In,Ga)Se2.

  8. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration

    PubMed Central

    Nishida, Motohiro; Sawa, Tomohiro; Kitajima, Naoyuki; Ono, Katsuhiko; Inoue, Hirofumi; Ihara, Hideshi; Motohashi, Hozumi; Yamamoto, Masayuki; Suematsu, Makoto; Kurose, Hitoshi; van der Vliet, Albert; Freeman, Bruce A; Shibata, Takahiro; Uchida, Koji; Kumagai, Yoshito; Akaike, Takaaki

    2014-01-01

    An emerging aspect of redox signaling is the pathway mediated by electrophilic byproducts, such as nitrated cyclic nucleotide (for example, 8-nitroguanosine 3?,5?-cyclic monophosphate (8-nitro-cGMP)) and nitro or keto derivatives of unsaturated fatty acids, generated via reactions of inflammation-related enzymes, reactive oxygen species, nitric oxide and secondary products. Here we report that enzymatically generated hydrogen sulfide anion (HS?) regulates the metabolism and signaling actions of various electrophiles. HS? reacts with electrophiles, best represented by 8-nitro-cGMP, via direct sulfhydration and modulates cellular redox signaling. The relevance of this reaction is reinforced by the significant 8-nitro-cGMP formation in mouse cardiac tissue after myocardial infarction that is modulated by alterations in HS? biosynthesis. Cardiac HS?, in turn, suppresses electrophile-mediated H-Ras activation and cardiac cell senescence, contributing to the beneficial effects of HS? on myocardial infarction–associated heart failure. Thus, this study reveals HS?-induced electrophile sulfhydration as a unique mechanism for regulating electrophile-mediated redox signaling. PMID:22772154

  9. Anionic polymerization mechanism of acrylonitrile trimer anions: key branching point between cyclization and chain propagation.

    PubMed

    Ohshimo, Keijiro; Inokuchi, Yoshiya; Ebata, Takayuki; Ohno, Koichi

    2012-08-01

    A cluster anion of vinyl compounds in the gaseous phase has served as one of the simplest microscopic models of the initial stages of anionic polymerization. Herein, we describe our investigations into the initial stage mechanisms of anionic polymerization of acrylonitrile (AN; CH2?CHCN) trimer anions. While the cyclic oligomer is found in mass and photoelectron spectroscopic studies of (AN)3(-), only the chain oligomer is found in the infrared photodissociation (IRPD) spectrum of Ar-tagged (AN)3(-). On the basis of the calculated polymerization pathway of (AN)3(-), we consider that the chain oligomers are the reaction intermediates in the cyclization of (AN)3(-). The rotational isomerization of the (AN)3(-) chain oligomer is found to be the bottleneck in the cyclization of (AN)3(-). To form the (AN)4(-) chain oligomer by chain propagation, the addition of an AN molecule to (AN)3(-) should occur prior to the rotational isomerization. We conclude that the rotational isomerization in the (AN)3(-) chain oligomer is the key branching point between cyclization (termination) or chain propagation in the anionic polymerization. PMID:22775348

  10. Anion Chemistry On Titan: Probing the Destruction Mechanisms of Nitrile Anions by Interaction with Photons

    NASA Astrophysics Data System (ADS)

    Zabka, J.; Polášek, M.; Bradyová, M.; Flenerová, Z.; Obluková, M.; Ascenzi, D.; Vuitton, V.; Giuliani, A.; Nahon, L.; Milosavljevic, A.; Romanzin, C.; Alcaraz, C.

    2013-09-01

    The aim of this work is to study the interaction with VUV photons of mass-selected negative ions relevant for the understanding of Titan atmosphere. Characterization of their formation [1] and destruction rate is of fundamental importance for modeling Titan ionosphere chemistry and understanding the observations of heavy anions by the CAPS/ELS spectrometer on board of the CASSINI spacecraft. The objective here is to measure their transformation into smaller anions through photodissociation and their destruction through photodetachment. The parent anions CN- are produced from CH3CN in the APCI source of a commercial mass spectrometer LTQ XL (Thermo Scientific) [2,3] and reacted with HC3N in the trap to produce heavier anions through the CN-+ x HC3N(HC3N)yC2p+1 N-+ z HCN processes. These product anions are then mass-selected in the trap and irradiated with VUV photons (5-21 eV) from the DESIRS beamline. Their decay is followed as a function of irradiation time as illustrated in Figure 1.

  11. The benzene radical anion: A computationally demanding prototype for aromatic anions

    SciTech Connect

    Bazante, Alexandre P. Bartlett, Rodney J.; Davidson, E. R.

    2015-05-28

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.

  12. Anion-exchange mechanisms in bacteria.

    PubMed Central

    Maloney, P C; Ambudkar, S V; Anatharam, V; Sonna, L A; Varadhachary, A

    1990-01-01

    This article discusses the physiological, biochemical, and molecular properties of bacterial anion-exchange reactions, with a particular focus on a family of phosphate (Pi)-linked antiporters that accept as their primary substrates sugar phosphates such as glucose 6-phosphate (G6P), mannose 6-phosphate, or glycerol 3-phosphate. Pi-linked antiporters may be found in both gram-positive and gram-negative cells. As their name suggests, these exchange proteins accept both inorganic and organic phosphates, but the two classes of substrate interact very differently with the protein. Thus, Pi is always accepted with a relatively low affinity, and when it participates in exchange, it is always taken as the monovalent anion. By contrast, when the high-affinity organic phosphates are used, these same systems fail to discriminate between monovalent and divalent forms. Tests of heterologous exchange (e.g., Pi: G6P) indicate that these proteins have a bifunctional active site that accepts a pair of negative charges, whether as two monovalent anions or as a single divalent anion. For this reason, exchange stoichiometry moves between limits of 2:1 and 2:2, according to the ratio of mono- and divalent substrates at either membrane surface. Since G6P has a pK2 within the physiological range (pK of 6.1), this predicts a novel reaction sequence in vivo because internal pH is more alkaline than external pH. Accordingly, one expects an asymmetric exchange as two monovalent G6P anions from the relatively acidic exterior move against a single divalent G6P from the alkaline interior. In this way an otherwise futile self-exchange of G6P can be biased towards a net inward flux driven (indirectly) by the pH gradient. Despite the biochemical complexity exhibited by Pi-linked antiporters, they resemble all other secondary carriers at a molecular level and show a likely topology in which two sets of six transmembrane alpha-helices are connected by a central hydrophilic loop. Speculations on the derivation of this common form suggest a limited number of structural models to accommodate such proteins. Three such models are presented. PMID:2181257

  13. Can you boost your metabolism?

    MedlinePLUS

    Resting metabolism rate (RMR); Total daily energy expenditure (TDEE); Non-exercise activity thermogenesis (NEAT); Weight loss - metabolism; Overweight - metabolism; Obesity - metabolism; Diet - metabolism

  14. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the ? electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large ? electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  15. SIMULATING METABOLISM OF XENOBIOTIC CHEMICALS AS A PREDICTOR OF TOXICITY

    EPA Science Inventory

    EPA is faced with long lists of chemicals that need to be assessed for hazard. A major gap in evaluating chemical risk is accounting for metabolic activation resulting in increased toxicity. The goals of this project are to develop a capability to forecast the metabolism of xenob...

  16. Metabolic cardiomyopathies

    PubMed Central

    Guertl, Barbara; Noehammer, Christa; Hoefler, Gerald

    2000-01-01

    The energy needed by cardiac muscle to maintain proper function is supplied by adenosine Ariphosphate primarily (ATP) production through breakdown of fatty acids. Metabolic cardiomyopathies can be caused by disturbances in metabolism, for example diabetes mellitus, hypertrophy and heart failure or alcoholic cardiomyopathy. Deficiency in enzymes of the mitochondrial ?-oxidation show a varying degree of cardiac manifestation. Aberrations of mitochondrial DNA lead to a wide variety of cardiac disorders, without any obvious correlation between genotype and phenotype. A completely different pathogenetic model comprises cardiac manifestation of systemic metabolic diseases caused by deficiencies of various enzymes in a variety of metabolic pathways. Examples of these disorders are glycogen storage diseases (e.g. glycogenosis type II and III), lysosomal storage diseases (e.g. Niemann-Pick disease, Gaucher disease, I-cell disease, various types of mucopolysaccharidoses, GM1 gangliosidosis, galactosialidosis, carbohydrate–deficient glycoprotein syndromes and Sandhoff's disease). There are some systemic diseases which can also affect the heart, for example triosephosphate isomerase deficiency, hereditary haemochromatosis, CD 36 defect or propionic acidaemia. PMID:11298185

  17. Carbon Anionic Chiral Initiators for Asymmetric Anionic Polymerization of Achiral Isocyanates.

    PubMed

    Hu, Wei; Cao, Jing; Huang, Yi-Ling; Liang, Sai

    2015-08-01

    Novel optically active carbon anionic initiators bearing a chiral oxazole substituent on fluorene ring, (S)-1-(9H-fluoren-2-yl)-4-isopropyl-4, 5-dihydrooxazole lithium ((S)-1-FIDD-Li) and (S)-2-(9H-fluoren-2-yl)-4-isopropyl-4, 5-dihydrooxazole lithium ((S)-2-FIDD-Li), were synthesized. Anionic polymerizations of achiral polyisocyanates with the chiral initiators were investigated and optical rotation of the obtained polymers were attributed to asymmetric induction of the chiral initiators. The crowded substituent of initiator ((S)-2-FIDD-Li) seems to reduce the polymerizability of isocyanates and yet enhances the chiral induced ability in polymerization. PMID:25882341

  18. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  19. Gap Cycling for SWIFT

    E-print Network

    Corum, Curtis A; Snyder, Carl J; Garwood, Michael

    2013-01-01

    Purpose: SWIFT (SWeep Imaging with Fourier Transformation) is a non- Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." Methods: We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results: Theoretical analysis reveals t...

  20. Uncertainties in Gapped Graphene

    E-print Network

    Eylee Jung; Kwang S. Kim; DaeKil Park

    2012-03-20

    Motivated by graphene-based quantum computer we examine the time-dependence of the position-momentum and position-velocity uncertainties in the monolayer gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like wavelength $\\lambda_c$. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and zitterbewegung. While the former determines the uncertainties in the long-range of time, the latter gives the highly oscillation to the uncertainties in the short-range of time. The uncertainties in the graphene are compared with the corresponding values for the usual free Hamiltonian $\\hat{H}_{free} = (p_1^2 + p_2^2) / 2 M$. It is shown that the uncertainties can be under control within the quantum mechanical law if one can choose the gap parameter $\\lambda_c$ freely.

  1. Bimolecular Nucleophilic Substitution of an Anion by an Anion. A Theoretical Study of Phenylboronic Acids as a Source of Phenyl Anions.

    E-print Network

    Glaser, Rainer

    Acids as a Source of Phenyl Anions. Nathan Knotts and Rainer Glaser* Department of Chemistry, University of Missouri­Columbia, Columbia, MO 65211 Phenylboronic acid, 1, is a source of reactive phenyl anions of phenylboronic acid with strong nucleophiles, such as hydroxide ion, leads to the formation of B(OH)4

  2. Bridging NCL research gaps.

    PubMed

    Stehr, Frank; van der Putten, Herman

    2015-10-01

    The neuronal ceroid lipofuscinoses, collectively called NCLs, are rare and fatal lysosomal storage diseases that mainly affect children. Due to the fact that NCLs are both rare and heterogeneous (mutations in thirteen different genes) significant gaps exist in both preclinical and clinical research. Altogether, these gaps are major hurdles to bring therapies to patients while the need for new therapies is urgent to help them and their families. To define gaps and discuss solutions, a round table discussion involving teams and different stake holders took place during the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease) in Cordóba, Argentina. Topics covered by the teams and their leaders (in parentheses) included basic and translational research gaps with regard to large animal models (I. Tammen, D.N. Palmer), human NCL pathology and access to human tissue (J.D. Cooper, H.H. Goebel), rare NCLs (S. Hofman, I. Noher), links of NCLs to other diseases (F.M. Platt), gaps between clinic and clinical trials (H. Adams, A. Schulz), international collaborative efforts working towards a cure (S.E. Mole, H. Band) perspectives on palliative care from patient organizations (M. Frazier, A. West), and issues NCL researchers face when progressing to independent career in academia (M. Bond). Thoughts presented by the team leaders include previously unpublished opinions and information on the lack of understanding of disease pathomechanisms, gene function, assays for drug discovery and target validation, natural history of disease, and biomarkers for monitoring disease progression and treatment effects. This article is not intended to review the NCL literature. It includes personal opinions of the authors and it provides the reader with a summary of gaps discussed and solutions proposed by the teams. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease). PMID:26056946

  3. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap

  4. An Innovative Anion Regulation Strategy for Energy Bands of Semiconductors: A Case from Bi2O3 to Bi2O(OH)2SO4

    PubMed Central

    Tian, Hao; Teng, Fei; Xu, Juan; Lou, Sunqi; Li, Na; Zhao, Yunxuan; Chen, Mindong

    2015-01-01

    How to develop a new, efficient photo catalyst is still a big challenge to us. A suitable band gap is the key for light absorption of semiconductor. Herein, an innovative anion intercalation strategy is, for the first time, developed to regulate the energy band of semiconductor. Typically, we introduce a layered sulfate compound (Bi2O(OH)2SO4) as a new photo catalyst, which has not been known before. Both partial density of states (PDOS) and total density of states (TDOS) have demonstrated that compared with Bi2O3 (2.85?eV), the band gap of Bi2O(OH)2SO4 has been widened to 4.18?eV by the intercalation of sulfate anion. Moreover, the band gap width of oxyacid salt compound is mainly predominated by the number of the outmost electrons (NOE) of central atom of anion. This study suggests that new photo catalysts can be developed by grouping anions with the existing oxides or sulfides. PMID:25597769

  5. "Target-Site" Drug Metabolism and Transport.

    PubMed

    Foti, Robert S; Tyndale, Rachel F; Garcia, Kristine L P; Sweet, Douglas H; Nagar, Swati; Sharan, Satish; Rock, Dan A

    2015-08-01

    The recent symposium on "Target-Site" Drug Metabolism and Transport that was sponsored by the American Society for Pharmacology and Experimental Therapeutics at the 2014 Experimental Biology meeting in San Diego is summarized in this report. Emerging evidence has demonstrated that drug-metabolizing enzyme and transporter activity at the site of therapeutic action can affect the efficacy, safety, and metabolic properties of a given drug, with potential outcomes including altered dosing regimens, stricter exclusion criteria, or even the failure of a new chemical entity in clinical trials. Drug metabolism within the brain, for example, can contribute to metabolic activation of therapeutic drugs such as codeine as well as the elimination of potential neurotoxins in the brain. Similarly, the activity of oxidative and conjugative drug-metabolizing enzymes in the lung can have an effect on the efficacy of compounds such as resveratrol. In addition to metabolism, the active transport of compounds into or away from the site of action can also influence the outcome of a given therapeutic regimen or disease progression. For example, organic anion transporter 3 is involved in the initiation of pancreatic ?-cell dysfunction and may have a role in how uremic toxins enter pancreatic ?-cells and ultimately contribute to the pathogenesis of gestational diabetes. Finally, it is likely that a combination of target-specific metabolism and cellular internalization may have a significant role in determining the pharmacokinetics and efficacy of antibody-drug conjugates, a finding which has resulted in the development of a host of new analytical methods that are now used for characterizing the metabolism and disposition of antibody-drug conjugates. Taken together, the research summarized herein can provide for an increased understanding of potential barriers to drug efficacy and allow for a more rational approach for developing safe and effective therapeutics. PMID:25986849

  6. Parma consensus statement on metabolic disruptors.

    PubMed

    Heindel, Jerrold J; vom Saal, Frederick S; Blumberg, Bruce; Bovolin, Patrizia; Calamandrei, Gemma; Ceresini, Graziano; Cohn, Barbara A; Fabbri, Elena; Gioiosa, Laura; Kassotis, Christopher; Legler, Juliette; La Merrill, Michele; Rizzir, Laura; Machtinger, Ronit; Mantovani, Alberto; Mendez, Michelle A; Montanini, Luisa; Molteni, Laura; Nagel, Susan C; Parmigiani, Stefano; Panzica, Giancarlo; Paterlini, Silvia; Pomatto, Valentina; Ruzzin, Jérôme; Sartor, Giorgio; Schug, Thaddeus T; Street, Maria E; Suvorov, Alexander; Volpi, Riccardo; Zoeller, R Thomas; Palanza, Paola

    2015-01-01

    A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16-18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as "metabolic disruptors", in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome. PMID:26092037

  7. Process for removing sulfate anions from waste water

    SciTech Connect

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  8. Competition between protein ligands and cytoplasmic inorganic anions for the metal cation: a DFT/CDM study.

    PubMed

    Dudev, Todor; Lim, Carmay

    2006-08-16

    Many of the essential metalloproteins are located in the cell, whose cytoplasmic fluid contains several small inorganic anions, such as Cl-, NO2-, NO3-, H2PO4-, and SO4(2-), that play an indispensable role in determining the cell's volume, regulating the cell's pH, signal transduction, muscle contraction, as well as cell growth and metabolism. However, the physical principles governing the competition between these abundant, intracellular anions and protein or nucleic acid residues in binding to cytoplasmic metal cations such as Na+, K+, Mg2+, and Ca2+ are not well understood; hence, we have delineated the physicochemical basis for this competition using density functional theory in conjunction with the continuum dielectric method. The results show that the metal cation can bind to its target protein against a high background concentration of inorganic anions because (i) desolvating a negatively charged Asp/Glu carboxylate in a protein cavity costs much less than desolvating an inorganic anion in aqueous solution and (ii) the metal-binding site acts as a polydentate ligand that uses all its ligating entities to bind the metal cation either directly or indirectly. The results also show that the absolute hydration free energy of the "alien" anion as well as the net charge and relative solvent exposure of the metal-binding protein cavity are the key factors governing the competition between protein and inorganic ligands for a given cytoplasmic metal cation. Increasing the net negative charge of the protein cavity, while decreasing the number of available amide groups for metal binding, protects the metal-bound ligands from being dislodged by cellular anions, thus revealing a "protective" role for carboxylate groups in a protein cavity, in addition to their role in high affinity metal-binding. PMID:16895422

  9. Expected gaps between prime numbers

    E-print Network

    Holt, Fred B

    2007-01-01

    We study the gaps between consecutive prime numbers directly through Eratosthenes sieve. Using elementary methods, we identify a recursive relation for these gaps and for specific sequences of consecutive gaps, known as constellations. Using this recursion we can estimate the numbers of a gap or of a constellation that occur between a prime and its square. This recursion also has explicit implications for open questions about gaps between prime numbers, including three questions posed by Erd\\"os and Tur\\'an.

  10. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  11. Organocatalyzed anion relay leading to functionalized 2,3-dihydrofurans.

    PubMed

    Li, Mengru; Lin, Shaoxia; Dong, Zhiyong; Zhang, Xintong; Liang, Fushun; Zhang, Jingping

    2013-08-01

    A DABCO-mediated organocatalyzed anion relay cascade based on 1-cinnamoylcyclopropanecarboxamides has been developed and applied in the construction of 2,3-dihydrofurans with the original alkene and amide functionalities intact. In the aza-oxy-carbanion relay process, DABCO provides both the electron source and sink. The enolate anion-triggered ring opening of the cyclopropane is ascribed to the key step in the anion relay cascade. PMID:23869601

  12. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  13. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  14. STEMMING the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…

  15. Bridging the Generation Gap

    ERIC Educational Resources Information Center

    Johnson, Susan Moore; Kardos, Susan M.

    2005-01-01

    The lack of instructional continuity in schools negates every effort of principals to provide an environment where all students would be successful. One solution could be to bridge the gap between the professional knowledge and skills of experienced teachers and the energy and fresh ideas of new recruits so that the latter are provided support…

  16. The Latino Achievement Gap

    ERIC Educational Resources Information Center

    Madrid, E. Michael

    2011-01-01

    In the very near future, Latino students will become the majority in California's public schools and because of their great numbers and presence, the pattern of lackluster academic achievement must be a major concern of teachers, school leaders, and policy makers. Despite having made great strides in narrowing the gap that separated them from…

  17. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    NASA Astrophysics Data System (ADS)

    Wang, Lai-Sheng

    2015-07-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  18. PROGRESS REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for oxoanions of environmental importance and specifically those found in high level waste tanks. Polyammonium macrocycles as receptors and nitrate as anion were the focus of the first phase of this project. A second pha...

  19. Metabolic Myoglobinuria.

    PubMed

    Barca, Emanuele; Emmanuele, Valentina; DiMauro, Salvatore Billi

    2015-10-01

    One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis. PMID:26319173

  20. Infrared photodissociation spectroscopy of mononuclear iron carbonyl anions.

    PubMed

    Wang, Guanjun; Chi, Chaoxian; Cui, Jieming; Xing, Xiaopeng; Zhou, Mingfei

    2012-03-15

    The infrared photodissociation spectroscopy of mass-selected mononuclear iron carbonyl anions Fe(CO)(n)(-) (n = 2-8) were studied in the carbonyl stretching frequency region. The FeCO(-) anion does not fragment when excited with infrared light. Only a single IR active band was observed for the Fe(CO)(2)(-) and Fe(CO)(3)(-) anions, consistent with theoretical predictions that these complexes have linear D(?h) and planar D(3h) symmetry, respectively. The Fe(CO)(4)(-) anion is the most intense peak in the mass spectra and was characterized to have a completed coordination sphere with high stability. Anion clusters larger than n = 4 were determined to involve a Fe(CO)(4)(-) core anion that is progressively solvated by external CO molecules. Three CO stretching vibrational fundamentals were observed for the Fe(CO)(4)(-) core anion, indicating that the Fe(CO)(4)(-) anion has a C(3v) structure. All the carbonyl stretching frequencies of the Fe(CO)(n)(-) anion complexes are red-shifted with respect to those of the corresponding neutrals. PMID:22360767

  1. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K. E-mail: kiran@mcneese.edu; Kiran, Boggavarapu E-mail: kiran@mcneese.edu

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  2. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan (Okemos, MI)

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  3. Sodium Bicarbonate Therapy in Patients with Metabolic Acidosis

    PubMed Central

    Adeva-Andany, María M.; Fernández-Fernández, Carlos; Mouriño-Bayolo, David; Castro-Quintela, Elvira; Domínguez-Montero, Alberto

    2014-01-01

    Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated. PMID:25405229

  4. Nanoheterostructure Cation Exchange: Anionic Framework Conservation

    SciTech Connect

    Jain, Prashant K.; Amirav, Lilac; Aloni, Shaul; Alivisatos, A. Paul

    2010-05-11

    In ionic nanocrystals the cationic sub-lattice can be replaced with a different metal ion via a fast, simple, and reversible place-exchange, allowing post-synthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate for the first time that during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu2Se/Cu2S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line-scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  5. Multiple-anion nonvolatile acetal (MANA) resists

    NASA Astrophysics Data System (ADS)

    Guevremont, Jeffrey M.; Brainard, Robert L.; Reeves, Scott D.; Zhou, Xin; Nguyen, Thinh B.; Mackevich, Joseph F.; Anderson, Erik H.; Taylor, Gary N.

    2001-08-01

    New acetal or ketal blocking reagents were investigated for use in e-beam lithography and compared with the performance of ethyl vinyl either (EVE). Three blocking groups, (alpha) -Angelicalactone (AL), 6-methylene-5,6-benzo-1,4- dioxane (MBD), and MANA50 (an undisclosed blocking group used to show the potential of this chemistry) were reacted with poly(p-hydroxystyrene) (PHS) under acid catalyzed conditions to form AL-PHS, MBD-PHS, MANA50-PHS. The performance objectives pursued in the design of these new materials was to use acetal (ketal) chemistry to deliver wide process latitudes (e.g. good PED performance and minimal PEB sensitivity), use high molecular weight blocking groups to eliminate outgassing, and use the novel concept of multiple anions to deliver lithographic performance. These new materials are called Multiple Anion Nonvolatile Acetal (MANA) resists. Resists films were exposed with 50kV electrons, post exposure baked (PEB), and developed with 0.26 N TMAH. Resists prepared with the third blocking group, MANA50, gave contrast and imaging performance independent of PEB humidity and were relatively insensitive to PEB temperature and post exposure delay (PED). These resists gave the best resolution (90 nm) and profiles of all the materials tested, as well as showing no outgassing (as measured by film thickness loss).

  6. Isatin phenylhydrazones: anion enhanced photochromic behaviour.

    PubMed

    Cigá?, M; Jakusová, K; Gáplovský, M; Filo, J; Donovalová, J; Gáplovský, A

    2015-10-28

    The photochemical properties of two basic easily synthesized isatin N(2)-phenylhydrazones were investigated. Contrary to the corresponding isatin N(2)-diphenylhydrazones, only Z-isomers were isolated from the reaction mixtures during the synthesis due to their stabilization by intramolecular hydrogen bonding. Although the presence of the C[double bond, length as m-dash]N double bond creates conditions for the formation of a simple on-off photoswitch, the low photochemical quantum yield and particularly the low switching amplitude in absorbance hamper their photochromic applications. However, the addition of strongly basic anions to phenylhydrazone solutions leads to isatin NH group deprotonation and creates a new diazene T-type Vis-Vis photochromic system with sufficiently separated absorption maxima. Interestingly, although the thermally stable A-form is also photostable in ambient light, its irradiation with a stronger LED source leads to thermally unstable B-form formation which rapidly isomerizes back to the corresponding A-form. The process is reversible and switching cycles can be repeated in both directions. The important advantages of this two-component organic chromophore-inorganic anion photochromic system are its easy synthesis, easy handling due to its insensitivity to room light, easy further structural modification and reversibility. The corresponding photochemical quantum yield, however, remains relatively low (? ? 0.001). The theoretically calculated properties are in agreement with the obtained experimental results and support the proposed reaction mechanism. PMID:26412034

  7. Isobar Separator for Anions: Current status

    NASA Astrophysics Data System (ADS)

    Alary, Jean-François; Javahery, Gholamreza; Kieser, William; Zhao, Xiao-Lei; Litherland, Albert; Cousins, Lisa; Charles, Christopher

    2015-10-01

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of 36S from 36Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion-molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  8. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. PMID:25513726

  9. Deterministic multidimensional nonuniform gap sampling

    NASA Astrophysics Data System (ADS)

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  10. Gender gaps within management.

