Sample records for anisotropic composite materials

  1. Modeling of layered anisotropic composite material based on effective medium theory

    NASA Astrophysics Data System (ADS)

    Bao, Yang; Song, Jiming

    2018-04-01

    In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.

  2. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    PubMed

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  3. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  4. Anisotropic characterization of magnetorheological materials

    NASA Astrophysics Data System (ADS)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  6. The Features of Self-Assembling Organic Bilayers Important to the Formation of Anisotropic Inorganic Materials in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    1999-01-01

    There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.

  7. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  8. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    NASA Astrophysics Data System (ADS)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  9. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    NASA Astrophysics Data System (ADS)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  10. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  11. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  12. Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials

    NASA Astrophysics Data System (ADS)

    Castaings, Michel; Hosten, Bernard

    2003-05-01

    The propagation of Lamb-like waves in sandwich plates made of anisotropic and viscoelastic material layers is studied. A semi-analytical model is described and used for predicting the dispersion curves (phase velocity, energy velocity, and complex wave-number) and the through-thickness distribution fields (displacement, stress, and energy flow). Guided modes propagating along a test-sandwich plate are shown to be quite different than classical Lamb modes, because this structure does not have the mirror symmetry, contrary to most of composite material plates. Moreover, the viscoelastic material properties imply complex roots of the dispersion equation to be found that lead to connections between some of the dispersion curves, meaning that some of the modes get coupled together. Gradual variation from zero to nominal values of the imaginary parts of the viscoelastic moduli shows that the mode coupling depends on the level of material viscoelasticity, except for one particular case where this phenomenon exists whether the medium is viscoelastic or not. The model is used to quantify the sensitivity of both the dispersion curves and the through-thickness mode shapes to the level of material viscoelasticity, and to physically explain the mode-coupling phenomenon. Finite element software is also used to confirm results obtained for the purely elastic structure. Finally, experiments are made using ultrasonic, air-coupled transducers for generating and detecting guided modes in the test-sandwich structure. The mode-coupling phenomenon is then confirmed, and the potential of the air-coupled system for developing single-sided, contactless, NDT applications of such structures is discussed.

  13. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  14. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  15. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGES

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; ...

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  16. An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2011-01-01

    An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.

  17. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  18. Controllable helical deformations on printed anisotropic composite soft actuators

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi

    2018-04-01

    Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

  19. Thermo-viscoelastic analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Lin, Kuen Y.; Hwang, I. H.

    1989-01-01

    The thermo-viscoelastic boundary value problem for anisotropic materials is formulated and a numerical procedure is developed for the efficient analysis of stress and deformation histories in composites. The procedure is based on the finite element method and therefore it is applicable to composite laminates containing geometric discontinuities and complicated boundary conditions. Using the present formulation, the time-dependent stress and strain distributions in both notched and unnotched graphite/epoxy composites have been obtained. The effect of temperature and ply orientation on the creep and relaxation response is also studied.

  20. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  1. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  2. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    PubMed

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  3. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  4. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  5. The M-Integral for Computing Stress Intensity Factors in Generally Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Warzynek, P. A.; Carter, B. J.; Banks-Sills, L.

    2005-01-01

    The objective of this project is to develop and demonstrate a capability for computing stress intensity factors in generally anisotropic materials. These objectives have been met. The primary deliverable of this project is this report and the information it contains. In addition, we have delivered the source code for a subroutine that will compute stress intensity factors for anisotropic materials encoded in both the C and Python programming languages and made available a version of the FRANC3D program that incorporates this subroutine. Single crystal super alloys are commonly used for components in the hot sections of contemporary jet and rocket engines. Because these components have a uniform atomic lattice orientation throughout, they exhibit anisotropic material behavior. This means that stress intensity solutions developed for isotropic materials are not appropriate for the analysis of crack growth in these materials. Until now, a general numerical technique did not exist for computing stress intensity factors of cracks in anisotropic materials and cubic materials in particular. Such a capability was developed during the project and is described and demonstrated herein.

  6. Data-driven design optimization for composite material characterization

    Treesearch

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  7. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents

    NASA Astrophysics Data System (ADS)

    Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert

    2017-11-01

    An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.

  8. Extraction of guided wave dispersion curve in isotropic and anisotropic materials by Matrix Pencil method.

    PubMed

    Chang, C Y; Yuan, F G

    2018-05-16

    Guided wave dispersion curves in isotropic and anisotropic materials are extracted automatically from measured data by Matrix Pencil (MP) method investigating through k-t or x-ω domain with a broadband signal. A piezoelectric wafer emits a broadband excitation, linear chirp signal to generate guided waves in the plate. The propagating waves are measured at discrete locations along the lines for one-dimensional laser Doppler vibrometer (1-D LDV). Measurements are first Fourier transformed into either wavenumber-time k-t domain or space-frequency x-ω domain. MP method is then employed to extract the dispersion curves explicitly associated with different wave modes. In addition, the phase and group velocity are deduced by the relations between wavenumbers and frequencies. In this research, the inspections for dispersion relations on an aluminum plate by MP method from k-t or x-ω domain are demonstrated and compared with two-dimensional Fourier transform (2-D FFT). Other experiments on a thicker aluminum plate for higher modes and a composite plate are analyzed by MP method. Extracted relations of composite plate are confirmed by three-dimensional (3-D) theoretical curves computed numerically. The results explain that the MP method not only shows more accuracy for distinguishing the dispersion curves on isotropic material, but also obtains good agreements with theoretical curves on anisotropic and laminated materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A critical survey of wave propagation and impact in composite materials

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.

  10. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Overview of thermal conductivity models of anisotropic thermal insulation materials

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  12. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    PubMed

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  13. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  14. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  15. On the Constitutive Response Characterization for Composite Materials Via Data-Driven Design Optimization

    Treesearch

    John G. Michopoulos; John G. Hermanson; Athanasios lliopoulos; Samuel Lambrakos; Tomonari Furukawa

    2011-01-01

    In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to...

  16. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  17. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The

  18. Mechanical characterization of composite materials by optical techniques: A review

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi

    2018-05-01

    The present review provides an overview of work published in recent years dealing with the mechanical characterization of composite materials performed by optical techniques. The paper emphasizes the strengths derived from the employment of full-field methods when the strain field of an anisotropic material must be evaluated. This is framed in contrast to the use of conventional measurement techniques, which provide single values of the measured quantities unable to offer thorough descriptions of deformation distribution. The review outlines the intensity and articulation of work in this research field to date and its ongoing importance not only in the academy, but also in industrial sectors where composite materials represent a strategic resource for development.

  19. Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria

    NASA Technical Reports Server (NTRS)

    Chow, W-T.; Wang, L.; Atluri, S. N.

    1998-01-01

    This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.

  20. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  1. Anisotropic thermal conductive MWCNT/polymer composites prepared with an immiscible PS/LDPE blend.

    PubMed

    Kwon, Younghwan

    2014-08-01

    This study focuses on MWCNT/polymer composites with flexible, anisotropic heat transporting properties. For this study, an immiscible polymer blend of MWCNT/PS and LDPE (13.5:86.5 v:v) were used as a template. MWCNT/PS composites were first prepared by a solution process, and then melt-blended with LDPE using a brabender mixer. For achieving an alignment of MWCNT/PS in LDPE matrix, the blends of MWCNT/PS and LDPE were continuously treated under a fixed shear rate of 10 s(-1) at 210 °C. With partial extraction of PS in the aligned blends, FE-SEM images of the aligned blends revealed morphology of MWCNT in the PS/LDPE matrix, indicating local distribution of MWCNT selectively inside PS, where PS was elongated parallel to shear direction in LDPE matrix. The prepared MWCNT/PS and LDPE blends showed an anisotropic heat transporting behavior with anisotropic ratio of thermal conductivity (AR = λx/λz) up to 1.330 at 10 wt% of MWCNT in PS (equivalent to 1.50 wt% of MWCNT in PS/LDPE).

  2. Effects of anisotropic surface texture on the performance of ionic polymer-metal composite (IPMC)

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Ding, Haitao; Guo, Dongjie; Dai, Zhendong

    2010-04-01

    Ionic polymer metal composite (IPMC), an electrically activated polymer (EAP), has attracted great attention for the excellent properties such as large deformation, light weight, low noise, flexibility and low driving voltages, which makes the material a possible application as artificial muscle if the output force can be increased. To improve the property, we manufactured the Nafion membrane by casting from liquid solution, modified the surface by sandblasting or polishing, and obtained the isotropic and anisotropic surface texture respectively. The microstructure of the Nafion surface and metal electrode, effects of surface texture on the output force and displacement of IPMC were studied. Results show that the output force of IPMC with the anisotropic surface texture is 2~4 times higher than that with the isotropic surface texture without enormous sacrifice of the displacement. The output force may reach to 6.63gf (Sinusoidal 3.5V and 0.1Hz, length 20mm, width 5mm and thickness 0.66mm), which suggest an effective way to improve the mechanical properties of IPMC.

  3. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  4. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  5. Composite Fermi surface in the half-filled Landau level with anisotropic electron mass

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra

    We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.

  6. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    PubMed

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microfluidic Synthesis of Composite Cross-Gradient Materials for Investigating Cell–Biomaterial Interactions

    PubMed Central

    He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali

    2010-01-01

    Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897

  8. Highly anisotropic magneto-transport and field orientation dependent oscillations in aligned carbon nanotube/epoxy composites

    NASA Astrophysics Data System (ADS)

    Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.

    2017-12-01

    Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.

  9. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Kyle K.; Hermann, Thomas M.; Locke, James

    2005-11-01

    Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-planemore » displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers

  10. Quantifying the Nonlinear, Anisotropic Material Response of Spinal Ligaments

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel J.

    Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics. Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures aimed at relieving back pain will likely result in more effective long-term solutions. The material response of spinal ligaments has not previously been fully quantified due to limitations associated with standard soft tissue testing techniques. The present work presents and validates a novel testing methodology capable of overcoming these limitations. In particular, the anisotropic, inhomogeneous material constitutive properties of the human supraspinous ligament are quantified and methods for determining the response of the other spinal ligaments are presented. In addition, a method for determining the anisotropic, inhomogeneous pre-strain distribution of the spinal ligaments is presented. The multi-axial pre-strain distributions of the human anterior longitudinal ligament, ligamentum flavum and supraspinous ligament were determined using this methodology. Results from this work clearly demonstrate that spinal ligaments are not uniaxial structures, and that finite element models which account for pre-strain and incorporate ligament's complex material properties may provide increased fidelity to the in vivo condition.

  11. Failure Study of Composite Materials by the Yeh-Stratton Criterion

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1997-01-01

    The newly developed Yeh-Stratton (Y-S) Strength Criterion was used to study the failure of composite materials with central holes and normal cracks. To evaluate the interaction parameters for the Y-S failure theory, it is necessary to perform several biaxial loading tests. However, it is indisputable that the inhomogeneous and anisotropic nature of composite materials have made their own contribution to the complication of the biaxial testing problem. To avoid the difficulties of performing many biaxial tests and still consider the effects of the interaction term in the Y-S Criterion, a simple modification of the Y-S Criterion was developed. The preliminary predictions by the modified Y-S Criterion were relatively conservative compared to the testing data. Thus, the modified Y-S Criterion could be used as a design tool. To further understand the composite failure problem, an investigation of the damage zone in front of the crack tip coupled with the Y-S Criterion is imperative.

  12. Soft network composite materials with deterministic and bio-inspired designs

    PubMed Central

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446

  13. Continuation of tailored composite structures of ordered staple thermoplastic material

    NASA Technical Reports Server (NTRS)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses

  14. Statics and buckling problems of aircraft structurally-anisotropic composite panels with the influence of production technology

    NASA Astrophysics Data System (ADS)

    Gavva, L. M.; Endogur, A. I.

    2018-02-01

    The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.

