Science.gov

Sample records for anisotropic p-f mixing

  1. Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations

    NASA Astrophysics Data System (ADS)

    Mazzia, Annamaria; Manzini, Gianmarco; Putti, Mario

    2011-09-01

    We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection-dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.

  2. Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate

    NASA Astrophysics Data System (ADS)

    Kitey, Rajesh; Geubelle, Philippe H.; Sottos, Nancy R.

    2009-01-01

    The mixed-mode interfacial adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate is measured using laser-induced stress wave loading. Test specimens are prepared by bonding a fused silica (FS) prism to the back side of a <1 0 0> Si substrate with a thin silicon nitride (Si xN y) passivation layer deposited on the top surface. A high-amplitude stress wave is developed by pulsed laser ablation of a sacrificial absorbing layer on one of the lateral surfaces of the FS prism. Due to the negative non-linear elastic properties of the FS, the compressive stress wave evolves into a decompression shock with fast fall time. Careful selection of the incident angle between the pulse and the FS/Si interface generates a mode-converted shear wave in refraction, subjecting the Si xN y/Au thin film interface to dynamic mixed-mode loading, sufficient to cause interfacial fracture. A detailed analysis of the anisotropic wave propagation combined with interferometric measurements of surface displacements enables calculation of the interfacial stresses developed under mixed-mode loading. The mixed-mode interfacial strength is compared to the interfacial strength measured under purely tensile loading.

  3. Edge states in a honeycomb lattice: effects of anisotropic hopping and mixed edges

    SciTech Connect

    Dahal, Hari P; Balatsky, Alexander V; Sinistsyn, N A; Hu, Zi - Xiang; Yang, Kun

    2008-01-01

    We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.

  4. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  5. The Anisotropic Aphid: Three-Dimensional Induction Modeling of Electrical Texture with Mixed Potentials

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.

    2014-12-01

    At the macroscopic scale, where the e-folding distance of low-frequency electromagnetic fields in conductive geomaterials is much larger than the size of organized heterogeneities such as fracture sets or laminations that constitute the geologic texture therein, electrical properties can be conveniently approximated by a generalized 3x3 tensor σ. Less convenient, however, are the algorithmic consequences of this approximation in electromagnetic modeling of 3D induction methods for geophysical exploration. Previous efforts at modelling generalized anisotropy with finite differences on a staggered Cartesian grid (e.g. Weiss and Newman, 2002; Wang and Fang, 2001) are posed in terms of the electric field with its governing "curl-curl" equation and well-documented null-space issues at low induction numbers. In contrast, Weiss (2013) proposed an alternate full-physics formulation in terms of Lorenz-gauged magentic vector A and electric scalar Φ potentials (Project APhiD) that eliminates the troublesome curl-curl operator, with ultrabroadband examples drawn from geologies with scalar, isotropic conductivity over the frequency range 10-2-1010 Hz. Here, the anisotropic theory presented in Weiss (2013) is implemented with finite differences on a Cartesian grid. Briefly stated, in this theoretical approach the conductivity tensor σ is split in terms of a rotationally-invariant isotropic conductivity σ* = ⅓ Tr(σ) and the residual σ - σ*I. This splitting decomposes the resulting finite difference coefficient matrix K into the sum Kiso + Kaniso, where the Kiso term is the coefficient matrix for the isotropic medium σ*, thus enabling reuse of the various routines previously developed for computing matrix coefficients in the isotropic case. Treatment of anisotropy is algorithmically therefore restricted to computing the coefficients in the sparse matrix Kaniso consisting of simple inner products of (σ - σ*I) · (A-∇Φ) and their divergence. In keeping with the

  6. A unified formulation for guided-wave propagation in multi-layered mixed anisotropic-isotropic hybrid aerospace composites

    NASA Astrophysics Data System (ADS)

    Barazanchy, Darun; Giurgiutiu, Victor

    2016-04-01

    A unified approach was formulated to predict guided-wave propagation in a material regardless its degree of anisotropy, thereby having one solution method for both isotropic and anisotropic material. The unified approach was based on the coupled eigenvalue problem derived from Chirstoffels equation for a lamina. The eigenvalue problem yielded a set of eigenvalues, and corresponding eigenvectors that were used to obtain the stress-displacement matrix. The dispersion curves were obtained by applying the traction free boundary conditions to the stress-displacement matrix, and searching for sign changes in the complex determinant of the matrix. To search for sign changes, hence the velocity-wavenumber pairs which yielded a solution to the problem, the real and imaginary part of the complex determinant had to change sign simultaneously. A phase angle approach was, therefore, developed and successfully applied. A refinement algorithm was applied to refine the accuracy of the solution without increasing the computational time significantly. A high accuracy was required to calculated the correct partial-wave participation factors. The obtained partial-wave participation factors were used to calculate the modeshape through the thickness for each velocity-wavenumber pair. To identify the different wave types, A0, S0, SHS0, SHA0, a modeshape identification was applied successfully. The unified approach was evaluated for hybrid aerospace composites. In addition, the two most common solution methods: (i) the global matrix method; and (ii) the transfer matrix method were applied, and a comparative study between the different methods was performed.