    PubMed

    Ronk, L L

    1993-05-01

    Traditional roles need not become self-fulfilling prophecies if managers can bridge the gender gap. Feminine, as well as masculine, characteristics can be incorporated into managerial styles to enhance effective leadership. Autonomy, decision-making and assertiveness are as important as nurturing and caring. What are little girls made of? Little girls are made of sugar and spice and everything nice. What are little boys made of? Little boys are made of rats and snails and puppy dog tails. PMID:8265083

  11. Anion transport processes in the mammalian superficial proximal straight tubule.

    PubMed Central

    Schafer, J A; Andreoli, T E

    1976-01-01

    The experiments reported in this paper were designed to evaluate some of the characteristics of anion transport processes during fluid absorption from superficial proximal straight tubules isolated from rabbit kidney. We measured net chemical C1- flux during fluid absorption from tubules perfused and bathed with Krebs-Ringer buffers containing 113.6 mM C1-, 10 mM acetate, and 25 mM HCO-/3 at pH 7.4; assessed the effects of carbonic anhydrase inhibitors on net fluid absorption in the presence and absence of CO2; and evaluated the influx and efflux coefficients for [14C]-acetate transport at 37degreesC, at 21degreesC, and in the presence of carbonic anhydrase inhibitors. The experimental data shown that, for this nephron segment, net C1- flux accompanies approximately 27.5% of net Na+ absorption; and net C1- absorption may be accounted for by a passive transport process, primarily diffusional in nature. Fluid absorption in this nephron segment is reduced 40-60% by carbonic anhydrase inhibitors, but only when the tubules are exposed to 95% O2-5% CO2 rather than 100% O2. Thus, it seems probably that approximately half of Na+ absorption in these tubules may be rationalized in terms of a carbonic anhydrase-dependent CO2 hydration process. In addition, there may occur in these isolated proximal tubules an acetazolamide-insensitive moiety of HCO-/3 absorption comparable to that observed for proximal tubules in vivo. Finally, we provide evidence that net efflux of luminal acetate is due to metabolic energy-dependent processes other than CO2 hydration and may, under appropriate conditions, account for approximately one-fourth of net Na+ absorption. PMID:956381

  12. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  13. Photoelectron imaging of large anionic methanol clusters: ,,n70460...

    E-print Network

    Neumark, Daniel M.

    Photoelectron imaging of large anionic methanol clusters: ,,MeOH...n - ,,nÈ70­460... Aster Kammrath Electron solvation in methanol anion clusters, MeOH n - n 70­460 , is studied by photoelectron imaging. Two isomers are observed: methanol I, with vertical binding energies VBE ranging from 2­2.5 eV, and methanol

  14. Power Generation Using Different Cation, Anion, and Ultrafiltration

    E-print Network

    Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 m (Nafion), a cation exchange membrane (CEM), or three different ultrafiltration (UF) membranes

  15. Advanced polymer chemistry of organometallic anions

    SciTech Connect

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  16. Once upon Anion: A Tale of Photodetachment

    NASA Astrophysics Data System (ADS)

    Lineberger, W. Carl

    2013-04-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, “with a little help from my friends.” Actually, it was so much more than a little help!

  17. Once upon anion: a tale of photodetachment.

    PubMed

    Lineberger, W Carl

    2013-01-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, "with a little help from my friends." Actually, it was so much more than a little help! PMID:23216379

  18. Cystic fibrosis: an-ion transport issue?

    PubMed Central

    2015-01-01

    Cystic fibrosis can manifest in many organs, but infection and inflammation of the airways cause the most severe morbidity and mortality. Early studies suggested that increased epithelial Na+ reabsorption may be a key initiating event in cystic fibrosis lung disease. However, the importance of Na+ hyperabsorption and the consequent depletion of pericellular airway liquid in cystic fibrosis lung disease has been called into question by a recent study by Jeng-Haur Chen et al.1. Newborn pigs lacking cystic fibrosis transmembrane conductance regulator (CFTR?/? pigs) developed lung pathology reminiscent of human cystic fibrosis. Although epithelia from these pigs had reduced Cl? and HCO3? transport, there were no alterations in Na+ or liquid absorption, suggesting that defective anion transport is responsible for cystic fibrosis lung disease. Here three experts comment on how these findings might affect our understanding of cystic fibrosis lung pathogenesis and strategies for cystic fibrosis therapy. PMID:21297610

  19. Poly(phenylene)-based anion exchange membrane

    DOEpatents

    Hibbs, Michael (Albuquerque, NM); Cornelius, Christopher J. (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM)

    2011-02-15

    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.

  20. The first anionic defensin from amphibians.

    PubMed

    Wei, Lin; Che, Helong; Han, Yi; Lv, Jing; Mu, Lixian; Lv, Lechun; Wu, Jing; Yang, Hailong

    2015-07-01

    A variety of antimicrobial peptides against infection have been identified from the skin of amphibians. However, knowledge on amphibian defensins is very limited. A novel anionic defensin designated PopuDef was purified from the skin of tree frog Polypedates puerensis, and the cDNA encoding PopuDef precursor was cloned from the skin cDNA library. The amino acid sequence of PopuDef (net charge: -2, pI: 4.75) shared the highest identity of 57 % (25/44) with the salamander defensin CFBD-1 (net charge: 0, pI: 6.14) from urodela amphibians. PopuDef showed moderate antimicrobial activities against P. aeruginosa and S. aureus (MICs are 19.41 and 17.25 ?M, respectively), and relatively weak activities against E. coli and B. subtilis (MICs are 38.82 and 43.14 ?M, respectively). Tissue distribution analysis indicated that relatively high expression level of PopuDef mRNA was observed in immune-related tissues including skin, gut, lung and spleen. Furthermore, the expression level of PopuDef was significantly upregulated in these tissues after tree frogs were infected with different bacteria strains mentioned above. Interestingly, the induction of PopuDef challenged with E. coli or B. subtilis, which was less sensitive to PopuDef, was much higher than that did with P. aeruginosa or S. aureus. These findings highlight the key role of PopuDef in innate immunity against infection. To our knowledge, PopuDef is the first anionic defensin characterized from amphibians. PMID:25792112

  1. Gating mechanisms of a natural anion channelrhodopsin.

    PubMed

    Sineshchekov, Oleg A; Govorunova, Elena G; Li, Hai; Spudich, John L

    2015-11-17

    Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ?100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter. PMID:26578767

  2. Metabolic engineering in methanotrophic bacteria

    SciTech Connect

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Microbial Metabolism Biodegradation of

    E-print Network

    Huang, Ching-Tsan

    1 Microbial Metabolism Biodegradation of Organic Compounds Ching-Tsan Huang () Office: Agronomy to less harmful forms. #12;5 Metabolic Logic The guiding hand of natural selection makes a metabolicMaps Show clusters of metabolism that are linked by a common metabolic logic and stripped of all

  4. Cell Metabolism Perspective

    E-print Network

    Borenstein, Elhanan

    Cell Metabolism Perspective Mapping the Inner Workings of the Microbiome: Genomic-andMetagenomic-BasedStudyofMetabolism and Metabolic Interactions in the Human Microbiome Ohad Manor,1,4 Roie Levy,1,4 and Elhanan Borenstein1,2,3,* 1 contributor to human metabolism and health, yet the metabolic pro- cesses that are carried out by various

  5. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical. PMID:26052642

  6. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  7. Systems Genetics of Mineral Metabolism123

    PubMed Central

    Fleet, James C.; Replogle, Rebecca; Salt, David E.

    2011-01-01

    Minerals are essential and toxic elements that have an impact on human health. Although we have learned a tremendous amount about the metabolism, biological roles, and health effects of minerals with the tools of biochemistry, cell biology, and molecular genetics, there are gaps in our knowledge of mineral biology that will benefit from new approaches. Forward genetics, whereby variations in phenotypes are mapped to natural genetic variation in the genome, has been successfully used to increase our understanding of many biologically important traits but has not yet been used extensively for mineral metabolism. In addition, the well-appreciated existence of interactions between minerals justifies a broader, systems approach to the study of mineral metabolism, i.e., ionomics. This short review will explain the value of forward genetics and ionomics as tools for exploring mammalian mineral metabolism. PMID:21270371

  8. Effect of the synergistic anion on electron paramagnetic resonance spectra of iron-transferrin anion complexes is consistent with bidentate binding of the anion.

    PubMed Central

    Dubach, J; Gaffney, B J; More, K; Eaton, G R; Eaton, S S

    1991-01-01

    Continuous wave (cw) X-band EPR spectra at approximately 90 K were obtained for iron-transferrin-anion complexes with 18 anions. Each anion had a carboxylate group and at least one other polar moiety. As the second polar group was varied from hydroxyl to carbonyl to amine to carboxylate, the EPR spectra changed from a dominant signal at g' approximately 4.3 with a second smaller peak at g' approximately 9 to a broad signal with intensity between g' approximately 5 and 7. Computer simulation indicated that the changes in the EPR spectra were due to changes in the zero field splitting parameter ratio, E/D, from approximately 1/3 for carbonate anion to approximately 0.04 for malonate anion. Observation of iron-13C coupling in the electron spin echo envelope modulation (ESEEM) for iron transferrin [1-13C]pyruvate indicated that the carboxylate group was bound to the iron. It is proposed that all of the anions behave as bidentate ligands, with coordination to the iron through both the carboxylate and proximal groups, and the carboxyl group serves as a bridge between the iron and a positively charged group on the protein. PMID:1651123

  9. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-09-22

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange.

  10. Designation and Exploration of Halide-Anion Recognition Based on Cooperative Noncovalent Interactions Including Hydrogen Bonds and Anion-?.

    PubMed

    Liu, Yan-Zhi; Yuan, Kun; Lv, Ling-Ling; Zhu, Yuan-Cheng; Yuan, Zhao

    2015-06-01

    A novel urea-based anion receptor with an electron-deficient aromatic structural unit, N-p-nitrophenyl-N-(4-vinyl-2-five-fluoro-benzoic acid benzyl ester)-phenyl-urea (FUR), was designed to probe the potential for halide-anion recognition through the cooperation of two distinct noncovalent interactions including hydrogen bonds and anion-? in this work. The nature of the recognition interactions between halide-anion and the designed receptor was theoretically investigated at the molecular level. The geometric features of the hydrogen bond and anion-? of the FUR@X(-) (X = F, Cl, Br, and I) systems were thoroughly investigated. The binding energies and thermodynamic information on the halide-anion recognitions show that the presently designed FUR might selectively recognize anion F(-) based on the cooperation of the N-H···F(-) hydrogen bond and anion-? interactions both in vacuum and in solvents. IR and UV-visible spectra of free FUR and FUR@F(-) have been simulated and discussed qualitatively, which may be helpful for further experimental investigations in the future. Additionally, the electronic properties and behaviors of the FUR@X(-) systems were discussed according to the calculations on the natural bond orbital (NBO) data, molecular electrostatic potential (MEP), and weak interaction regions. PMID:25928400

  11. Silver(I)-Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the

    E-print Network

    Paik Suh, Myunghyun

    Silver(I)-Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State Kil Sik Min and Myunghyun Paik Suh* Contribution from with NO3 - and ClO4 - quantitatively in the crystalline state when the crystal of 2 is immersed

  12. Dietary inorganic nitrate: From villain to hero in metabolic disease?

    PubMed

    McNally, Ben; Griffin, Julian L; Roberts, Lee D

    2016-01-01

    Historically, inorganic nitrate was believed to be an inert by-product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re-examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate-nitrite-NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti-obesity and anti-diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re-evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease. PMID:26227946

  13. Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions.

    PubMed

    Geletii, Yurii V; Hill, Craig L; Atalla, Rajai H; Weinstock, Ira A

    2006-12-27

    Fundamental information concerning the mechanism of electron transfer from reduced heteropolytungstates (POM(red)) to O2, and the effect of donor-ion charge on reduction of O2 to superoxide anion (O2.-), is obtained using an isostructural series of 1e--reduced donors: alpha-X(n+)W12O40(9-n)-, X(n+) = Al3+, Si4+, P5+. For all three, a single rate expression is observed: -d[POM(red)]/dt = 2k12[POM(red)][O2], where k12 is for the rate-limiting electron transfer from POM(red) to O2. At pH 2 (175 mM ionic strength), k12 increases from 1.4 +/- 0.2 to 8.5 +/- 1 to 24 +/- 2 M-1s-1 as Xn+ is varied from P5+ (3red) to Si4+ (2red) to Al3+ (1red). Variable-pH data (for 1red) and solvent-kinetic isotope (KIE = kH/kD) data (all three ions) indicate that protonated superoxide (HO2.) is formed in two steps--electron transfer, followed by proton transfer (ET-PT mechanism--rather than via simultaneous proton-coupled electron transfer (PCET). Support for an outersphere mechanism is provided by agreement between experimental k12 values and those calculated using the Marcus cross relation. Further evidence is provided by the small variation in k12 observed when Xn+ is changed from P5+ to Si4+ to Al3+, and the driving force for formation of O2.- (aq), which increases as cluster-anion charge becomes more negative, increases by nearly +0.4 V (a decrease of >9 kcal mol-1 in DeltaG degrees ). The weak dependence of k12 on POM reduction potentials reflects the outersphere ET-PT mechanism: as the anions become more negatively charged, the "successor-complex" ion pairs are subject to larger anion-anion repulsions, in the order [(3(ox)3-)(O2.-)]4- < [(2(ox)4-)(O2.-)]5- < [(1(ox)5-)(O2.-)]6-. This reveals an inherent limitation to the use of heteropolytungstate charge and reduction potential to control rates of electron transfer to O2 under turnover conditions in catalysis. PMID:17177455

  14. Blueberries and Metabolic Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic Syndrome is a cluster of metabolic disorders that increase the risk of cardiovascular diseases. Type 2 diabetes, elevated blood pressure, and atherogenic dyslipidemia are among the metabolic alterations that predispose the individual to several adverse cardiovascular complications. The hea...

  15. Gapped Domain Walls, Gapped Boundaries, and Topological Degeneracy

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Wang, Juven C.; Wen, Xiao-Gang

    2015-02-01

    Gapped domain walls, as topological line defects between (2 +1 )D topologically ordered states, are examined. We provide simple criteria to determine the existence of gapped domain walls, which apply to both Abelian and non-Abelian topological orders. Our criteria also determine which (2 +1 )D topological orders must have gapless edge modes, namely, which (1 +1 )D global gravitational anomalies ensure gaplessness. Furthermore, we introduce a new mathematical object, the tunneling matrix W , whose entries are the fusion-space dimensions Wi a , to label different types of gapped domain walls. By studying many examples, we find evidence that the tunneling matrices are powerful quantities to classify different types of gapped domain walls. Since a gapped boundary is a gapped domain wall between a bulk topological order and the vacuum, regarded as the trivial topological order, our theory of gapped domain walls inclusively contains the theory of gapped boundaries. In addition, we derive a topological ground state degeneracy formula, applied to arbitrary orientable spatial 2-manifolds with gapped domain walls, including closed 2-manifolds and open 2-manifolds with gapped boundaries.

  16. Exploiting metabolic differences in glioma therapy.

    PubMed

    Galeffi, Francesca; Turner, Dennis A

    2012-12-01

    Brain function depends upon complex metabolic interactions amongst only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolysis and metabolism associated with synthesis of critical intermediates, hence are less susceptible to lack of oxygen. Astrocytoma and higher grade glioma cells demonstrate both basic metabolic mechanisms of astrocytes as well as tumors in general, e.g. they show a high glycolytic rate, lactate extrusion, ability to proliferate even under hypoxia, and opportunistic use of mechanisms to enhance metabolism and blood vessel generation, and suppression of cell death pathways. There may be differences in metabolism between neurons, normal astrocytes and astrocytoma cells, providing therapeutic opportunities against astrocytomas, including a wide range of enzyme and transporter differences, regulation of hypoxia-inducible factor (HIF), glutamate uptake transporters and glutamine utilization, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of NADPH for lipid synthesis, utilizing differential regulation of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate dehydrogenase, lactate dehydrogenase, malate-aspartate NADH shuttle) and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone, and are starting to be implemented in clinical trials. PMID:22339075

  17. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A. (Santa Fe, NM); Kubas, Gregory J. (Santa Fe, NM)

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  18. Theoretical study of the superoxide anion assisted firefly oxyluciferin formation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2013-12-01

    This a theoretical Letter based on density functional theory, on the role of superoxide anion in firefly chemiluminescence in DMSO. We have found that this anion can attack luciferin radical molecules, thus forming a luciferin-like trianion. This latter molecule transfers an oxygen atom, which results in the formation of oxyluciferyl radical dianion and carbon dioxide molecules. Oxyluciferin is finally formed after an electron transfer from oxyluciferyl radical dianion to tert-BuOrad radical molecules. Thus, we have found evidence that firefly oxyluciferin can be formed in a energetically favorable superoxide anion-assisted reaction, without the need for the formation of firefly dioxetanone.

  19. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics. PMID:26659181

  20. Globins Scavenge Sulfur Trioxide Anion Radical.

    PubMed

    Gardner, Paul R; Gardner, Daniel P; Gardner, Alexander P

    2015-11-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ? 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ?100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  1. Decompositions of multiply charged oligonucleotide anions

    SciTech Connect

    McLuckey, S.A.; Habibi-Goudarzi, S. )

    1993-12-15

    Multiply charged single-strand deoxyoligonucleotide anions fragment first by loss of a nucleobase followed by cleavage at the 3' C-O bond of the sugar from which the base is lost. Both steps are proposed to proceed via 1,2-elimination involving hydrogens from the sugar and to yield a stable substituted furan as one of the products. There is a strong preference for loss of charged adenine followed by loss of charged thymine. This tendency is strongly dependent, however, upon the internal Coulombic repulsion experienced by the ion. The position of the base in the chain is not a major factor in determining which base is lost first, except in the case of the base at the 3' terminus. The loss of the base at the 3' terminus tends to be disfavored, and this tendency may result in the more abundant loss of a charged thymine, for example, than the loss of charged adenine when the only deoxyadenylate present in the sequence is at the 3' terminus. Relatively small oligomers can be fully or nearly fully sequenced via several stages of mass spectrometry. Sequencing adjacent deoxyguanylate and deoxycytidylate residues tends to be difficult due to the much lower abundances of product ions formed via reaction channels beginning with losses of cytidine and guanine. Multiple stages of mass spectrometry are facilitated by highly charged parent ions. 24 refs., 7 figs.

  2. Neptunium Valence Chemistry in Anion Exchange Processing

    SciTech Connect

    KYSER, EDWARD

    2003-02-01

    The current anion resin in use in HB-Line Phase II, Reillex{trademark} HPQ, was tested in the laboratory under expected plant conditions for Np processing and was found to load between 50 and 70 g Np per liter of resin. Losses varied from 0.2 to 15 percent depending on a number of parameters. Hydrazine in the feed at 0.02 to 0.05 M appeared to keep the Np from oxidizing and increasing the losses within four to seven days after the FS addition. Losses of up to three percent were observed five days after FS addition when hydrazine was not used in the feed, compared with 0.3 percent when the feed was loaded immediately after FS addition. Based on these test results the following processing conditions are recommended: (1) Feed conditions: 8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Wash conditions: 100 liters of 8 M HNO{sub 3}, no FS, no hydrazine. (3) Elution conditions: 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS. (4) Precipitation feed conditions: 0.03 M excess ascorbic acid, no additional hydrazine, no FS, precipitation within three days.

  3. The GAP-TPC

    E-print Network

    Rossi, B; Boiano, A; Catalanotti, S; Cocco, A G; Covone, G; Di Meo, P; Longo, G; Vanzanella, A; Walker, S; Wang, H; Wang, Y; Fiorillo, G

    2016-01-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency

  4. Sulfate anion stabilization of native ribonuclease A both by anion binding and by the Hofmeister effect

    PubMed Central

    Ramos, Carlos H.I.; Baldwin, Robert L.

    2002-01-01

    Data are reported for Tm, the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2–9) and salt concentration (range 0–1 M) for two salts, Na2SO4 and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0–0.1 M and via the Hofmeister effect in the concentration range 0.1–1.0 M. The increase in Tm caused by anion binding at 0.1 M sulfate is 20° at pH 2 but only 1° at pH 9, where the net proton charge on the protein is near 0. The 10° increase in Tm between 0.1 and 1.0 M Na2SO4, caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in Tm between 0 and 1.0 M is 14° at pH 2 but only 1° at pH 9. The 14° increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na2SO4 and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride. PMID:12070329

  5. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  6. Hydrocarbon anions in interstellar clouds and circumstellar envelopes

    E-print Network

    T. J. Millar; C. Walsh; M. A. Cordiner; R. Ní Chuimín; Eric Herbst

    2007-05-07

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC+10216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC+10216, TMC-1 and photon-dominated regions such as the Horsehead Nebula.

  7. DETERMINATION OF TRACE ANIONS IN WATER BY MULTIDIMENSIONAL ION CHROMATOGRAPHY

    EPA Science Inventory

    Selenate, selenite, and arsenate ions were separated from the major anions chloride, nitrate, and sulfate in drinking water, surface water, and groundwater sources by collecting a selected portion of the ion chromatogram, after suppression, on a concentrator column and reinjectin...

  8. Is Nitrate Anion Photodissociation Mediated by Singlet-Triplet Absorption?

    PubMed

    Svoboda, Ond?ej; Slaví?ek, Petr

    2014-06-01

    Photolysis of the nitrate anion is involved in the oxidation processes in the hydrosphere, cryosphere, and stratosphere. While it is known that the nitrate photolysis in the long-wavelength region proceeds with a very low quantum yield, the mechanism of the photodissociation remains elusive. Here, we present the quantitative modeling of singlet-singlet and singlet-triplet absorption spectra in the atmospherically relevant region around 300 nm, and we argue that a spin-forbidden transition between the singlet ground state and the first triplet state contributes non-negligibly to the nitrate anion photolysis. We further propose that the nitrate anion excited into the first singlet excited state relaxes nonradiatively into its ground state. The full understanding of the nitrate anion photolysis can improve modeling of the asymmetric solvation in the atmospheric processes, e.g., photolysis on the surfaces of ice or snow. PMID:26273880

  9. New anion-exchange polymers for improved separations

    SciTech Connect

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-08-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials.

  10. ELECTROACTIVE MATERIALS FOR ANION SEPARATION-TECHNETIUM FROM NITRATE

    EPA Science Inventory

    The proposed research will provide the basis for using electroactive ion exchange materials to remove anionic contaminants from HLW wastes and process streams. An ion exchange process using electroactive materials sorbs contaminants selectively and then expels (elutes) them elec...

  11. Cationic Main Group Compounds as Water Compatible Small Anion Receptors 

    E-print Network

    Leamer, Lauren Anne

    2013-05-06

    anion. A significant amount of research has been conducted on triarylboranes containing cationic moieties such as ammonium, phosphonium, and sulfonium groups. This thesis will describe additional examples of such species, including a series of ammonium...

  12. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  13. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of ?-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-? interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH???A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. PMID:24616327

  14. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators

    SciTech Connect

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of doses tested.

  15. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    SciTech Connect

    Cordiner, M. A.; Charnley, S. B.

    2012-04-20

    Long-chain hydrocarbon anions C{sub n}H{sup -} (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n{sub H{sub 2}}{approx}>10{sup 5} cm{sup -3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C{sub 6}H{sup -} anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C{sub 6}O, C{sub 7}O, HC{sub 6}O, and HC{sub 7}O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  16. Gas-Grain Models for Interstellar Anion Chemistry

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  17. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui (East Setauket, NY); Yang, Xia-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Xiang, Caili (Upton, NY)

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  18. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  19. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  20. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan (Palo Alto, CA)

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  1. Domain walls in gapped graphene

    E-print Network

    G. W. Semenoff; V. Semenoff; Fei Zhou

    2008-05-31

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  2. Dennis S. Bernstein "Mind the gap. Mind the gap.''

    E-print Network

    Bernstein, Dennis S.

    on the m j o r challenges facing thc control community. Among thc challenges identified was the need introspecliiin by thc research community. The significance of the gap Lor systems and control research is ii-term solutions. Next, I'll discuss some factors that have contributed to thc gap's existence (queslioo 4). Thcn I

  3. Dietary genistein stimulates anion secretion across female murine intestine.

    PubMed

    Al-Nakkash, Layla; Clarke, Lane L; Rottinghaus, George E; Chen, Yinchieh J; Cooper, Kim; Rubin, Leona J

    2006-11-01

    Genistein, a naturally occurring isoflavone, augments in vitro epithelial anion transport via activation of the cystic fibrosis transmembrane conductance regulator chloride channel. In this study, we examined whether chronic dietary exposure to 600 mg/kg genistein (600 G) for 1 mo would stimulate anion secretion across wild-type (Wt, normal) murine intestine. Anion secretion was assessed in freshly excised segments of murine jejuna by measuring short circuit current (I(sc)) and comparing with jejunal segments from mice fed 0 mg/kg genistein (0 G). Basal and forskolin-stimulated anion secretions were augmented (P < 0.05) in female but not in male mice fed 600 G, compared with their counterparts fed 0 G. Serum genistein concentrations were greater in both female and male mice fed 600 G (approximately 3.5-6.9 micromol/L) than those fed 0 G (approximately 100 nmol/L). Anion substitution experiments and bumetanide-sensitivity demonstrated that chloride was the major anion mediating the increased secretion. A smaller bicarbonate component was not augmented by consumption of the genistein diet. These data indicate that chronic exposure to dietary genistein stimulates a sex-dependent increase in basal and forskolin-stimulated chloride secretion across murine intestine. PMID:17056801

  4. Counterion-mediated pattern formation in membranes containing anionic lipids

    PubMed Central

    Slochower, David R.; Wang, Yu-Hsiu; Tourdot, Richard W.; Radhakrishnan, Ravi; Janmey, Paul A.

    2014-01-01

    Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from ?1 for the most abundant anionic lipids such has phosphatidylserine, to near ?7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence of the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control. PMID:24556233

  5. Theoretical studies of nonvalence correlation-bound anions

    NASA Astrophysics Data System (ADS)

    Voora, Vamsee; Jordan, Kenneth

    2015-03-01

    Nonvalence correlation-bound anion states have been investigated using state-of-the-art ab initio methodologies as well as by model potential approaches. In nonvalence correlation-bound anion states the excess electron occupies a very extended orbital with the binding to the molecule or cluster being dominated by long-range correlation effects. Failure of conventional Hartree-Fock reference based approaches for treating these anionic states is discussed. Ab initio approaches that go beyond Hartree-Fock orbitals, such as Green's function, and equation-of-motion methods are used to characterize nonvalence correlation-bound anion states of a variety of systems including C60 and C6F6. Edge-bound nonvalence correlation-bound anionic states are established for polycyclic aromatics. Accurate one-electron model potential approaches, parametrized using the results of ab initio calculations, are described. The model potentials are used to study nonvalence correlation-bound anion states of large water clusters as well as ``superatomic'' states of fullerene systems. Travel support through New Investigator Travel Award from Division of Chemical Physics (APS) and NSF Grant CHE-1111235 are greatfully acknowledged.