  15. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  16. Sound attenuation and absorption by anisotropic fibrous materials: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric

    2018-03-01

    This paper describes analytical and experimental studies carried out to examine the attenuation and absorption properties of rigidly-backed fibrous anisotropic materials in contact with a uniform mean flow. The aim is to provide insights for the development of non-locally reacting wall-treatments able to dissipate the noise induced by acoustic excitations over in-duct or external lining systems. A model of sound propagation in anisotropic bulk-reacting liners is presented that fully accounts for anisotropic losses due to heat conduction, viscous dissipation and diffusion processes along and across the material fibres as well as for the convective effect of an external flow. The propagation constant for the least attenuated mode of the coupled system is obtained using a simulated annealing search method. The predicted acoustical performance is validated in the no-flow case for a wide range of fibre diameters. They are assessed against impedance tube and free-field pressure-velocity measurements of the normal incidence absorption coefficient and surface impedance. Parametric studies are then conducted to determine the key constitutive parameters such as the fibres orientation or the amount of anisotropy that mostly influence the axial attenuation or the normal absorption. They are supported by a low-frequency approximation to the axial attenuation under a low-speed flow.

  17. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  18. Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.

    PubMed

    Zhu, M L; Lee, S R; Zhang, T Y; Tong, P

    2000-01-01

    This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.

  19. Special features of design and calculation for structures made of anisotropic fiberglass

    NASA Astrophysics Data System (ADS)

    Shambina, S. L.; Virchenko, G. A.

    2017-07-01

    In recent years composite materials find wide application in various fields of engineering, because they have a number of advantages over other structural materials. A variety of composites’ physical and mechanical properties (especially anisotropy) requires an improvement of existing calculation methods and creation of new ones for structural elements made of these materials. This is an important task which will contribute to their wider use. In this paper some famous criteria of anisotropic materials are examined, and their advantages and disadvan-tages are discussed. The authors of the paper suggest new variants of strength criteria for anisotropic materials. These new criteria are based on new mechanical characteristics which are more convenient for experimental obtaining. Also new criteria use separate form of writing for each quadrant of the stress plain.

  20. Temperature effect on stress concentration around circular hole in a composite material specimen representative of X-29A forward-swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang

    1988-01-01

    The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a composite laminated plate containing a small circular hole. This advanced composite was used to manufacture the X-29A forward-swept wing. It was found for composite material, that the anisotropic stress concentration is no longer a constant, and that the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the loading axis. The analysis showed that through the lamination process, the stress concentration factor could be reduced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and the constant strain approach were used to calculate the stress concentration factor of room temperature. The results predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the results predicted by the constant strain approach matched the testing data very well. This showed the importance of the inplane shear effect on the evaluation of the stress concentration factor for the X-29A composite plate.

  1. Analysis and interpretation of diffraction data from complex, anisotropic materials

    NASA Astrophysics Data System (ADS)

    Tutuncu, Goknur

    Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl

  2. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-07

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  3. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  4. A note on flow reversal in a wavy channel filled with anisotropic porous material

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2017-07-01

    Viscous flow through a symmetric wavy channel filled with anisotropic porous material is investigated analytically. Flow inside the porous bed is assumed to be governed by the anisotropic Brinkman equation. It is assumed that the ratio of the channel width to the wavelength is small (i.e. δ2≪1). The problem is solved up to O(δ2) assuming that δ2λ2≪1, where λ is the anisotropic ratio. The key purpose of this paper is to study the effect of anisotropic permeability on flow near the crests of the wavy channel which causes flow reversal. We present a detailed analysis of the flow reversal at the crests. The ratio of the permeabilities (anisotropic ratio) is responsible for the flow separation near the crests of the wall where viscous forces are effective. For a flow configuration (say, low amplitude parameter) in which there is no separation if the porous media is isotropic, introducing anisotropy causes flow separation. On the other hand, interestingly, flow separation occurs even in the case of isotropic porous medium if the amplitude parameter a is large.

  5. IUTAM Symposium on Inelastic Deformation of Composite Materials Held in Troy, New York on 29 May - 1 June 1990

    DTIC Science & Technology

    1991-01-01

    bimodal theory . 1. Introduction Numerous analytical models have been proposed for prediction of the inelastic response of fibrous composites, an...necessity - especially at a higher c1 - to use the local-field theory . The shear creep strain of the composite is slightly larger in the transverse... gauge surface were also monitored. Theoretical Consideration Failure theories for anisotropic materials in plane stress conditions are in general

  6. Multimaterial magnetically assisted 3D printing of composite materials.

    PubMed

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R

    2015-10-23

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  7. Multimaterial magnetically assisted 3D printing of composite materials

    NASA Astrophysics Data System (ADS)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  8. Design of Particulate-Reinforced Composite Materials

    PubMed Central

    Muc, Aleksander; Barski, Marek

    2018-01-01

    A microstructure-based model is developed to study the effective anisotropic properties (magnetic, dielectric or thermal) of two-phase particle-filled composites. The Green’s function technique and the effective field method are used to theoretically derive the homogenized (averaged) properties for a representative volume element containing isolated inclusion and infinite, chain-structured particles. Those results are compared with the finite element approximations conducted for the assumed representative volume element. In addition, the Maxwell–Garnett model is retrieved as a special case when particle interactions are not considered. We also give some information on the optimal design of the effective anisotropic properties taking into account the shape of magnetic particles. PMID:29401678

  9. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  10. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics.

    PubMed

    Xia, Fengnian; Wang, Han; Jia, Yichen

    2014-07-21

    Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm(2)V(-1)s(-1) for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 μm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10(5), a field-effect mobility of 205 cm(2)V(-1)s(-1), and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.

  11. Thermographic Imaging of Defects in Anisotropic Composites

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2000-01-01

    Composite materials are of increasing interest to the aerospace industry as a result of their weight versus performance characteristics. One of the disadvantages of composites is the high cost of fabrication and post inspection with conventional ultrasonic scanning systems. The high cost of inspection is driven by the need for scanning systems which can follow large curve surfaces. Additionally, either large water tanks or water squirters are required to couple the ultrasonics into the part. Thermographic techniques offer significant advantages over conventional ultrasonics by not requiring physical coupling between the part and sensor. The thermographic system can easily inspect large curved surface without requiring a surface following scanner. However, implementation of Thermal Nondestructive Evaluations (TNDE) for flaw detection in composite materials and structures requires determining its limit. Advanced algorithms have been developed to enable locating and sizing defects in carbon fiber reinforced plastic (CFRP). Thermal Tomography is a very promising method for visualizing the size and location of defects in materials such as CFRP. However, further investigations are required to determine its capabilities for inspection of thick composites. In present work we have studied influence of the anisotropy on the reconstructed image of a defect generated by an inversion technique. The composite material is considered as homogeneous with macro properties: thermal conductivity K, specific heat c, and density rho. The simulation process involves two sequential steps: solving the three dimensional transient heat diffusion equation for a sample with a defect, then estimating the defect location and size from the surface spatial and temporal thermal distributions (inverse problem), calculated from the simulations.

  12. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  13. Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine

    2017-08-01

    A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.

  14. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  15. Fabrication of gradient optical filter containing anisotropic Bragg nanostructure.

    PubMed

    Cho, Bomin; Um, Sungyong; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    New gradient optical filters containing asymmetric Bragg structure were prepared from the distributed Bragg reflector (DBR) porous silicon (PSi). Anisotropic DBR PSi displaying a rainbow-colored reflection was generated by using an asymmetric etching configuration. Flexible anisotropic DBR PSi composite films were obtained by casting of polymer solution onto anisotropic DBR PSi thin films. The surface and cross-sectional images images of anisotropic DBR PSi composite films obtained with cold field emission scanning electron microscope indicated that the average pore size and the thickness of porous layer decreased as the lateral distance increased. As lateral distance increased, the reflection resonance shifted to shorter wavelength.

  16. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  17. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  18. Anisotropic evaluation of synthetic surgical meshes.

    PubMed

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  19. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  20. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.

    PubMed

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  1. Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly

    PubMed Central

    Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.

    2016-01-01

    Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113

  2. Application of IDT Sensors for Structural Health Monitoring of Windmill Turbine Blades Made of Composite Material

    NASA Astrophysics Data System (ADS)

    Nalladega, V.; Na, J. K.; Druffner, C.

    2011-06-01

    Interdigital transducers (IDT) generate and receive ultrasonic surface waves without the complexity involved with secondary devices such as angled wedges or combs. The IDT sensors have been successfully applied for the NDE of homogeneous materials like metals in order to detect cracks and de-bond. However, these transducers have not been yet adapted for complex and anisotropic materials like fiber-reinforced composites. This work presents the possibility of using IDT sensors for monitoring structural damages in wind turbine blades, typically made of fiberglass composites. IDT sensors with a range of operating frequency between 250 kHz and 1 MHz are initially tested on representative composite test panels for ultrasonic surface wave properties including beam spread, propagation distance and effect of material's anisotropy. Based on these results, an optimum frequency range for the IDT sensor is found to be 250-500 kHz. Subsequently, IDT sensors with operating frequency 500 kHz are used to detect and quantify artificial defects created in the composite test samples. Discussions are made on the interaction of ultrasonic fields with these defects along with the effects of fiber directionality and composite layer stacking.

  3. Characterization, Modeling, and Failure Analysis of Composite Structure Materials under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Werner, Brian Thomas

    Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential

  4. Optimized growth and reorientation of anisotropic material based on evolution equations

    NASA Astrophysics Data System (ADS)

    Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus

    2018-07-01

    Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

  5. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  6. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  7. An anisotropic elastoplasticity model implemented in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Miles Allen; Canfield, Thomas R.

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less

  8. Mixed-mode fracture mechanics parameters of elliptical interface cracks in anisotropic bimaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Y.; Qu, J.

    1999-07-01

    Two-dimensional interface cracks in anisotropic bimaterials have been studied extensively in the literature. However, solutions to three-dimensional interface cracks in anisotropic bimaterials are not available, except for circular (penny-shaped) cracks. In this paper, an elliptical crack on the interface between two anisotropic elastic half-spaces is considered. A formal solution is obtained by using the Stroh method in two dimensional elasticity in conjunction with the Fourier transform method. To illustrate the solution procedure, an elliptical delamination in a cross-ply composite is solved. Numerical results of the stress intensity factors and energy release rate along the crack front are obtained terms ofmore » the interfacial matrix M. It is found that the fields near the crack front are often in mixed mode, due to material anisotropy and the three dimensional nature of the crack front.« less

  9. Lateral Torsional Buckling of Anisotropic Laminated Composite Beams Subjected to Various Loading and Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ahmadi, Habiburrahman

    Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.

  10. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  12. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through

  13. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  14. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  15. Aerogel / Polymer Composite Materials

    NASA Technical Reports Server (NTRS)

    Smith, Trent M. (Inventor); Clayton, LaNetra M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  16. Influence of material anisotropy on the hydroelastic response of composite plates in water

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz Tolga; Young, Yin Lu

    2018-03-01

    Flexible lightweight plate-like lifting surfaces in external flows have a diverse range of use from propelling and controlling marine and aerospace vehicles to converting wind and ocean energy to electrical energy. Design and analysis of such structures are complex for underwater applications where the water density is much higher than air. The hydrodynamic loads, which vary with the inflow speed, can significantly alter the dynamic response and stability. This paper focuses on the hydroelastic response of composite plates in water. The results show that the dynamics and stability of the structure can be significantly modified by taking advantage of the material anisotropic; on the contrary, careless composite material designs may lead to unwanted dynamic instability failures. The resonance frequencies, divergence speeds, and fluid loss coefficients change with material anisotropy and hydrodynamic loads. The resonance frequencies are much lower in water than in air. The critical divergence speed increases, if the principal fiber direction is oriented towards the inflow. Hydrodynamic damping is shown to be much higher than the material damping, and tend to increase with flow speed and to decrease with increasing modal frequency. The paper derives Response Amplitude Operators (RAOs) for sample composite plates in water and use them to predict the motion response when subject to stochastic flow excitations. We show how material anisotropy can be used to passively tailor the plate vibration response spectrum to limit or enhance flow-induced vibrations of the plate depending on the desired applications.