  7. On mixed and displacement finite element models of a refined shear deformation theory for laminated anisotropic plates

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1986-01-01

    An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.

  8. Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2007-05-01

    Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of

  9. Investigation on the magneto-optical Voigt effects in surface plasmon modes and anisotropic photonic band gap in the three-dimensional magnetized plasma photonic crystals as the mixed polarized modes considered

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Ding, Guo-Wen

    2014-10-01

    In this paper, the magneto-optical Voigt effects in surface plasmon modes and anisotropic photonic band gaps (PBGs) of the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices are theoretically investigated based on the modified plane wave expansion (PWE) method, which are the homogeneous Te (tellurium) spheres immersed in the homogeneous magnetized plasma background, as the mixed polarized modes are considered. The more general condition is considered, and the anisotropic PBGs are not only for the extraordinary and ordinary modes but also for mixed polarized modes. The equations for computing such anisotropic PBGs are theoretically deduced. Theoretical simulations show that the anisotropic PBGs and a flatbands region can be observed in the dispersive curve. Compared to the similar 3D MPPCs containing the isotropic dielectric or uniaxial material spheres, the larger PBGs can be obtained as the extraordinary axis of the inserted uniaxial material is along the Г-H symmetry line although the region of flatbands is also different. However, the relative bandwidths of PBGs for such two cases are almost the same. The interesting properties of surface plasmon modes can also be found, which are that the upper edge of flatbands region cannot be tuned by the filling factor but can almost linearly increase on increasing the plasma frequency and plasma cyclotron frequency (the external magnetic field), respectively. The effects of the filling factor, plasma frequency and plasma cyclotron frequency on the anisotropic PBGs are investigated in detail, respectively. Theoretical calculations also show that such PBGs can be manipulated by the parameters as mentioned above.

  10. Anisotropic universe with anisotropic sources

    SciTech Connect

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  11. Granular Segregation with Anisotropic Particles

    NASA Astrophysics Data System (ADS)

    Sykes, Tim

    2005-11-01

    The results from experimental investigations of horizontally vibrated mixtures of anisotropic poppy seeds and long chains of linked spheres will be presented. A critical packing fraction was observed to be required to initiate a transition to segregation. The average size of the resulting patterns was measured and the concentration ratio of the mixtures was varied by changing the number of chains present in the mixtures. A change in the order of the transition, from second to first order with associated hysteresis, was observed as the chain number was reduced. This gave rise to three distinct regions of behaviour: segregated, mixed and a bi-stable state.

  12. Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability

    NASA Astrophysics Data System (ADS)

    Zhao-xia, Xiao; Hong-wei, Fang

    Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.

  13. Final report: COOMET supplementary comparison of capacitance at 10 pF and 100 pF (COOMET.EM-S13)

    NASA Astrophysics Data System (ADS)

    Velychko, Oleh; Shevkun, Sergii

    2015-01-01

    An intercomparison of 10 pF and 100 pF capacitance standards has taken place within the framework of COOMET. The intercomparison, piloted by State Enterprise 'Ukrmetrteststandard'—UMTS (Ukraine), has involved tree laboratories, including one who is a member of another regional metrological organization—EURAMET (GUM, Poland). The results presented in this report appear to show that there are significant differences between some laboratories' representations of the farad. However, the agreement demonstrated by the intercomparison provides confidence in maintaining traceability for the farad either via a calculable capacitor or via the quantum Hall reference standard of the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  15. pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter

    2015-11-01

    We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.

  16. Anisotropic metamaterial optical fibers.

    PubMed

    Pratap, Dheeraj; Anantha Ramakrishna, S; Pollock, Justin G; Iyer, Ashwin K

    2015-04-01

    Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in such anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders. PMID:25968741

  17. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  18. Anisotropic Ambient Volume Shading.

    PubMed

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  19. Hybrid Anisotropic Micromesh

    NASA Astrophysics Data System (ADS)

    Gutzov, S.; Danchova, N.; Tsekov, R.; Barreno, I.; Ruiz del Portal, X.; Ulbikas, J.