  6. Grain boundary mobility in anion doped MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  7. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1994-01-01

    We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.

  8. Anion size modulates salt taste in rats.

    PubMed

    Breza, Joseph M; Contreras, Robert J

    2012-03-01

    The purpose of this study was to investigate the influence of anion size and the contribution of the epithelial sodium channel (ENaC) and the transient receptor potential vanilloid-1 (TRPV1) channel on sodium-taste responses in rat chorda tympani (CT) neurons. We recorded multiunit responses from the severed CT nerve and single-cell responses from intact, narrowly tuned and broadly tuned, salt-sensitive neurons in the geniculate ganglion simultaneously with stimulus-evoked summated potentials to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse and solvent for all stimuli (0.3 M NH(4)Cl, 0.5 M sucrose, 0.03-0.5 M NaCl, 0.01 M citric acid, 0.02 M quinine hydrochloride, 0.1 M KCl, and 0.03-0.5 M Na-gluconate). We used the pharmacological antagonist benzamil to assess NaCl responses mediated by ENaC, and SB-366791 and cetylpyridinium chloride to assess responses mediated by TRPV1. CT nerve responses were greater to NaCl than Na-gluconate at each concentration; this was attributed mostly to broadly tuned, acid-generalist neurons that responded with higher frequency and shorter latency to NaCl than Na-gluconate. In contrast, narrowly tuned NaCl-specialist neurons responded more similarly to the two salts, but with subtle differences in temporal pattern. Benzamil reduced CT nerve and single-cell responses only of narrowly tuned neurons to NaCl. Surprisingly, SB-366791 and cetylpyridinium chloride were without effect on CT nerve or single-cell NaCl responses. Collectively, our data demonstrate the critical role that apical ENaCs in fungiform papillae play in processing information about sodium by peripheral gustatory neurons; the role of TRPV1 channels is an enigma. PMID:22205652

  9. Ab initio and anion photoelectron study of AunRhm (n = 1-7, m = 1-2) clusters.

    PubMed

    Buendía, Fernando; Beltrán, Marcela R; Zhang, Xinxing; Liu, Gaoxiang; Buytendyk, Allyson; Bowen, Kit

    2015-11-14

    Anion photoelectron spectroscopy (PES) and ab initio calculations have been used to identify the unique structural, electronic, and magnetic properties of both neutral and anionic binary AunRhm (n = 1-7 and m = 1-2) clusters in vacuo. Negative ion photoelectron spectra are presented with electron binding energies measured up to 3.493 eV. We discuss our computational results in the context of the PES experiment, in which the calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Theoretically, we investigate the low-lying energy structures and the spin isomers of each neutral, anionic and cationic species. The PES spectra, binding energies, fragmentation energy, electron affinities, vertical and adiabatic detached energies, HOMO-LUMO (H-L) gaps and vibrational spectra are presented and discussed. Our results show that the characteristic planarity for gold clusters is preserved for many of the bimetallic clusters. This study is therefore compared with the case of pure gold for which ample experimental and theoretical data are available. Both experimental and theoretical results obtained here are compared and discussed with previous theoretical studies on the same systems. PMID:25886662

  10. Crystallization and preliminary X-ray crystallographic studies of human voltage-dependent anion channel isoform I (HVDAC1)

    SciTech Connect

    Meins, Thomas; Vonrhein, Clemens; Zeth, Kornelius

    2008-07-01

    The human voltage-dependent anion channel was overproduced in bacteria and refolded with the help of detergents. Extensive screening of crystallization conditions resulted in the first crystals to be obtained of this voltage-dependent anion-channel type. The crystals diffracted to a resolution of 3.6 Å. The major channel by which metabolites can pass through the outer mitochondrial membrane is formed by the voltage-dependent anion-channel (VDAC) family. Functionally, VDAC is involved in the limited exchange of ATP, ADP and small hydrophilic molecules across the outer membrane. Moreover, there is compelling evidence that VDAC isoforms in mammals may act in the cross-talk between mitochondria and the cytoplasm by direct interaction with enzymes involved in energy metabolism and proteins involved in mitochondrial-induced apoptosis. To obtain a high-resolution structure of this channel, human VDAC protein isoform I was overproduced in Escherichia coli. After refolding and testing the correct fold using circular dichroism, a subsequent broad-range screening in different detergents resulted in a variety of crystals which diffracted to 3.5 Å resolution. The crystal lattice belongs to the trigonal space group P321, with unit-cell parameters a = 78.9, c = 165.7 Å and one monomer in the asymmetric unit.

  11. Electronic materials with a wide band gap: recent developments

    PubMed Central

    Klimm, Detlef

    2014-01-01

    The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap E g = 0.66?eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (E g = 1.12?eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider E g were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and ?-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity. PMID:25295170

  12. Electronic materials with a wide band gap: recent developments.

    PubMed

    Klimm, Detlef

    2014-09-01

    The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap E g = 0.66?eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (E g = 1.12?eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider E g were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and ?-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity. PMID:25295170

  13. Evaluating computational models of cholesterol metabolism.

    PubMed

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring. PMID:26143380

  14. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  15. Metabolic fingerprinting of Arabidopsis thaliana accessions

    PubMed Central

    Sotelo-Silveira, Mariana; Chauvin, Anne-Laure; Marsch-Martínez, Nayelli; Winkler, Robert; de Folter, Stefan

    2015-01-01

    In the post-genomic era much effort has been put on the discovery of gene function using functional genomics. Despite the advances achieved by these technologies in the understanding of gene function at the genomic and proteomic level, there is still a big genotype-phenotype gap. Metabolic profiling has been used to analyze organisms that have already been characterized genetically. However, there is a small number of studies comparing the metabolic profile of different tissues of distinct accessions. Here, we report the detection of over 14,000 and 17,000 features in inflorescences and leaves, respectively, in two widely used Arabidopsis thaliana accessions. A predictive Random Forest Model was developed, which was able to reliably classify tissue type and accession of samples based on LC-MS profile. Thereby we demonstrate that the morphological differences among A. thaliana accessions are reflected also as distinct metabolic phenotypes within leaves and inflorescences. PMID:26074932

  16. Energy gaps in ?-graphdiyne nanoribbons

    SciTech Connect

    Niu, X. N.; Yang, D. Z.; Si, M. S. Xue, D. S.

    2014-04-14

    ?-graphdiyne is a novel predicted Dirac cone material, which is similar to graphene. But the absence of a band gap significantly limits its practical applications. In order to extend this limitation, an opening of energy gap is needed. To this end, we resort to the nanoribbon structure of ?-graphdiyne. This is a conventional proposal to open up the energy gaps in nanomaterials. The results show that both the armchair and the zigzag ?-graphdiyne nanoribbons do generate energy gaps, which are width-dependent. In addition, the underlying mechanism of this opening is explored. The former is ascribed to the combination of quantum confinement and edges' effect, while the latter arises from the edge magnetic ordering. These novel nanoribbons with opening energy gaps would be potentially used in electronic devices.

  17. Microbial Metabolism Databases of Microbial

    E-print Network

    Huang, Ching-Tsan

    1 Microbial Metabolism Databases of Microbial Metabolism & Degradation Ching-Tsan Huang () Office and Metabolism Encyclopedia of E. coli K12 Genes and Metabolism Databases of Metabolism #12;6 Genome Eco. coli transport proteins Metabolism EcoCyc describes all known metabolic pathways and signal

  18. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill, (Edited By); Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  19. Discovery of Interstellar Anions in Cepheus and Auriga

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  20. The role of catalyst precursor anions in coal gasification

    SciTech Connect

    Abotsi, G.M.K.

    1992-08-28

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a North Dakota lignite (PSOC 1482) and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength. In the last quarter, the surface charge properties of the coal was determined as a function of acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sup 3}{sup {minus}}), carbonate (CO{sub 3}{sup 2{minus}}) or sulfate (SO{sub 4}{sup 2{minus}})concentration using the respective potassium salts of these anions. In general, low anion concentrations (10{sup {minus}3} or 10{sup {minus}2} mol/L) had little effect on the zeta potentials of the coals. However, the surface charge densities of the coal become less negative at 10-1 mol/L of the nitrate, carbonate or sulfate anions. These trends suggest that the surface charge density of the coal is controlled by the adsorption of potassium ions (K{sup +}) onto the coal particles. The net negative charge on the coal panicles creates a repulsive force between the anions and the coal surface and prevents the anions from exerting any significant effect on the coal's electrokinetic properties.

  1. DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA

    SciTech Connect

    Cordiner, M. A.; Charnley, S. B.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2011-04-01

    We report the detection of microwave emission lines from the hydrocarbon anion C{sub 6}H{sup -} and its parent neutral C{sub 6}H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C{sub 4}H, HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, and C{sub 3}S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC{sub 3}N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  2. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the ?-? interactions between the two partially charged benzonitrile moieties.

  3. Genome-scale models of bacterial metabolism: reconstruction and applications

    PubMed Central

    Durot, Maxime; Bourguignon, Pierre-Yves; Schachter, Vincent

    2009-01-01

    Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities. PMID:19067749

  4. Mind the Gap

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers have been able to study planet-forming discs around young Sun-like stars in unsurpassed detail, clearly revealing the motion and distribution of the gas in the inner parts of the disc. This result, which possibly implies the presence of giant planets, was made possible by the combination of a very clever method enabled by ESO's Very Large Telescope. Uncovering the disc ESO PR Photo 27a/08 Planet-forming Disc Planets could be home to other forms of life, so the study of exoplanets ranks very high in contemporary astronomy. More than 300 planets are already known to orbit stars other than the Sun, and these new worlds show an amazing diversity in their characteristics. But astronomers don't just look at systems where planets have already formed - they can also get great insights by studying the discs around young stars where planets may currently be forming. "This is like going 4.6 billion years back in time to watch how the planets of our own Solar System formed," says Klaus Pontoppidan from Caltech, who led the research. Pontoppidan and colleagues have analysed three young analogues of our Sun that are each surrounded by a disc of gas and dust from which planets could form. These three discs are just a few million years old and were known to have gaps or holes in them, indicating regions where the dust has been cleared and the possible presence of young planets. The new results not only confirm that gas is present in the gaps in the dust, but also enable astronomers to measure how the gas is distributed in the disc and how the disc is oriented. In regions where the dust appears to have been cleared out, molecular gas is still highly abundant. This can either mean that the dust has clumped together to form planetary embryos, or that a planet has already formed and is in the process of clearing the gas in the disc. For one of the stars, SR 21, a likely explanation is the presence of a massive giant planet orbiting at less than 3.5 times the distance between the Earth and the Sun, while for the second star, HD 135344B, a possible planet could be orbiting at 10 to 20 times the Earth-Sun distance. The observations of the third star, TW Hydrae, may also require the presence of one or two planets. "Our observations with the CRIRES instrument on ESO's Very Large Telescope clearly reveal that the discs around these three young, Sun-like stars are all very different and will most likely result in very different planetary systems," concludes Pontoppidan. "Nature certainly does not like to repeat herself" [1]. "These kinds of observations complement the future work of the ALMA observatory, which will be imaging these discs in great detail and on a larger scale," adds Ewine van Dishoeck, from Leiden Observatory, who works with Pontoppidan. To study the gaps in dust discs that are the size of the Solar System around stars that are located up to 400 light-years away is a daunting challenge that requires a clever solution and the best possible instruments [2]. "Traditional imaging cannot hope to see details on the scale of planetary distances for objects located so far away," explains van Dishoeck. "Interferometry can do better but won't allow us to follow the motion of the gas." Astronomers used a technique known as 'spectro-astrometric imaging' to give them a window into the inner regions of the discs where Earth-like planets may be forming. They were able not only to measure distances as small as one-tenth the Earth-Sun distance, but to measure the velocity of the gas at the same time [3]. "The particular configuration of the instrument and the use of adaptive optics allows astronomers to carry out observations with this technique in a very user-friendly way: as a consequence, spectro-astrometric imaging with CRIRES can now be routinely performed," says team member Alain Smette, from ESO [4].

  5. "Gap" or "Gaps": Challenging the Singular Definition of the Achievement Gap

    ERIC Educational Resources Information Center

    Carpenter, Dick M., II; Ramirez, Al; Severn, Laura

    2006-01-01

    For decades, researchers examined the "achievement gap" between minority and nonminority students. This singular definition of "achievement gap" ignores important within-group differences. This article uses National Education Longitudinal Study (NELS:88) data to examine within-group differences and compares those across Latino, African American,…

  6. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  7. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T. (Middletown, OH); King, Edward L. (Trenton, OH); Follstaedt, Donald W. (Middletown, OH)

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  8. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  9. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  10. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    SciTech Connect

    Senent, M. L.; Hochlaf, M. E-mail: hochlaf@univ-mlv.fr

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  11. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    PubMed

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact. PMID:26501776

  12. Aerobic and Anaerobic Metabolism Aerobic = oxidative metabolism

    E-print Network

    Jodice, Patrick

    Aerobic and Anaerobic Metabolism · Aerobic = oxidative metabolism ­ 1 mol glucose CO2 and H20, 36 are disrupted · All activity in vertebrates is aerobic ­ anaerobiosis in vertebrates is just aerobiosis and velocity (F9.9) From McNab 2002. #12;Locomotion in Reptiles · Aerobic scope appears to vary among taxa

  13. Identification of RhoGAP22 as an Akt-Dependent Regulator of Cell Motility in Response to Insulin?‡

    PubMed Central

    Rowland, Alexander F.; Larance, Mark; Hughes, William E.; James, David E.

    2011-01-01

    Insulin exerts many of its metabolic actions via the canonical phosphatidylinositide 3 kinase (PI3K)/Akt pathway, leading to phosphorylation and 14-3-3 binding of key metabolic targets. We previously identified a GTPase-activating protein (GAP) for Rac1 called RhoGAP22 as an insulin-responsive 14-3-3 binding protein. Insulin increased 14-3-3 binding to RhoGAP22 fourfold, and this effect was PI3K dependent. We identified two insulin-responsive 14-3-3 binding sites (pSer16 and pSer395) within RhoGAP22, and mutagenesis studies revealed a complex interplay between the phosphorylation at these two sites. Mutating Ser16 to alanine blocked 14-3-3 binding to RhoGAP22 in vivo, and phosphorylation at Ser16 was mediated by the kinase Akt. Overexpression of a mutant RhoGAP22 that was unable to bind 14-3-3 reduced cell motility in NIH-3T3 fibroblasts, and this effect was dependent on a functional GAP domain. Mutation of the catalytic arginine of the GAP domain of RhoGAP22 potentiated growth factor-stimulated Rac1 GTP loading. We propose that insulin and possibly growth factors such as platelet-derived growth factor may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of RhoGAP22, leading to modulation of Rac1 activity. PMID:21969604

  14. Metabolic Diseases of Muscle

    MedlinePLUS

    ... genes has allowed researchers to begin experiments with gene therapy, a potential cure for some metabolic dis- eases. ... to Myozyme for enzyme deficiencies; and development of gene therapies for metabolic diseases. The knowledge MDA-funded researchers ...

  15. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters. PMID:25195693

  16. Analysis of anions in geological brines using ion chromatography

    SciTech Connect

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  17. Incorporation kinetics in mixed anion compound semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Millunchick, Joanna M.; Anderson, Evan M.; Pearson, Chris; Sarney, Wendy L.; Svensson, Stefan P.

    2013-12-01

    We present a kinetic model predicting anion incorporation in InAsSb. Included are the effects of As desorption, Sb segregation, and Sb displacement by As, any of which may be limited by the In flux if it is comparatively larger. The model captures experimental data over a range of growth conditions for the InAsSb system using activation energies for desorption and Sb segregation found in literature. The activation energy for Sb displacement found in this work is 1.3 eV. This model is general and should be valid for other mixed anion systems, or, appropriately modified, mixed cation systems and mixed anion/cation systems such as AlInAsSb.

  18. Solubility and transport of cationic and anionic patterned nanoparticles

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Guo, Hongxia; Olvera de La Cruz, Monica

    2012-02-01

    Diffusion and transport of nanoparticles (NPs) though nanochannels is important for desalination, drug delivery, and biomedicine. Their surface composition dictate their efficiency separating them by reverse osmosis, delivering into into cells, as well as their toxicity. We analyze bulk diffusion and transport through nanochannels of NPs with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. The cationic NPs are more affected by the patterns, less water soluble, and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. For equivalent patterns, anionic NPs solubilize more than cationic NPs since the Coulomb interaction of free anionic NPs, which are much stronger than hydrophobic NP-water interactions, are about twice that of cationic NPs.

  19. Silicon nanowire band gap modification.

    PubMed

    Nolan, Michael; O'Callaghan, Sean; Fagas, Giorgos; Greer, James C; Frauenheim, Thomas

    2007-01-01

    Band gap modification for small-diameter (approximately 1 nm) silicon nanowires resulting from the use of different species for surface termination is investigated by density functional theory calculations. Because of quantum confinement, small-diameter wires exhibit a direct band gap that increases as the wire diameter narrows, irrespective of surface termination. This effect has been observed in previous experimental and theoretical studies for hydrogenated wires. For a fixed cross-section, the functional group used to saturate the silicon surface significantly modifies the band gap, resulting in relative energy shifts of up to an electronvolt. The band gap shifts are traced to details of the hybridization between the silicon valence band and the frontier orbitals of the terminating group, which is in competition with quantum confinement. PMID:17212436

  20. Cell Metabolism Short Article

    E-print Network

    Chanfreau, Guillaume

    Cell Metabolism Short Article Sphingolipid Signaling Mediates Iron Toxicity Yueh-Jung Lee,1 Xinhe of cellular macromolecules to ROS (Touati, 2000; Valko et al., 2005). Defects in Fe metabolism can result of limiting iron toxicity. Thus, iron levels must be regulated to meet the demands of cellular metabolism

  1. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  2. Electron localization of anions probed by nitrile vibrations

    DOE PAGESBeta

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ?(C?N) vibrationsmore »respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ?(C?N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ?(C?N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ? kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability in "molecular wires" are discussed.« less

  3. Octamethyl-octaundecylcyclo[8]pyrrole: A Promising Sulfate Anion Extractant

    SciTech Connect

    Eller, Leah R; Stepien, Marcin; Fowler, Christopher J; Lee, Jeong Tae; Sessler, Jonathan L.; Moyer, Bruce A

    2008-01-01

    The diprotonated form of an organic-solubilized cyclo[8]pyrrole derivative, bearing eight undecyl chains on the {beta}-pyrrolic positions, was found to extract sulfate anion effectively from neutral aqueous media into a toluene organic phase. The kinetics of sulfate anion exchange between the two phases were found to be exceedingly slow in the absence of the phase-transfer catalyst, Aliquat 336-nitrate (A336N), but appreciable in its presence. The bisnitrate anion bound form of this cyclo[8]pyrrole could be generated in situ by subjecting the toluene phase containing initially 0.5 mM of the sulfate anion bound form and 0.1 mM trioctylamine (TOA) to successive equilibrations with aqueous 0.1 M HNO{sub 3} until sulfate was no longer detected in the aqueous phase. This bisnitrate complex, when studied as a 0.5 mM solution in toluene in the presence of 0.1 mM (TOAH){sup +}(NO{sub 3}{sup -}), was also found to be an effective extractant for sulfate anion. D{sub SO4} values of 0.001 and 1000 were observed at 1 M NaNO{sub 3}(aq) and 0.3 mM NaNO{sub 3}(aq), respectively, and the logarithm of the conditional exchange constant, log(K{prime}{sub exch}), was calculated to be 4.9 {+-} 0.4. The present cyclo[8]pyrrole system is thus noteworthy as being the first synthetic receptor that displays a high selectivity for sulfate anion in the presence of excess nitrate under conditions of solvent extraction.

  4. Electron localization of anions probed by nitrile vibrations

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ?(C?N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ?(C?N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ?(C?N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ? kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability in "molecular wires" are discussed.

  5. Tuning fork microgyrometers: Narrow gap vs. wide gap design

    NASA Astrophysics Data System (ADS)

    Soria, L.; Pierro, E.; Carbone, G.; Contursi, T.

    2009-04-01

    We analyse the performances of two different configurations of a tuning fork microgyrometer, the so called 'wide gap' design and 'narrow gap' design. In the former case the air gap between the vibrating forks and the walls of the surrounding frame is so large that the air flow around each fork is not influenced by the presence of the frame itself. This geometrical configuration results in a very low air damping, and, hence, allows the instrument to operate at atmospheric pressure. In the case of 'narrow gap' design the distance between the forks and the frame walls is instead very small. As a consequence, the instrument needs to operate under very low pressure conditions, since, at higher pressures, the presence of a thin layer of air would increase the air damping to very large values, and would not allow the correct operation of the instrument. Although the requirement of low pressure conditions represents a drawback of the narrow gap solution, we show that this instrument configuration, when compared to the wide gap design, allows to achieve a significantly smaller dynamic error and a significantly wider range of linearity. Indeed the thickness of the air gap represents an additional parameter that can be adjusted by the designer to optimise the performances of the instrument. An accurate analytical model of the sensor is presented in the paper, which constitutes a helpful designing tool for this kind of device. In particular we focus the attention on the two tines of the drive mode, which are indeed the structural components that more than others influence the instrument performances. We show that the optimal design of these fundamental elements can be obtained by neglecting the interaction with the remaining part of the sensor structure, and show how to design the instrument to minimise the amplitude error. The influence of air damping, structural damping and geometry on the system response in terms of bandwidth and dynamic error is also investigated.

  6. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Li, Xiang; Kiran, Boggavarapu E-mail: kiran@mcneese.edu; Kandalam, Anil K.

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  7. A theoretical study of ternary indole-cation-anion complexes.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Campo-Cacharrón, Alba; Rodríguez-Otero, Jesús

    2014-12-01

    The simultaneous interactions of an anion and a cation with a ? system were investigated by MP2 and M06-2X theoretical calculations. Indole was chosen as a model ? system for its relevance in biological environments. Two different orientations of the anion, interacting with the N-H and with the C-H groups of indole, were considered. The four cations (Na(+), NH4(+), C(NH2)3(+) and N(CH3)4(+)) and the four anions (Cl(-), NO3(-), HCOO(-) and BF4(-)) included in the study are of biological interest. The total interaction energy of the ternary complexes was calculated and separated into its two- and three-body components and all of them are further divided into their electrostatic, exchange, repulsion, polarization and dispersion contributions using the local molecular orbital-energy decomposition analysis (LMO-EDA) methodology. The binding energy of the indole-cation-anion complexes depends on both ions, with the cation having the strongest effect. The intense cation-anion attraction determines the geometric and energetic features in all ternary complexes. These structures, with both ions on the same side of the ? system, show an anti-cooperative interaction. However, the interaction is not only determined by electrostatics, but also the polarization contribution is important. Specific interactions like the one established between the anion and the N-H group of indole or the proton transfer between an acidic cation and a basic anion play a significant role in the energetics and the structure of particular complexes. The presence of the polar solvent as modelled with the polarizable continuum model (PCM) does not seem to have a significant effect on the geometry of the ternary complexes, but drastically weakens the interaction energy. Also, the strength of the interaction is reduced at a faster rate when the anion is pushed away, compared to the results obtained in the gas phase. The combination of PCM with the addition of one water molecule indicates that the PCM method properly reproduces the main energetic and geometrical changes, even at the quantitative level, but the explicit hydration allows refining the solvent effect and detecting cases that do not follow the general trend. PMID:25296040

  8. Mixed anion materials and compounds for novel proton conducting membranes

    DOEpatents

    Poling, Steven Andrew; Nelson, Carly R.; Martin, Steve W.

    2006-09-05

    The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 .degree. C. to 300.degree. C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -60 and 300.degree. C. and a relative humidity of less than about 12%..

  9. Corticosteroids increase superoxide anion production by rat liver microsomes.

    PubMed Central

    Nelson, D H; Ruhmann-Wennhold, A

    1975-01-01

    Superoxide anion production by liver microsomes from intact, adrenalectomized, and cortisoltreated adrenalectomized rats has been determined. The amount formed was roughly proportionate to the amount of cortisol given, and a similar response was seen in the activity of NADPH-cytochrome c reductase. The amount of measurable superoxide anion was markedly reduced by the addition of superoxide dismutase. The increased production of this potent free radical with cortisol therapy suggests that its formation may contribute to some of the harmful effects of corticosteroids given in more than physiologic amounts. PMID:239969

  10. Observation of Anion Order in Pb2Ti4O9F2.

    PubMed

    Oka, Kengo; Oh-Ishi, Katsuyoshi

    2015-11-01

    The observation of anion order is indispensable for the investigation of oxyfluorides. However, the negligible contrast between O(2-) and F(-) in both X-ray and neutron diffraction obscures the distinct anion sites for Rietveld refinement. Therefore, the difference in the chemical bonding of M-O(2-) and M-F(-) is the key to determining anion order. In this study, bond-valence-sum calculations and determination of the electron density distribution by the maximum entropy method illustrated anion order in the newly synthesized oxyfluoride Pb2Ti4O9F2. These results demonstrate a promising method to determine anion order in mixed anion systems. PMID:26485452

  11. Closing the Gap: Identification of Human 3-Ketosteroid Reductase, the Last Unknown Enzyme

    E-print Network

    Breitling, Rainer

    Closing the Gap: Identification of Human 3- Ketosteroid Reductase, the Last Unknown Enzyme phosphate as cofactor. Expression of human and murine HSD17B7 in an Erg27p-deficient yeast strain cholesterol biosynthesis, thus completing the molecular cloning of all genes of this central metabolic pathway

  12. Anion-Anion Bonding and Topology in Ternary Iridium Seleno-Stannides.

    PubMed

    Trump, Benjamin A; Tutmaher, Jake A; McQueen, Tyrel M

    2015-12-21

    The synthesis and physical properties of two new and one known Ir-Sn-Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn-Se)(4-) and (Se-Se)(2-) dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn-Se)2(4-) tetramers. Ir2SnSe5 is a layered, distorted ?-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se-Se)(2-) dimers and Se(2-) anions, and each double row is "capped" with a (Sn-Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d(6) Ir(3+). Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin-orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states. PMID:26636188

  13. The anionic biosurfactant rhamnolipid does not denature industrial enzymes.

    PubMed

    Madsen, Jens K; Pihl, Rasmus; Møller, Anders H; Madsen, Anne T; Otzen, Daniel E; Andersen, Kell K

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the ?-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications. PMID:25941516

  14. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    PubMed Central

    Madsen, Jens K.; Pihl, Rasmus; Møller, Anders H.; Madsen, Anne T.; Otzen, Daniel E.; Andersen, Kell K.