  17. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  18. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching ofmore » aluminum sheets and results were compared with experiments.« less

  19. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  1. Deformation and stress response of composite laminated shells under internal pressure

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1991-01-01

    This paper presents a theoretical study of the response of filament wound composite shells under internal pressure. Each layer of the material is generally cylindrically anisotropic. By using cylindrically anisotropic elasticity field equations and Lekhnitskii's stress functions, a system of sixth-order ordinary differential equations is obtained. The general expressions for the stresses and displacements in the laminated composite shells under internal pressure are discussed. Two composite systems, graphite/epoxy and glass/epoxy, are selected to demonstrate the influence of degree of material anisotropy and fiber orientations on the axial and induced twisting deformation. Stress distributions of (45/-45)s symmetric angle-ply fiber-reinforced laminated shells are shown to illustrate the effect of radius-to-thickness ratio.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  3. Acoustics of two-component porous materials with anisotropic tortuosity

    NASA Astrophysics Data System (ADS)

    Albers, Bettina; Wilmanski, Krzysztof

    2012-11-01

    The paper is devoted to the analysis of monochromatic waves in two-component poroelastic materials described by a Biot-like model whose stress-strain relations are isotropic but the permeability is anisotropic. This anisotropy is induced by the anisotropy of the tortuosity which is given by a second order symmetric tensor. This is a new feature of the model while in earlier papers only isotropic permeabilities were considered. We show that this new model describes four modes of propagation. For our special choice of orientation of the direction of propagation these are two pseudo longitudinal modes P1 and P2, one pseudo transversal mode S2 and one transversal mode S1. The latter becomes also pseudo transversal in the general case of anisotropy. We analyze the speeds of propagation and the attenuation of these waves as well as the polarization properties in dependence on the orientation of the principal directions of the tortuosity. We indicate the practical importance of different shear (transversal) modes of propagation in a possible new nondestructive test of geophysical materials.

  4. Three-dimensional analysis of anisotropic spatially reinforced structures

    NASA Technical Reports Server (NTRS)

    Bogdanovich, Alexander E.

    1993-01-01

    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  6. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Treesearch

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  7. Improved composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1994-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae is introduced. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  8. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  9. Interaction phenomena at topological transitions in strongly anisotropic Dirac materials

    NASA Astrophysics Data System (ADS)

    Kotov, Valeri

    2014-03-01

    It is known that a topological (Lifshitz) transition can take place in graphene, strained uniaxially in the zig-zag direction. At such a transition the spectrum becomes semi-Dirac like, with linear, ultrarelativistic dispersion in one direction, and quadratic momentum dependence in the other. This type of transition also occurs in other materials as well as in artificial graphene lattices. We have found that long-range Coulomb interactions can lead to profound effects at such topological transitions. In particular, an unusually strong log squared renormalization behavior was found in the effective fermion mass, ultimately leading to very strong changes in the shape of the critical fermion spectrum. We also study the stability of such exotic spectrum towards spontaneous gap formation (excitonic transition). Ultimately we find that the interaction effects are much stronger at topological transitions in strongly anisotropic Dirac materials, compared to ``conventional'' isotropic graphene. Supported in part by DOE grant DE-FG02-08ER46512.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  11. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  13. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.

    1984-01-01

    The development of directionally solidified and single crystal alloys is perhaps the most important recent advancement in hot section materials technology. The objective is to develop knowledge that enables the designer to improve anisotropic gas turbine parts to their full potential. Two single crystal alloys selected were PWA 1480 and Alloy 185. The coatings selected were an overlay coating, PWA 286, and an aluminide diffusion coating, PWA 273. The constitutive specimens were solid and cylindrical; the fatigue specimens were hollow and cylindrical. Two thicknesses of substrate are utilized. Specimens of both thickness (0.4 and 1.5 mm) will be coated and then tested for tensile, creep, and fatigue properties.

  14. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  15. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.

    PubMed

    Hilton, Harry H

    2012-01-18

    Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  16. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  17. Experimental characterization of composites. [load test methods

    NASA Technical Reports Server (NTRS)

    Bert, C. W.

    1975-01-01

    The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.

  18. Addition of Si-Containing Gases for Anisotropic Etching of III-V Materials in Chlorine-Based Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Gatilova, Lina; Bouchoule, Sophie; Patriarche, Gilles; Guilet, Stephane

    2011-08-01

    We discuss the possibility of obtaining high-aspect-ratio etching of InP materials in Cl2- and HBr-based inductively coupled plasmas (ICP) with the addition of Si-containing gases (SiH4 or SiCl4). A vertical and smooth etching profile is demonstrated in SiCl4/H2 plasma. The effect of adding of a small amount of SiH4 to a previously optimised Cl2/H2 chemistry is presented, and new SiH4/Cl2 and SiH4/HBr chemistries are proposed. Ex-situ energy-dispersive X-ray spectroscopy coupled to transmission electron microscopy (EDX-TEM) is used to analyze the composition of the thin passivation layer deposited on the etched sidewalls. We show that it consists of a Si-rich silicon oxide (Si/O˜1) in Cl2/H2/SiH4 chemistry, and is changed to nano-crystalline (nc-) Si in SiH4/Cl2 chemistry depending on the SiH4 percentage. Moreover, we show that deep anisotropic etching of InP independent of the electrode coverplate material can be obtained via a SiOx passivation mechanism with the addition of Si-containing gases.

  19. Characterizing wood-plastic composites via data-driven methodologies

    Treesearch

    John G. Michopoulos; John C. Hermanson; Robert Badaliance

    2007-01-01

    The recent increase of wood-plastic composite materials in various application areas has underlined the need for an efficient and robust methodology to characterize their nonlinear anisotropic constitutive behavior. In addition, the multiplicity of various loading conditions in structures utilizing these materials further increases the need for a characterization...

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  1. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  2. Crystallographically Anisotropic Shape of Forsterite: New Probe for Evaluating Dust Formation History from Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Takigawa, Aki; Tachibana, Shogo

    2012-05-01

    Crystalline dust has been observed by infrared spectroscopy around dust-enshrouded asymptotic giant branch stars, in protoplanetary disks, and from some comets. Crystalline materials often have a specific shape related to a specific crystallographic orientation (crystallographically anisotropic shape), which reflects the anisotropic nature of crystals, and their infrared spectral features depend on crystallographically anisotropic shapes. The crystallographically anisotropic shape is thus a potentially powerful probe to evaluate circumstellar dust-forming conditions quantitatively. In order to assess the possibility to determine the crystallographically anisotropic shape from infrared spectra, we calculated mass absorption coefficients for ellipsoidal forsterite particles, the most abundant circumstellar crystalline silicate, elongated and flattened along the crystallographic a-, b-, and c-axes with various aspect ratios in the wavelength range of 9-70 μm. It was found that differences in infrared features caused by various crystallographicaly anisotropic shapes are distinguishable from each other irrespective of the effects of temperature, size, chemical composition, and grain edges of forsterite in the range of 9-12 μm and 15-20 μm. We thus concluded that the crystallographically anisotropic shape of forsterite can be deduced from peak features in infrared spectra. We also showed that the crystallographically anisotropic shapes formed by evaporation and condensation of forsterite can be distinguished from each other and the temperature condition for evaporation can be evaluated from the peak features. We applied the present results to the infrared spectrum of a protoplanetary disk HD100546 and found that a certain fraction (~25%) of forsterite dust may have experienced high-temperature evaporation (>1600 K).

  3. Method of moving frames to solve time-dependent Maxwell's equations on anisotropic curved surfaces: Applications to invisible cloak and ELF propagation

    NASA Astrophysics Data System (ADS)

    Chun, Sehun

    2017-07-01

    Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.

  4. Cost minimization through optimized raw material quality composition

    Treesearch

    Urs Buehlmann; R. Edward Thomas; Xiaoqui Zuo

    2011-01-01

    Lumber, a heterogeneous, anisotropic material produced from sawing logs, contains a varying number of randomly dispersed, unusable areas (defects) distributed over each boards’ surface area. Each board's quality is determined by the frequency and distribution of these defects and the board's dimension. Typically, the industry classifies lumber into five...

  5. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  6. A hydrostatic stress-dependent anisotropic model of viscoplasticity

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Tao, Q.; Verrilli, M. J.

    1994-01-01

    A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).

  7. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  8. Integral Equation Method for Electromagnetic Wave Propagation in Stratified Anisotropic Dielectric-Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Shu, Wei-Xing; Fu, Na; Lü, Xiao-Fang; Luo, Hai-Lu; Wen, Shuang-Chun; Fan, Dian-Yuan

    2010-11-01

    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics, which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.

  9. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  10. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  11. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties

    PubMed Central

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-01-01

    Layered (Bi1−xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1−xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1−xInx)2Te3 solid solution are obtained. PMID:28272541

  12. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  13. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  14. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  15. Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures

    NASA Astrophysics Data System (ADS)

    Freed, Shaun; Blackshire, James L.; Na, Jeong K.

    2016-02-01

    Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.

  16. The mechanics of delamination in fiber-reinforced composite materials. Part 2: Delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.

  17. High-fidelity Characterization on Anisotropic Thermal Conductivity of Carbon Nanotube Sheets and on their effects of Thermal Enhancement of Nanocomposites.

    PubMed

    Zhang, Xiao; Tan, Wei; Smail, Fiona; De Volder, Michael; Fleck, Norman; Boies, Adam

    2018-06-19

    Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. And the transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ~95 mW·m^2/(K·kg). Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in-situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement. © 2018 IOP Publishing Ltd.

  18. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  19. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  1. The asymptotic homogenization elasticity tensor properties for composites with material discontinuities

    NASA Astrophysics Data System (ADS)

    Penta, Raimondo; Gerisch, Alf

    2017-01-01

    The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents' elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite's interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents' elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies ( Hill's condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young's and shear moduli) and Poisson's ratio at increasing (up to

  2. Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Weiss, T.

    2018-05-01

    The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.

  3. Recent progress on exploring exceptionally high and anisotropic H+/OH– ion conduction in two-dimensional materials

    PubMed Central

    Sun, Pengzhan; Sasaki, Takayoshi

    2017-01-01

    Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH– ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H+/OH– conducting membranes. PMID:29629071

  4. Recent progress on exploring exceptionally high and anisotropic H+/OH- ion conduction in two-dimensional materials.

    PubMed

    Sun, Pengzhan; Ma, Renzhi; Sasaki, Takayoshi

    2018-01-07

    Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H + /OH - ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H + /OH - conducting membranes.

  5. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  6. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  7. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  8. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  9. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  10. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-05-03

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  11. A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties.

    PubMed

    Sen, Novonil; Kundu, Tribikram

    2018-07-01

    Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    NASA Astrophysics Data System (ADS)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  13. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  14. Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Ajmal Choudhary, Muhammad

    2017-07-01

    In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.

  15. Composite beam analysis linear analysis of naturally curved and twisted anisotropic beams

    NASA Astrophysics Data System (ADS)

    Borri, Marco; Ghiringhelli, Gian L.; Merlini, Teodoro

    1992-05-01

    The aim of this report is to present a consistent theory for the deformation of a naturally curved and twisted anisotropic beam. The proposed formulation naturally extends the classical Saint-Venant approach to the case of curved and twisted anisotropic beams. The mathematical model developed under the assumption of span-wise uniform cross-section, curvature and twist, can take into account any kind of elastic coupling due to the material properties and the curved geometry. The consistency of the presented math-model and its generality about the cross-sectional shape, make it a useful tool even in a preliminary design optimization context such as the aeroelastic tailoring of helicopter rotor blades. The advantage of the present procedure is that it only requires a two-dimensional discretization; thus, very detailed analyses can be performed and interlaminar stresses between laminae can be evaluated. Such analyses would be extremely time consuming if performed with standard finite element codes: that prevents their recursive use as for example when optimizing a beam design. Moreover, as a byproduct of the proposed formulation, one obtains the constitutive law of the cross-section in terms of stress resultant and moment and their conjugate strain measures. This constitutive law takes into account any kind of elastic couplings, e.g., torsion-tension, tension-shear, bending-shear, and constitutes a fundamental input in aeroelastic analyses of helicopter blades. Four simple examples are given in order to show the principal features of the method.

  16. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  17. Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  19. Aerogel materials with periodic structures imprinted with cellulose nanocrystals.

    PubMed

    Xu, Yi-Tao; Dai, Yiling; Nguyen, Thanh-Dinh; Hamad, Wadood Y; MacLachlan, Mark J

    2018-02-22

    Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.