    2015-10-01

    A new hybrid woven micromesh containing metal and polyester wires with a 2D porosity of about 30% has been created. The anisotropic microcomposite is developed as a new material with wide applications in thermal and electrical engineering. The mesh material is carefully characterized using electron microscopy, fluorescence microscopy, chemical analysis, thermal conductivity measurements and differential scanning calorimetry.

  20. Dynamics of Anisotropic Universes

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme

    2006-11-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  1. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  2. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  3. Anisotropic Total Variation Filtering

    SciTech Connect

    Grasmair, Markus; Lenzen, Frank

    2010-12-15

    Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

  4. Anisotropic uniqueness classes for a degenerate parabolic equation

    SciTech Connect

    Vil'danova, V F; Mukminov, F Kh

    2013-11-30

    Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.

  5. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  6. Neutron Skins and Halo Orbits in the s d and p f Shells

    NASA Astrophysics Data System (ADS)

    Bonnard, J.; Lenzi, S. M.; Zuker, A. P.

    2016-05-01

    The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are involved. The first one—isovector monopole polarizability—amounts to noting that when a particle is added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates. The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and have a subtle influence on the radial behavior of s d and p f shell nuclei. In particular, they account for the sudden rise in the isotope shifts of nuclei beyond N =28 and the near constancy of radii in the A =40 - 56 region. This mechanism, detected here for the first time, is not well understood and may well go beyond the Efimov physics usually associated with halo orbits.

  7. Optics of anisotropic nanostructures

    NASA Astrophysics Data System (ADS)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  8. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  9. Simple types of anisotropic inflation

    SciTech Connect

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-15

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  10. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  11. Anisotropic inflation with general potentials

    NASA Astrophysics Data System (ADS)

    Shi, JiaMing; Huang, XiaoTian; Qiu, TaoTao

    2016-04-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  12. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  13. [Efficiency of KAT-quick P.f. test (KAT medical, SAR) among the populations of drug-resistant parasites].

    PubMed

    Rabinovich, S A; Le, Dines Kong; Nguen, Van Ha; Morozov, E N; Toropov, D E; Kukina, I V; Maksakovskaia, E V; Iakovenko, M A; Chalyĭ, V F; Fandeev, V A; Pozdniakova, E A; Nikitiuk, Iu E; Sergiev, V P

    2006-01-01

    The KAT-Quick P.f. test (KAT Medical, South African Republic) is based on the detection of protein HPR II produced by trophozoites and young gametocytes of P. falciparum. This test was conducted by the authors in the distribution areas of P. falciparum strains differing in the spectrum of drug resistance. Five hundred and forty-nine blood samples from febrile patients in Vietnam (n=84), Sierra Leone (n=41), Nigeria (n=14), Tanzania (n=8), Kenya (n=5), and Tadjikistan (n=397) were tested. Microscopy served as a primary control. Detection of P. falciparum DNA, using polymerase chain reaction (PCR) with included primers (nested PCR) of the most sensitive modification of PCR was a final control. The efficiency of the KAT-Quick P.f. test was estimated as a ratio of the number of its positive results to those of PCR. It was equal to 98-95%. The KAT-Quick P.f. test revealed no false-positive case associated with the genome of the parasite. The specificity of the test was determined as a ratio of the number of its negative (no P. falciparum) results to those of PCR. The blood samples from patients with vivax malaria and from those with nonmalarial fever were investigated. There was no cross reaction of the KAT-Quick P.f. test system for P. falciparum with that for P. vivax. The KAT-Quick P.f. test yielded no positive reaction with the blood from patients with non-malarial fever. Drug resistance depending on the spectrum of specific drugs caused its emergence may be determined by one or several mechanisms that are ultimately determined by one, the key mechanism. Thus, the findings suggest that multidrug resistance of P. falciparum does not trigger the occurrence of changes in its surface antigen--HRPII that is responsible for the efficiency of the KAT-Quick P.f. test. These may be also extrapolated to other rapid tests patterned after the same principle. PMID:16813240

  14. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    NASA Astrophysics Data System (ADS)

    Balan, Adrian; Chien, Chen-Chi; Engelke, Rebecca; Drndić, Marija

    2015-12-01

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the relatively high current noise and low bandwidth stemming from the relatively high capacitance (>10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membrane such as graphene.

  15. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    NASA Astrophysics Data System (ADS)

    Chien, Chen-Chi; Balan, Adrian; Engelke, Rebecca; Drndic, Marija

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the current noise and low bandwidth stemming from the relatively high capacitance (more than 10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membranes such as graphene.