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the ?-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications. PMID:25941516

  15. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    PubMed

    Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles. PMID:25190787

  16. Removal of Uranium from Plutonium Solutions by Anion Exchange

    SciTech Connect

    Rudisill, T.S.

    2002-03-22

    The anion exchange capacity in the HB-Line Phase II Facility will be used to purify plutonium solutions potentially containing significant quantities of depleted uranium. Following purification, the plutonium will be precipitated as an oxalate and calcined to plutonium oxide (PuO2) for storage until final disposition.

  17. The Determination of Anionic Surfactants in Natural and Waste Waters.

    ERIC Educational Resources Information Center

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  18. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  19. Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions

    E-print Network

    Morse, Michael D.

    Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions Robert F photoelectron spectra of Mo and MoO have been measured. The electron affinity of atomic molybdenum is 0.748 2 eV and that of molybdenum monoxide is 1.290 6 eV. The term energies of several MoO electronic states not previously observed

  20. Catalytic Asymmetric Fluorination Through an Anionic Phase Transfer Strategy

    E-print Network

    Toste, Dean

    Catalytic Asymmetric Fluorination Through an Anionic Phase Transfer Strategy Aaron D. Lackner, Dr in a growing and industrially-relevant field involving cationic reagents? Electrophilic fluorination commonly employs cationic fluorine sources like Selectfluor®. Hamilton, G. L.; Kanai,T.;Toste, F. D. J

  1. Prescription Fire and Anion Retention in Tahoe Forest Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prescribed burning is a possible option to reduce fire potential in the Lake Tahoe Basin (California and Nevada). However, subsequent nutrient loading to the lake is a major concern. The effect of residual ash on anion leaching, primarily O-PO4 and SO42-, was studied in both the field and laboratory...

  2. Supporting Information for: Ammonium Bicarbonate Transport in Anion Exchange Membranes

    E-print Network

    S1 Supporting Information for: Ammonium Bicarbonate Transport in Anion Exchange Membranes was measured by first equilibrating the polymer film in the desired solution [e.g., DI water, 0.5 mol/L sodium chloride (NaCl), or 0.5 mol/L ammonium bicarbonate (AmB)]. Films were allowed to equilibrate

  3. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  4. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  5. Ground-state proton-transfer tautomer of the salicylate anion

    SciTech Connect

    Friedrich, D.M.; Wang, Z.; Joly, A.G.; Peterson, K.A.; Callis, P.R.

    1999-12-02

    Solutions of sodium salicylate in anhydrous polar solvents exhibit a weak, temperature-dependent absorption band ({lambda}{sub max} {approx} 325 nm) lying in the Stokes gap between the main absorption (296 nm) and the fluorescence band (396 nm, acetonitrile). This weak, longer wavelength absorption band is hardly observable in aqueous solution, but its intensity increases with temperature and increases with polarity in anhydrous organic solvents in the order of ethanol < acetonitrile < dimethyl sulfoxide at room temperature. After correction for solvent thermal contraction, the temperature-dependent absorption spectrum of salicylate in acetonitrile solutions reveals a clear isosbestic point ({epsilon}{sub 310}= 2,000 M{sup {minus}1} cm{sup {minus}1}) characteristic of an equilibrium between two salicylate species with band-maximum extinction coefficients of {epsilon}{sub 325} = 3,400 M{sup {minus}1} cm{sup {minus}1} and {epsilon}{sub 296} = 3,586 M{sup {minus}1} cm{sup {minus}1}. In acetonitrile at room temperature (298 K) the concentration equilibrium constant (minor/major) for the interconversion reaction between the two species is K{sub 298} = 0.11, with {Delta}H = 1.6 kcal mol{sup {minus}1} and {Delta}S = 0.97 cal{center{underscore}dot}mol{sup {minus}1} K{sup {minus}1}. The fluorescence lifetime (4.8 ns in acetonitrile) and the shape of the fluorescence spectrum are independent of excitation wavelength. The fluorescence quantum yield for excitation in the long-wavelength shoulder (340 nm) is approximately 60% larger than the yield for excitation in the main band at 296 nm ({phi}{sub 340} = 0.29, {phi}{sub 296} = 0.18) in acetonitrile at room temperature. These results are consistent with assignment of the shoulder band to the proton-transfer tautomer of the salicylate anion. Electronic structure calculations support assignment of the 325 nm absorption band to the ground-state tautomer (phenoxide anion form) of the salicylate anion. Absorption transition moments for both the normal and tautomer forms are parallel to the emission transition moment, are electronically allowed, and are consistent with {sup 1}L{sub b} assignment for both absorbing and emitting transitions. The static dipole moments are in the order of {mu}(N*) {ge} {mu}(N) > {mu}(T*) > {mu}(T) for the normal (N) and tautomer (T) ground and electronic excited states.

  6. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  7. Explaining the Gender Wealth Gap

    PubMed Central

    Ruel, Erin; Hauser, Robert M.

    2013-01-01

    To assess and explain the United States’ gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family’s best financial reporters. We find large gender wealth gaps between currently married men and women, and never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. A gender wealth gap remains between married men and women after controlling for the full model that we speculate may be related to gender differences in investment strategies and selection effects. PMID:23264038

  8. The Gamma Gap and All-Cause Mortality

    PubMed Central

    Juraschek, Stephen P.; Moliterno, Alison R.; Checkley, William; Miller, Edgar R.

    2015-01-01

    Background The difference between total serum protein and albumin, i.e. the gamma gap, is a frequently used clinical screening measure for both latent infection and malignancy. However, there are no studies defining a positive gamma gap. Further, whether it is an independent risk factor of mortality is unknown. Methods and Findings This study examined the association between gamma gap, all-cause mortality, and specific causes of death (cardiovascular, cancer, pulmonary, or other) in 12,260 participants of the National Health and Nutrition Examination Survey (NHANES) from 1999–2004. Participants had a comprehensive metabolic panel measured, which was linked with vital status data from the National Death Index. Cause of death was based on ICD10 codes from death certificates. Analyses were performed with Cox proportional hazards models adjusted for mortality risk factors. The mean (SE) age was 46 (0.3) years and the mean gamma gap was 3.0 (0.01) g/dl. The population was 52% women and 10% black. During a median follow-up period of 4.8 years (IQR: 3.3 to 6.2 years), there were 723 deaths. The unadjusted 5-year cumulative incidences across quartiles of the gamma gap (1.7–2.7, 2.8–3.0, 3.1–3.2, and 3.3–7.9 g/dl) were 5.7%, 4.2%, 5.5%, and 7.8%. After adjustment for risk factors, participants with a gamma gap of ?3.1 g/dl had a 30% higher risk of death compared to participants with a gamma gap <3.1 g/dl (HR: 1.30; 95%CI: 1.08, 1.55; P = 0.006). Gamma gap (per 1.0 g/dl) was most strongly associated with death from pulmonary causes (HR 2.22; 95%CI: 1.19, 4.17; P = 0.01). Conclusions The gamma gap is an independent risk factor for all-cause mortality at values as low as 3.1 g/dl (in contrast to the traditional definition of 4.0 g/dl), and is strongly associated with death from pulmonary causes. Future studies should examine the biologic pathways underlying these associations. PMID:26629820

  9. Saturated anionic phospholipids enhance transdermal transport by electroporation.

    PubMed Central

    Sen, Arindam; Zhao, Ya-Li; Hui, Sek Wen

    2002-01-01

    Anionic phospholipids, but not cationic or neutral phospholipids, were found to enhance the transdermal transport of molecules by electroporation. When added as liposomes to the milieus of water-soluble molecules to be delivered through the epidermis of porcine skin by electroporation, these phospholipids enhance, by one to two orders of magnitude, the transdermal flux. Encapsulation of molecules in liposomes is not necessary. Dimyristoylphosphatidylserine (DMPS), phosphatidylserine from bovine brain (brain-PS), dioleoylphosphatidylserine (DOPS), and dioleoylphosphatidylglycerol (DOPG) were used to test factors affecting the potency of anionic lipid transport enhancers. DMPS with saturated acyl chains was found to be a much more potent transport enhancer than those with unsaturated acyl chains (DOPS and DOPG). There was no headgroup preference. Saturated DMPS was also more effective in delaying resistance recovery after pulsing, and with a greater affinity in the epidermis after pulsing. Using fluorescent carboxyl fluorescein and fluorescein isothiocyanate (FITC)-labeled Dextrans as test water-soluble molecules for transport, and rhodamine-labeled phospholipids to track anionic phospholipids, we found, by conventional and confocal fluorescence microscopy, that transport of water-soluble molecules was localized in local transport spots or regions (LTRs) created by the electroporation pulses. Anionic phospholipids, especially DMPS, were located at the center of the LTRs and spanned the entire thickness of the stratum corneum (SC). The degree of saturation of anionic phospholipids made no difference in the densities of LTRs created. We deduce that, after being driven into the epidermis by negative electric pulses, saturated anionic phospholipids mix and are retained better by the SC lipids. Anionic lipids prefer loose layers or vesicular rather than multilamellar forms, thereby prolonging the structural recovery of SC lipids to the native multilamellar form. In the presence of 1 mg/ml DMPS in the transport milieu, the flux of FITC-Dextran-4k was enhanced by 80-fold and reached 175 microg/cm(2)/min. Thus, the use of proper lipid enhancers greatly extends the upper size limit of transportable chemicals. Understanding the mechanism of lipid enhancers enables one to rationally design better enhancers for transdermal drug and vaccine delivery by electroporation. PMID:12324424

  10. Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates: Role of

    E-print Network

    Collum, David B.

    Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl of the lithium diisopropylamide (LDA)-mediated anionic Fries rearrangements of aryl carbamates are described, an LDA-lithium phenolate mixed dimer, and homoaggregated lithium phenolates. The highly insoluble

  11. Characterization of anion diffusion in polymer hydrogels used for wastewater remediation

    E-print Network

    Rubloff, Gary W.

    Characterization of anion diffusion in polymer hydrogels used for wastewater remediation Dimitri R pollutants, even at extremely low concentrations, from wastewater effluents are a major environmental need of reactive phosphorus, nitrogen, and sulfur anions from aquaculture production wastewater effluents

  12. Investigation of Anion-pi Interactions in Inorganic, Organic and Biological Systems 

    E-print Network

    Funck, Edward Sterling

    2012-07-16

    Despite an ever growing number of reports concerning the anion-? interaction, controversy surrounding the nature of these weak supramolecular interactions continues. In an effort to further explore the nature and properties of anion-? interactions...

  13. Neutral and Cationic Main Group Lewis Acids - Synthesis, Characterization and Anion Complexation 

    E-print Network

    Hudnall, Todd W.

    2010-01-14

    The molecular recognition of fluoride and cyanide anions has become an increasingly pertinent objective in research due to the toxicity associated with these anions, as well as their widespread use. Fluoride is commonly added to drinking water...

  14. Activation of maxi-anion channel by protein tyrosine dephosphorylation.

    PubMed

    Toychiev, Abduqodir H; Sabirov, Ravshan Z; Takahashi, Nobuyaki; Ando-Akatsuka, Yuhko; Liu, Hongtao; Shintani, Takafumi; Noda, Masaharu; Okada, Yasunobu

    2009-10-01

    The maxi-anion channel with a large single-channel conductance of >300 pS, and unknown molecular identity, is functionally expressed in a large variety of cell types. The channel is activated by a number of experimental maneuvers such as exposing cells to hypotonic or ischemic stress. The most effective and consistent method of activating it is patch membrane excision. However, the activation mechanism of the maxi-anion channel remains poorly understood at present. In the present study, involvement of phosphorylation/dephosphorylation in excision-induced activation was examined. In mouse mammary fibroblastic C127 cells, activity of the channel was suppressed by intracellular application of Mg-ATP, but not Mg-5'-adenylylimidodiphosphate (AMP-PNP), in a concentration-dependent manner. When a cocktail of broad-spectrum tyrosine phosphatase inhibitors was applied, channel activation was completely abolished, whereas inhibitors of serine/threonine protein phosphatases had no effect. On the other hand, protein tyrosine kinase inhibitors brought the channel out of an inactivated state. In mouse adult skin fibroblasts (MAFs) in primary culture, similar maxi-anion channels were found to be activated on membrane excision, in a manner sensitive to tyrosine phosphatase inhibitors. In MAFs isolated from animals deficient in receptor protein tyrosine phosphatase (RPTP)zeta, activation of the maxi-anion channel was significantly slower and less prominent compared with that observed in wild-type MAFs; however, channel activation was restored by transfection of the RPTPzeta gene. Thus it is concluded that activation of the maxi-anion channel involves protein dephosphorylation mediated by protein tyrosine phosphatases that include RPTPzeta in mouse fibroblasts, but not in C127 cells. PMID:19657061

  15. Localization of Anionic Phospholipids in Escherichia coli Cells

    PubMed Central

    Oliver, Piercen M.; Crooks, John A.; Leidl, Mathias; Yoon, Earl J.; Saghatelian, Alan

    2014-01-01

    Cardiolipin (CL) is an anionic phospholipid with a characteristically large curvature and is of growing interest for two primary reasons: (i) it binds to and regulates many peripheral membrane proteins in bacteria and mitochondria, and (ii) it is distributed asymmetrically in rod-shaped cells and is concentrated at the poles and division septum. Despite the growing number of studies of CL, its function in bacteria remains unknown. 10-N-Nonyl acridine orange (NAO) is widely used to image CL in bacteria and mitochondria, as its interaction with CL is reported to produce a characteristic red-shifted fluorescence emission. Using a suite of biophysical techniques, we quantitatively studied the interaction of NAO with anionic phospholipids under physiologically relevant conditions. We found that NAO is promiscuous in its binding and has photophysical properties that are largely insensitive to the structure of diverse anionic phospholipids to which it binds. Being unable to rely solely on NAO to characterize the localization of CL in Escherichia coli cells, we instead used quantitative fluorescence microscopy, mass spectrometry, and mutants deficient in specific classes of anionic phospholipids. We found CL and phosphatidylglycerol (PG) concentrated in the polar regions of E. coli cell membranes; depletion of CL by genetic approaches increased the concentration of PG at the poles. Previous studies suggested that some CL-binding proteins also have a high affinity for PG and display a pattern of cellular localization that is not influenced by depletion of CL. Framed within the context of these previous experiments, our results suggest that PG may play an essential role in bacterial physiology by maintaining the anionic character of polar membranes. PMID:25002539

  16. Peripartal calcium homoeostasis of multiparous dairy cows fed rumen-protected rice bran or a lowered dietary cation/anion balance diet before calving.

    PubMed

    Martín-Tereso, J; ter Wijlen, H; van Laar, H; Verstegen, M W A

    2014-08-01

    Milk fever is one of the most important metabolic diseases in dairy cattle. Reducing the dietary cation/anion balance (DCAD) with anionic salts is a common prevention strategy. However, many small European farms cannot use total mixed rations (TMR) in the close-up period. Including anionic salts in compound feeds can result in feed refusals and moderate inclusions to preserve feed palatability results in insufficient DCAD reduction. Rumen-protected rice bran induces the adaptation of Ca metabolism in dairy cows by a reduction of Ca intake and by a reduction of the availability of dietary Ca. In the presence of a negative control, rumen-protected rice bran (2.8 kg/day) was compared with a lowered DCAD diet (from 269 to 4 meq/kg DM) in their effect to prevent milk fever. In a randomized block design, 45 multiparous Holstein cows joined the trial sequentially from 21 days before the expected calving date and were observed until the 8th week of lactation. Feed and nutrient intakes were recorded, and Ca, P, Mg in serum and urine, urine pH, serum NEFA and milk production in early lactation were compared. Feeding rumen-protected rice bran before calving improved the recovery of calcaemia after calving and had a positive effect on DMI after calving. The moderately low DCAD diet did not positively influence serum Ca at calving. Calcaemia recovered even later than in control, and cows showed reduced DMI post-calving and higher NEFA levels in the first 36 h after calving. This moderate reduction of DCAD did not provide an intermediate prevention level indicating that DCAD needs to be reduced to the recommended levels to prevent milk fever. Rumen-protected rice bran may be a suitable feed to reduce hypocalcaemia post-partum and can be included in pre-calving compound feeds representing a palatable alternative to anionic salts. PMID:24138155

  17. Peripartal calcium homoeostasis of multiparous dairy cows fed rumen-protected rice bran or a lowered dietary cation/anion balance diet before calving

    PubMed Central

    Martín-Tereso, J; ter Wijlen, H; van Laar, H; Verstegen, M W A

    2014-01-01

    Milk fever is one of the most important metabolic diseases in dairy cattle. Reducing the dietary cation/anion balance (DCAD) with anionic salts is a common prevention strategy. However, many small European farms cannot use total mixed rations (TMR) in the close-up period. Including anionic salts in compound feeds can result in feed refusals and moderate inclusions to preserve feed palatability results in insufficient DCAD reduction. Rumen-protected rice bran induces the adaptation of Ca metabolism in dairy cows by a reduction of Ca intake and by a reduction of the availability of dietary Ca. In the presence of a negative control, rumen-protected rice bran (2.8 kg/day) was compared with a lowered DCAD diet (from 269 to 4 meq/kg DM) in their effect to prevent milk fever. In a randomized block design, 45 multiparous Holstein cows joined the trial sequentially from 21 days before the expected calving date and were observed until the 8th week of lactation. Feed and nutrient intakes were recorded, and Ca, P, Mg in serum and urine, urine pH, serum NEFA and milk production in early lactation were compared. Feeding rumen-protected rice bran before calving improved the recovery of calcaemia after calving and had a positive effect on DMI after calving. The moderately low DCAD diet did not positively influence serum Ca at calving. Calcaemia recovered even later than in control, and cows showed reduced DMI post-calving and higher NEFA levels in the first 36 h after calving. This moderate reduction of DCAD did not provide an intermediate prevention level indicating that DCAD needs to be reduced to the recommended levels to prevent milk fever. Rumen-protected rice bran may be a suitable feed to reduce hypocalcaemia post-partum and can be included in pre-calving compound feeds representing a palatable alternative to anionic salts. PMID:24138155

  18. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  19. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  20. Folk Belief Theory, the Rigor Gap, and the Achievement Gap

    ERIC Educational Resources Information Center

    Torff, Bruce

    2014-01-01

    Folk belief theory is suggested as a primary cause for the persistence of the achievement gap. In this research-supported theory, culturally specified folk beliefs about learning and teaching prompt educators to direct more rigorous curriculum to high-advantage students but not to low-advantage students, resulting in impoverished pedagogy in…

  1. Temperature-Sensitive Aqueous Surfactant Two-Phase System Formation in Cationic-Anionic Surfactant Systems

    E-print Network

    Huang, Jianbin

    Temperature-Sensitive Aqueous Surfactant Two-Phase System Formation in Cationic-Anionic Surfactant in a series of conventional mixed cationic-anionic surfactant systems. On the basis of the investigations-sorbitol, urea, or NaBr. The hydrophobic interaction and cooperative effect between cationic and anionic

  2. Charge Screening between Anionic and Cationic Surfactants in Ionic Lang G. Chen and Harry Bermudez*

    E-print Network

    Charge Screening between Anionic and Cationic Surfactants in Ionic Liquids Lang G. Chen and Harry of mixtures of anionic (sodium dodecylsulfate, SDS) and cationic (dodecylammonium bromide, DTAB) surfactants,2 On the basis of the type of headgroups in surfactants, various combinations of nonionic/cationic/anionic

  3. Enantioselective 1,1-Arylborylation of Alkenes: Merging Chiral Anion Phase Transfer with Pd Catalysis

    E-print Network

    Toste, Dean

    of continuous Coulombic attraction between the chiral anion and a cationic metal center, we hypothesizedEnantioselective 1,1-Arylborylation of Alkenes: Merging Chiral Anion Phase Transfer with Pd enantiose- lective using an unprecedented example of cooperative chiral anion phase transfer and transition

  4. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  5. [Liver and drug metabolism].

    PubMed

    Mikheeva, O M

    2011-01-01

    Liver metabolism aims to change the biological activity of drugs to make them water-soluble to be excreted with bile and urine. The degree of metabolism depends on fermentative capacity for each drag (P450 fermentative system is localized in microsomal fraction of hepatocyte). Metabolism ability also changes under the influence of other substances. Liver diseases lead up to decrease of drug clirens and to increase the semi-excretion time because of reduction of liver metabolism. Therefore the drags usually undergoing intensive liver metabolism necessitate a high risk of overdose when liver diseases present. On the other hand no risk of overdose exist when drags with low liver metabolism are used. PMID:21560652

  6. Metabolic Syndrome and Migraine

    PubMed Central

    Sachdev, Amit; Marmura, Michael J.

    2012-01-01

    Migraine and metabolic syndrome are highly prevalent and costly conditions. The two conditions coexist, but it is unclear what relationship may exist between the two processes. Metabolic syndrome involves a number of findings, including insulin resistance, systemic hypertension, obesity, a proinflammatory state, and a prothrombotic state. Only one study addresses migraine in metabolic syndrome, finding significant differences in the presentation of metabolic syndrome in migraineurs. However, controversy exists regarding the contribution of each individual risk factor to migraine pathogenesis and prevalence. It is unclear what treatment implications, if any, exist as a result of the concomitant diagnosis of migraine and metabolic syndrome. The cornerstone of migraine and metabolic syndrome treatments is prevention, relying heavily on diet modification, sleep hygiene, medication use, and exercise. PMID:23181051

  7. DREAMS of metabolism.

    PubMed

    Soh, Keng Cher; Hatzimanikatis, Vassily

    2010-10-01

    Metabolic networks have been studied for several decades, and sophisticated computational frameworks are needed to augment experimental approaches to harness these complex networks. BNICE (Biochemical Network Integrated Computational Explorer), a computational approach for the discovery of novel biochemical pathways that is based on biochemical transformations, overcomes many of the current limitations. BNICE and similar frameworks can be used in several different areas: (i) 'Design' of novel pathways for metabolic engineering; (ii) 'Retrosynthesis' of metabolic compounds; (iii) 'Evolution' analysis between metabolic pathways of different organisms; (iv) 'Analysis' of metabolic pathways; (v) 'Mining' of omics data; and (vi) 'Selection' of targets for enzyme engineering. Here, we discuss the issues and challenges in building such frameworks as well as the gamut of applications in biotechnology, metabolic engineering and synthetic biology. PMID:20727603

  8. Mevalonate metabolism in cancer.

    PubMed

    Gruenbacher, Georg; Thurnher, Martin

    2015-01-28

    Cancer cells are characterized by sustained proliferative signaling, insensitivity to growth suppressors and resistance to apoptosis as well as by replicative immortality, the capacity to induce angiogenesis and to perform invasive growth. Additional hallmarks of cancer cells include the reprogramming of energy metabolism as well as the ability to evade immune surveillance. The current review focuses on the metabolic reprogramming of cancer cells and on the immune system's capacity to detect such changes in cancer cell metabolism. Specifically, we focus on mevalonate metabolism, which is a target for drug and immune based cancer treatment. PMID:24467965

  9. Evolution of Metabolism

    NASA Astrophysics Data System (ADS)

    Nealson, K. H.; Rye, R.

    2003-12-01

    This chapter is devoted to the discussion of the evolution of metabolism, with a particular focus towards redox metabolism and the utilization of redox energy by life. We will deal with various aspects of metabolism that involve direct interaction with, and the extraction of energy from, the environment (catabolic metabolism) and will talk briefly of the reactions that affect mineral formation and dissolution. However, we will de-emphasize the aspects related to the formation of complex molecules and organisms. To some, it will be refreshingly brief; to others, somewhat superficial. This is unavoidable, as our knowledge of the details of the evolution of metabolism is at best slim. However, by piecing together aspects of the properties and history of the Earth and coupling these with what we know of today's metabolism, it is possible to at least frame several different hypotheses that, with time, should be possible to test and modify so that the next writing of this chapter might contain some intellectual entrees and not just the appetizers. Any discussion of metabolic evolution must occur in concert with a consideration of the Earth - the understanding of the forces that drove the co-evolution of life and Earth can be achieved only by considering them together. This theme will pervade this chapter, and any real understanding of the evolution of metabolism must be inexorably coupled to, and consistent with, the geological record of the Earth.The first aspect of evolution concerns the metabolic participants as we know them now (i.e., a definition of metabolic diversity), and the second concerns the sequence of events that have led to this remarkable metabolic diversity. The first part is fairly straightforward: a discussion of the domains of life, and the metabolic achievements that are expressed in the various domains, and relating metabolism to biogeochemical processes whenever possible. The second part is much more problematic. While it is possible to make up nearly any story regarding the evolution of metabolism (and nearly all have been attempted!), the starting point of life is not known (great debates still rage as to the nature and origin of the first living systems), and it is not a trivial matter to specify the sequence and timing of metabolic innovations. As will be discussed below, genetic and genomic data have revealed that genetic exchange between organisms has been so pervasive that it has essentially uncoupled the evolution of taxonomic groups from the evolution of metabolic processes, thus, obscuring the evolutionary trail with blurred signals. Given these challenges, it may be prudent at this time to admit what we do not know, and lay out the challenges for the coming years.

  10. [Metabolic functions and sport].

    PubMed

    Riviere, Daniel

    2004-01-01

    Current epidemiological studies emphasize the increased of metabolic diseases of the adults, such as obesity, type-2 diabetes and metabolic syndromes. Even more worrying is the rising prevalence of obesity in children. It is due more to sedentariness, caused more by inactivity (television, video, games, etc.) than by overeating. Many studies have shown that regular physical activities benefit various bodily functions including metabolism. After dealing with the major benefits of physical exercise on some adult metabolic disorders, we focus on the prime role played by physical activity in combating the public health problem of childhood obesity. PMID:15651421

  11. Eicosanoids in Metabolic Syndrome

    PubMed Central

    Hardwick, James P.; Eckman, Katie; Lee, Yoon Kwang; Abdelmegeed, Mohamed A.; Esterle, Andrew; Chilian, William M.; Chiang, John Y.; Song, Byoung-Joon

    2013-01-01

    Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism.The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS. PMID:23433458

  12. GAP JUNCTION FUNCTION AND CANCER

    EPA Science Inventory

    Gap Junctions (GJs) provide cell-to-cell communication (GJIC) of essential metabolites and ions. Js allow tissues to average responses, clear waste products, and minimize the effects of xenobiotics by dilution and allowing steady-state catabolism. any chemicals can adversely affe...