  20. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    NASA Astrophysics Data System (ADS)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  1. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  2. Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis

    DOEpatents

    Adler, Laszlo; Von Cook, K.; Simpson, Jr., William A.; Lewis, D. Kent

    1978-01-01

    The anisotropic nature of a material is determined by measuring the velocity of an ultrasonic longitudinal wave and a pair of perpendicular ultrasonic shear waves through a sample of the material each at a plurality of different angles in three planes orthogonal to each other. The determined anisotropic nature is used as a correction factor in a spectral analyzing system of flaw determination.

  3. Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas

    2018-04-01

    Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.

  4. Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals

    DTIC Science & Technology

    2013-08-01

    the applied pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at finite strain...which elastic properties have been measured. Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by...highly symmetric anharmonic properties . Deviations may be expected for highly anisotropic materials , as shown in Section 4. This work is focused

  5. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  6. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  7. Impact response of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivasan, K.

    1991-01-01

    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  8. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  9. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  10. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-05-13

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.

  11. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  12. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  14. Morphology and microstructure of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  15. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    NASA Technical Reports Server (NTRS)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  16. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  17. Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.G. Quinn

    A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.

  18. Better Finite-Element Analysis of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Gregory

    2007-01-01

    A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.

  19. Relativistic anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mubarak; Nopoush, Mohammad; Strickland, Michael

    2018-07-01

    In this paper we review recent progress in relativistic anisotropic hydrodynamics. We begin with a pedagogical introduction to the topic which takes into account the advances in our understanding of this topic since its inception. We consider both conformal and non-conformal systems and demonstrate how one can implement a realistic equation of state using a quasiparticle approach. We then consider the inclusion of non-spheroidal (non-ellipsoidal) corrections to leading-order anisotropic hydrodynamics and present the findings of the resulting second-order viscous anisotropic hydrodynamics framework. We compare the results obtained in both the conformal and non-conformal cases with exact solutions to the Boltzmann equation and demonstrate that, in all known cases, anisotropic hydrodynamics best reproduces the exact solutions. Based on this success, we then discuss the phenomenological application of anisotropic hydrodynamics. Along these lines, we review techniques which can be used to convert a momentum-space anisotropic fluid into hadronic degrees of freedom by generalizing the original idea of Cooper-Frye freeze-out to momentum-space anisotropic systems. And, finally, we present phenomenological results of 3 + 1 d quasiparticle anisotropic hydrodynamic simulations and compare them to experimental data produced in 2.76 TeV Pb-Pb collisions at the LHC. Our results indicate that anisotropic hydrodynamics provides a promising framework for describing the dynamics of the momentum-space anisotropic QGP created in heavy-ion collisions.

  20. Veselago focusing of anisotropic massless Dirac fermions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  1. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  2. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  3. Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric

    2018-07-01

    Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.

  4. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  5. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  6. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  7. What is the Brillouin zone of an anisotropic photonic crystal?

    NASA Astrophysics Data System (ADS)

    Sivarajah, P.; Maznev, A. A.; Ofori-Okai, B. K.; Nelson, K. A.

    2016-02-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest band gap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ—defined as the Wigner-Seitz cell in the reciprocal lattice—is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic two-dimensional PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.

  8. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  9. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  10. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  11. Composite laminated shells under internal pressure

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    A theoretical study is conducted of the response of filament-wound composite shells under internal pressure; a system of sixth-order ordinary differential equations is obtained by means of the cylindrically anisotropic elasticity field equations and Lekhnitskii's (1963) stress functions. The general expressions for the stresses and displacements in the laminated composite shells under internal pressure are discussed. Attention is given to the influence of the degree of material anisotropy and fiber orientation on the axial and induced twisting deformation.

  12. Composite blade structural analyzer (COBSTRAN) user's manual

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.

    1989-01-01

    The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.

  13. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  14. Long discontinuous fiber composite structure: Forming and structural mechanics

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Santare, M. H.; Otoole, B. J.; Beaussart, A. J.; Deheer, D. C.; Okine, R. K.

    1991-01-01

    Cost effective composite structure has motivated the investigation of several new approaches to develop composite structure from innovative material forms. Among the promising new approaches is the conversion of planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. In the present study, the authors have established a framework which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. The initial study focuses upon the establishment of micromechanics models for prediction of the effective anisotropic viscosities of the oriented fiber assembly in a viscous matrix. Next, the developed constitutive relation is employed through an analogy with incompressible elasticity to exercise the finite element technique for determination of local fiber orientation and laminate thickness after forming. Results are presented for the stretch bending of a curved beam from an arbitrary composite laminate and the bulging of a clamped sheet. Structural analyses are conducted to determine the effect of microstructure on the performance of curved beams manufactured from long discontinuous fiber composites. For the purposes of this study, several curved beams with ideal and non-ideal microstructures are compared for response under pure bending. Material parameters are determined from a separate microstructural analysis.

  15. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R [Clinton, TN; Simpson, John T [Clinton, TN

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  16. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  17. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  18. Characterization of Anisotropic Behavior for High Grade Pipes

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  19. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.

    PubMed

    Chin, Stacey M; Synatschke, Christopher V; Liu, Shuangping; Nap, Rikkert J; Sather, Nicholas A; Wang, Qifeng; Álvarez, Zaida; Edelbrock, Alexandra N; Fyrner, Timmy; Palmer, Liam C; Szleifer, Igal; Olvera de la Cruz, Monica; Stupp, Samuel I

    2018-06-19

    Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.

  20. Physical interpretation and application of principles of ultrasonic nondestructive evaluation of high-performance materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    An ultrasonic measurement system employed in the experimental interrogation of the anisotropic properties (through the measurement of the elastic stiffness constants) of the uniaxial graphite-epoxy composites is presented. The continuing effort for the development of improved visualization techniques for physical parameters is discussed. The background is set for the understanding and visualization of the relationship between the phase and energy/group velocity for propagation in high-performance anisotropic materials by investigating the general requirements imposed by the classical wave equation. The consequences are considered when the physical parameters of the anisotropic material are inserted into the classical wave equation by a linear elastic model. The relationship is described between the phase velocity and the energy/group velocity three dimensional surfaces through graphical techniques.

  1. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements

    NASA Astrophysics Data System (ADS)

    Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane

    1990-03-01

    A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.

  2. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  3. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  4. Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Rice, Edward J.; Groesbeck, Donald E.

    1987-01-01

    The acoustic behavior of a flexible fibrous material was studied experimentally. The material consisted of cylindrically shaped fibers arranged in a batting with the fibers primarily aligned parallel to the face of the batting. This type of material was considered anisotropic, with the acoustic propagation constant depending on whether the dirction of sound propagation was parallel or normal to the fiber arrangement. Normal incidence sound absorption measurements were taken for both fiber orientations over the frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to 67 kg/cu m. When the sound propagated in a direction normal to the fiber alignment, the measured sound absorption showed the occurrence of a strong resonance, which increased absorption above that attributed to viscous and thermal effects. When the sound propagated in a direction parallel to the fiber alignment, indications of strong resonances in the data were not present. The resonance in the data for fibers normal to the direction of sound propagation is attributed to fiber motion. An analytical model was developed for the acoustic behavior of the material displaying the same fiber motion characteristics shown in the measurements.

  5. Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Rice, Edward J.; Groesbeck, Donald E.

    1990-01-01

    The acoustic behavior of a flexible fibrous material was studied experimentally. The material consisted of cylindrically shaped fibers arranged in a batting with the fibers primarily aligned parallel to the face of the batting. This type of material was considered anisotropic, with the acoustic propagation constant depending on whether the direction of sound propagation was parallel or normal to the fiber arrangement. Normal incidence sound absorption measurements were taken for both fiber orientations over the frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to 67 kg/cu m. When the sound propagated in a direction normal to the fiber alignment, the measured sound absorption showed the occurrence of a strong resonance, which increased absorption above that attributed to viscous and thermal effects. When the sound propagated in a direction parallel to the fiber alignment, indications of strong resonances in the data were not present. The resonance in the data for fibers normal to the direction of sound propagation is attributed to fiber motion. An analytical model was developed for the acoustic behavior of the material displaying the same fiber motion characteristics shown in the measurements.

  6. Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong

    2017-06-01

    In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  8. A study of fracture phenomena in fiber composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Konish, H. J., Jr.

    1973-01-01

    The extension of linear elastic fracture mechanics from ostensibly homogeneous isotropic metallic alloys to heterogeneous anisotropic advanced fiber composites is considered. It is analytically demonstrated that the effects of material anisotropy do not alter the principal characteristics exhibited by a crack in an isotropic material. The heterogeneity of fiber composites is experimentally shown to have a negligible effect on the behavior of a sufficiently long crack. A method is proposed for predicting the fracture strengths of a large class of composite laminates; the values predicted by this method show good agreement with limited experimental data. The limits imposed by material heterogeneity are briefly discussed, and areas for further study are recommended.

  9. Modeling Geodynamic Mobility of Anisotropic Lithosphere

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Karlstrom, L.

    2016-12-01

    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  10. Composite material and method of making

    DOEpatents

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  11. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  12. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  13. A composite material based on recycled tires

    NASA Astrophysics Data System (ADS)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  14. Materials Science: Nanotube composites

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Tour, James M.

    2007-06-01

    A carbon revolution has occurred - carbon atoms can be coaxed into several topologies to make materials with unique properties. Nanotubes are the vanguard of this innovation, and are on the cusp of commercial exploitation as the multifunctional components of the next generation of composite materials.

  15. Vibration Damping Response of Composite Materials

    DTIC Science & Technology

    1991-04-01

    using a diamond-impregnated cutoff wheel mounted on a milling machine . This procedure was followed to minimize damage to the composite specimens prior to...Development Report Vibration Damping Response of Composite Materials by Roger M. Crane 0E DTIC0 • ELECTE 16 - MAY 28 19914S8 0 E 5; 91--00524 Approved for...Damping Response of Composite Materials by Roger M. Crane TABLE OF CONTENTS Page LIST OF TABLES

  16. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  17. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  18. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  19. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  20. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  1. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  2. Self-shaping composites with programmable bioinspired microstructures.

    PubMed

    Erb, Randall M; Sander, Jonathan S; Grisch, Roman; Studart, André R

    2013-01-01

    Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material's microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

  3. Developing polymer composite materials: carbon nanotubes or graphene?

    PubMed

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric

  5. Investigation of Micro-Scale Architectural Effects on Damage of Composites

    NASA Technical Reports Server (NTRS)

    Stier, Bertram; Bednarcyk, Brett A.; Simon, Jaan W.; Reese, Stefanie

    2015-01-01

    This paper presents a three-dimensional, energy based, anisotropic, stiffness reduction, progressive damage model for composite materials and composite material constituents. The model has been implemented as a user-defined constitutive model within the Abaqus finite element software package and applied to simulate the nonlinear behavior of a damaging epoxy matrix within a unidirectional composite material. Three different composite microstructures were considered as finite element repeating unit cells, with appropriate periodicity conditions applied at the boundaries. Results representing predicted transverse tensile, longitudinal shear, and transverse shear stress-strain curves are presented, along with plots of the local fields indicating the damage progression within the microstructure. It is demonstrated that the damage model functions appropriately at the matrix scale, enabling localization of the damage to simulate failure of the composite material. The influence of the repeating unit cell geometry and the effect of the directionality of the applied loading are investigated and discussed.

  6. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  7. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Strain-Induced Anisotropic Fermi Contour of 2D Holes and Composite Fermions

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Rosales, K. A. V.; Mueed, M. A.; Padmanabhan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.; Shayegan, M.

    We present experimental and theoretical results demonstrating strain-induced Fermi contour anisotropy of two-dimensional (2D) holes and composite fermions (CFs) confined to a (001) GaAs quantum well. We apply a tunable uniaxial strain to a thinned (001) GaAs wafer, glued to a piezoelectric actuator. When the 2D holes are subjected to an in-plane uniaxial strain, their band structure and Fermi contour become anisotropic by about 30% even for a minute amount of strain, on the order of 10-4. Via measurements of commensurability oscillations, we determine the Fermi contour anisotropy for holes near zero magnetic field, and for CFs at high magnetic fields, as a function of uniaxial strain. The measured Fermi contour anisotropy of holes is consistent with the calculation results. The observed CF Fermi contour anisotropy also shows a strong dependence on the applied strain, which we compare quantitatively to that of the low-field holes. Supported by the NSF(Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (GBMF4420), and the Keck Foundation. R. W. is supported by the NSF (DMR-1310199).