  16. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    PubMed Central

    Balan, Adrian; Chien, Chen-Chi; Engelke, Rebecca; Drndić, Marija

    2015-01-01

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the relatively high current noise and low bandwidth stemming from the relatively high capacitance (>10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membrane such as graphene. PMID:26644307

  17. pF3d simulations of nonlinear backward stimulated Raman scatter in a multi-speckle environment

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Bezzerides, B.; Dubois, D. F.; Vu, H. X.

    2008-11-01

    Kinetic simulations of backward stimulated Raman scattering (BSRS) have shown that, in regimes of strong Landau damping of the BSRS Langmuir wave (LW), the reflectivity can exceed that predicted by linear analysis [1]. This is a result of electron trapping in the LW, which decreases Landau damping, and creates a frequency shift. Above a threshold, determined by the competition of trapping and collisional diffusion, the frequency shift becomes the dominant saturation mechanism for BSRS. This includes the transverse modulational instability [2]. However, one must use a code that models the nonlinear microscopic behavior along with the macroscopic evolution of the laser beam and background plasma. Here, we discuss work on implementing an empirical model for this effect in the pF3d code [3]. The model has been tested by comparing pF3d single-hot-spot simulations against theoretical calculations of the inflation threshold. We will discuss our current effort, using pF3d, to understand how the onset of nonlinear LW behavior is affected by inter-speckle interactions. [1] H. X. Vu, et al., Phys. Plasmas 14 012702 (2007). [2] H. A. Rose, and L. Yin, Phys. Plasmas 15 042311 (2008). [3] R. L. Berger, et al., Phys Plasmas 5 4337 (1998).

  18. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    SciTech Connect

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  19. Superlens from complementary anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.

    2007-12-01

    Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.

  20. Dynamical analysis of anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  1. Anisotropic inflation with the nonvacuum initial state

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan; Zarei, Moslem

    2014-07-01

    In this work we study models of anisotropic inflation with the generalized nonvacuum initial states for the inflaton field and the gauge field. The effects of the non-Bunch-Davies initial condition on the anisotropic power spectrum and bispectrum are calculated. We show that the non-Bunch-Davies initial state can help to reduce the fine-tuning on the anisotropic power spectrum while reducing the level of anisotropic bispectrum.

  2. Anisotropic diffusion of neutral particles in stochastic media

    NASA Astrophysics Data System (ADS)

    Vasques, Richard

    This work introduces a new homogenization theory for the transport of particles in stochastic media. This theory utilizes a nonclassical form of the Boltzmann equation in which the locations of the scattering centers in the system are correlated and the distance-to-collision is not exponentially distributed. We take the diffusion limit of this equation and derive an anisotropic diffusion equation. (The diffusion is anisotropic because the mean and mean square distances between collisions in the horizontal and vertical directions are slightly different.) We then generate different possible realizations of modeled 2-D and 3-D Pebble-Bed Reactor cores, divided into crystal (honeycomb in 2-D, face-centered in 3-D) and random structures. (To generate the random structures, we developed 2-D and 3-D ballistic deposition algorithms.) We apply Monte Carlo codes (which we also developed) in these structures to simulate neutron transport in both 2-D and 3-D systems; results from these simulations are presented. We show that the results predicted using the new theory more closely agree with the numerical experiments than the atomic mix results and its corrections, and that the new theory can accurately predict small anisotropic effects detected in the simulations. We conclude by discussing the general anisotropic behavior of particles that are born close to the wall of the core, and by showing that the new theory can be used to accurately estimate this effect.

  3. Velocity of Light in Anisotropic Spacetime

    NASA Astrophysics Data System (ADS)

    Fomin, I. V.

    2016-05-01

    The task of the present study is to describe local anisotropic spacetime and to discuss the possibility of its experimental detection. Anisotropic spacetime is treated as the flat isotropic Minkowski space with anisotropic perturbations. A determination of the components of the metric tensor is bound up with measurements of the velocity of light in different directions.

  4. Fracture toughness of anisotropic graphites

    SciTech Connect

    Kennedy, C.R.; Kehne, M.T.

    1985-01-01

    Fracture toughness measurements have been made at 0, 30, 45, 60, and 90/sup 0/ from the extrusion axis on a reasonably anisotropic graphite, grade AGOT. It was found that the fracture toughness did not vary appreciably with orientation. An observed variation in strength was found to be the result of defect orientation.

  5. PP/PS anisotropic stereotomography

    NASA Astrophysics Data System (ADS)

    Nag, Steinar; Alerini, Mathias; Ursin, Bjørn

    2010-04-01

    Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.