  13. Closing the Teacher Quality Gap

    ERIC Educational Resources Information Center

    Haycock, Kati; Crawford, Candace

    2008-01-01

    Schools and districts rarely have a fair distribution of teacher talent. Poor children and black children are less likely to be taught by the strongest teachers and more likely to be taught by the weakest. Several districts have implemented programs to reduce the teacher quality gap. Hamilton County, Tennessee, launched an initiative that included…

  14. The Widening Income Achievement Gap

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2013-01-01

    Has the academic achievement gap between high-income and low-income students changed over the last few decades? If so, why? And what can schools do about it? Researcher Sean F. Reardon conducted a comprehensive analysis of research to answer these questions and came up with some striking findings. In this article, he shows that income-related…

  15. Bridging the Multimedia Generation Gap.

    ERIC Educational Resources Information Center

    Hurn, Janet; Thibeault, Nancy

    This paper outlines efforts at Miami University (Middletown, Ohio) to bridge the "generation gap" between students who are comfortable using computer technologies and the faculty and staff who are reluctant to use them. Two Instructional Technology Fairs were held on campus (in Springs 1995 and 1996) to show faculty, staff, students, and community…

  16. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  17. Multiple input electrode gap controller

    DOEpatents

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  18. Multiple input electrode gap controller

    DOEpatents

    Hysinger, Christopher L. (Austin, TX); Beaman, Joseph J. (Austin, TX); Melgaard, David K. (Albuquerque, NE); Williamson, Rodney L. (Albuquerque, NE)

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  19. Optimization based automated curation of metabolic reconstructions

    PubMed Central

    Satish Kumar, Vinay; Dasika, Madhukar S; Maranas, Costas D

    2007-01-01

    Background Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis) with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them. Results In this work, an optimization based procedure is proposed to identify and eliminate network gaps in these reconstructions. First we identify the metabolites in the metabolic network reconstruction which cannot be produced under any uptake conditions and subsequently we identify the reactions from a customized multi-organism database that restores the connectivity of these metabolites to the parent network using four mechanisms. This connectivity restoration is hypothesized to take place through four mechanisms: a) reversing the directionality of one or more reactions in the existing model, b) adding reaction from another organism to provide functionality absent in the existing model, c) adding external transport mechanisms to allow for importation of metabolites in the existing model and d) restore flow by adding intracellular transport reactions in multi-compartment models. We demonstrate this procedure for the genome- scale reconstruction of Escherichia coli and also Saccharomyces cerevisiae wherein compartmentalization of intra-cellular reactions results in a more complex topology of the metabolic network. We determine that about 10% of metabolites in E. coli and 30% of metabolites in S. cerevisiae cannot carry any flux. Interestingly, the dominant flow restoration mechanism is directionality reversals of existing reactions in the respective models. Conclusion We have proposed systematic methods to identify and fill gaps in genome-scale metabolic reconstructions. The identified gaps can be filled both by making modifications in the existing model and by adding missing reactions by reconciling multi-organism databases of reactions with existing genome-scale models. Computational results provide a list of hypotheses to be queried further and tested experimentally. PMID:17584497

  20. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-?-pregnane diol (5-?-pregnane-3?-20?diol), estradiol (3,17?-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3?-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3?-ol-20-one), and pregnenolone acetate (5-pregnen-3?-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  1. Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture.

    PubMed

    Liu, Hong-Tao; Toychiev, Abduqodir H; Takahashi, Nobuyuki; Sabirov, Ravshan Z; Okada, Yasunobu

    2008-05-01

    In the present study, we aimed to evaluate the pathways contributing to ATP release from mouse astrocytes during hypoosmotic stress. We first examined the expression of mRNAs for proteins constituting possible ATP-releasing pathways that have been suggested over the past several years. In RT-PCR analysis using both control and osmotically swollen astrocytes, amplification of cDNA fragments of expected size was seen for connexins (Cx32, Cx37, Cx43), pannexin 1 (Px1), the P2X7 receptor, MRP1 and MDR1, but not CFTR. Inhibitors of exocytotic vesicular release, gap junction hemi-channels, CFTR, MRP1, MDR1, the P2X7 receptor, and volume-sensitive outwardly rectifying chloride channels had no significant effects on the massive ATP release from astrocytes. In contrast, the hypotonicity-induced ATP release from astrocytes was most effectively inhibited by gadolinium (50 muM), an inhibitor of the maxi-anion channel, which has recently been shown to serve as a pathway for ATP release from several other cell types. Thus, we propose that the maxi-anion channel constitutes a major pathway for swelling-induced ATP release from cultured mouse astrocytes as well. PMID:18414449

  2. The role of catalyst precursor anions in coal gasification

    SciTech Connect

    Abotsi, G.M.K.

    1992-01-01

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a lignite and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{minus}), chloride (Cl{minus}), nitrate (NO{sub 3}{minus}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength.

  3. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies. PMID:25962480

  4. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  5. Properties of anionic surfactants affecting biodegradation of hydrocarbons

    SciTech Connect

    Rouse, J.D.; Sabatini, D.A.; Harwell, J.H.

    1995-12-01

    Manometric respirometers were used to evaluate the influences of a wide range of anionic surfactants on microbial activity in systems containing a hydrocarbon substrate (naphthalene) and an activated sludge seed. Results showed that sulfated surfactants served as preferred substrates in the presence of naphthalene. Sulfonated surfactants, however, did not readily serve as substrates. Testing with a series of twin-head group anionic surfactants (diphenyl oxide disulfonates) indicated that microbial oxidation rates of naphthalene are generally enhanced at surfactant levels above the critical micelle concentration (CMC) in systems containing surfactants that have mid-range tail lengths (C10 to C16). With sodium dodecylbenzene sulfonate, however, oxidation of naphthalene was largely suppressed at supra-CMC levels. Results of sorption experiments of surfactants onto biomass demonstrated that direct interactions of surfactants with microorganisms are occurring.

  6. Tryptophan-based chromophore in fluorescent proteins can be anionic

    PubMed Central

    Sarkisyan, Karen S.; Yampolsky, Ilia V.; Solntsev, Kyril M.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2012-01-01

    Cyan fluorescent proteins (CFP) with tryptophan66-based chromophore are widely used for live cell imaging. In contrast to green and red fluorescent proteins, no charged states of the CFP chromophore have been described. Here, we studied synthetic CFP chromophore and found that its indole group can be deprotonated rather easily (pKa 12.4).We then reproduced this effect in the CFP mCerulean by placing basic amino acids in the chromophore microenvironment. As a result, green-emitting variant with an anionic chromophore and key substitution Val61Lys was obtained. This is the first evidence strongly suggesting that tryptophan-based chromophores in fluorescent proteins can exist in an anionic charged state. Switching between protonated and deprotonated Trp66 in fluorescent proteins represents a new unexplored way to control their spectral properties. PMID:22934131

  7. The noble resists composed of cationic and anionic polymerizable PAGs

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hoon; Seo, Dong Chul; Joo, Hyun Sang; Jung, Sung Do; Kim, Jin Ho; Lee, Seung Jae; Park, Ran Ra; Han, JoonHee; Park, Joo Hyeon

    2008-11-01

    A recent new class of resists referred to as polymer-bound PAG resists, which have slightly increased PAG loading and reduced photo acid diffusion relative to tranditional blended CAR systems have shown promise in improving resolution, faster photospeed, higher stablility and LER. we have developed two kinds of PAG, which are cationic and anionic polymerizable PAGs. One is that the polymer backbone is directly connected with cationic part in PAG and the other is that the polymer backbone is directly connected with anionic part in PAG. In this study we described the synthetic process of polymerizable PAGs and the polymerization process to make PAG-bound polymers and then, the lithography properties of resists composed of PAG-bound polymer were reffed to.

  8. Macrocyclic bis(ureas) as ligands for anion complexation

    PubMed Central

    Kretschmer, Claudia; Dittmann, Gertrud

    2014-01-01

    Summary Two macrocyclic bis(ureas) 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3) molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) and act as complexing agents towards a series of anions (Cl?, Br?, I?, NO3 ?, HSO4 ?). The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions. PMID:25161744

  9. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers.

    PubMed

    Detro-Dassen, Silvia; Schänzler, Michael; Lauks, Heike; Martin, Ina; zu Berstenhorst, Sonja Meyer; Nothmann, Doreen; Torres-Salazar, Delany; Hidalgo, Patricia; Schmalzing, Günther; Fahlke, Christoph

    2008-02-15

    The SLC26 gene family encodes multifunctional transport proteins in numerous tissues and organs. Some paralogs function as anion exchangers, others as anion channels, and one, prestin (SLC26A5), represents a membrane-bound motor protein in outer hair cells of the inner ear. At present, little is known about the molecular basis of this functional diversity. We studied the subunit stoichiometry of one bacterial, one teleost, and two mammalian SLC26 isoforms expressed in Xenopus laevis oocytes or in mammalian cells using blue native PAGE and chemical cross-linking. All tested SLC26s are assembled as dimers composed of two identical subunits. Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. Our results indicate that an evolutionarily conserved dimeric quaternary structure represents the native and functional state of SLC26 transporters. PMID:18073211

  10. Theoretical study of interactions between electron-deficient arenes and coinage metal anions.

    PubMed

    Chen, Yishan; Wang, Fan

    2015-03-01

    The binding behavior of coinage metal anions with some electron-deficient arenes has been investigated by MP2 calculations, and the character of interactions in these complexes has been examined by NBO analysis. The results indicate that coinage metal anions can interact with electron-deficient arenes to form anion-?, strong ?-type and hydrogen-bonding complexes. The ?-type structure is the global minimum for triazine, trifluorotriazine, hexafluorobenzene and tricyanobenzene, and the hydrogen-bonding structure is the global minimum for trifluorobenzene. There exist some differences in the stability of anion-? complexes for coinage metal anions: the anion-? complexes of Au(-) are minima expect for triazine complex; the anion-? complexes of Ag(-) are minima expect for tricyanobenzene complex; and the anion-? complexes of Cu(-) are not minima expect for trifluorobenzene complex. The binding strength of anion-? and hydrogen-bonding complexes for Au(-) is larger than that for Ag(-) and Cu(-), but the binding strength of ? complex displays a different sequence: Cu(-) > Au(-) > Ag(-). The binding behavior of coinage metal anions is more similar to that of F(-) than that of Cl(-) and Br(-). The relaxed potential energy surface scans for some selected systems have been performed to help understand the interactions between coinage metal anions with electron-deficient arenes. PMID:25663520

  11. Gap Test Calibrations and Their Scaling

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2011-06-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.

  12. Gaps"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study investigated the effect of daily quizzes on the performance of college students. Students in an introductory psychology course used their own wireless-enabled devices to take short Internet-based quizzes at the beginning of every class. The quiz items were drawn approximately equally from material covered in the readings and the…

  13. [Dynamics of ultrastructure changes in sheet plate fiber flax with braking transport assimilate by nitrate-anion].

    PubMed

    Abdrakhimov, F A; Batasheva, S N; Bakirova, G G; Chikov, V I

    2008-01-01

    Changes in leaf mesophyll cell ultrastructure under nitrate feeding into the apoplast of common flax (Linum usitatissimum L.) in the form of 50 mM KNO3 solution were studied. In 30 min after the beginning of nitrate feeding through the transpiration water stream, swelling of mitochondrial and microbodies, clarification of their matrices, and curling of dictyosome discs into annular structures were observed. These events characterized symplastic domain formed by mesophyll, bundle sheath and phloem parenchyma cells, and were not found in companion cell-sieve element complex. Simultaneously, formation of large central vacuoles in companion cells was noted. Restoration of organelle structures in assimilating cells and phloem parenchyma in 1-2 h after treatment was accompanied by enhancement of morphological changes in phloem elements and companion cells and signs of plasmolysis in the mesophyll cells. It was supposed that the two-phase character of changes in leaf organelle ultrastructure and photosynthesis might reflect duality of leaf cell response to nitrate ion. The rapid alterations of the structure can be coupled with direct influence of the anion on cell metabolism and(or) with signal-regulatory functions of oxidized nitrogen forms, while the slower ones reflect the result of suppression of photoassimilate export from leaves by the anion. PMID:18822790

  14. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin (DeKalb, IL); Horwitz, E. Philip (Naperville, IL); Bond, Andrew H. (Tallahassee, FL)

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  15. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  16. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes.

    USGS Publications Warehouse

    Forester, R.M.

    1986-01-01

    The mineralogy of evaporite and other precipitated minerals has provided traditional sources of information about the major dissolved ion composition of ancient lakes. The paleocompositional resolving power of these methods is generally greatest in high-salinity lakes. Ostracodes live in dilute saline lakes where a species occurrence is determined by the relative proportions of the lake's major dissolved anions, so that each species describes specific areas on an anion trilinear diagram. The upper salinity tolerance of each species depends upon the types of major anions in solution and is therefore anion-specific. Knowledge about both anion and anion-salinity tolerances of an ostracode may ultimately provide a means of estimating absolute anion concentrations in paleolakes. Because ostracodes are common fossils in lake sediments, they provide an important new source of original paleocompositional information suitable for many geologic, climatic, geochemical, and paleontologic studies. -from Author

  17. Naked-eye detection of biologically important anions by a new chromogenic azo-azomethine sensor

    NASA Astrophysics Data System (ADS)

    Rezaeian, Khatereh; Khanmohammadi, Hamid

    2014-12-01

    A new chromogenic azo-azomethine sensor, containing active phenolic sites, has been designed and synthesized via condensation reaction of N,N,N?,N?-tetrakis(2-aminoethyl)-2,2-dimethyl propane-1,3-diamine with 1-(3-formyl-4-hydroxyphenylazo)-4-nitrobenzene. The anion recognition ability of the synthesized receptor was evaluated using UV-Vis spectroscopy and 1H NMR technique. The anion recognition studies exhibited that the receptor acts as a sensor for biologically important anions such as F-, AcO- and H2PO4- over other anions. The binding stoichiometry between sensor and anions was found to be 1:2. 1H NMR experiment revealed that sensor recognizes anions via H-bonds and subsequent deprotonation to elicit a vivid color change. Interestingly, the sensory system not only let for the naked eye detection without any spectroscopic instrumentation but also helped to discriminate between anions.

  18. Synthesis and Characterization of Polyamine Bicycles for Anion Binding

    E-print Network

    Morehouse, Paula Kay

    2007-10-09

    titrations in aqueous solution at pH 3.0 (pH 4.0 for F-), revealed Log K = 3.6 (F-), 1.7 (Cl-), 1.0 (Br-), and less than 1.0 (I-). A 1:2 ligand-to-anion binding mode was observed for the SO42- ion, with respective binding constants of log 4.6 and 2...

  19. Anion receptor compounds for non-aqueous electrolytes

    DOEpatents

    Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

    2000-09-19

    A new family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  20. Anion Exchange Membranes: Current Status and Moving Forward

    SciTech Connect

    Hickner, MA; Herring, AM; Coughlin, EB

    2013-10-29

    This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727-1735, 2013

  1. Biosorption of anionic metal complexes Hui Niu and Bohumil Volesky*

    E-print Network

    Volesky, Bohumil

    such as crab shells sorbed well anionic gold cyanide (AuCN2 - ), selenate (SeO4 2- ), chromate (CrO4 2 (VO4 3- ), selenate (SeO4 2- ), and gold cyanide (AuCN2 - )1,2 conventionally recovered - ), selenate (SeO4 2- ), chromate (CrO4 2- ), as well as vanadate (VO4 3- ) by waste crab shells. #12;2 2

  2. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  3. The sorption of quercetin by high-basicity anion exchangers

    NASA Astrophysics Data System (ADS)

    Udalova, N. A.; Karpov, S. I.; Selemenev, V. F.; Sharmar, I. A.

    2009-06-01

    The sorption of quercetin on anionites with various porosities in the OH- and Cl- forms was studied under static conditions. The equilibrium (distribution coefficients K p) and kinetic (effective diffusion coefficients D eff) parameters of quercetin sorption on AV-17-2P and AV-17-6M anionites in the Cl- and OH- forms were calculated. The mechanism of quercetin interactions with the anion exchangers was studied by electron microscopy and IR spectroscopy.

  4. A method for production of new anion exchangers

    NASA Astrophysics Data System (ADS)

    Behrendt, G.; Hunger, H. D.

    1991-12-01

    The invention relates to a method for the production of new anion exchangers that can be used in molecular biology, genetic engineering, biotechnology, and phytopathology. According to the invention, halogen-containing polyurethanes are reacted with one or more tertiary amines. By the method, polyurethane shapes with positive surface charges are produced from preformed shapes, with preservation of the form and properties thereof. The products have thermally stable bonds with biomolecules together with high binding capacity.

  5. Interactions between anionic and neutral bromine and rare gas atoms

    SciTech Connect

    Buchachenko, Alexei A.; Grinev, Timur A.; Wright, Timothy G.; Viehland, Larry A.

    2008-02-14

    High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic {sup 2}{sigma}{sup +} and {sup 2}{pi} electronic states arising from the ground-state Br({sup 2}P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br{sup -}-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.

  6. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  7. METABOLISM OF CARBAMATE INSECTICIDES

    EPA Science Inventory

    The results of studies conducted to determine the metabolic fate of carbamate insecticides and its toxicological significance are presented. Methomyl metabolism in rats was investigated in detail as was Croneton in the rat, cow, pig and chicken. Carbaryl and carbofuran were admin...

  8. Comprehensive metabolic panel

    MedlinePLUS

    Metabolic panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... McPherson RA, Pincus MR. Disease/organ panels. McPherson RA, ... . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:appendix 7.

  9. METABOLIC PATHWAY REGULATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research efforts in the past two decades have revealed the complex mechanisms employed by fungi to control gene activity. The tremendous expansion in our knowledge of the regulation of nitrogen metabolism and carbon metabolism, due largely to the powerful combination of genetics, biochemistry, and ...

  10. Large-gap quantum spin Hall states in decorated stanene grown on a substrate

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Tang, Peizhe; Zhang, Shou-Cheng

    2015-08-01

    Two-dimensional stanene is a promising candidate material for realizing a room-temperature quantum spin Hall (QSH) effect. Monolayer stanene has recently been fabricated by molecular beam epitaxy, but shows metallic features on a Bi2Te3 (111) substrate, which motivates us to study the important influence of the substrate. Based on first-principles calculations, we find that varying substrate conditions considerably tunes the electronic properties of stanene. The supported stanene gives either trivial or QSH states, with significant Rashba splitting induced by inversion asymmetry. More importantly, large-gap (up to 0.3 eV) QSH states are realizable when growing stanene on various substrates, like the anion-terminated (111) surfaces of SrTe, PbTe, BaSe, and BaTe. These findings provide significant guidance for future research of stanene and large-gap QSH states.

  11. Determination of selected anions in water by ion chromatography

    USGS Publications Warehouse

    Fishman, Marvin J.; Pyen, Grace

    1979-01-01

    Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rainwater and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram. Minimum detection limits range from 0.01 mg/L for fluoride to 0.20 mg/L for chloride and sulfate. Relative standard deviations were less than 9% for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 mg/L in rainfall samples. Precision for fluoride ranged from 12 to 22%, but is attributed to the low concentrations in these samples. The other anions were not detected. To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103%. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104%. No recovery data were obtained for nitrite. Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography. (USGS).

  12. Depth profile of halide anions under highly charged biological membrane

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok

    2015-03-01

    Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.

  13. Anion-Dependent Stimulation of CYP3A4 Monooxygenase.

    PubMed

    Sevrioukova, Irina F; Poulos, Thomas L

    2015-07-01

    We co-crystallized human cytochrome P450 3A4 (CYP3A4) with progesterone (PRG) under two different conditions, but the resulting complexes contained only one PRG molecule bound to the previously identified peripheral site. A novel feature in one of our structures is a citrate ion, originating from the crystallization solution. The citrate-binding site is located in an area where the N-terminus splits from the protein core and, thus, is suitable for the interaction with the anionic phospholipids of the microsomal membrane. We investigated how citrate affects the function of a soluble CYP3A4 monooxygenase system consisting of equimolar amounts of CYP3A4 and cytochrome P450 reductase (CPR). Citrate was found to affect the properties of both redox partners and stimulated their catalytic activities in a concentration-dependent manner via a complex mechanism. CYP3A4-substrate binding, reduction of CPR with NADPH, and interflavin and interprotein electron transfer were identified as citrate-sensitive steps. Comparative analysis of various negatively charged organic compounds indicated that, in addition to alterations caused by changes in ionic strength, anions modulate the properties of CYP3A4 and CPR through specific anion-protein interactions. Our results help to better understand previous observations and provide new mechanistic insights into CYP3A4 function. PMID:26066995

  14. Late transition metal anions acting as p-metal elements

    NASA Astrophysics Data System (ADS)

    Köhler, Jürgen; Whangbo, Myung-Hwan

    2008-04-01

    A brief review is given for those extended solids of transition metal compounds in which their transition metal atoms are best described as existing as anions. Analyses of the electronic structures of metal-rich fluorides and oxides containing octahedral metallo-complexes [MIn 6- xSn x] (M = Fe, Ni, Ru, Os, Ir and Pt) indicate that their transition metal atoms M are present as anions with the valence electron configuration ( n + 1)s 2nd 10. In compounds RE 2M 2In (RE = rare earth element, M = Pt, Cu and Au), Ca 5Au 4, Ca 3Hg 2 and Ca 5M 3 (M = Cu, Au, Zn, Cd and Hg), the transition metal atoms exist as dimeric Zintl anions with the valence electron configuration ( n + 1)s 2nd 10( n + 1)p 1. Consequently, the frontier orbitals of these compounds are not described by the transition metal nd orbitals, but by the transition metal ( n + 1)p orbitals. A similar situation is found for most 18-electron half-Heusler compounds (e.g., ScAuSn), for which the valence electron configuration of the transition metal is given by ( n + 1)s 2nd 10( n + 1)p 2.

  15. Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents

    SciTech Connect

    Chouyyok, Wilaiwan; Wiacek, Robert J.; Pattamakomsan, Kanda; Sangvanich, Thanapon; Grudzien, Rafal M.; Fryxell, Glen E.; Yantasee, Wasanna

    2010-03-26

    Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to ~ 10 µg/L of phosphorus, which is lower than the EPA’s established freshwater contaminant level for phosphorous (20 µg/L).

  16. Solubility and transport of cationic and anionic patterned nanoparticles.

    PubMed

    Su, Jiaye; de la Cruz, Monica Olvera; Guo, Hongxia

    2012-01-01

    We analyze bulk diffusion and transport through hydrophobic nanochannels of nanoparticles (NPs) with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. Ten different charge pattern types including Janus charged-hydrophobic NPs are studied. The cationic NPs are more affected by the patterns and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. The NP-water Coulomb interaction of anionic NPs in the bulk, which are much stronger than the hydrophobic NP-water interactions, are stronger for NPs with higher localized charge, and stronger than in the cationic NPs counterparts. The diffusion and transport of anionic NPs such as proteins and protein charge ladders with the same total charge but different surface charge patterns are slowest for the highest localized charge pattern, which also adsorb strongest onto surfaces. Our model demonstrates the separation (by reverse osmosis, capillary electrophoresis, or chromatography) of cationic NPs, including proteins with equal net charge but different surface charge distributions. PMID:22400574

  17. Solubility and transport of cationic and anionic patterned nanoparticles

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Olvera de La Cruz, Monica; Guo, Hongxia

    2012-01-01

    We analyze bulk diffusion and transport through hydrophobic nanochannels of nanoparticles (NPs) with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. Ten different charge pattern types including Janus charged-hydrophobic NPs are studied. The cationic NPs are more affected by the patterns and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. The NP-water Coulomb interaction of anionic NPs in the bulk, which are much stronger than the hydrophobic NP-water interactions, are stronger for NPs with higher localized charge, and stronger than in the cationic NPs counterparts. The diffusion and transport of anionic NPs such as proteins and protein charge ladders with the same total charge but different surface charge patterns are slowest for the highest localized charge pattern, which also adsorb strongest onto surfaces. Our model demonstrates the separation (by reverse osmosis, capillary electrophoresis, or chromatography) of cationic NPs, including proteins with equal net charge but different surface charge distributions.

  18. Metabolism of halophilic archaea

    PubMed Central

    Falb, Michaela; Müller, Kerstin; Königsmaier, Lisa; Oberwinkler, Tanja; Horn, Patrick; von Gronau, Susanne; Gonzalez, Orland; Pfeiffer, Friedhelm; Bornberg-Bauer, Erich

    2008-01-01

    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature. Electronic supplementary material The online version of this article (doi:10.1007/s00792-008-0138-x) contains supplementary material, which is available to authorized users. PMID:18278431

  19. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  20. Metabolic Syndrome and Cancer

    PubMed Central

    Pothiwala, Pooja; Jain, Sushil K.

    2009-01-01

    Abstract Since its first description by Reavan in 1988, accepted criteria for clinical identification of the components of metabolic syndrome have been promulgated by the National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATP III) and the World Health Organization (WHO) as well as the International Diabetes Federation (IDF), and the American Association of Clinical Endocrinologists (AACE). Insulin resistance is a common metabolic abnormality underlying type 2 diabetes mellitus and is also an independent risk factor for cardiovascular disease. Although ATP III identified cardiovascular disease (CVD) as the primary clinical outcome of the metabolic syndrome, we now have evidence that metabolic syndrome is associated with type 2 diabetes mellitus, polycystic ovarian disease, nonalcoholic fatty liver disease, and possibly some cancers. This review summarizes evidence in support of the relationship between metabolic syndrome and various cancers and possible underlying mechanisms and therapeutic interventions. PMID:19284314

  1. EFFECTS OF SELECTED ANTI-TUMOR-PROMOTING CHEMICALS ON METABOLIC COOPERATION BETWEEN CHINESE HAMSTER V79 CELLS

    EPA Science Inventory

    Many tumor-promoting chemicals inhibit gap junctional communication between cells. we investigated the possibility that antipromoting chemicals may act inversely and enhance gap junctional communication. he V79/metabolic cooperation assay is an in vitro test that measures pp junc...

  2. DIABETES, OBESITY AND METABOLISM INSTITUTE

    E-print Network

    Chisholm, Rex L.