  9. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  10. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  11. A Study for Anisotropic Wavefield Analysis with Elastic Layered Models

    NASA Astrophysics Data System (ADS)

    Yoneki, R.; Mikada, H.; Takekawa, J.

    2015-12-01

    Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.

  12. Friction Stir Processing of Particle Reinforced Composite Materials

    PubMed Central

    Gan, Yong X.; Solomon, Daniel; Reinbolt, Michael

    2010-01-01

    The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  13. Comparison of wear between occlusal splint materials and resin composite materials.

    PubMed

    Reyes-Sevilla, M; Kuijs, R H; Werner, A; Kleverlaan, C J; Lobbezoo, F

    2018-07-01

    Tooth wear in bruxing patients often results in a need for treatment with composite restorations. In some cases, bruxing patients receive an occlusal splint as a protective means as well. However, the wear between these opposing materials has not been investigated yet. The aim of this in vitro study was to assess the wear of different splint materials against resin composite materials. A two-body wear test was conducted using the ACTA wear machine. The materials selected for this study were three composites used for direct restorations (Filtek Z250, CLEARFIL AP-X, and Filtek Supreme XT) and four occlusal splints materials, viz. a polyamide resin (ThermoSens) an conventional (hand-processed), milled and printed polymethylmethacrylate (PMMA). As antagonistic materials, stainless steel, Filtek Supreme XT and CLEARFIL AP-X were used. The wear rate of the seven materials was determined after 200 000 cycles, using a profilometry. The rates were analysed using two-way ANOVA and post hoc Tukey's tests. The wear rates were significantly higher for the conventional and milled PMMA materials than for all other materials (P < .001). The wear rates of printed PMMA and the polyamide resin were comparable to composite wear rates. The antagonist materials have minor or no influence on the amount of wear of the various splint materials (P < .001). In conclusion, different splint materials yielded different wear rates for all antagonist materials tested. Keeping in mind that this study is an experimental in vitro study, this finding enables practitioners to choose the splint material necessary according to their patients' needs. © 2018 John Wiley & Sons Ltd.

  14. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    PubMed

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the

  15. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    DTIC Science & Technology

    2014-04-01

    Microvascular Self - Healing Composites Mechanical Evaluation ................................................................................11...Thermoplastic SMP Foam Microstructure- Mechanical Stress-Strain Relationships 2.2.2 Microvascular Self - Healing Composites Mechanical Evaluation 2.3.1 Z...materials, and embedded sensory and circulatory systems. Damage repair of torn or injured tissue was demonstrated by the use of self - healing polymer

  16. Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.

    Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  17. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    NASA Astrophysics Data System (ADS)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-06-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  18. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    NASA Astrophysics Data System (ADS)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  19. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Chen, L.; Mankovsky, S.; Wimmer, S.; Schoen, M. A. W.; Körner, H. S.; Kronseder, M.; Schuh, D.; Bougeard, D.; Ebert, H.; Weiss, D.; Back, C. H.

    2018-05-01

    As a fundamental parameter in magnetism, the phenomenological Gilbert damping constant α determines the performance of many spintronic devices. For most magnetic materials, α is treated as an isotropic parameter entering the Landau-Lifshitz-Gilbert equation. However, could the Gilbert damping be anisotropic? Although several theoretical approaches have suggested that anisotropic α could appear in single-crystalline bulk systems, experimental evidence of its existence is scarce. Here, we report the emergence of anisotropic magnetic damping by exploring a quasi-two-dimensional single-crystalline ferromagnetic metal/semiconductor interface—that is, a Fe/GaAs(001) heterojunction. The observed anisotropic damping shows twofold C2v symmetry, which is expected from the interplay of interfacial Rashba and Dresselhaus spin-orbit interaction, and is manifested by the anisotropic density of states at the Fe/GaAs (001) interface. This discovery of anisotropic damping will enrich the understanding of magnetization relaxation mechanisms and can provide a route towards the search for anisotropic damping at other ferromagnetic metal/semiconductor interfaces.

  20. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  1. Preparation and characterization of phase transition/graphite foam composite materials.

    PubMed

    Yu, Jia; Tang, ChenLong; Yu, ZhiChao

    2016-07-04

    Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).

  2. Optimization of sensor introduction into laminated composite materials

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Nemat-Nasser, Sia

    2008-03-01

    This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.

  3. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  4. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  5. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  6. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  7. Anisotropic elasticity of quasi-one-component polymer nanocomposites.

    PubMed

    Voudouris, Panayiotis; Choi, Jihoon; Gomopoulos, Nikos; Sainidou, Rebecca; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2011-07-26

    The in-plane and out-of-plane elastic properties of thin films of "quasi-one-component" particle-brush-based nanocomposites are compared to those of "classical" binary particle-polymer nanocomposite systems with near identical overall composition using Brillouin light scattering. Whereas phonon propagation is found to be independent of the propagation direction for the binary particle/polymer blend systems, a pronounced splitting of the phonon propagation velocity along the in-plane and out-of-plane film direction is observed for particle-brush systems. The anisotropic elastic properties of quasi-one-component particle-brush systems are interpreted as a consequence of substrate-induced order formation into layer-type structures and the associated breaking of the symmetry of the film. The results highlight new opportunities to engineer quasi-one-component nanocomposites with advanced control of structural and physical property characteristics based on the assembly of particle-brush materials.

  8. Effective media properties of hyperuniform disordered composite materials

    PubMed Central

    Sheng, Xin-Qing

    2017-01-01

    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design. PMID:28982118

  9. Slumping during sculpturing of composite materials.

    PubMed

    Chiang, Yu-Chih; Knezevic, Alena; Kunzelmann, Karl-Heinz

    2008-12-01

    This study investigated the slumping characteristics of four composite materials during sculpturing prior to their polymerization. Four different composite materials were used to measure shape deformation due to slumping. Silicon impressions of the occlusal plane of three different molars were used as a mould for the composite samples. The surface of the samples was digitized with a laser scanner (400 slices, lateral resolution: 25 microm). Scans were made after 1-4 min. The 3D data sets were numerically superimposed with matching software and differences were calculated relative to the baseline measurement. The amount of surface deformation increases with increasing observation time. The average coefficient of variation was 0.2. The largest mean amount of slumping was observed for ELS with tooth mould 1 (150.0 microm), and for Clearfil Majesty with tooth mould 2 (98.3 microm) and mould 3 (42.8 microm). Miris 2 Dentin and Synergy D6 Enamel were rather similar and seem to exhibit little deformation. The slump flow of ELS and Clearfil Majesty was up to 400% higher than the formers. The deformation could be sorted in the following order "mould 3"<"mould 2"<"mould 1" for all materials and all observation time. There was a significant influence (p<0.05) of the three factors, time, mould and composite type (ANOVA). This specific method provides a reproducible approach for the assessment of the handling characteristics of composite materials. The results can identify slumping differences and assist in collecting information about the feasibility of a material for certain indications.

  10. Anisotropic Ripple Deformation in Phosphorene.

    PubMed

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  11. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  12. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  13. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  14. X-ray coherent scattering tomography of textured material (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  15. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  16. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  17. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE PAGES

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    2017-09-01

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  18. Microbiological destruction of composite polymeric materials in soils

    NASA Astrophysics Data System (ADS)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  19. Indentation cracking of composite matrix materials.

    PubMed

    Baran, G; Shin, W; Abbas, A; Wunder, S

    1994-08-01

    Composite restorative materials wear by a fatigue mechanism in the occlusal contact area. Here, tooth cusps and food debris cyclically indent the restoration. Modeling this phenomenon requires an understanding of material response to indentation. The question in this study was whether material response depends on indenter size and geometry, and also, whether polymers used in restorative materials should be considered elastic and brittle, or plastic and ductile for modeling purposes. Three resins used as matrices in proprietary restorative composites were the experimental materials. To ascertain the influence of glass transition temperature, liquid sorption, and small amounts of filler on indentation response, we prepared materials with various degrees of cure; some samples were soaked in a 50/50 water/ethanol solution, and 3 vol% silica was added in some cases. Indentation experiments revealed that no cracking occurred in any material after indentation by Vickers pyramid or spherical indenters with diameters equal to or smaller than 0.254 mm. Larger spherical indenters induced subsurface median and surface radial and/or ring cracks. Critical loads causing subsurface cracks were measured. Indentation with suitably large spherical indenters provoked an elastoplastic response in polymers, and degree of cure and Tg had less influence on critical load than soaking in solution. Crack morphology was correlated with yield strain. Commonly held assumptions regarding the brittle elastic behavior of composite matrix materials may be incorrect.

  20. Corrosion inhibiting composition for treating asbestos containing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.R.

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  1. Corrosion inhibiting composition for treating asbestos containing materials

    DOEpatents

    Hartman, Judithann Ruth

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C.sub.8 -C.sub.15 alkylpyridinium halide or mixtures thereof. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  2. Corrosion inhibiting composition for treating asbestos containing materials

    DOEpatents

    Hartman, J.R.

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  3. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  4. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  5. Graphene-based composite materials.

    PubMed

    Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S

    2006-07-20

    Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

  6. The energetics of adhesion in composite materials

    NASA Astrophysics Data System (ADS)

    Harding, Philip Hiram

    Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the

  7. Material properties and laser cutting of composites

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chieh; Cheng, Wing

    Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.

  8. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  9. Anisotropic Weyl symmetry and cosmology

    NASA Astrophysics Data System (ADS)

    Moon, Taeyoon; Oh, Phillial; Sohn, Jongsu

    2010-11-01

    We construct an anisotropic Weyl invariant theory in the ADM formalism and discuss its cosmological consequences. It extends the original anisotropic Weyl invariance of Hořava-Lifshitz gravity using an extra scalar field. The action is invariant under the anisotropic transformations of the space and time metric components with an arbitrary value of the critical exponent z. One of the interesting features is that the cosmological constant term maintains the anisotropic symmetry for z = -3. We also include the cosmological fluid and show that it can preserve the anisotropic Weyl invariance if the equation of state satisfies P = zρ/3. Then, we study cosmology of the Einstein-Hilbert-anisotropic Weyl (EHaW) action including the cosmological fluid, both with or without anisotropic Weyl invariance. The correlation of the critical exponent z and the equation of state parameter bar omega provides a new perspective of the cosmology. It is also shown that the EHaW action admits a late time accelerating universe for an arbitrary value of z when the anisotropic conformal invariance is broken, and the anisotropic conformal scalar field is interpreted as a possible source of dark energy.

  10. Structure and properties of hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.

    2013-03-01

    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  11. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  12. Effects of Aeroelastic Tailoring on Anisotropic Composite Material Beam Models of Helicopter Blades

    DTIC Science & Technology

    1989-05-01

    34 means that a layer of material at some distance above a structural midsurface reference location has the identical ply thickness, angular orientation...and material properties as that of a lamina at an identical distance below the midsurface [1]. If the fibers are placed off-axis in the upper and

  13. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    PubMed Central

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  14. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  15. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  16. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  17. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  18. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  19. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  1. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  2. Mechanical properties of wood-based composite materials

    Treesearch

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  3. Dynamical anisotropic response of black phosphorus under magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  4. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  5. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    DTIC Science & Technology

    2012-01-24

    perform the environmental tests at cold temperatures, nitrogen tanks were purchased and connected to the environmental chamber via hoses . Fibers of... Braided Composites.” Journal of Composite Materials (30) (1) (1996): 51-68. 2. Graham, Derek. “Buckling of Thick-Section Composite Pressure Hulls

  6. Anisotropic ripple deformation in phosphorene

    DOE PAGES

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...

    2015-04-07

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS 2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classicalmore » elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less

  7. Anisotropic ripple deformation in phosphorene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS 2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classicalmore » elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less

  8. Zirconia-hydroxyapatite composite material with micro porous structure.

    PubMed

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  10. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  11. Anisotropic Constitutive Relationships in Energetic Materials: Nitromethane and Rdx

    NASA Astrophysics Data System (ADS)

    Oleynik, I. I.; Conroy, M.; White, C. T.