  6. The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study.

    PubMed

    Gupta, Sanjay K; Ranawat, Amar S; Shah, Vineet; Zikria, Bashir A; Zikria, Joseph F; Ranawat, Chitranjan S

    2006-09-01

    The press fit condylar P.F.C. Sigma RP-F (rotating-platform, high flexion) knee is designed to provide a range of motion (ROM) of 155 degrees without compromising wear, polyethylene contact stresses, patellofemoral tracking, or stability. The first 50 TKA surgeries using the Sigma RP-F knee performed at the author's institution were matched to 50 rotating-platform knees for age, sex, body mass index, preoperative diagnosis, duration of follow-up, and preoperative ROM to determine the effect of design on postoperative ROM. The mean increase in active ROM in the Sigma RP-F group was 17 degrees, compared with 6 degrees in the rotating-platform group (P =.0011). The mean increase in active ROM in patients who had less than 120 degrees of preoperative motion was 27 degrees in the Sigma RP-F group, compared with 16 degrees in the rotating-platform group (P = .006). With the new P.F.C. Sigma RP-F design, greater ROM can be achieved independent of preoperative ROM. PMID:17002149

  7. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX. PMID:23083335

  8. Anisotropic models for compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Dayanandan, Baiju

    2015-05-01

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor with the help of both metric potentials and . Here we consider the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model.

  9. A Novel SRY Gene Mutation p.F109L in a 46,XY Female with Complete Gonadal Dysgenesis.

    PubMed

    Andonova, Silvia; Robeva, Ralitsa; Sirakov, Milko; Mainhard, Karela; Tomova, Analia; Ledig, Susanne; Kumanov, Philip; Savov, Alexey

    2015-01-01

    46,XY complete gonadal dysgenesis (CGD) is a disorder of sexual development that can result from different mutations in genes associated with sex determination. Patients are phenotypically females, and the disease is often diagnosed in late adolescence because of delayed puberty. Here, we present the clinical and molecular data of a 46,XY female CGD patient with gonadoblastoma with dysgerminoma and incidentally found inherited thrombophilia. The clinical significance of the described de novo SRY gene mutation c.325T>C (p.F109L) is discussed. This case report supports the critical role of the HGM domain in the SRY gene and the need of a multidisciplinary approach for CGD patients. PMID:26871559

  10. Anomalous optical forces on radially anisotropic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Gao, L.

    2015-11-01

    Full-wave electromagnetic scattering theory and Maxwell stress tensor integration techniques have been established to study the optical force on the radially anisotropic nanowires. The optical forces on the isotropic nanowires are dependent on the size of the nanowire and the wave vector in the media with the Rayleigh's law. However, the optical forces on the anisotropic nanowires have the anomalous behaviors under non-Rayleigh vanishing condition and non-Rayleigh diverging condition. Therefore, the optical forces on the anisotropic nanowires may be enhanced or reduced by tuning the anisotropic parameters. These results may promote the potential applications in the field of nanotechnology.

  11. Planetary spectra for anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1975-01-01

    Some of the effects on planetary spectra that would be produced by departures from isotropic scattering are examined. The phase function is the simplest departure to handle analytically and the only phase function, other than the isotropic one, that can be incorporated into a Chandrasekhar first approximation. This approach has the advantage of illustrating trends resulting from anisotropies while retaining the simplicity that yields physical insight. An algebraic solution to the two sets of anisotropic H functions is developed in the appendix. It is readily adaptable to progammable desk calculators and gives emergent intensities accurate to 0.3 percent, which is sufficient even for spectroscopic analysis.

  12. Tunneling spectroscopy of anisotropic superconductors

    SciTech Connect

    Kashiwaya, Satoshi; Koyanagi, Masao; Kajimura, Koji; Tanaka, Yukio

    1996-12-31

    Tunneling spectroscopy of normal-insulator-superconductor junction is investigated theoretically. In anisotropic superconductors, differently from the case of isotropic superconductor, the effective pair potentials felt by quasiparticles depend on the direction of their motion. By taking this effect into account, it is shown that the conductance spectra strongly depend on the crystal orientation. Using Green`s function method, local density of states (LDOS) in superconductor is also calculated. The close relation between conductance spectra and LDOS is presented. The calculation is compared with experimental spectra of high-{Tc} superconductors.

  13. Spin precession in anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2016-05-01

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter.

  14. Remarks on inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  15. Anisotropic fractional diffusion tensor imaging

    PubMed Central

    Meerschaert, Mark M; Magin, Richard L; Ye, Allen Q

    2015-01-01

    Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain imaging. We then propose some candidate models, based on stochastic theory.