    DIABETES, OBESITY AND METABOLISM INSTITUTE AT NORTHWESTERN MEDICINE THE INSTITUTES AT NORTHWESTERN MEDICINE #12;THE INSTITUTES AT NORTHWESTERN MEDICINE DIABETES, OBESITY AND METABOLISM INSTITUTE AT NORTHWESTERN MEDICINE "As we launch the Diabetes, Obesity and Metabolism Institute at Northwestern Medicine, I

  3. Boron substitution in aluminum cluster anions: magic clusters and reactivity with oxygen.

    PubMed

    Smith, Jordan C; Reber, Arthur C; Khanna, Shiv N; Castleman, A W

    2014-09-18

    We have studied the size-selective reactivity of AlnBm(-) clusters m = 1,2 with O2 to investigate the effect of congener substitution in energetic aluminum clusters. Mixed-metal clusters offer an additional strategy for tuning the electronic and geometric structure of clusters and by substituting an atom with a congener; we may investigate the effect of structural changes in clusters with similar electronic structures. Using a fast-flow tube mass spectrometer, we formed aluminum boride cluster anions and exposed them to molecular oxygen. We found multiple stable species with Al12B(-) and Al11B2(-) being highly resistant to reactivity with oxygen. These clusters behave in a similar manner as Al13(-), which has previously been found to be stable in oxygen because of its icosahedral geometry and its filled electronic shell. Al13(-) and Al12B(-) have icosahedral structures, while Al11B2(-) forms a distorted icosahedron. All three of these clusters have filled electronic shells, and Al12B(-) has a larger HOMO-LUMO gap due to its compact geometry. Other cluster sizes are investigated, and the structures of the AlnB(-) series are found to have endohedrally doped B atoms, as do many of the AlnB2(-) clusters. The primary etching products are found to be a loss of two Al2O molecules, with boron likely to remain in the cluster. PMID:24725222

  4. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  5. Effects of selected anti-tumor-promoting chemicals on metabolic cooperation between Chinese hamster V79 cells.

    PubMed

    Mills, L J; Nelson, S M; Malcolm, A R

    1994-06-01

    Many tumor-promoting chemicals inhibit gap junctional communication between cells. We investigated the possibility that antipromoting chemicals may act inversely and enhance gap junctional communication. The V79/metabolic cooperation assay is an in vitro test that measures gap junctional communication indirectly by determining the extent of metabolic cooperation between mutant and wild-type V79 Chinese hamster lung fibroblasts in culture. Six in vivo antipromoters (caffeine, 3-isobutyl-1-methylxanthine (IBMX), phenidone, dibromoacetophenone, tosylphenylalanine chloromethyl ketone (TPCK), and acetic acid) were tested in this assay to assess their effects on metabolic cooperation. Caffeine, IBMX, phenidone, and dibromoacetophenone had no effect on metabolic cooperation, while TPCK slightly inhibited metabolic cooperation in one V79 assay. Acetic acid appeared to facilitate metabolic cooperation. In tests where an antipromoter was combined with the established tumor promoter phorbol 12-myristate 13-acetate (PMA), acetic acid, caffeine, and IBMX counteracted PMA-induced inhibition of metabolic cooperation, while phenidone, dibromoacetophenone, and TPCK had little effect. These results indicate that some antipromoters interfere with the ability of a tumor-promoting chemical to inhibit metabolic cooperation and suggest that alteration of gap junctional communication can be a mechanism of antipromoter action. PMID:7516098

  6. Gap junctions as electrical synapses.

    PubMed

    Bennett, M V

    1997-06-01

    Gap junctions are the morphological substrate of one class of electrical synapse. The history of the debate on electrical vs. chemical transmission is instructive. One lesson is that Occam's razor sometimes cuts too deep; the nervous system does its operations in a number of different ways and a unitarian approach can lead one astray. Electrical synapses can do many things that chemical synapses can do, and do them just as slowly. More intriguing are the modulatory actions that chemical synapses can have on electrical synapses. Voltage dependence provides an important window on structure function relations of the connexins, even where the dependence may have no physiological role. The new molecular approaches will greatly advance our knowledge of where gap junctions occur and permit experimental manipulation with high specificity. PMID:9278865

  7. Hard-gapped Holographic Superconductors

    E-print Network

    Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

    2009-12-05

    In this work we discuss the zero temperature limit of a "p-wave" holographic superconductor. The bulk description consists of a non-Abelian SU(2) gauge fields minimally coupled to gravity. We numerically construct the zero temperature solution which is the gravity dual of the superconducting ground state of the "p-wave" holographic superconductors. The solution is a smooth soliton with zero horizon size and shows an emergent conformal symmetry in the IR. We found the expected superconducting behavior. Using the near horizon analysis we show that the system has a "hard gap" for the relevant gauge field fluctuations. At zero temperature the real part of the conductivity is zero for an excitation frequency less than the gap frequency. This is in contrast with what has been observed in similar scalar- gravity-gauge systems (holographic superconductors). We also discuss the low but finite temperature behavior of our solution.

  8. Electronic gap sensor and method

    DOEpatents

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  9. Metabolic memory for vascular disease in diabetes.

    PubMed

    Aschner, Pablo J; Ruiz, Alvaro J

    2012-06-01

    Although the terms "metabolic memory" and "legacy effect" have been used to describe the prolonged benefits of good blood glucose control, the former is now recognized as a phenomenon related to the prolonged harm produced mainly by hyperglycemia. At least three randomized clinical trials (Diabetes Control and Complications Trial in type 1 diabetes, United Kingdom Prospective Diabetes Study and Steno-2 in type 2 diabetes) have demonstrated that patients treated intensively for a period of time have a lower risk of micro- and macrovascular complications that persists during subsequent follow-up, even after their tight control has relented and the levels of glycated hemoglobin in the conventionally treated group improve. The mechanisms are not fully understood but most probably relate to the physiopathology of vascular complications of diabetes, and in recent years a unifying theory has been emerging to understand them. The excess superoxide anion produced by the mitochondria in response to hyperglycemia leads through disturbances at the nuclear level to the accumulation of potentially harmful substances such as advanced glycated end-products, protein kinase C, and nuclear factor ?B, which are directly implicated in the development of vascular complications in diabetes. These adverse effects are not reversed when the high blood glucose is corrected, and some may be permanent because of epigenetic changes. Some antidiabetes drugs and antioxidant substances have produced partial reversibility of the mechanisms involved in the metabolic memory at the experimental level, but probably the best strategy is to optimize the metabolic control as early as possible, even before diabetes is diagnosed. PMID:22650227

  10. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results indicate that Y does not mediate benzene formation from ethylene under the experimental conditions employed.

  11. Halogen bonding of electrophilic bromocarbons with pseudohalide anions.

    PubMed

    Rosokha, Sergiy V; Stern, Charlotte L; Swartz, Alan; Stewart, Rory

    2014-07-01

    UV-Vis measurements showed that the interaction of pseudohalide anions, A(-) (A(-) = N3(-), NCO(-), NCS(-)), with electrophilic bromocarbons, R-Br (R-Br = CBr4, CBr3NO2, CBr3CONH2, CBr3H, CBr3F, CBr3CN or C3Br2F6), in solution results in formation of [R-Br, A(-)] complexes. These associates are characterized by intense absorption bands in the 200-350 nm range showing distinct Mulliken correlation with the frontier (HOMO-LUMO) orbitals' separations of the interacting anion and the R-Br electrophile. X-ray crystallographic studies established the principal structural features of the halogen-bonded associates between bromocarbons and polydentate pseudohalide anions. Specifically, in the (Pr4N)NCO·CBr4, (Pr4N)N3·CBr4 and (Pr4N)NCO·CBr3NO2 co-crystals, bromine substituents of the electrophiles are halogen-bonded with the (C?N or N=N) ?-bonds of the cyanate or azide anions. Co-crystals of CBr4 with (Pr4N)NCS show two modes (C-Br···S-C and C-Br···N?C) of halogen bonding, while tribromoacetamide molecules form C-Br···S-C halogen bonds and N-H···N?C hydrogen bonds with thiocyanate anions. Structures and energetics of the halogen-bonded complexes resulted from the M06-2X/6-311+G(dp) computations of various R-Br-A(-) pairs were consistent with the experimental data. These computations revealed that the variations of the intramolecular (C-Br) and intermolecular (Br···A(-)) bond lengths are correlated with the A(-) ? R-Br charge transfer determined from Natural Bond Orbital analysis. Also, the scrutiny of the structural data indicated that the locations of the intermolecular contacts in these associates are determined primarily by the frontier orbital shapes of the halogen-bonded species. Thus, spectral and structural data point out a significant role of molecular-orbital (charge-transfer) interactions in formation of halogen bonded complexes involving pseudohalides and bromocarbons. PMID:24852189

  12. Gapped sampled spectrum Doppler estimation.

    PubMed

    Liu, Paul; Liu, Dong

    2013-07-01

    Duplex and triplex transmit patterns that involve gaps in the spectrum Doppler samples allow pulse repetition frequency increases and/or frame rate increases that cannot be flexibly achieved by conventional uniformly sampled transmit schemes. We make two claims in this paper. First, previously reported nonparametric gapped sampled spectrum estimators are technically feasible for handling the duplex and triplex transmit patterns found in common medical ultrasound applications. Second, such estimators that coherently average within an axial/temporal 2-D window have superior SNR compared with their incoherent counterparts. Moreover, this fact extends to previously reported fully sampled incoherent estimators, which can be improved by using their coherent version. We verify the methods by steady-state flow phantom experiments and in vivo examples of the left clavicular artery and the ascending aorta. For the flow phantom experiments, we use the three quantitative metrics of SNR, root mean square error, and zero frequency peak full-width at half-maximum to evaluate robustness and resolution. Results indicate that through proper parameters, periodically gapped estimators can produce results similar to their fully sampled counterparts. Fourier synthesis of the spectral estimates produces the fully sampled time-domain audio signal, and we give stereo audio examples for the clavicular artery. PMID:25004500

  13. Improved gapped alignment in BLAST.

    PubMed

    Cameron, Michael; Williams, Hugh E; Cannane, Adam

    2004-01-01

    Homology search is a key tool for understanding the role, structure, and biochemical function of genomic sequences. The most popular technique for rapid homology search is BLAST, which has been in widespread use within universities, research centers, and commercial enterprises since the early 1990s. In this paper, we propose a new step in the BLAST algorithm to reduce the computational cost of searching with negligible effect on accuracy. This new step-semigapped alignment-compromises between the efficiency of ungapped alignment and the accuracy of gapped alignment, allowing BLAST to accurately filter sequences with lower computational cost. In addition, we propose a heuristic-restricted insertion alignment-that avoids unlikely evolutionary paths with the aim of reducing gapped alignment cost with negligible effect on accuracy. Together, after including an optimization of the local alignment recursion, our two techniques more than double the speed of the gapped alignment stages in BLAST. We conclude that our techniques are an important improvement to the BLAST algorithm. Source code for the alignment algorithms is available for download at http://www.bsg.rmit.edu.au/iga/. PMID:17048387

  14. Dermal metabolism of topically applied drugs: pathways and models reconsidered.

    PubMed

    Steinsträsser, I; Merkle, H P

    1995-04-01

    The study of skin metabolism is of prime importance not only in the field of transdermal drug delivery but also for the safe and efficient local skin treatment with topically applied substances. Since it has become clear that even peptides may be delivered across the permeation barrier of the stratum corneum, e.g. by means of iontophoresis, phonophoresis or electroporation, the enzymatic barrier of the epidermis deserves more attention as another important limiting factor for the dermal delivery of drugs. The purpose of this review is to give a survey of the major aspects concerning the assessment of the metabolism of xenobiotics in the skin. First, this review will focus on the localization of enzyme activity within the skin. Further, important aspects to be considered for the planning and evaluation of skin metabolism studies will be discussed: differences among species and requirements of skin quality. Among the various metabolic pathways within the skin broad interest will be concentrated on the metabolism of peptide drugs. Therefore, exopeptidases in the skin are the subject of an additional section. Also models for skin metabolism studies will be especially considered including the development of suitable cell culture models. Finally, major gap areas in the investigation of skin metabolism will be identified and summarized, namely; classes of xenobiotics, proteolytic enzyme activity in the skin, validity of experimental models, localization of enzyme activity and physical model development. PMID:7770475

  15. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  16. Metabolic disorders in menopause

    PubMed Central

    Perty?ski, Tomasz; Perty?ska-Marczewska, Magdalena

    2015-01-01

    Metabolic disorders occurring in menopause, including dyslipidemia, disorders of carbohydrate metabolism (impaired glucose tolerance – IGT, type 2 diabetes mellitus – T2DM) or components of metabolic syndrome, constitute risk factors for cardiovascular disease in women. A key role could be played here by hyperinsulinemia, insulin resistance and visceral obesity, all contributing to dyslipidemia, oxidative stress, inflammation, alter coagulation and atherosclerosis observed during the menopausal period. Undiagnosed and untreated, metabolic disorders may adversely affect the length and quality of women's life. Prevention and treatment preceded by early diagnosis should be the main goal for the physicians involved in menopausal care. This article represents a short review of the current knowledge concerning metabolic disorders (e.g. obesity, polycystic ovary syndrome or thyroid diseases) in menopause, including the role of a tailored menopausal hormone therapy (HT). According to current data, HT is not recommend as a preventive strategy for metabolic disorders in menopause. Nevertheless, as part of a comprehensive strategy to prevent chronic diseases after menopause, menopausal hormone therapy, particularly estrogen therapy may be considered (after balancing benefits/risks and excluding women with absolute contraindications to this therapy). Life-style modifications, with moderate physical activity and healthy diet at the forefront, should be still the first choice recommendation for all patients with menopausal metabolic abnormalities. PMID:26327890

  17. Experimental quantification of anion-? interactions in solution using neutral host-guest model systems.

    PubMed

    Ballester, Pablo

    2013-04-16

    Chemical intuition suggests that anions and ?-aromatic systems would repel each other. Typically, we think of cations as being attracted to electron-rich ?-systems of aromatic rings, and the cation-? interaction, a well-established noncovalent interaction, plays an important role in nature. Therefore the anion-? interaction can be considered the opposite of the cation-? interaction. Computational studies of simple models of anion-? interactions have provided estimates of the factors that govern the binding geometry and the binding energy, leading to a general consensus about the nature of these interactions. In order to attract an anion, the charge distribution of the aromatic system has to be reversed, usually through the decoration of the aromatic systems with strongly electron-withdrawing groups. Researchers have little doubt about the existence of attractive anion-? interactions in the gas phase and in the solid state. The bonding energies assigned to anion-? interactions from quantum chemical calculations and gas phase experiments are significant and compare well with the values obtained for cation-? interactions. In solution, however, there are few examples of attractive anion-? interactions. In this Account, I describe several examples of neutral molecular receptors that bind anions in solution either solely through anion-? interactions or as a combination of anion-? interactions and hydrogen bonding. In the latter cases, the strength of the anion-? interaction is indirectly detected as a modulation of the stronger hydrogen bonding interaction (enforced proximity). The dissection of the energy contribution of the anion-? interaction to the overall binding is complex, which requires the use of appropriate reference systems. This Account gives an overview the experimental efforts to determine the binding energies that can be expected from anion-? interactions in solution with examples that center around the recognition of halides. The studies show that anion-? interactions also exist in solution, and the free energy of binding estimated for these attractive interactions is less than 1 kcal/mol for each substituted phenyl groups. The quantification of anion-? interactions in solution relies on the use of molecular recognition model systems; therefore researchers need to consider how the structure of the model system can alter the magnitude of the observed energy values. In addition, the recognition of anions in solution requires the use of salts (ion pairs) as precursors, which complicates the analysis of the titration data and the corresponding estimate of the binding strength. In solution, the weak binding energies suggest that anion-? interactions are not as significant for the selective or enhanced binding of anions but offer potential applications in catalysis and transport within functional synthetic and biological systems. PMID:22621170

  18. Molecular Structures and Energetics of the (ZrO?)n and (HfO?)n (n = 1-4) Clusters and Their Anions

    SciTech Connect

    Li, Shenggang; Dixon, David A.

    2010-02-25

    The group IVB transition-metal dioxide clusters and their anions, (MO?)n and (MO?)n? (M = Zr, Hf; n = 1-4), are studied with coupled cluster (CCSD(T)) theory and density functional theory (DFT). Similar to the results for M = Ti, these oxide clusters have a number of low-lying isomeric structures, which can make it difficult to predict the ground electronic state especially for the anion. Electron affinities for the low-lying structures are calculated and compared with those for M = Ti. Electron affinities of these clusters depend strongly on the cluster structures. Anion photoelectron spectra are calculated for the monomer and dimer and demonstrate the possibility for structural identification at a spectral line width of ?0.05 eV. Electron excitation energies from the low-lying states to the singlet and triplet excited states are calculated self-consistently, as well as by the time-dependent DFT and equation-of-motion coupled cluster (EOM-CCSD) methods. The calculated excitation energies are compared to the band energies of bulk oxides, indicating that the excitation energy is not yet converged for n = 4 for these clusters. The excitation energies of the low-lying isomeric clusters are less than the bulk metal oxide band gaps and suggest that these clusters could be useful photocatalysts with a visible light source.

  19. Topological Valley Currents in Gapped Dirac Materials

    E-print Network

    Lensky, Yuri D.

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced ...

  20. A Reluctance Actuator Gap Disturbance Testbed

    E-print Network

    Meléndez H., Roberto J

    2014-01-01

    We have designed and built a Reluctance Actuator Gap Disturbance Testbed. The testbed emulates the short stroke and long stroke interaction of modern lithography stages. The testbed can be used to impart gap disturbance ...

  1. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity-Surface and Underground § 57.6603 Air gap. At least a 15-foot air gap shall be provided between the...

  2. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity § 56.6603 Air gap. At least a 15-foot air gap shall be provided between the blasting circuit and the electric...

  3. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity-Surface and Underground § 57.6603 Air gap. At least a 15-foot air gap shall be provided between the...

  4. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity-Surface and Underground § 57.6603 Air gap. At least a 15-foot air gap shall be provided between the...

  5. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity-Surface and Underground § 57.6603 Air gap. At least a 15-foot air gap shall be provided between the...

  6. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity § 56.6603 Air gap. At least a 15-foot air gap shall be provided between the blasting circuit and the electric...

  7. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity § 56.6603 Air gap. At least a 15-foot air gap shall be provided between the blasting circuit and the electric...

  8. Closing the Prescription Drug Coverage Gap

    MedlinePLUS

    ... does the coverage gap discount work for brand-name drugs? Companies that make brand-name prescription drugs ... the coverage gap, will all Medicare-covered brand-name prescription drugs be discounted? If a drug company ...

  9. Sites for Phosphates and Iron-Sulfur Thiolates in the First Membranes: 3 to 6 Residue Anion-Binding Motifs (Nests)

    NASA Astrophysics Data System (ADS)

    Milner-White, E. James; Russell, Michael J.

    2005-02-01

    Nests are common three to six amino acid residue motifs in proteins where successive main chain NH groups bind anionic atoms or groups. On average 8% of residues in proteins belong to nests. Nests form a key part of a number of phosphate binding sites, notably the P-loop, which is the commonest of the binding sites for the phosphates of ATP and GTP. They also occur regularly in sites that bind [Fe2S2](RS)4 [Fe3S4](RS)3 and [Fe4S4](RS)4 iron-sulfur centers, which are also anionic groups. Both phosphates and iron-sulfur complexes would have occurred in the precipitates within hydrothermal vents of moderate temperature as key components of the earliest metabolism and it is likely existing organisms emerging in this milieu would have benefited from evolving molecules binding such anions. The nest conformation is favored by high proportions of glycine residues and there is evidence for glycine being the commonest amino acid during the stage of evolution when proteins were evolving so it is likely nests would have been common features in peptides occupying the membranes at the dawn of life.

  10. Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests).

    PubMed

    Milner-White, E James; Russell, Michael J

    2005-02-01

    Nests are common three to six amino acid residue motifs in proteins where successive main chain NH groups bind anionic atoms or groups. On average 8% of residues in proteins belong to nests. Nests form a key part of a number of phosphate binding sites, notably the P-loop, which is the commonest of the binding sites for the phosphates of ATP and GTP. They also occur regularly in sites that bind [Fe2S2](RS)4 [Fe3S4](RS)3and [Fe4S4](RS)4 iron-sulfur centers, which are also anionic groups. Both phosphates and iron-sulfur complexes would have occurred in the precipitates within hydrothermal vents of moderate temperature as key components of the earliest metabolism and it is likely existing organisms emerging in this milieu would have benefited from evolving molecules binding such anions. The nest conformation is favored by high proportions of glycine residues and there is evidence for glycine being the commonest amino acid during the stage of evolution when proteins were evolving so it is likely nests would have been common features in peptides occupying the membranes at the dawn of life. PMID:15889648

  11. Ionic liquids based on polynitrile anions: hydrophobicity, low proton affinity, and high radiolytic resistance combined.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Wishart, James F

    2013-06-13

    Ionic liquids (IL) are being considered as replacements for molecular diluents in spent nuclear fuel reprocessing. This development is hampered by the dearth of constituent anions that combine high hydrophobicity, low metal cation and proton affinity, and radiation resistance. We demonstrate that polynitrile anions have the potential to meet these challenges. Unlike the great majority of organic anions, such polynitrile anions are resistant to oxidative fragmentation during radiolysis, yielding stable N- and C-centered radicals. Moreover, their radical dianions (generated by reduction of the anions) generally undergo protonation in preference to elimination of the cyanide. This is in contrast to fluorinated anions (another large class of anions with low proton affinity), for which radiation-induced release of fluoride is a common occurrence. The "weak spot" of the polynitrile anions appears to be their excited-state dissociation, but at least one of these anions, 1,1,2,3,3-pentacyanopropenide, is shown to resist fragmentation in room temperature radiolysis. We suggest beginning the exploration of ionic liquids based on such polynitrile anions. PMID:23697390

  12. Physiology of iron metabolism.

    PubMed

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2014-06-01

    A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  13. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  14. Gap Year: Time off, with a Plan

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    A gap year allows people to step off the usual educational or career path and reassess their future. According to people who have taken a gap year, the time away can be well worth it. This article can help a person decide whether to take a gap year and how to make the most of his time off. It describes what a gap year is, including its pros and…

  15. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J. (Albuquerque, NM); Roose, Lars D. (Albuquerque, NM)

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  16. Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH.

    PubMed

    Poniková, Slavomíra; Antošová, Andrea; Demjén, Erna; Sedláková, Dagmar; Marek, Jozef; Varha?, Rastislav; Gažová, Zuzana; Sedlák, Erik

    2015-09-01

    We have explored an effect of Hofmeister anions, Na2SO4, NaCl, NaBr, NaNO3, NaSCN and NaClO4, on stability and amyloid fibrillization of hen egg white lysozyme at pH 2.7. The stability of the protein was analyzed by differential scanning calorimetry. The Hofmeister effect of the anions was assessed by the parameter dT trs/d[anion] (T trs, transition temperature). We show that dT trs/d[anion] correlates with anion surface tension effects and anion partition coefficients indicating direct interactions between anions and lysozyme. The kinetic of amyloid fibrillization of lysozyme was followed by Thioflavin T (ThT) fluorescence. Negative correlation between dT trs/d[anion] and the nucleation rate of fibrillization in the presence of monovalent anions indicates specific effect of anions on fibrillization rate of lysozyme. The efficiency of monovalent anions to accelerate fibrillization correlates with inverse Hofmeister series. The far-UV circular dichroism spectroscopy and atomic force microscopy findings show that conformational properties of fibrils depend on fibrillization rate. In the presence of sodium chloride, lysozyme forms typical fibrils with elongated structure and with the secondary structure of the ?-sheet. On the other hand, in the presence of both chaotropic perchlorate and kosmotropic sulfate anions, the fibrils form clusters with secondary structure of ?-turn. Moreover, the acceleration of fibril formation is accompanied by decreased amount of the formed fibrils as indicated by ThT fluorescence. Taken together, our study shows Hofmeister effect of monovalent anions on: (1) lysozyme stability; (2) ability to accelerate nucleation phase of lysozyme fibrillization; (3) amount, and (4) conformational properties of the formed fibrils. PMID:26077813

  17. Predicting metabolic biomarkers of human inborn errors of metabolism

    E-print Network

    Ruppin, Eytan

    REPORT Predicting metabolic biomarkers of human inborn errors of metabolism Tomer Shlomi1.7.08; accepted 25.2.09 Early diagnosis of inborn errors of metabolism is commonly performed through biofluid metabolomics, which detects specific metabolic biomarkers whose concentration is altered due to genomic

  18. Bridging The Gap: From Biometrics to Forensics

    E-print Network

    Bridging The Gap: From Biometrics to Forensics Anil K. Jain Michigan State University http://biometrics.cse.msu.edu February 2, 2015 1 #12;Outline 2 · Questions about identity · What is biometrics? · Why biometric recognition? · Automatic biometric recognition · Challenges · Bridging the gap #12;Bridging The Gap

  19. Gapping in Farsi: A Crosslinguistic Investigation

    ERIC Educational Resources Information Center

    Farudi, Annahita

    2013-01-01

    This dissertation explores a longstanding challenge in work on gapping through the empirical lens of gapping in Farsi (the Tehrani variant of Modern Persian). While gapping has much in common with more uncontroversial elliptical constructions such as VPE and sluicing, it also differs from ellipsis in ways that accounts combining TP or CP…

  20. Calibration curves for some standard Gap Tests

    SciTech Connect

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  1. Closing the Achievement Gap: Four States' Efforts

    ERIC Educational Resources Information Center

    Wixom, Micah Ann

    2015-01-01

    The achievement gap separating economically disadvantaged students from their more advantaged peers disproportionately affects students of color and has been the focus of discussion, research and controversy for more than 40 years. While the gap between black and white students narrowed considerably from the 1950s to the 1980s, that gap has…

  2. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed

    DeBerardinis, Ralph J; Thompson, Craig B

    2012-03-16

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states--often genetically programmed--that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This Review discusses the broad impact of metabolism in cellular function and how modern concepts of metabolism can inform our understanding of common diseases like cancer and also considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  3. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed Central

    DeBerardinis, Ralph J.; Thompson, Craig B.

    2012-01-01

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  4. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit

    PubMed Central

    Gomès, Eric

    2013-01-01

    Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits. PMID:23364938

  5. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2006-10-17

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  6. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2004-03-16

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  7. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  8. [Porphyrin metabolism in men with metabolic syndrome].