    2007-12-01

    The anisotropic constitutive relationships in solid nitromethane (NM) and α-RDX were studied using first-principles density functional theory (DFT). In addition to hydrostatic compressions, we performed uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to the compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS, are in good agreement with available experimental data. The shear stresses of uniaxially compressed NM and α-RDX were used to predict the relative shock sensitivity between different crystallographic directions.

  12. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  13. Fabrication of a nanostructured gold-polymer composite material.

    PubMed

    Mallick, K; Witcomb, M; Scurrell, M

    2006-07-01

    A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl(4) as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl(4). It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50+/-10nm, while the reduction of AuCl(4) (-) results in the formation of gold nanoparticles ( approximately 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.

  14. Composite materials: Tomorrow for the day after tomorrow

    NASA Technical Reports Server (NTRS)

    Condom, P.

    1982-01-01

    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  15. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  16. Collagen/hydroxyapatite composite materials with desired ceramic properties.

    PubMed

    Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton

    2011-01-01

    Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.

  17. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  18. Self-shaping composites with programmable bioinspired microstructures

    NASA Astrophysics Data System (ADS)

    Erb, Randall M.; Sander, Jonathan S.; Grisch, Roman; Studart, André R.

    2013-04-01

    Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

  19. Composites Materials and Manufacturing Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  20. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  1. Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials

    NASA Astrophysics Data System (ADS)

    Trifale, Ninad T.

    A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three

  2. Electrode material comprising graphene-composite materials in a graphite network

    DOEpatents

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  3. Electrode material comprising graphene-composite materials in a graphite network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Harold H.; Lee, Jung K.

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  4. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Jillian Cathleen; Torres, Joseph Angelo; Volz, Heather Michelle

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it ismore » determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.« less

  5. Design and construction of a tensile tester for the testing of simple composites

    NASA Technical Reports Server (NTRS)

    Borst, Mark A.; Spiegel, F. Xavier

    1994-01-01

    The following is a design for a tensile tester which will be used to test the tensile strength and anisotropic properties of simple composites. These simple composites are suspected to be anisotropic primarily in a single plane. When the composites undergo a tensile force, they will undergo deformation, causing movement either to the left or right. The composites are suspect due to their method of construction. Each sample has a single layer of unidirectional continuous fibers embedded in a rubbery resin. It has been well established that a serious limitation of unidirectional fiber composites is the very large in-plane anisotropy. The design presented here incorporates a single degree of freedom such that distortion (to the left or right) due to anisotropic tendencies may be measured. The device will spend the vast majority of its time in an undergraduate materials lab. As a result, ease of use and durability are valued more highly than research grade accuracy. Additional concerns focus on the fact that this machine will be built as a student project. Issues which are dealt with during this design include: specimen configuration or shape; a method of applying consistent, linear tension force; a method of gripping specimen without affecting its overall properties; a method of collecting data; repeatability of data; ease of use; ease of construction; and cost. After the device has been constructed, it will be used to test the simple composites which were fabricated in house. A comparison will be made between composites manufactured using aluminum screening as the strengthening fibers and those manufactured using fiberglass screening.

  6. Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors

    DOE PAGES

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; ...

    2015-05-07

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less

  7. Energy absorption in composite materials for crashworthy structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Crash energy-absorption processes in composite materials have been studied as part of a research program aimed at the development of energy absorbing subfloor beams for crashworthy military helicopters. Based on extensive tests on glass/epoxy, graphite/epoxy, and Kevlar/epoxy composites, it is shown that the energy-absorption characteristics and crushing modes of composite beams are similar to those exhibited by tubular specimens of similar material and architecture. The crushing mechanisms have been determined and related to the mechanical properties of the constituent materials and specimen architecture. A simple and accurate method for predicting the energy-absorption capability of composite beams has been developed.

  8. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  9. Effect of Service Environment on Composite Materials

    DTIC Science & Technology

    1980-08-01

    AGARC -CP-288 . z AGARD Conference Procee•dings No.288 Effect of Service Environment on Composite Materials M1TflIBInj4 STATE 9s~k 7- II LLU...ORGANISATION DU TRAITE DE L’ATLANTI )UE NOR3) AGARD Conference Proceedings 1, o.288 EFFECT OF SERVICE ENVIRONM ENT ONj I COMPOSITE MATERIALS --- I... composites soumis aux divers types d’agressions que l’on recouvre aujourd’hui du vocable d’...environnement". On doit admettre que cette revue 6tait part

  10. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  11. Tailored material properties using textile composites

    NASA Astrophysics Data System (ADS)

    Pastore, C. M.

    2017-10-01

    Lightweighting is essential for the reduction of energy consumption in transportation. The most common approach is through the application of high specific strength and stiffness materials, such as composites and high performance aluminum alloys. One of the challenges associated with the use of advanced materials is the high cost. This paper explores the opportunities of using hybrid composites (glass and carbon, for example) with selective fiber placement to optimize the weight subject to price constraints for given components. Considering the example of a hat-section for hood reinforcement, different material configurations were modeled and developed. The required thickness of the hat section to meet the same bending stiffness as an all carbon composite beam was calculated. It was shown that selective placement of fiber around the highest moments results in a weight savings of around 14% compared to a uniformly blended hybrid with the same total material configuration. From this it is possible to estimate the materials cost of the configurations as well as the weight of the component. To determine which is best it is necessary to find an exchange constant that converts weight into cost - the penalty of carrying the extra weight. The value of this exchange constant will depend on the particular application.

  12. Longitudinal disordering of vortex lattices in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.

    1993-02-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.

  13. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  14. Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones

    NASA Astrophysics Data System (ADS)

    Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.

    2015-03-01

    We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g , but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F . Since F is a universal number in many other situations, this finding is remarkable. We apply our general considerations to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.

  15. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  16. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  17. Joining of polymer composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide amore » review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.« less

  18. Composite materials molding simulation for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from

  19. Hybrid Composite Material and Solid Particle Erosion Studies

    NASA Astrophysics Data System (ADS)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  20. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  1. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  2. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    PubMed

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  3. Economically effective material forms for composites

    NASA Astrophysics Data System (ADS)

    Woolstencroft, Dave

    This paper will consider advanced composites and the new degrees of freedom that are available to the composites engineer to be able to make parts that combine both an economic performance superior to existing systems, with no additional production investment, and high mechanical property translations. This unique advantage comes about through some pioneering and innovative work in the different forms of material into which the reinforcing fibers can be configured. The presentation will highlight the unique advantages and show a pioneering aerostructural application of this material form.

  4. Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load

    NASA Astrophysics Data System (ADS)

    Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar

    2018-03-01

    Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.

  5. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1982-11-01

    1(AXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES *ASTRAC7 lCofIflU Ir F*vsda Side It neceOaeen anud...composite systems are elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical...sealed, capsules achieved. The diamine bath has been E] improved and an automatic system has been developed for producing the microcapsules . The one

  6. Azimuthally Anisotropic Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Orsvuran, R.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Ruan, Y.; Smith, J. A.; Komatitsch, D.; Tromp, J.

    2017-12-01

    Earth's upper mantle shows significant evidence of anisotropy as a result of its composition and deformation. After the first-generation global adjoint tomography model, GLAD-M15 (Bozdag et al. 2016), which has transverse isotropy confined to upper mantle, we continue our iterations including surface-wave azimuthal anisotropy with an emphasis on the upper mantle. We are focusing on four elastic parameters that surface waves are known to be most sensitive to, namely, vertically and horizontally polarized shear waves and the density-normalised anisotropic parameters Gc' & Gs'. As part of the current anisotropic inversions, which will lead to our "second-generation" global adjoint tomography model, we have started exploring new misfits based on a double-difference approach (Yuan et al. 2016). We define our misfit function in terms of double-difference multitaper measurements, where each waveform is normalized by its number of pairs in the period ranges 45-100 s & 90-250 s. New measurements result in better balanced gradients while extracting more information underneath clusters of stations, such as USArray. Our initial results reveals multi-scale anisotorpic signals depending on ray (kernel) coverage close to continental-scale resolution in areas with dense coverage, consistent with previous studies.

  7. Highly birefringent polymer microstructured optical fibers embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.

  8. Computer program to compute buckling loads of simply supported anisotropic plates

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1973-01-01

    Program handles several types of composites and several load conditions for each plate, both compressive or tensile membrane loads, and bending-stretching coupling via the concept of reduced bending rigidities. Vibration frequencies of homogeneous or layered anisotropic plates can be calculated by slightly modifying the program.

  9. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  10. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  11. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this

  12. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.

    PubMed

    Van der Kelen, Christophe; Göransson, Peter

    2013-12-01

    The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of porous materials used in acoustic treatments. Due to the manufacturing processes involved, these porous materials are most often geometrically anisotropic on a microscopic scale, and for demanding applications, there is a need for improved characterization methods. This paper discusses recent refinements of a method for the identification of the anisotropic flow resistivity tensor. The inverse estimation is verified for three fictitious materials with different degrees of anisotropy. Measurements are performed on nine glass wool samples and seven melamine foam samples, and the anisotropic flow resistivity tensors obtained are validated by comparison to measurements performed on uni-directional cylindrical samples, extracted from the same, previously measured cubic samples. The variability of flow resistivity in the batch of material from which the glass wool is extracted is discussed. The results for the melamine foam suggest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.

  13. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  14. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  15. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    NASA Astrophysics Data System (ADS)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  16. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  17. Theoretical investigations on a class of double-focus planar lens on the anisotropic material

    NASA Astrophysics Data System (ADS)

    Bozorgi, Mahdieh; Atlasbaf, Zahra

    2017-05-01

    We study a double-focus lens constituted of V-shaped plasmonic nano-antennas (VSPNAs) on the anisotropic TiO2 thin film. The phase and amplitude variations of cross-polarized scattered wave from a unit cell are computed by the developed fast Method of Moments (MoM) in which the dyadic Green's function is evaluated with the transmission line model in the spectral domain. Using the calculated phase and amplitude diagrams, a double-focus lens on the anisotropic thin film is designed in 2 μm. To validate the numerical results, the designed lens is analysed using a full-wave EM-solver. The obtained results show a tunable asymmetric behavior in the focusing intensity of the focal spots for different incident polarizations. It is shown that changing the thickness of anisotropic thin film leads to the changing in such an asymmetric behavior and also the intensity ratio of two focal spots. In addition, the lens performance is examined in the broadband wavelength range from 1.76 to 2.86 μm. It is achieved that the increasing the wavelength leads to decreasing the focal distances of the designed lens and increasing its numerical aperture (NA).

  18. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  19. Composite, ordered material having sharp surface features

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  20. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  1. Prosthetic limb sockets from plant-based composite materials.

    PubMed

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  2. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  3. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  4. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and

  5. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  6. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  7. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors

    PubMed Central

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching-Hwa; Huang, Ying-Sheng; Cao, Zhengyi; Wang, Laiguo; Li, Aidong; Zeng, Junwen; Song, Fengqi; Wang, Xinran; Shi, Yi; Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi; Miao, Feng; Xing, Dingyu

    2015-01-01

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼107) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications. PMID:25947630

  8. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    PubMed

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Delamination Analysis Of Composite Curved Bars

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1990-01-01

    Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.

  10. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  11. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow productionmore » rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.« less

  12. Magnetized anisotropic stars

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian

    2018-05-01

    We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.

  13. The stress analysis method for three-dimensional composite materials

    NASA Astrophysics Data System (ADS)

    Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

    1994-05-01

    This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

  14. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  15. Amorphous titania/carbon composite electrode materials

    DOEpatents

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  16. Thermal design of composite materials high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.

  17. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  18. Characterization of Elastic Properties of Interfaces in Composite Materials

    DTIC Science & Technology

    1990-09-01

    ceramic Imatrix composites. These types of composite materials offer the advantages of being lighter, stiffer, stronger, and more resistant to creep and...actual composite materials. śi 3 II. Introduction The advantages offered by metal and ceramic matrix composites for strw, ural aerispace applications...minimum when ( VST /Vs) 2 = 0.8453... This corresponds to a situation analogous to a Rayleigh wave. As the ratio of the displacements increases, the ratio of

  19. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation

  20. Materials and processes laboratory composite materials characterization task, part 1. Damage tolerance

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.

    1991-01-01

    A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.