  16. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  17. Fabric dependence of quasi-waves in anisotropic porous media.

    PubMed

    Cardoso, Luis; Cowin, Stephen C

    2011-05-01

    Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD. PMID:21568431

  18. Nonlinear Eulerian thermoelasticity for anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.

    2013-10-01

    A complete continuum thermoelastic theory for large deformation of crystals of arbitrary symmetry is developed. The theory incorporates as a fundamental state variable in the thermodynamic potentials what is termed an Eulerian strain tensor (in material coordinates) constructed from the inverse of the deformation gradient. Thermodynamic identities and relationships among Eulerian and the usual Lagrangian material coefficients are derived, significantly extending previous literature that focused on materials with cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical solutions for homogeneous deformations of ideal cubic crystals are studied over a prescribed range of elastic coefficients; stress states and intrinsic stability measures are compared. For realistic coefficients, Eulerian theory is shown to predict more physically realistic behavior than Lagrangian theory under large compression and shear. Analytical solutions for shock compression of anisotropic single crystals are derived for internal energy functions quartic in Lagrangian or Eulerian strain and linear in entropy; results are analyzed for quartz, sapphire, and diamond. When elastic constants of up to order four are included, both Lagrangian and Eulerian theories are capable of matching Hugoniot data. When only the second-order elastic constant is known, an alternative theory incorporating a mixed Eulerian-Lagrangian strain tensor provides a reasonable approximation of experimental data.

  19. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  20. Postbuckling of laminated anisotropic panels

    NASA Technical Reports Server (NTRS)

    Jeffrey, Glenda L.

    1987-01-01

    A two-part study of the buckling and postbuckling of laminated anisotropic plates with bending-extensional coupling is presented. The first part involves the development and application of a modified Rayleigh-Ritz analysis technique. Modifications made to the classical technique can be grouped into three areas. First, known symmetries of anisotropic panels are exploited in the selection of approximation functions. Second, a reduced basis technique based on these same symmetries is applied in the linear range. Finally, geometric boundary conditions are enforced via an exterior penalty function approach, rather than relying on choice of approximation functions to satisfy these boundary conditions. Numerical results are presented for both the linear and nonlinear range, with additional studies made to determine the effect of variation in penalty parameter and number of basis vectors. In the second part, six panels possessing anisotropy and bending-extensional coupling are tested. Detailed comparisons are made between experiment and finite element results in order to gain insight into the postbuckling and failure characteristics of such panels. The panels are constructed using two different lamination sequences, and panels with three different aspect ratios were constructed for each lamination sequence.

  1. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  2. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  3. Phonon heat conduction in layered anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Minnich, A. J.

    2015-02-01

    The thermal properties of anisotropic crystals are of both fundamental and practical interest, but transport phenomena in anisotropic materials such as graphite remain poorly understood because solutions of the Boltzmann equation often assume isotropy. Here, we extend an analytic solution of the transient, frequency-dependent Boltzmann equation to highly anisotropic solids and examine its predictions for graphite. We show that this simple model predicts key results, such as long c -axis phonon mean free paths and a negative correlation of cross-plane thermal conductivity with in-plane group velocity, that were previously observed with computationally expensive molecular-dynamics simulations. Further, using our analytic solution, we demonstrate a method to reconstruct the anisotropic mean free path spectrum of crystals with arbitrary dispersion relations without any prior knowledge of their harmonic or anharmonic properties using observations of quasiballistic heat conduction. These results provide a useful analytic framework to understand thermal transport in anisotropic crystals.

  4. Designing anisotropic inflation with form fields

    NASA Astrophysics Data System (ADS)

    Ito, Asuka; Soda, Jiro

    2015-12-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  5. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    NASA Astrophysics Data System (ADS)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  6. Gravitational baryogenesis after anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  7. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  8. Spatially anisotropic Heisenberg kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  9. Anisotropic scaling of magnetohydrodynamic turbulence.

    PubMed

    Horbury, Timothy S; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3. PMID:18999759

  10. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  11. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-01

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  12. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  13. The Anisotropic Geometrodynamics For Cosmology

    NASA Astrophysics Data System (ADS)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  14. Finite-volume scheme for anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    van Es, Bram; Koren, Barry; de Blank, Hugo J.