    PubMed

    Krivosheev, A B; Kuimov, A D; Peskov, S A; Krivosheeva, I A; Paul', G A

    2006-01-01

    Forty-three patients with metabolic syndrome (MS) were examined. The urinary (uroporphyrin--UP and coproporphyrin--CP) and fecal (CP and protoporphyrin) fractions of porphyrin, as well as the urinary excretion of porphyrin precursors (S-aminolevulinic acid and porphobilinogen) were measured. Porphyrin metabolic disturbances were registered in 33 (76.7%) patients. Nine of these patients displayed such qualitative changes as fraction mismatch (CP/UP < 1; the normal value is 2.1 +/- 0.4), and an increase in the level of porphyrin precursors, while their total urinary porphyrin level was normal. In 24 patients pathological changes in porphyrin exchange were characterized by such quantitative changes as a many-fold increase in urinary and/or fecal porphyrin fraction as well as the development of secondary biochemical coproporphyrinuria syndromes, symptomatic elevation of fecal porphyrin level, and latent late cutaneous porphyria. Changes in porphyrin exchange in patients with metabolic syndrome broaden the scope of disturbances occurring in this syndrome, and allow considering these changes as additional criteria. PMID:17243613

  9. Exercise testing in metabolic myopathies.

    PubMed

    Tarnopolsky, Mark

    2012-02-01

    Metabolic myopathies are a group of genetic disorders specifically affecting glucose/glycogen, lipid, and mitochondrial metabolism. The main metabolic myopathies that are evaluated in this article are the mitochondrial myopathies, fatty acid oxidation defects, and glycogen storage disease. This article focuses on the usefulness of exercise in the evaluation of genetic metabolic myopathies. PMID:22239882

  10. Anion-directed assembly: Framework conversion in dimensionality and photoluminescence

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Liu, Tianfu; Tang, Wang; Wu, Fengjing; Gao, Wenliang; Hu, Changwen

    2007-04-01

    Six novel Ni(II)-fluconazole complexes formulated as (C 13H 11N 6OF 2) 2Ni 2(NO 3) 2 ( 1), (C 13H 12N 6OF 2) 2Ni(NO 3) 2·H 2O ( 2), (C 13H 12N 6OF 2)Ni(SO 4)(DMF) 2(H 2O) ( 3), (C 13H 12N 6OF 2) 2Ni(H 2O) 2(SO 4)·4H 2O ( 4), (C 13H 12N 6OF 2) 2NiCl 2·2(CH 3OH) ( 5), (C 13H 12N 6OF 2) 4Ni 2 (MoO 4) 2·6H 2O ( 6) have been hydrothermally or solvothermally synthesized under similar conditions except different anions and solvents. They are structurally characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Complex 1 is a molecular binuclear nickel cluster. Complex 2 exhibits a one-dimensional (1D) chain linked by double-stranded fluconazole-bridge. Complex 3 shows a novel 1D chain linked by double-stranded fluconazole-bridge and double-stranded SO 42--bridge. Complex 4 shows a three-dimensional (3D) architecture and SO 42- anions occupy the cavity. Complex 5 exhibits a two-dimensional (2D) structure constructed by alternating left- and right-handed helices. Complex 6 exhibits a 3D architecture, in which the 2D layers are pillared by {MoO 4} tetrahedra. Complex 2 can be irreversibly converted to complex 1 in the presence of DMF ( N, N'-dimethyllformamide). Complexes 1, 3 and 6 show antiferromagnetic interactions between the nickel (II) ions The photoluminescence properties of the six complexes indicated that the introduction of different anions can enhance or weaken the intra-ligand transitions of fluconazole.

  11. Anion Photoelectron Spectroscopy of NbW- and W2-

    NASA Astrophysics Data System (ADS)

    Schnepper, D. Alex; Baudhuin, Melissa A.; Leopold, Doreen; Casey, Sean M.

    2015-06-01

    The 488 nm vibrationally-resolved photoelectron spectra of NbW- and W2- are reported. The electron affinity of W2 ( 1?g+ ? 2?u+ ) is found to be 1.118 ± 0.007 eV, which differs from the value reported in a previous anion photoelectron spectroscopic study of W2- (1.46 eV), but was accurately predicted by density functional calculations (1.12 eV). The fundamental vibrational frequency of W2 is measured to be 345 ± 15 wn, in agreement with the value previously reported in matrix resonance Raman studies (337 wn). The W2- anion is measured to have a fundamental frequency of 320 ± 15 wn. Several weak transitions to excited electronic states are seen and tentatively assigned based on calculated energies. NbW has an electron affinity of 0.856 ± 0.007 eV. Vibrational frequencies are found, by Franck-Condon fitting of overlapping transitions, to be 365 ± 20 cm-1 for NbW- and 410 ± 20 cm-1 for NbW. This increase in vibrational frequency upon photodetachment suggests that the extra electron is in an antibonding orbital, leading to ground state assignments of 3? and 2? for the anion and neutral, respectively. These results are compared to those obtained for other Group V and Group VI transition metal dimers and trends are discussed. H. Weidele et al., Chem. Phys. Lett. 237 (1995) 425-431 Z. J. Wu, X. F. Ma, Chem. Phys. Lett. 371 (2003) 35-39 Z. Hu, J.-G. Dong, J. R. Lombardi, D. M. Lindsay, J. Chem. Phys. 97 (1992) 8811-8812

  12. Silica-based strong anion exchange media for protein purification.

    PubMed

    Gu, Feng; Chodavarapu, Kiran; McCreary, Dennis; Plitt, Thomas A; Tamoria, Edward; Ni, Michelle; Burnham, Jennifer J; Peters, Michael; Lenhoff, Abraham M

    2015-01-01

    The main objective of our research was to develop silica-based, polymer-functionalized ion exchange materials for single-use bioprocess applications, with the ultimate goal of achieving maximal binding capacity for target proteins. Herein we report the utilization of Grace(®) wide pore silica gel and bonding the silica with cationic polymers. The strong anion exchange materials have been prepared by a two-step process involving initial bonding with two trimethoxysilanes and subsequent aqueous solution radical polymerization with quaternary ammonium ion containing monomers and an azo initiator. Using the binding capacities for bovine serum albumin (BSA), a model protein for the evaluation of the new materials, we optimized the processes with regard to the median pore size of the silica gel, as well as polymer composition and ratios, which were determined by reagent ratios and reaction conditions. The products were also characterized by both chemical and physical methods. It has been found that higher binding capacities are associated with lower ligand density and higher molecular weight for the attached polymers, with over 20% higher in both static and dynamic binding capacity values with the same amount of attached polymers. The advantages of a large pore size distribution and optimal median pore size for the base silica are discussed. Optimal pore size range of 500-1500? and distribution of Span 90 for over 1.0 give the highest BSA binding capacities. Silica-based strong anion exchange materials showed excellent flow characteristics when packed into a column and were superior to commercial agarose-based strong anion exchange material with respect to dynamic binding capacity, elution of proteins, and baseline separation of a mixture of three model proteins. PMID:25537176

  13. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene

    SciTech Connect

    Diaz-De-Leon, F.; Klotz, K.L.; Lagrimini, L.M. )

    1993-03-01

    Peroxidases have been implicated in numerous physiological processes including lignification (Grisebach, 1981), wound-healing (Espelie et al., 1986), phenol oxidation (Lagrimini, 1991), pathogen defense (Ye et al., 1990), and the regulation of cell elongation through the formation of interchain covalent bonds between various cell wall polymers (Fry, 1986; Goldberg et al., 1986; Bradley et al., 1992). However, a complete description of peroxidase action in vivo is not available because of the vast number of potential substrates and the existence of multiple isoenzymes. The tobacco anionic peroxidase is one of the better-characterized isoenzymes. This enzyme has been shown to oxidize a number of significant plant secondary compounds in vitro including cinnamyl alcohols, phenolic acids, and indole-3-acetic acid (Maeder, 1980; Lagrimini, 1991). A cDNA encoding the enzyme has been obtained, and this enzyme was shown to be expressed at the highest levels in lignifying tissues (xylem and tracheary elements) and also in epidermal tissue (Lagrimini et al., 1987). It was shown at this time that there were four distinct copies of the anionic peroxidase gene in tobacco (Nicotiana tabacum). A tobacco genomic DNA library was constructed in the [lambda]-phase EMBL3, from which two unique peroxidase genes were sequenced. One of these clones, [lambda]POD1, was designated as a pseudogene when the exonic sequences were found to differ from the cDNA sequences by 1%, and several frame shifts in the coding sequences indicated a dysfunctional gene (the authors' unpublished results). The other clone, [lambda]POD3, described in this manuscript, was designated as the functional tobacco anionic peroxidase gene because of 100% homology with the cDNA. Significant structural elements include an AS-2 box indicated in shoot-specific expression (Lam and Chua, 1989), a TATA box, and two intervening sequences. 10 refs., 1 tab.

  14. Interaction of Organic Cations with Organic Anion Transporters*

    PubMed Central

    Ahn, Sun-Young; Eraly, Satish A.; Tsigelny, Igor; Nigam, Sanjay K.

    2009-01-01

    Studies of the organic anion transporters (Oats) have focused mainly on their interactions with organic anionic substrates. However, as suggested when Oat1 was originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478), since the Oats share close homology with organic cation transporters (Octs), it is possible that Oats interact with cations as well. We now show that mouse Oat1 (mOat1) and mOat3 and, to a lesser degree, mOat6 bind a number of “prototypical” Oct substrates, including 1-methyl-4-phenylpyridinium. In addition to oocyte expression assays, we have tested binding of organic cations to Oat1 and Oat3 in ex vivo assays by analyzing interactions in kidney organ cultures deficient in Oat1 and Oat3. We also demonstrate that mOat3 transports organic cations such as 1-methyl-4-phenylpyridinium and cimetidine. A pharmacophore based on the binding affinities of the tested organic cations for Oat3 was generated. Using this pharmacophore, we screened a chemical library and were able to identify novel cationic compounds that bound to Oat1 and Oat3. These compounds bound Oat3 with an affinity higher than the highest affinity compounds in the original set of prototypical Oct substrates. Thus, whereas Oat1, Oat3, and Oat6 appear to function largely in organic anion transport, they also bind and transport some organic cations. These findings could be of clinical significance, since drugs and metabolites that under normal physiological conditions do not bind to the Oats may undergo changes in charge and become Oat substrates during pathologic conditions wherein significant variations in body fluid pH occur. PMID:19737926

  15. The PVBS Model The Martingale Method Spectral Gap Spectral Gap of d-Dimensional PVBS Models

    E-print Network

    Jung, Paul

    Young University of California, Davis Spectral Gap of d-Dimensional PVBS Models #12;The PVBS Model if > 0. Amanda Young University of California, Davis Spectral Gap of d-Dimensional PVBS Models #12;TheThe PVBS Model The Martingale Method Spectral Gap Spectral Gap of d-Dimensional PVBS Models Amanda

  16. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake.

    PubMed

    Zimnicka, Adriana M; Ivy, Kristin; Kaplan, Jack H

    2011-03-01

    Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ?90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition. PMID:21191107

  17. Metabolic cutis laxa syndromes.

    PubMed

    Mohamed, Miski; Kouwenberg, Dorus; Gardeitchik, Thatjana; Kornak, Uwe; Wevers, Ron A; Morava, Eva

    2011-08-01

    Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes. PMID:21431621

  18. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  19. Resonances of nanocylinders with gap defects

    NASA Astrophysics Data System (ADS)

    Elson, J. Merle; Halterman, Klaus; Singh, Surendra

    2006-05-01

    We have investigated the plasmonic resonance characteristics of canonical circular and square cylinders, with gap defects, that are illuminated by a plane wave. The circular and square cylinders have vee shaped gaps and constant width gaps, respectively. The electric and magnetic fields are obtained by solving the Lippmann-Schwinger equation from which we compute the far-field scattering cross-section and near-field local electromagnetic energy density. Numerical results are given for numerous wavelength and gap dimensions to qualitatively present the effects of gap defects on the scattering cross-section and local electromagnetic energy density.

  20. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System

    PubMed Central

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-01-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane?chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH????Cl and NH???Cl hydrogen-bonding interactions and solution-phase 1H?NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  1. Ion-exchange selectivity of anion exchange resin modified with polystyrenesulfonic acid.

    PubMed

    Endo, Nobutaka; Ikuta, Rei; Higa, Mitsuru; Matsusaki, Koji

    2004-07-01

    In order to change the ion-exchange selectivity of anion-exchange resin, the surface of a gel-type anion exchange resin was modified with anionic polyelectrolyte, polystyrenesulfonic acid. Using this modified resin, the ion-exchange rate of nitrate was little decreased, but that of sulfate was evidently decreased. It is considered that the ion-exchange reaction of the multivalent anion is suppressed by the greater electrostatic repulsive force against the modification layer than that against the monovalent anion. Thus, this modified resin may be suitable for the selective separation of monovalent anions. The influence of the modified condition on the ion-exchange rate was examined. Furthermore, this modified resin was used to separate nitrate ions from sulfate ions in the aqueous solution. PMID:15293411

  2. Selective crystallization of urea-functionalized capsules with tunable anion-binding cavities

    SciTech Connect

    Custelcean, Radu; Remy, Priscilla

    2009-01-01

    Herein we report crystallization of self-assembled capsules functionalized with urea hydrogen-bonding groups as a means for selective separation of sulfate anion. The high complementarity and the rigid environment found in such crystalline systems impart strong discrimination between anions of different shape, like sulfate and sulfite, or anions of the same shape but slightly different size, like sulfate and selenate, with selectivity that exceeds that observed in sulfate-binding protein. Similar to natural receptors, these crystalline capsules completely isolate the anions from the aqueous solvent by encapsulating them inside rigid cavities lined with complementary hydrogen-bonding groups. Furthermore, the capsules are made from flexible building blocks, whose structure and relative orientation in the crystal can be allosterically regulated to fine-tune the anion selectivity. These characteristics suggest that crystallization of such urea-functionalized capsules from simple and flexible components represents a particularly promising approach for selective anion separation from highly competitive aqueous environments.

  3. Acylthiourea derivatives as colorimetric sensors for anions: Synthesis, characterization and spectral behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Shuangshuang; Kang, Jing; Cao, Xiufang; Yue, Xiali

    2016-01-01

    Several acylthioureas have been synthesized to develop colorimetric sensors for detection of biologically important anions. UV-vis titration experiments indicated that the absorbance values have a good linear relationship with concentration of anions when the anions were added in AR-1, AR-4 and AR-6 sensor molecules. The detection limit to AcO- and F- is 5 × 10- 6 mol/L when the concentration of receptors are 2 × 10- 5 mol/L. Especially, compounds AR-1 and AR-4, decorated with strong electron-withdrawing NO2 substituent, showed augmented anion sensing properties, being capable of naked-eye detecting of F- and AcO- when the water content is lower than 15%. The recognition details of anion sensing were also assessed using 1H NMR technique and confirmed that the basic anions induced deprotonation of N-H.

  4. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System.

    PubMed

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-12-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane?chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH????Cl and NH???Cl hydrogen-bonding interactions and solution-phase (1) H?NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  5. Influence of different anions on the surface composition of ionic liquids studied using ARXPS.

    PubMed

    Kolbeck, C; Cremer, T; Lovelock, K R J; Paape, N; Schulz, P S; Wasserscheid, P; Maier, F; Steinrück, H-P

    2009-06-25

    Angle-resolved X-ray photoelectron spectroscopy has been used to study the influence of different types of anions on the surface composition of ionic liquids (ILs). We have investigated nine ILs with the same cation, 1-octyl-3-methylimidazolium [C(8)C(1)Im](+), but very different anions. In all cases, an enrichment of the cation alkyl chains is found at the expense of the polar cation head groups and the anions in the first molecular layer. This enhancement effect decreases with increasing size of the anion, which means it is most pronounced for the smallest anions and least pronounced for the largest anions. A simple model is proposed to explain the experimental observations. PMID:19534566

  6. Acylthiourea derivatives as colorimetric sensors for anions: Synthesis, characterization and spectral behaviors.

    PubMed

    Liu, Shuangshuang; Kang, Jing; Cao, Xiufang; Yue, Xiali

    2016-01-15

    Several acylthioureas have been synthesized to develop colorimetric sensors for detection of biologically important anions. UV-vis titration experiments indicated that the absorbance values have a good linear relationship with concentration of anions when the anions were added in AR-1, AR-4 and AR-6 sensor molecules. The detection limit to AcO(-) and F(-) is 5×10(-6)mol/L when the concentration of receptors are 2×10(-5)mol/L. Especially, compounds AR-1 and AR-4, decorated with strong electron-withdrawing NO2 substituent, showed augmented anion sensing properties, being capable of naked-eye detecting of F(-) and AcO(-) when the water content is lower than 15%. The recognition details of anion sensing were also assessed using (1)H NMR technique and confirmed that the basic anions induced deprotonation of N-H. PMID:26372737

  7. Dissociative electron attachment in uracil: Total anion yield

    NASA Astrophysics Data System (ADS)

    Aflatooni, K.; Scheer, A. M.; Burrow, P. D.

    2005-06-01

    The total relative yield of anions produced by electron impact on uracil has been measured at energies below ionization. Peaks associated with vibrational Feshbach, shape and core-excited resonances are observed, although the relative sizes differ from those measured using mass analysis. Observation of positive ionization in uracil permits normalization to the ionization cross section. Feil et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 3013] have used the semi-classical Deutsch-Märk ionization cross section for this purpose. Using the D-M cross section for normalization, we find that the cross section for production of (U-H) - is substantially smaller than their mass selected result.

  8. Molecular Recognition: Preparation and Characterization of Two Tripodal Anion Receptors

    SciTech Connect

    Shokri, Alireza; Deng, Shihu; Wang, Xue B.; Kass, Steven R.

    2014-03-01

    Two new tripodal hydroxyl-based anion receptors (1 and 2) are reported and their molecular complexes with Cl–, H2PO4 –, and OAc– along with the (M–1)– ion of 1 were characterized by negative ion photoelectron spectroscopy in the gas phase and by binding constant determinations in four solvents (i.e., CDCl3, CD2Cl2, CD3COCD3, and CD3CN). An intramolecular hydrogen bond network (HBN) in hexaol 1 was found to diminish its binding whereas the triol 2 is the strongest aliphatic hydroxyl-based receptor to date.

  9. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  10. Anion and Cation Ionic Conductivity of Dragon Fruit

    NASA Astrophysics Data System (ADS)

    Hajar, Nadya; Asiah, M. N.; Abdullah, S.; Rusop, M.

    2010-07-01

    The separation of all ions in a synthetic solution was achieved with an anion eluent containing 0.3392 g Na2CO3 and 0.084 g NaHCO2 and the run around 20 min. Cation eluent containing 0.60 g Tartaric acid and 0.125 g Dipicolinic acid and the run around 16 min. This method was applied to dragon fruit juice with success and has shown sensitivity. Moreover, sample preparation was a simple 1:1, 1:10, 1:100 and 1:1000 ppm with 0.20 mm filtration and direct injection without prior sample clean-up. Due to the use of eluent generator, very low conductance background conductivity can be obtained and sensitivity of dragon fruit has been greatly improved. Under the experimental condition, several inorganic anions, such as F-, NO3-, NO2-, Br- and PO43- obtained from dragon fruit. For cation, inorganic ions that occurred during the experiment were NH3+, Ca+, and Mg+. Conductivity for anion of F-, NO3-, NO2-, Br- and PO43- were approximately 20, 17, 16, 16 and 20 ?S/cm, respectively. Concentration for F- is 1.57 mg/l, NO3- is 1.92 mg/l, NO2- is 0.30 mg/l, Br- is 0.45 mg/l and PO43- is 4.45 mg/l. Conductivity for cation of NH3+, Ca+, and Mg+ were approximately 537, 538 and 531 ?S/cm, respectively. Concentration for cation of NH3+ is 0.93 mg/l, Ca+ is 1.15 mg/l, and Mg+ 7.285 is mg/l. The method has successfully applied to the determination of inorganic ions in dragon fruit. An ion chromatography method is described for the simultaneous determination of ionic conductivity for dragon fruit juice using a selected anion and cation eluent. The detection of ionic conductivity in dragon fruit juice has been studied.

  11. Electroactive Materials For Anion Separation-Technetium From Nitrate

    SciTech Connect

    William H. Smyrl, PI; Dr. Ann Gronda

    2003-10-10

    In order to increase the capacity of electroactive polymers for radioactive waste separations, we have focused on two ways of processing these polymers: phase inversion, and coating onto a porous conductive substrate. Both techniques are intended to increase the surface area for access of the guest anions to the intercalation host. Phase inversion of polyvinylferrocene (PVF) was unsuccessful, but we were able to use electroprecipitation to coat PVF onto porous carbon substrates such as Toray paper. Due to the wide molecular weight distribution and batch variations of commercial PVF, we have chosen to examine the more manageable polyaniline.

  12. The reaction of sulfite radical anion with nucleic acid components.

    PubMed

    Erben-Russ, M; Michel, C; Bors, W; Saran, M

    1987-01-01

    The sulfite radical anion (SO3.-) is the first intermediate in the autoxidation of sulfite to sulfate. Using competition kinetics, its reactivities with the nucleic acid bases and the corresponding nucleosides were investigated. The second order rate constants were found to be rather low, k less than or equal to 1 x 10(6) dm3mol-1s-1 at pH 7. As a competitor, the carotenoid crocin was used, which was found to be bleached very efficiently by SO3.- (k = 1.0 x 10(9) dm3mol-1 s-1). PMID:2849586

  13. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOEpatents

    Gu, Baohua (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN)

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  14. Minority anion substitution by Ni in ZnO

    SciTech Connect

    Pereira, L. M. C.; Amorim, L. M.; Decoster, S.; Temst, K.; Vantomme, A.; Wahl, U.; Correia, J. G.; Silva, D. J.; Bosne, E.; Department of Materials and Ceramics Engineering and CICECO, University of Aveiro, 3810-193 Aveiro ; Silva, M. R. da

    2013-08-26

    We report on the lattice location of implanted Ni in ZnO using the ?{sup ?} emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  15. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  16. A New Class of Ionic Liquids: Anion Amphiprotic Ionic Liquids.

    PubMed

    Treskow, Marcel; Pitawala, Jagath; Arenz, Sven; Matic, Aleksandar; Johansson, Patrik

    2012-08-16

    We here present a new class of protic ionic liquids, anion amphiprotic ionic liquids (AAILs). These materials are protonation equilibrium free protic ionic liquids and interesting in their own right by not following the classical Brønsted acid-base neutralization concept. Due to the very simple synthesis route applied and their stable basic chemistry, we believe in a potential use for manifold applications. This is supported by the combination of practical material properties, foremost, a general intrinsic stability versus reversal of the formation reaction toward neutral species, broad liquidus ranges, long-term thermal stabilities, high conductivities, protic characteristics, and a general stability versus water. PMID:26295756

  17. Anionic and Hidden Hydrogen in ZnO

    SciTech Connect

    Du, Mao-Hua; Biswas, Koushik

    2011-01-01

    First-principles calculations are performed to study energetics and kinetics of hydrogen in ZnO, in particular, the H{sup -} anion and the H{sub 2} molecule on the interstitial site and in the oxygen vacancy. We show that the H{sub 2} molecule kinetically trapped in the oxygen vacancy, rather than interstitial H{sub 2}, can explain a variety of experimental observations on 'hidden' hydrogen in ZnO. The accumulation of shallow donors, especially the substitutional H, near the ZnO surface is important to the formation of hidden hydrogen in the ZnO bulk and can also lead to persistent photoconductivity.

  18. Obesity and Metabolic Comorbidities: Environmental Diseases?

    PubMed Central

    Lubrano, Carla; Genovesi, Giuseppe; Specchia, Palma; Costantini, Daniela; Mariani, Stefania; Petrangeli, Elisa; Lenzi, Andrea; Gnessi, Lucio

    2013-01-01

    Obesity and metabolic comorbidities represent increasing health problems. Endocrine disrupting compounds (EDCs) are exogenous agents that change endocrine function and cause adverse health effects. Most EDCs are synthetic chemicals; some are natural food components as phytoestrogens. People are exposed to complex mixtures of chemicals throughout their lives. EDCs impact hormone-dependent metabolic systems and brain function. Laboratory and human studies provide compelling evidence that human chemical contamination can play a role in obesity epidemic. Chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes. EDCs can alter methylation patterns and normal epigenetic programming in cells. Oxidative stress may be induced by many of these chemicals, and accumulating evidence indicates that it plays important roles in the etiology of chronic diseases. The individual sensitivity to chemicals is variable, depending on environment and ability to metabolize hazardous chemicals. A number of genes, especially those representing antioxidant and detoxification pathways, have potential application as biomarkers of risk assessment. The potential health effects of combined exposures make the risk assessment process more complex compared to the assessment of single chemicals. Techniques and methods need to be further developed to fill data gaps and increase the knowledge on harmful exposure combinations. PMID:23577225

  19. Gap Test Calibrations And Their Scalin

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2012-03-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations and their scaling are compared for other donors with PMMA gaps and for various donors in water.

  20. A randomized controlled study on the effects of acetate-free biofiltration on organic anions and acid-base balance in hemodialysis patients.

    PubMed

    Sánchez-Canel, Juan J; Hernández-Jaras, Julio; Pons-Prades, Ramón

    2015-02-01

    Metabolic acidosis correction is achieved by the transfer of bicarbonate and other buffer anions in dialysis. The aim of this study was to evaluate changes in the main anions of intermediary metabolism on standard hemodiafiltration (HDF) and on acetate-free biofiltration (AFB). A prospective, in-center, crossover study was carried out with 22 patients on maintenance dialysis. Patients were randomly assigned to start with 12 successive sessions of standard HDF with bicarbonate (34?mmol/L) and acetate dialysate (3?mmol/L) or 12 successive sessions of AFB without base in the dialysate. Acetate increased significantly during the standard HDF session from 0.078?±?0.062?mmol/L to 0.156?±?0.128?mmol/L (P?anions (OA) were higher in HDF compared to AFB (P?

  1. A supramolecular H-bond driven light switch sensor for small anions.

    PubMed

    Rommel, S A; Sorsche, D; Rau, S

    2015-12-14

    A cationic iridium complex with a 2,2'-bibenzimidazole ligand can act as a luminescent sensor for various anions. Strong H-bond supported ion pair bonding with an electron accepting dinitro-benzoate anion switches the luminescence "off". The luminescence of the sensor is switched back "on" when benzoate is replaced by competing H-bonded small anions, therefore leading to an enhanced sensitivity of the sensor system. PMID:26610813

  2. Modeling the interaction of nitrate anions with ozone and atmospheric moisture

    NASA Astrophysics Data System (ADS)

    Y. Galashev, A.

    2015-10-01

    The molecular dynamics method is used to investigate the interaction between one-six nitrate anions and water clusters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.