  1. Accelerated Insertion of Materials - Composites

    DTIC Science & Technology

    2001-08-28

    Details • Damage Tolerance • Repair • Validation of Analysis Methodology • Fatigue • Static • Acoustic • Configuration Details • Damage Tolerance...Sensitivity – Fatigue – Adhesion – Damage Tolerance – All critical modes and environments Products: Material Specifications, B-Basis Design Allowables...Demonstrate damage tolerance AIM-C DARPA DARPA Workshop, Annapolis, August 27-28, 2001 Requalification of Polymer / Composite Parts • Material Changes – Raw

  2. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study

    PubMed Central

    Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans. PMID:28053976

  3. DNA-nanoparticle superlattices formed from anisotropic building blocks

    NASA Astrophysics Data System (ADS)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  4. Nonlinear and Anisotropic Tensile Properties of Graft Materials used in Soft Tissue Applications

    PubMed Central

    Yoder, Jonathon H; Elliott, Dawn M

    2010-01-01

    Background The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. Methods The degree of anisotropy and nonlinearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. Results The Alloderm graft was anisotropic in both the toe and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18 MPa, and were nonlinear. OrthADAPT was anisotropic in the linear region (131 vs 47 MPa) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Interpretation Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. PMID:20129728

  5. Nonlinear and anisotropic tensile properties of graft materials used in soft tissue applications.

    PubMed

    Yoder, Jonathon H; Elliott, Dawn M

    2010-05-01

    The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. The degree of anisotropy and non-linearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. The Alloderm graft was anisotropic in both the toe- and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18MPa, and were nonlinear. OrthADAPT was anisotropic in the linear-region (131 MPA vs 47MPa in the toe-region) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  7. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  8. Environmental, Safety, and Health Considerations: Composite Materials in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Chu, Huai-Pu (Compiler)

    1994-01-01

    The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association, and the National Aeronautics and Space Administration co-sponsored a conference on 'Environmental, Safety, and Health Considerations--Composite Materials in the Aerospace Industry.' The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen papers were presented in four sessions including general information, safety, waste, and emissions from composites. Topics range from product stewardship, best work practice, biotransformation of uncured composite materials, to hazardous waste determination and offgassing of composite materials.

  9. Choosing the optimal Pareto composition of the charge material for the manufacture of composite blanks

    NASA Astrophysics Data System (ADS)

    Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.

    2017-12-01

    The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.

  10. Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources

    PubMed Central

    2015-01-01

    The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications. PMID:26401889

  11. Design and Optimization of Composite Gyroscope Momentum Wheel Rings

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2007-01-01

    Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.

  12. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  13. Additive Manufacturing of Composites and Complex Materials

    NASA Astrophysics Data System (ADS)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  14. Theoretical analysis of impact in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The calculated stresses and displacements induced anisotropic plates by short duration impact forces are presented. The theoretical model attempts to model the response of fiber composite turbine fan blades to impact by foreign objects such as stones and hailstones. In this model the determination of the impact force uses the Hertz impact theory. The plate response treats the laminated blade as an equivalent anisotropic material using a form of Mindlin's theory for crystal plates. The analysis makes use of a computational tool called the fast Fourier transform. Results are presented in the form of stress contour plots in the plane of the plate for various times after impact. Examination of the maximum stresses due to impact versus ply layup angle reveals that the + or - 15 deg layup angle gives lower flexural stresses than 0 deg, + or - 30 deg and + or - 45 deg. cases.

  15. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Huan-Wen; He, Hongtao; Wang, Jiannong; Shen, Shun-Qing

    2018-05-01

    Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.

  16. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  17. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  18. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE PAGES

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai; ...

    2018-04-30

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  19. Composite material hollow antiresonant fibers.

    PubMed

    Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J

    2017-07-01

    We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.

  20. Plaster-based magnetite composite materials in construction

    NASA Astrophysics Data System (ADS)

    Klimenko, V. G.; Kashin, G. A.; Prikaznova, T. A.

    2018-03-01

    Calculation and experimental data demonstrate the possibility of using iron-ore concentrate of Lebedinsky Mining and Processing Plant (Lebedinsky GOK) in the production of plaster concrete. Their physical-mechanical, thermal and radiation protective properties were studied. Structurization mechanisms in plaster magnetite systems depending on the type of plaster binder, textures and the structure of plaster crystals providing for the design of composite materials with predetermined properties are suggested. Composite materials to ensure protection against X-ray radiation are obtained.

  1. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  2. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  3. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  4. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  5. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.

    PubMed

    Balzani, Daniel; Deparis, Simone; Fausten, Simon; Forti, Davide; Heinlein, Alexander; Klawonn, Axel; Quarteroni, Alfio; Rheinbach, Oliver; Schröder, Joerg

    2016-10-01

    The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid-structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid-structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid-structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple - but nonsymmetric - curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid-structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid-structure interface are found to be higher in the inner curve that corresponds to

  6. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  7. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  8. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  9. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  10. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    PubMed

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  11. New Coll-HA/BT composite materials for hard tissue engineering.

    PubMed

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Line patterning of anisotropic spin chains by polarized laser for application in micro-thermal management

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi

    2017-05-01

    The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.

  13. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    PubMed Central

    Boland, James N.; Li, Xing S.

    2010-01-01

    Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  14. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  15. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    PubMed

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  16. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    PubMed

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    PubMed Central

    Gan, Yong X.

    2009-01-01

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466

  18. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  19. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  20. A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application

    NASA Astrophysics Data System (ADS)

    Lin, Xianke; Lu, Wei

    2017-07-01

    This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.

  1. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  2. Application of composite materials to impact-insensitive munitions

    NASA Technical Reports Server (NTRS)

    Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.

    1992-01-01

    An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.

  3. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  4. High heat flux composites for plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Ting, J.-M.; Lake, M. L.

    1994-09-01

    Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.

  5. Flight service environmental effects on composite materials and structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Baker, Donald J.

    1992-01-01

    NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.

  6. Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer

    NASA Astrophysics Data System (ADS)

    Ma, Guowei; Zhang, Junfei; Wang, Li; Li, Zhijian; Sun, Junbo

    2018-07-01

    3D concrete printing is an innovative and promising construction method that is rapidly gaining ground in recent years. This technique extrudes premixed concrete materials through a nozzle to build structural components layer upon layer without formworks. The build-up process of depositing filaments or layers intrinsically produce laminated structures and create weak joints between adjacent layers. It is of great significance to clearly elaborate the mechanical characteristics of 3D printed components response to various applied loads and the different performance from the mould-cast ones. In this study, a self-developed 3D printing system was invented and applied to fabricate concrete samples. Three points bending test and direct double shear test were carried out to investigate the mechanical properties of 3D printed prisms. The anisotropic behaviors were probed by loading in different directions. Meanwhile, piezoelectric lead zirconate titanate (PZT) transducers were implemented to monitor the damage evolution of the printed samples in the loading process based on the electromechanical impedance method. Test results demonstrate that the tensile stresses perpendicular to the weaken interfaces formed between filaments were prone to induce cracks than those parallel to the interfaces. The damages of concrete materials resulted in the decrease in the frequency and a change in the amplitude in the conductance spectrum acquired by mounted PZT patches. The admittance signatures showed a clear gradation of the examined damage levels of printed prisms exposed to applied loadings.

  7. Advanced numerical models and material characterisation techniques for composite materials subject to impact and shock wave loading

    NASA Astrophysics Data System (ADS)

    Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.

    2003-09-01

    The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.

  8. The efficiency of the use of composite materials in electrotechnical equipment

    NASA Astrophysics Data System (ADS)

    Kim, K.; Ivanov, S.

    2018-02-01

    The indicators of the efficiency of electrical installations are directly connected with the creating and using of new composite materials with the desired performance properties. The practical application of composite materials is one of the perspective scientific and technical directions, providing the increase of the efficiency of electrical installations due to the sealing of current parts by protecting them from the external medium. The technical characteristics of the composite material match to its structure and depend on the properties of the individual components. The verification of the compliance of material parameters is implemented by the methods of the computer analysis of a model of composite material in the form of the structure in which the individual elements have thermodynamic properties of the corresponding phase state. In the study the topology of individual elements in the material structure is defined by the conditional boundaries of the section within the studied composite. The efficiency of using the composite materials includes the raising of electrical safety, increasing the durability, reducing the costs of maintenance and repair and the extension of the scope of installations.

  9. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  10. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  11. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  12. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  13. Influence of magnetic materials on the transport properties of superconducting composite conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.

    2009-03-01

    Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  14. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  15. Guidelines for the Utilization of Composite Materials in Oxygen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Herald, Stephen

    2006-01-01

    Space travel is inherently dangerous and, currently, quite expensive. NASA has always done everything possible to minimize the risk associated with the materials chosen for space travel applications by requiring that all materials associated with NASA programs meet the strict requirements established by NASA testing standard NASA-STD-600 1 Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion. NASA also has the need to develop lighter weight structural materials that will allow more payload weight to be carried into space. NASA is utilizing composite materials inside the orbiter to lighten the overall weight, but has not considered composite materials for oxygen tanks because of the inherent incompatibility of composite materials with atomic oxygen. This presentation will focus on how oxygen tanks can be built from composite materials. Details will be provided for the design and compatibility testing techniques that will be utilized to create a new NASA standard, NASA-HDBK-6018, which will serve as the starting point for the design of oxygen tanks made from composite materials.

  16. Anisotropic Copoly(Imide Oxetane) Coatings and Articles of Manufacture, Copoly(Imide Oxetane)s Containing Pendant Fluorocarbon Moieties, Oligomers and Processes Therefor

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Smith, Joseph G. (Inventor); Connell, John W. (Inventor)

    2017-01-01

    Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s that migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.

  17. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  18. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    NASA Astrophysics Data System (ADS)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  19. Anisotropic swelling and microcracking of neutron irradiated Ti 3AlC 2-Ti 5Al 2C 3 materials

    DOE PAGES

    Ang, Caen K.; Silva, Chinthaka M.; Shih, Chunghao Phillip; ...

    2015-12-17

    M n + 1AX n (MAX) phase materials based on Ti–Al–C have been irradiated at 400 °C (673 K) with fission neutrons to a fluence of 2 × 10 25 n/m 2 (E > 0.1 MeV), corresponding to ~ 2 displacements per atom (dpa). We report preliminary results of microcracking in the Al-containing MAX phase, which contained the phases Ti 3AlC 2 and Ti 5Al 2C 3. Equibiaxial ring-on-ring tests of irradiated coupons showed that samples retained 10% of pre-irradiated strength. Volumetric swelling of up to 4% was observed. Phase analysis and microscopy suggest that anisotropic lattice parameter swelling causedmore » microcracking. Lastly, variants of titanium aluminum carbide may be unsuitable materials for irradiation at light water reactor-relevant temperatures.« less

  20. Flexible barrier materials for protection against electromagnetic fields and their characterization

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Maciej

    2015-10-01

    Composite materials for electromagnetic shielding can be manufactured as textiles using conductive yarns and textiles with conductivity obtained by various finishing processes on textile surfaces. The EM shielding effectiveness of fabrics are improved by lowering its conductivity using different methods and materials. An alternative is the usage of new light shielding materials in the form of metallized nonwoven fabrics or textiles. Their advantages are: a general availability on the market, a low price, good mechanical properties (strength, elasticity) and resistance to the environmental conditions. The composite anisotropic materials with a sandwich structure constituting of materials with different spatial orientations of fibers allow one to achieve relatively high and constant values of the shielding effectiveness which, together with the materials' mechanical properties, leads to a wide range of applicability in various disciplines of modern technology. This article is devoted to innovative flexible materials shielding electromagnetic field. The results of the PEM shielding effectiveness obtained for the polypropylene (PP) nonwoven fabrics metallized by pulsed magnetron sputtering are presented.

  1. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  2. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  3. The choice of iron-containing filling for composite radioprotective material

    NASA Astrophysics Data System (ADS)

    Matyukhin, P. V.

    2018-03-01

    The paper presents the data the composition of modern composite building materials including materials which in addition to high physical-mechanical have radio-protective properties. The article presents infrared researches and differential thermal data of fine-grained magnetite and hematite beneficiated iron-ore concentrates. The choice of the most suitable filling for new composite radio-protective building material engineering and development was made basing on the magnetite and hematite data presented in the paper.