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  15. Anisotropic optical film embedded with cellulose nanowhisker.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-10-01

    We investigated anisotropic optical behaviors of composite films embedded with CNWs. To control the orientation of CNWs, elongation was applied to the composite film. Morphological and mechanical analyses of the specimens were carried out to examine the influence of the applied extension. The CNWs were found to be aligned in the elongated direction, yielding remarkable anisotropic microstructure and optical properties. As the applied elongation and CNW loading increased, the resulting degree of polarization and birefringence increased due to increased interactions between the embedded particles. This study suggests a way to prepare an anisotropic optical component with nanoparticles of which the microstructures, such as orientation and filler content, can be controlled. PMID:26076646

  16. Can cosmic parallax distinguish between anisotropic cosmologies?

    SciTech Connect

    Fontanini, Michele; West, Eric J.; Trodden, Mark

    2009-12-15

    In an anisotropic universe, observers not positioned at a point of special symmetry should observe cosmic parallax--the relative angular motion of test galaxies over cosmic time. It was recently argued that the nonobservance of this effect in upcoming precision astrometry missions such as GAIA may be used to place strong bounds on the position of off-center observers in a void-model universe described by the Lemaitre-Tolman-Bondi metric. We consider the analogous effect in anisotropic cosmological models described by an axisymmetric homogeneous Bianchi type I metric and discuss whether any observation of cosmic parallax would distinguish between different anisotropic evolutions.

  17. Spatial interpolation approach based on IDW with anisotropic spatial structures

    NASA Astrophysics Data System (ADS)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  18. Sound field distribution influenced by anisotropic materials

    SciTech Connect

    Erhard, A.; Boehm, R.; Wuestenberg, H.

    1993-12-31

    Sound wave distributions in isotropic materials are often described using analytical or numerical solutions of the wave equation. In opposition to this, it is more difficult to find a solution for anisotropic mediums. One possible method is the elastic finite integration technique (EFIT). With this method, scalar and vectorial calculations of the sound distribution from a line source in anisotropic materials were carried out. This method needs a powerful computer in order to keep the computation time short. In the present paper another theoretical model was used -- the pulse integration model -- with which sound field distributions for scalar waves were calculated in the sound field distribution of longitudinal waves in anisotropic materials. The principle of the model is described briefly. Different sound field pattern generated with a phased array longitudinal wave probe were calculated during the propagation in a homogeneous isotropic material and in a homogeneous anisotropic material (single crystal).

  19. Optical trapping of the anisotropic crystal nanorod.

    PubMed

    Bareil, Paul B; Sheng, Yunlong

    2015-05-18

    We observed in the optical tweezers experiment that some anisotropic nanorod was stably trapped in an orientation tiled to the beam axis. We explain this trapping with the T-matrix calculation. As the vector spherical wave functions do not individually satisfy the anisotropic vector wave equation, we expand the incident and scattered fields in the isotropic buffer in terms of E→, and the internal field in the anisotropic nanoparticle in terms of D→, and use the boundary condition for the normal components of D→ to compute the T-matrix. We found that when the optical axes of an anisotropic nanorod are not aligned to the nanorod axis, the nanorod may be trapped stably at a tilted angle, under which the lateral torque equals to zero and the derivative of the torque is negative. PMID:26074566

  20. Phase space analysis in anisotropic optical systems

    NASA Technical Reports Server (NTRS)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  1. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  2. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  3. Modelling Coulomb Collisions in Anisotropic Plasmas

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  4. Overview of anisotropic flow measurements from ALICE

    NASA Astrophysics Data System (ADS)

    Zhou, You

    2016-05-01

    Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP), created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb-Pb, p-Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  5. Anisotropic System of Quasiparticles in Superfluid Helium

    SciTech Connect

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Wyatt, A.F.G.

    2006-02-17

    The thermodynamic properties of anisotropic quasiparticle systems of He II are considered for all degrees of anisotropy. It is shown that the thermodynamic functions of a strongly anisotropic phonon-roton system are mainly determined by rotons at all temperatures. Analytical expressions for the roton thermodynamic functions are obtained for all degrees of anisotropy. The maximum anisotropy is limited by the criterion for thermodynamic stability, which is here derived for the whole temperature range.

  6. Soft particles with anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  7. Modeling of anisotropic wound healing

    NASA Astrophysics Data System (ADS)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  8. Anisotropic diffusion-limited aggregation.

    PubMed

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  9. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  10. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z. )

    1992-02-01

    Self-consistent magnetospheric equilibria with anisotropic pressure are obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distributions or particle distributions measured along a satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibria including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator owing to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has a significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the taillike flux surface.