  3. Local Mitochondrial-Endolysosomal Microfusion Cleaves Voltage-Dependent Anion Channel 1 To Promote Survival in Hypoxia

    PubMed Central

    Brahimi-Horn, M. Christiane; Lacas-Gervais, Sandra; Adaixo, Ricardo; Ilc, Karine; Rouleau, Matthieu; Notte, Annick; Dieu, Marc; Michiels, Carine; Voeltzel, Thibault; Maguer-Satta, Véronique; Pelletier, Joffrey; Ilie, Marius; Hofman, Paul; Manoury, Bénédicte; Schmidt, Alexander; Hiller, Sebastian; Pouysségur, Jacques

    2015-01-01

    The oxygen-limiting (hypoxic) microenvironment of tumors induces metabolic reprogramming and cell survival, but the underlying mechanisms involving mitochondria remain poorly understood. We previously demonstrated that hypoxia-inducible factor 1 mediates the hyperfusion of mitochondria by inducing Bcl-2/adenovirus E1B 19-kDa interacting protein 3 and posttranslational truncation of the mitochondrial ATP transporter outer membrane voltage-dependent anion channel 1 in hypoxic cells. In addition, we showed that truncation is associated with increased resistance to drug-induced apoptosis and is indicative of increased patient chemoresistance. We now show that silencing of the tumor suppressor TP53 decreases truncation and increases drug-induced apoptosis. We also show that TP53 regulates truncation through induction of the mitochondrial protein Mieap. While we found that truncation was independent of mitophagy, we observed local microfusion between mitochondria and endolysosomes in hypoxic cells in culture and in patients' tumor tissues. Since we found that the endolysosomal asparagine endopeptidase was responsible for truncation, we propose that it is a readout of mitochondrial-endolysosomal microfusion in hypoxia. These novel findings provide the framework for a better understanding of hypoxic cell metabolism and cell survival through mitochondrial-endolysosomal microfusion regulated by hypoxia-inducible factor 1 and TP53. PMID:25691661

  4. New gel-like polymers as selective weak-base anion exchangers.

    PubMed

    Gierczyk, B?a?ej; Ceg?owski, Micha?; Zalas, Maciej

    2015-01-01

    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  5. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, B?a?ej; Ceg?owski, Micha?; Zalas, Maciej

    2015-01-01

    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  6. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. I. Anions.

    SciTech Connect

    Shkrob, I. A.; Marin, T.; Chemerisov, S.; Wishart, J.

    2011-04-14

    Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO{sub 3}{sup -} and B(CN){sub 4}{sup -} anions and indirectly implicated for BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. Among small anions, CF{sub 3}SO{sub 3}{sup -} and N(CN){sub 2}{sup -} are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the {pi}-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N {sigma}{sup 2}{sigma}*{sup 1} bond formation involving the parent anion. While fragmentation does not occur for these 'exceptional' anions, H atom addition and electron attachment are prominent. Among the typically used constituent anions, aliphatic carboxylates were found to be the least resistant to oxidative fragmentation, followed by (di)alkyl phosphates and alkanesulfonates. The discussion of the radiation stability of ILs is continued in the second part of this study, which examines the fate of organic cations in such liquids.

  7. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    PubMed

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials. PMID:25984753

  8. Anion-tunable control of thermal Z?E isomerisation in basic azobenzene receptors.

    PubMed

    D?browa, Kajetan; Niedba?a, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z?E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host ?-system, resulting in increased repulsion between the lone electron pairs in the N=N bond. PMID:25369943

  9. Spectral features of 4,4-diaminodiphenyl sulfone in anionic and cationic inverted micelles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prosenjit; Chakravorti, Sankar

    2013-05-01

    This Letter reports the photophysics of 4,4-diaminodiphenyl sulfone in anionic and cationic reverse micelles (RM). Decreased fluorescence intensity with significant blue shift of intramolecular charge transfer (ICT) fluorescence maximum and longer emission lifetime of the entrapped probe in motionally restricted water nano-pool of anionic RM could be observed. Bi-exponential decay in anionic RM appears due to polarity heterogeneity in the pool. In a nut shell, experiments establish that the probe is anchored in the micellar head group region of anionic RM vis-à-vis far away from the core in cationic RM. Increasing pool size show the opposite effect to the probe.

  10. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 1. Anions.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Wishart, James F

    2011-04-14

    Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO(3)(-) and B(CN)(4)(-) anions and indirectly implicated for BF(4)(-) and PF(6)(-) anions. Among small anions, CF(3)SO(3)(-) and N(CN)(2)(-) are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the ?-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N ?(2)?(*1) bond formation involving the parent anion. While fragmentation does not occur for these "exceptional" anions, H atom addition and electron attachment are prominent. Among the typically used constituent anions, aliphatic carboxylates were found to be the least resistant to oxidative fragmentation, followed by (di)alkyl phosphates and alkanesulfonates. The discussion of the radiation stability of ILs is continued in the second part of this study, which examines the fate of organic cations in such liquids. PMID:21417237

  11. Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans*

    PubMed Central

    Yuan, Yiyuan; Kadiyala, Chandra S.; Ching, Tsui-Ting; Hakimi, Parvin; Saha, Sudipto; Xu, Hua; Yuan, Chao; Mullangi, Vennela; Wang, Liwen; Fivenson, Elayne; Hanson, Richard W.; Ewing, Rob; Hsu, Ao-Lin; Miyagi, Masaru; Feng, Zhaoyang

    2012-01-01

    Caloric restriction (CR) markedly extends life span and improves the health of a broad number of species. Energy metabolism fundamentally contributes to the beneficial effects of CR, but the underlying mechanisms that are responsible for this effect remain enigmatic. A multidisciplinary approach that involves quantitative proteomics, immunochemistry, metabolic quantification, and life span analysis was used to determine how CR, which occurs in the Caenorhabditis elegans eat-2 mutants, modifies energy metabolism of the worm, and whether the observed modifications contribute to the CR-mediated physiological responses. A switch to fatty acid metabolism as an energy source and an enhanced rate of energy metabolism by eat-2 mutant nematodes were detected. Life span analyses validated the important role of these previously unknown alterations of energy metabolism in the CR-mediated longevity of nematodes. As observed in mice, the overexpression of the gene for the nematode analog of the cytosolic form of phosphoenolpyruvate carboxykinase caused a marked extension of the life span in C. elegans, presumably by enhancing energy metabolism via an altered rate of cataplerosis of tricarboxylic acid cycle anions. We conclude that an increase, not a decrease in fuel consumption, via an accelerated oxidation of fuels in the TCA cycle is involved in life span regulation; this mechanism may be conserved across phylogeny. PMID:22810224

  12. The human erythrocyte anion transport protein, band 3. Characterization of exofacial alkaline titratable groups involved in anion binding/translocation

    PubMed Central

    1992-01-01

    Chloride self-exchange across the human erythrocyte membrane at alkaline extracellular pH (pHO) and constant neutral intracellular pH (pH(i)) can be described by an exofacial deprotonatable reciprocating anion binding site model. The conversion of the transport system from the neutral to the alkaline state is related to deprotonation of a positively charged ionic strength- and substrate-sensitive group. In the absence of substrate ions ([ClO] = 0) the group has a pK of approximately 9.4 at constant high ionic strength (equivalent to approximately 150 mM KCl) and a pK of approximately 8.7 at approximately zero ionic strength. The alkaline ping-pong system (examined at constant high ionic strength) demonstrates outward recruitment of the binding sites with an asymmetry factor of approximately 0.2, as compared with the inward recruitment of the transport system at neutral pHO with an asymmetry factor of approximately 10. The intrinsic half-saturation constant for chloride binding, with [Cli] = [Clo], increased from approximately 30 mM at neutral to approximately 110 mM at alkaline pHO. The maximal transport rate was a factor of approximately 1.7 higher at alkaline pHO. This increase explains the stimulation of anion transport, the "modifier hump," observed at alkaline pHO. The translocation of anions at alkaline pHO was inhibited by deprotonation of another substrate- sensitive group with an intrinsic pK of approximately 11.3. This group together with the group with a pK of approximately 9.4 appear to form the essential part of the exofacial anion binding site. The effect of extracellular iodide inhibition on chloride transport as a function of pHO could, moreover, be simulated if three extracellular iodide binding constants were included in the model: namely, a competitive intrinsic iodide binding constant of approximately 1 mM in the neutral state, a self-inhibitor binding constant of approximately 120 mM in the neutral state, and a competitive intrinsic binding constant of approximately 38 mM in the alkaline state. PMID:1402784

  13. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69?mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  14. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    PubMed Central

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, ZhengJin; Xu, Tongwen

    2015-01-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH? conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH? conductivity of 69?mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology. PMID:26311616

  15. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  16. Aripiprazole salts IV. Anionic plus solvato networks defining molecular conformation

    NASA Astrophysics Data System (ADS)

    Freire, Eleonora; Polla, Griselda; Baggio, Ricardo

    2014-06-01

    Five new examples of aripiprazole (arip) salts are presented, viz., the Harip phthalate [Harip+·C8H5O4-(I)], homophthalate [Harip+·C9H7O4-(II)] and thiosalicilate [Harip+·C7H4O2S-(III)] salts on one side, and two different dihidrogenphosphates, Harip+·H2PO4-·2(H3PO4)·H2O (IV) and Harip+·H2PO4-·H3PO4(V). Regarding the internal structure of the aripH+ cations, they do not differ from the already known moieties in bond distances and angles, while interesting differences in conformation can be observed, setting them apart in two groups: those in I, II and III present similar conformations to those in the so far reported arip salts presenting the same centrosymmetric R(8)22 dimeric synthon, but different to those in IV and V. In parallel, the anion (+ acid) groups define bulky systems of different dimensionality (1D in the former group, 2D in the latter). The correlation between arip molecular conformation and anionic network type is discussed. An interesting feature arises with the water solvato molecule in IV, disordered around an inversion center, in regard with its interaction with an (also disordered) phosphato O-H, in a way that an “orderly disordered” H-bonding scheme arises, complying with the S.G. symmetry requirements only on average.

  17. Intramolecular Base Stacking of Dinucleoside Monophosphate Anions in Aqueous Solution

    PubMed Central

    Jafilan, Salem; Klein, Leah; Hyun, Christian

    2012-01-01

    Time-dependent motions of 32 deoxyribodinucleoside and ribodinucleoside monophosphate anions in aqueous solution at 310 K were monitored during 40 ns using classical molecular dynamics (MD). In all studied molecules, spontaneous stacking/unstacking transitions occured on a time-scale of 10 ns. To facilitate the structural analysis of the sampled configurations we defined a reaction coordinate for the nucleobase stacking that considers both the angle between the planes of the two nucleobases and the distance between their mass-centers. Additionally, we proposed a physically meaningful transient point on this coordinate that separates the stacked and unstacked states. We applied this definition to calculate free energies for stacking of all pairwise combinations of adenine, thymine (uracil), cytosine and guanine moieties embedded in studied dinucleosides monophosphate anions. The stacking equilibrium constants decreased in the order 5’-AG-3’ > GA ~ GG ~ AA > GT ~ TG ~ AT ~ GC ~ AC > CG ~ TA > CA ~ TC ~ TT ~ CT ~ CC. The stacked conformations of AG occurred ten-times more frequently than its unstacked conformations. On the other hand, the last five base combinations showed a greater preference for the unstacked than the stacked state. The presence of an additional 2’-OH group in the RNA–based dinucleoside monophosphates increased the fraction of stacked complexes but decreased the compactness of the stacked state. The calculated MD trajectories were also used to reveal prevailing mutual orientation of the nucleobase dipoles in the stacked state. PMID:22369267

  18. Anion-Intercalating Cathodes for High-Energy-Density Cells

    NASA Technical Reports Server (NTRS)

    West, William

    2006-01-01

    A report discusses physicochemical issues affecting a fluoride-intercalating cathode that operates in conjunction with a lithium ion-intercalating anode in a rechargeable electrochemical cell described in a cited prior report. The instant report also discusses corresponding innovations made in solvent and electrolyte compositions since the prior report. The advantages of this cell, relative to other lithium-ion-based cells, are said to be greater potential (5 V vs. 4 V), and greater theoretical cathode specific capacity (0.9 to 2.2 A-h/g vs. about 0.18 A-h/g). The discussion addresses a need for the solvent to be unreactive toward the lithium anode and to resist anodic oxidation at potentials greater than about 4.5 V vs. lithium; the pertinent innovation is the selection of propylene carbonate (PC) as a solvent having significantly more stability, relative to other solvents that have been tried. The discussion also addresses the need for an electrolyte additive, denoted an anion receptor, to complex the fluoride ion; the pertinent innovation is the selection of tris(hexafluoroisopropyl) borate as a superior alternative to the prior anion receptor, which was tris(pentafluorophenyl) borate.

  19. Anion-directed assembly: Framework conversion in dimensionality and photoluminescence

    SciTech Connect

    Gong Yun; Liu Tianfu; Tang Wang; Wu Fengjing; Gao Wenliang; Hu Changwen

    2007-04-15

    Six novel Ni(II)-fluconazole complexes formulated as (C{sub 13}H{sub 11}N{sub 6}OF{sub 2}){sub 2}Ni{sub 2}(NO{sub 3}){sub 2} (1), (C{sub 13}H{sub 12}N{sub 6}OF{sub 2}){sub 2}Ni(NO{sub 3}){sub 2}.H{sub 2}O (2), (C{sub 13}H{sub 12}N{sub 6}OF{sub 2})Ni(SO{sub 4})(DMF){sub 2}(H{sub 2}O) (3), (C{sub 13}H{sub 12}N{sub 6}OF{sub 2}){sub 2}Ni(H{sub 2}O){sub 2}(SO{sub 4}).4H{sub 2}O (4), (C{sub 13}H{sub 12}N{sub 6}OF{sub 2}){sub 2}NiCl{sub 2}.2(CH{sub 3}OH) (5), (C{sub 13}H{sub 12}N{sub 6}OF{sub 2}){sub 4}Ni{sub 2} (MoO{sub 4}){sub 2}.6H{sub 2}O (6) have been hydrothermally or solvothermally synthesized under similar conditions except different anions and solvents. They are structurally characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Complex 1 is a molecular binuclear nickel cluster. Complex 2 exhibits a one-dimensional (1D) chain linked by double-stranded fluconazole-bridge. Complex 3 shows a novel 1D chain linked by double-stranded fluconazole-bridge and double-stranded SO{sub 4} {sup 2-}-bridge. Complex 4 shows a three-dimensional (3D) architecture and SO{sub 4} {sup 2-} anions occupy the cavity. Complex 5 exhibits a two-dimensional (2D) structure constructed by alternating left- and right-handed helices. Complex 6 exhibits a 3D architecture, in which the 2D layers are pillared by {l_brace}MoO{sub 4}{r_brace} tetrahedra. Complex 2 can be irreversibly converted to complex 1 in the presence of DMF (N,N'-dimethyllformamide). Complexes 1, 3 and 6 show antiferromagnetic interactions between the nickel (II) ions The photoluminescence properties of the six complexes indicated that the introduction of different anions can enhance or weaken the intra-ligand transitions of fluconazole. - Graphical abstract: Six novel Ni(II)-fluconazole complexes have been hydro(solvo)thermally synthesized under similar conditions except different anions and solvents. Their structures span zero, one, two and three dimensions. Their different photoluminescence properties indicate that the introduction of different anions to metal-drug complexes can enhance or weaken the intra-ligand transitions of drug.

  20. Enhancement of Anion Binding in Lanthanide Optical Sensors

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Gray, Harry B.; Ponce, Adrian

    2013-01-01

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the ‘lock-and-key.’ Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be established from the ionization energy of Ln3+ ? Ln4+. These results account for the order Tb3+ > Dy3+ > Eu3+ ? Sm3+. As with many lanthanide properties, ranging from hydration enthalpy to vaporization energy, this AL-induced enhancement shows a large discrepancy between Tb3+ and Eu3+ despite their similarity in size, a phenomenon known as the ‘gadolinium break.’ This discrepancy, based on the unusual stabilities of the Eu2+ and Tb4+ oxidation states, results from the half-shell effect, as both of these ions have half-filled 4f-shells. The high polarizability of Tb3+ explains the extraordinarily large increase in the binding affinity of anions for terbium compared to other lanthanides. We recommend that researchers consider this AL-induced enhancement when designing lanthanide-macrocycle optical sensors. Ancillary ligands also can reduce the impact of interfering species such as phosphate) commonly found in environmental and physiological samples. PMID:24032446

  1. GAPS IN THE GD-1 STAR STREAM

    SciTech Connect

    Carlberg, R. G.; Grillmair, C. J. E-mail: carl@ipac.caltech.edu

    2013-05-10

    GD-1 is a long, thin, Milky Way star stream that has readily visible density variations along its length. We quantify the locations, sizes, and statistical significance of the density structure, i.e., gaps, using a set of scaled filters. The shapes of the filters are based on the gaps that develop in simulations of dark matter sub-halos crossing a star stream. The high Galactic latitude 8.4 kpc long segment of GD-1 that we examine has 8 {+-} 3 gaps of 99% significance or greater, with the error estimated on the basis of tests of the gap-filtering technique. The cumulative distribution of gaps more than three times the width of the stream is in good agreement with predictions for dark matter sub-halo encounters with cold star streams. The number of gaps narrower than three times the width of the GD-1 stream falls well below the cold stream prediction which is taken into account for the gap creation rate integrated over all sizes. Simple warm stream simulations scaled to GD-1 show that the falloff in gaps is expected for sub-halos below a mass of 10{sup 6} M{sub Sun }. The GD-1 gaps requires 100 sub-halos >10{sup 6} M{sub Sun} within 30 kpc, the apocenter of GD-1 orbit. These results are consistent with LCDM sub-halo predictions but further improvements in stream signal-to-noise and gap modeling will be welcome.

  2. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  3. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-01-01

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files. PMID:23194418

  4. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  5. Metabolism of phencyclidine

    SciTech Connect

    Hoag, M.K.P.

    1987-01-01

    Phencyclidine (PCP) is a drug of abuse which may produce, in some users, a persistent schizophreniform psychosis. The possibility that long term effects of PCP are mediated by metabolic activation of the parent compound to reactive species is consistent with the demonstration of metabolism-dependent covalent binding of radiolabeled PCP in vivo and in vitro to macromolecules in rodent lung, liver, and kidney. Formation of the electrophilic iminium ion metabolite of PCP is believed to be critical for covalent binding since binding was inhibited by cyanide ion at concentrations which did not inhibit metabolism of PCP but did trap the iminium ion to form the corresponding alpha-aminonitrile. The present studies were designed to characterize further the biological fate of PCP by identifying possible macromolecular targets of the reactive metabolite(s).

  6. Nitro-substituted 3,3'-bis(indolyl)methane derivatives as anion receptors: Electron-withdrawing effect and tunability of anion binding properties

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Wei, Wei; Guo, Yong; Xu, Jian; Shao, Shijun

    2011-02-01

    A series of nitro-substituted 3,3'-bis-indolyl phenylmethane derivatives were synthesized and their anion binding properties were investigated in detail. The introduction of the electron-withdrawing nitro group into indole unit and/or meso-phenyl ring, which leads to the increased acidity of indole NH and meso-position CH proton, has a positive effect on anion binding. The nitro-substituted bis(indolyl)methane receptors exhibited selective colorimetric sensing of F - anion, as revealed by the notable color and spectral changes, rationally due to the deprotonation of the indole NH of the receptor. Meanwhile, the additive introduction of the nitro substituents on the meso-phenyl ring of bis(indolyl)methane can lead to the deprotonation of the meso-position CH and further induce an irreversible oxidation process obtaining bis(indolyl)methene product in the F - anion sensing system.

  7. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing enzymes of yeasts.

  8. Metabolism at Evolutionary Optimal States

    PubMed Central

    Rabbers, Iraes; van Heerden, Johan H.; Nordholt, Niclas; Bachmann, Herwig; Teusink, Bas; Bruggeman, Frank J.

    2015-01-01

    Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies), adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization. PMID:26042723

  9. Sleep and Metabolism: An Overview

    PubMed Central

    Sharma, Sunil; Kavuru, Mani

    2010-01-01

    Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways involving sympathetic overstimulation, hormonal imbalance, and subclinical inflammation. This paper reviews sleep and metabolism, and how sleep deprivation and sleep disorders may be altering human metabolism. PMID:20811596

  10. A relation between kinetic-energy density and the band gap in alkali and alkaline-earth oxides.

    PubMed

    Seriani, Nicola

    2010-06-30

    Alkali and alkaline-earth oxides are analysed by means of Bader's atom-in-molecule theory and density functional theory. Particular attention is devoted to the analysis of properties of the bond critical points. A linear relation is found between the kinetic-energy density at the bond critical point between cation and anion and the electronic band gap. This result might shed new light on the relationship between ground-state density, the nature of the bonds and insulating behaviour. Its generality is discussed. PMID:21393801

  11. [Bone metabolism: molecular mechanisms].

    PubMed

    Neumann, E; Schett, G

    2007-07-01

    In order to accommodate individual load, the skeletal system is in a continual state of change. Bone metabolism guarantees optimal bone structure. The osteoblasts are responsible for the synthesis and the osteoclasts for resorption of the bone. A finely adjusted interplay between molecular mechanisms leads, via cytokines, hormones and growth factors, to an homeostasis in bone metabolism. Disturbances of this process lead via increased bone resorption to osteoporosis, and via increased synthesis to osteopetrosis. This contribution describes the known molecular mechanisms in this remodelling process. PMID:17562055

  12. Metabolic Control of Autophagy

    PubMed Central

    Galluzzi, Lorenzo; Pietrocola, Federico; Levine, Beth; Kroemer, Guido

    2015-01-01

    Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved mechanism of adaptation to adverse microenvironmental conditions, including limited nutrient supplies. Several sensors interacting with the autophagic machinery have evolved to detect fluctuations in key metabolic parameters. The signal transduction cascades operating downstream of these sensors are highly interconnected to control a spatially and chronologically coordinated autophagic response that maintains the health and function of individual cells while preserving organismal homeostasis. Here, we discuss the physiological regulation of autophagy by metabolic circuitries, as well as alterations of such control in disease. PMID:25480292

  13. Organic anion transporting polypeptides in the hepatic uptake of PBDE congeners in mice

    SciTech Connect

    Pacyniak, Erik; Hagenbuch, Bruno; The University of Kansas Cancer Center, Kansas City, KS ; Klaassen, Curtis D.; Lehman-McKeeman, Lois; Guo, Grace L.

    2011-11-15

    BDE47, BDE99 and BDE153 are the predominant polybrominated diphenyl ether (PBDE) congeners detected in humans and can induce drug metabolizing enzymes in the liver. We have previously demonstrated that several human liver organic anion transporting polypeptides (humans: OATPs; rodents: Oatps) can transport PBDE congeners. Mice are commonly used to study the toxicity of chemicals like the PBDE congeners. However, the mechanism of the hepatic PBDE uptake in mice is not known. Therefore, the purpose of the current study was to test the hypothesis that BDE47, BDE99, and BDE153 are substrates of mouse hepatic Oatps (Oatp1a1, Oatp1a4, Oatp1b2, and Oatp2b1). We used Human Embryonic Kidney 293 (HEK293) cells transiently expressing individual Oatps and quantified the uptake of BDE47, BDE99, and BDE153. Oatp1a4, Oatp1b2, and Oatp2b1 transported all three PBDE congeners, whereas Oatp1a1 did transport none. Kinetic studies demonstrated that Oatp1a4 and Oatp1b2 transported BDE47 with the greatest affinity, followed by BDE99 and BDE153. In contrast, Oatp2b1 transported all three PBDE congeners with similar affinities. The importance of hepatic Oatps for the liver accumulation of BDE47 was confirmed using Oatp1a4-, and Oatp1b2-null mice. -- Highlights: Black-Right-Pointing-Pointer PBDE congeners are substrates of OATPs expressed in human hepatocytes. Black-Right-Pointing-Pointer Mice are commonly used to study the toxicity of chemicals like the PBDE congeners. Black-Right-Pointing-Pointer Oatp1a4, Oatp1b2, and Oatp2b1 transported all three PBDE congeners in vitro. Black-Right-Pointing-Pointer In vivo Oatp1a4 plays a minor and Oatp1b2 a major role in BDE47 liver accumulation.

  14. A hybrid DFT based investigation of the photocatalytic activity of cation-anion codoped SrTiO3 for water splitting under visible light.

    PubMed

    Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K

    2014-11-28

    In this study, the effect of cation (Mo or W) and anion (N) codoping on the band structure of SrTiO3 is investigated to improve its photocatalytic activity for water splitting under sunlight. We consider both the non-compensated and compensated codoping strategies using different ratios of the cationic and anionic dopants. The present study employs hybrid density functional theory to describe the electronic structure of all the systems accurately. Although non-compensated (1?:?1) codoping reduces the band gap significantly, the presence of localized impurity states may hinder charge carrier mobility. This also changes the positions of the band edges to such an extent that the (Mo/W, N)-codoped SrTiO3 system becomes ineffective for overall water splitting. Besides, the formation of charge compensating defects may contribute to the carrier loss. On the other hand, compensated (1?:?2) codoping not only reduces the band gap to shift the absorption curve towards the visible region, but also passivates the impurity states completely, ensuring improved photoconversion efficiency. The reduction of the band gap is found to be more prominent in the case of (W, 2N)-codoped SrTiO3 than (Mo, 2N)-codoped SrTiO3. In both the cases, the band edge positions are found to satisfy the thermodynamic criteria for overall water splitting. Our calculation predicts that the codoping of (Mo/W) and N in the 1?:?2 ratio also enhances the reducing properties at the conduction band in comparison to that in the undoped SrTiO3, which is beneficial for hydrogen release in water splitting. The present study thus demonstrates the effect of the nature of the dopant elements as well as their proportion to achieve the best outcome of the designed material for practical applications. PMID:25310754

  15. METABOLISM AND METABOLIC ACTIVATION OF CHEMICALS: IN-SILICO SIMULATION

    EPA Science Inventory

    The role of metabolism in prioritizing chemicals according to their potential adverse health effects is extremely important because innocuous parents can be transformed into toxic metabolites. This work presents the TIssue MEtabolism Simulator (TIMES) platform for simulating met...

  16. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242

  17. Large-gap magnetic suspension systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1992-01-01

    The classification of magnetic suspension devices into small-gap and large-gap categories is addressed. The relative problems of position sensing, control systems, power supplies, electromagnets, and magnetic field or force analysis are discussed. The similarity of all systems from a controls standpoint is qualified. Some applications where large-gap technology is being applied to systems with a physically small air-gap are mentioned. Finally, the applicability of some other suspension approaches, such as electrodynamic or superconducting are briefly addressed.

  18. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242

  19. Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach

    PubMed Central

    Ponce-de-Leon, Miguel; Calle-Espinosa, Jorge; Peretó, Juli; Montero, Francisco

    2015-01-01

    Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information. PMID:26629901

  20. CO2 binding in the (quinoline-CO2)- anionic complex

    NASA Astrophysics Data System (ADS)

    Graham, Jacob D.; Buytendyk, Allyson M.; Wang, Yi; Kim, Seong K.; Bowen, Kit H.

    2015-06-01

    We have studied the (quinoline-CO2)- anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO2)- anionic complex has much in common with previously studied (N-heterocycle-CO2)- anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO2 in the (quinoline-CO2)- anionic complex. From the theoretical calculations, we found CO2 to be bound within the (quinoline-CO2)- anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO2 binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO2)- anionic complexes are quite similar to that of the (quinoline-CO2)- anionic complex. This class of complexes may have a role to play in CO2 activation and/or sequestration.