  4. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus

    DOE PAGES

    Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; ...

    2016-03-10

    Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies andmore » flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.« less

  5. Conductor-polymer composite electrode materials

    DOEpatents

    Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.

    1984-06-13

    A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.

  6. Erosion of composite materials

    NASA Technical Reports Server (NTRS)

    Springer, G. S.

    1980-01-01

    A model for describing the response of uncoated and coated fiber reinforced composites subjected to repeated impingements of liquid (rain) droplets is presented. The model is based on the concept that fatigue is the dominant factor in the erosion process. Algebraic expressions are provided which give the incubation period, the rate of mass loss past the incubation period, and the total mass loss of the material during rain impact. The influence of material properties on erosion damage and the protection offered by different coatings are discussed and the use of the model in the design in the design of structures and components is illustrated.

  7. Composite material for optical oxygen sensor

    NASA Astrophysics Data System (ADS)

    Antropov, A. P.; Ragutkin, A. V.; Melnikov, P. V.; Luchnikov, P. A.; Zaitsev, N. K.

    2018-01-01

    A new composite material for use in optical molecular oxygen sensors is proposed. The absence of pores on the surface of the material avoids microbiological fouling and concomitant deterioration of the characteristics with time, and the presence of the mesoporous phase results in a linear calibration and acceptable response times, even for layers that are significant in thickness.

  8. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  9. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the

  10. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  11. Compositional characteristics of some Apollo 14 clastic materials.

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Duncan, A. R.; Fruchter, J. S.; Mckay, S. M.; Stoeser, J. W.; Goles, G. G.; Lindstrom, D. J.

    1972-01-01

    Eighty-two subsamples of Apollo 14 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 25 elements. In many cases, it was necessary to develop new procedures to allow analyses of small specimens. Compositional relationships among Apollo 14 materials indicate that there are small but systematic differences between regolith from the valley terrain and that from Cone Crater ejecta. Fragments from 1-2 mm size fractions of regolith samples may be divided into compositional classes, and the 'soil breccias' among them are very similar to valley soils. Multicomponent linear mixing models have been used as interpretive tools in dealing with data on regolith fractions and subsamples from breccia 14321. These mixing models show systematic compositional variations with inferred age for Apollo 14 clastic materials.

  12. Vegetable Fibers for Composite Materials In Constructive Sector

    NASA Astrophysics Data System (ADS)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  13. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGES

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  14. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  15. Isotropic and anisotropic strain-induced self-assembled oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier

    2009-03-01

    The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).

  16. Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu

    2018-04-01

    A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.

  17. Industry technology assessment of graphite-polymide composite materials. [conferences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  18. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  19. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  20. Programmable snapping composites with bio-inspired architecture.

    PubMed

    Schmied, Jascha U; Le Ferrand, Hortense; Ermanni, Paolo; Studart, André R; Arrieta, Andres F

    2017-03-13

    The development of programmable self-shaping materials enables the onset of new and innovative functionalities in many application fields. Commonly, shape adaptation is achieved by exploiting diffusion-driven swelling or nano-scale phase transition, limiting the change of shape to slow motion predominantly determined by the environmental conditions and/or the materials specificity. To address these shortcomings, we report shape adaptable programmable shells that undergo morphing via a snap-through mechanism inspired by the Dionaea muscipula leaf, known as the Venus fly trap. The presented shells are composite materials made of epoxy reinforced by stiff anisotropic alumina micro-platelets oriented in specific directions. By tailoring the microstructure via magnetically-driven alignment of the platelets, we locally tune the pre-strain and stiffness anisotropy of the composite. This novel approach enables the fabrication of complex shapes showing non-orthotropic curvatures and stiffness gradients, radically extending the design space when compared to conventional long-fibre reinforced multi-stable composites. The rare combination of large stresses, short actuation times and complex shapes, results in hinge-free artificial shape adaptable systems with large design freedom for a variety of morphing applications.

  1. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the

  2. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  3. Damage assessment of composite plate structures with material and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M.; Ganguli, Ranjan

    2016-06-01

    Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problem in damage assessment. A recently developed C0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data.

  4. The Brittleness and Chemical Stability of Optimized Geopolymer Composites

    PubMed Central

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-01-01

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability. PMID:28772756

  5. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    PubMed

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  6. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B [Santa Fe, NM; Rubin, James B [Los Alamos, NM; Taylor, Craig M. V. [Jemez Springs, NM

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  7. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  8. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  9. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  10. I-Love-Q Anisotropically

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2015-04-01

    Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.

  11. Expert system for adhesive selection of composite material joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.B.; Vanderveldt, H.H.

    The development of composite joining is still in its infancy and much is yet to be learned. Consequently, this field is developing rapidly and new advances occur with great regularity. The need for up-to-date information and expertise in engineering and planning of composite materials, especially in critical applications, is acute. The American Joining Institute`s (AJI) development of JOINEXCELL (an off-line intelligent planner for joining composite materials) is an intelligent engineering/planning software system that incorporates the knowledge of several experts which can be expanded as these developments occur. Phase I effort of JOINEXCELL produced an expert system for adhesive selection, JOINADSELECT,more » for composite material joints. The expert system successfully selects from over 26 different adhesive families for 44 separate material types and hundreds of application situations. Through a series of design questions the expert system selects the proper adhesive for each particular design. Performing this {open_quotes}off-line{close_quotes} engineering planning by computer allows the decision to be made with full knowledge of the latest information about materials and joining procedures. JOINADSELECT can greatly expedite the joining design process, thus yielding cost savings.« less

  12. Evaluation of Shielding Performance for Newly Developed Composite Materials

    NASA Astrophysics Data System (ADS)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  13. Study on influence of vibration behavior of composite material damage by holography

    NASA Astrophysics Data System (ADS)

    Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong

    2006-01-01

    Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.

  14. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  15. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  16. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-06-01

    A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.

  17. Understanding gas adsorption in MOF-5/graphene oxide composite materials.

    PubMed

    Lin, Li-Chiang; Paik, Dooam; Kim, Jihan

    2017-05-10

    Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.

  18. Model-size reduction for the buckling and vibration analyses of anisotropic panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Whitworth, S. L.

    1986-01-01

    A computational procedure is presented for reducing the size of the model used in the buckling and vibration analyses of symmetric anisotropic panels to that of the corresponding orthotropic model. The key elements of the procedure are the application of an operator splitting technique through the decomposition of the material stiffness matrix of the panel into the sum of orthotropic and nonorthotropic (anisotropic) parts and the use of a reduction method through successive application of the finite element method and the classical Rayleigh-Ritz technique. The effectiveness of the procedure is demonstrated by numerical examples.

  19. The bond of different post materials to a resin composite cement and a resin composite core material.

    PubMed

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  20. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  1. Use of Thermoset Composite Materials in Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Diaz, V.; Cardone, T.; Ramusat, G.

    2014-06-01

    To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.

  2. Material Response Characterization

    DTIC Science & Technology

    1977-08-01

    models fit to vertical UX and TX data and a mean stress tension cutoff criterion. Because tests on the Kayenta sands one materials had revealed a definite...parameters. 9 This data characterizing the anisotropic response of the upper 30 feet of Kayenta material should not just be filed away; it should be used...9. Johnson, J. N., et al, "Anisotropic Mechanical Properties of Kayenta Sandstone (MIXED COMPANY Site) for Ground Motion Calculations," Terra Tek TR

  3. Impact of solids on composite materials

    NASA Technical Reports Server (NTRS)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

    1987-01-01

    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  4. Anisotropic Grid Generation

    DTIC Science & Technology

    2016-03-24

    AFRL-AFOSR-VA-TR-2016-0129 ANISOTROPIC GRID GENERATION | Deliverables Daniel Sievenpiper UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 03/24/2016...ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 12-03-2016 2 . REPORT TYPE Final report 3. DATES COVERED (From - To) 15-12-2012 - 14-12-2015 4. TITLE AND...SUBTITLE Anisotropic Grid Generation 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0014 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Daniel

  5. Thermo-viscoelastic analysis of composite materials, volume 1

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Hwang, I. H.

    1988-01-01

    Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied.

  6. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  7. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  8. A review of mechanical and tribological behaviour of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  9. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  10. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  11. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  12. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  13. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  14. Studies in Wave-Material Interaction and Design of Composite Materials

    DTIC Science & Technology

    1990-08-10

    to Coating Design In two- and four- flux models of radiative transfer theory, the scattering coefficients or efficiencies of non -emitting media are...0, (5b) rangement of problem 1 acts somewhat like a beam splitter ; with CL and C? being the transmission coefficients. an incident LCP (RCP) plane...This contract supports theoretical research in "Wave Material Interaction and Design of Composite Materials: and is complemented by ongoing

  15. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal-matrix radiation-protective composite materials based on aluminum

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.

    2013-05-01

    A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.

  17. Pin bearing evaluation of LTM25 composite materials

    NASA Technical Reports Server (NTRS)

    Shah, C. H.; Postyn, A. S.

    1996-01-01

    This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.

  18. Simulation of ultrasonic NCF composites testing using 3D finite element model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-04-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation.

  19. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  20. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  1. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  2. A hybrid-stress finite element approach for stress and vibration analysis in linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.

    1987-01-01

    A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.

  3. Composite materials flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

  4. Chemistry and technology of radiation processed composite materials

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting. E.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene.

  5. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  6. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  7. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  8. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    NASA Astrophysics Data System (ADS)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  9. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials.

    PubMed

    Gladys, S; Van Meerbeek, B; Braem, M; Lambrechts, P; Vanherle, G

    1997-04-01

    The recently developed hybrid restorative materials contain the essential components of conventional glass ionomers and light-cured resins. The objective of this study was to determine several physical and mechanical properties of eight such materials in comparison with two conventional glass ionomers, one micro-filled, and one ultrafine compact-filled resin composite. The two resin composites and two of the three polyacid-modified resin composites could be polished to a higher gloss than the conventional as well as the resin-modified glass ionomers. After abrasion, surface roughness increased for all materials, but not at the same extent, being the least for the conventional resin composites and one polyacid-modified resin composite, Dyract. In contrast to the later resin composites, of which the surface roughness is principally determined by the presence of protruding filler particles above the resin matrix, roughness of conventional and resin-modified glass ionomers results from both protruding filler particles and intruding porosities. The mean particle size of the hybrid restorative materials fell between the smaller mean particle size of the resin composites and the larger one of the conventional glass ionomers. The micro-hardness and Young's modulus values varied substantially among all eight hybrid restorative materials. For all the resin-modified glass-ionomer restorative materials, the Young's modulus reached a maximum value one month after mixing and remained relatively stable thereafter. The Young's modulus of the conventional and the polyacid-modified resin composites decreased slightly after one month. The conventional glass-ionomer materials undoubtedly set the slowest, since their Young's modulus took six months to reach its maximum. The flexural fatigue limit of the hybrid restorative materials is comparable with that of the micro-filled composite. From this investigation, it can be concluded that the physico-mechanical properties vary widely among

  10. An Anisotropic Hardening Model for Springback Prediction

    NASA Astrophysics Data System (ADS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  11. Magnetically assisted slip casting of bioinspired heterogeneous composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bouville, Florian; Niebel, Tobias P.; Studart, André R.

    2015-11-01

    Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.

  12. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  13. Composition and process for making an insulating refractory material

    DOEpatents

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  14. Vibration and damping of laminated, composite-material plates including thickness-shear effects

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Siu, C. C.

    1972-01-01

    An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.

  15. Hot accretion flow with anisotropic viscosity

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei

    2017-12-01

    In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.

  16. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  17. Freeze-thaw durability of composite materials.

    DOT National Transportation Integrated Search

    1996-01-01

    Composite materials, produced from polymer resins and high strength fibers, have the potential to be widely used in construction because of their corrosion resistance and high strength-to-weight ratio, However, such environmental factors as extreme t...

  18. Point force and point electric charge applied to the boundary of three-dimensional anisotropic piezoelectric solid

    DOE PAGES

    Borovikov, V. A.; Kalinin, S. V.; Khavin, Yu.; ...

    2015-08-19

    We derive the Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. Moreover, the solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.

  19. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  20. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.