  11. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  12. Stress and vibraton analyses of anisotropic shells of revolution

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1988-01-01

    An efficient computational strategy is presented for reducing the cost of the stress and free vibration analyses of laminated anisotropic shells of revolution. The analytical formulation is based on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear deformation and the laminated anisotropic material response. The fundamental unknowns consist of the eight strain components, the eight stress resultants and the five generalized displacements of the shell. Each of the shell variables is expressed in terms of trigonometric functions (Fourier series) in the circumferential co-ordinate, and a three-field mixed finite element model is used for the discretization in the meridional direction. The shell response associated with a range of Fourier harmonics is approximated by a linear combination of a few global approximation vectors, which are generated at a particular value of the Fourier harmonic, within that range. The full equations of the finite element model are solved for only a single Fourier harmonic, and the response corresponding to the other Fourier harmonics is generated using a reduced system of equations with considerably fewer degrees of freedom.

  13. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  14. Mixed-mode crack behavior. ASTM special technical publication 1325

    SciTech Connect

    Miller, K.J.; McDowell, D.L.

    1999-07-01

    This conference was international and balanced in scope, as witnessed by the presentation of over 20 papers addressing the following topics: (1) Elastic-Plastic Fracture; (2) Three-Dimensional Cracks; (3) Anisotropic Fracture and Applications; (4) Fracture of Composite Materials; (5) Mixed-Mode Fracture Toughness; (6) Mixed-Mode Fatigue Crack Growth; and (7) Experimental Studies in Mixed-Mode Fatigue and Fracture. Separate abstracts were prepared for all papers.

  15. Effective medium theory for anisotropic metamaterials

    PubMed Central

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated. PMID:25599847

  16. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  17. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  18. Kondo effect goes anisotropic in vanadate oxide superlattices

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Pautrat, A.; Copie, O.; Boullay, P.; David, A.; Mercey, B.; Morales, M.; Prellier, W.

    2015-11-01

    We study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition, a Kondo-like component appears in both the thermal variation of resistivity and the magnetoresistance. Surprisingly, in this system where the STO interface does not contribute to the measured conduction, the Kondo correction is strongly anisotropic. We show that the growth temperature allows a direct control of this contribution. Finally, the key role of vanadium mixed valency stabilized by oxygen vacancies is enlightened.

  19. Infrared properties of an anisotropically stirred fluid

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1987-01-01

    A renormalization group is developed for the Navier-Stokes equations driven by an anisotropically correlated random stirring force. The stirring force generates homogeneous turbulence with a preferred direction. The force correlation is the sum of a small anisotropic perturbation and an isotropic correlation chosen, so that the fixed point of renormalization group has a k exp -5/3 energy spectrum. Fixed points for the anisotropic correlation are found near this isotropic fixed point. Two types of anisotropy are analyzed. when the additional stirring is in the plane perpendicular to the preferred direction, the renormalized viscosity is increased. When it is aligned with the preferred direction, the viscosity is decreased. A possible connection with the inverse energy cascade of two-dimensional turbulence is discussed.

  20. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  1. Energy shift due to anisotropic blackbody radiation

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; Porsev, S. G.; Safronova, M. S.

    2016-02-01

    In many applications a source of the blackbody radiation (BBR) can be highly anisotropic. This leads to the BBR shift that depends on tensor polarizability and on the projection of the total angular momentum of ions and atoms in a trap. We derived a formula for the anisotropic BBR shift and performed numerical calculations of this effect for Ca+and Yb+ transitions of experimental interest. These ions were used for a design of high-precision atomic clocks, fundamental physics tests such as the search for the Lorentz invariance violation and space-time variation of the fundamental constants, and quantum information. Anisotropic BBR shift may be one of the major systematic effects in these experiments.

  2. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  3. Magnetization of anisotropic Type II superconductors

    SciTech Connect

    Mints, R.G.

    1989-04-10

    Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.

  4. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  5. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  6. Bouncing anisotropic universes with varying constants

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Sloan, David

    2013-07-01

    We examine the evolution of a closed, homogeneous and anisotropic cosmology subject to a variation of the fine structure “constant” α within the context of the theory introduced by Bekenstein and Sandvik et al. which generalizes Maxwell’s equations and general relativity The variation of α permits an effective ghost scalar field, whose negative energy density becomes dominant at small length scales, leading to a bouncing cosmology. A thermodynamically motivated coupling that describes energy exchange between the effective ghost field and the radiation field leads to an expanding, isotropizing sequence of bounces. In the absence of entropy production, we also find solutions with stable anisotropic oscillations around a static universe.

  7. Inhomogeneous and anisotropic Universe and apparent acceleration

    NASA Astrophysics Data System (ADS)

    Fanizza, G.; Tedesco, L.

    2015-01-01

    In this paper, we introduce a Lemaître-Tolman-Bondi (LTB) Bianchi type I (plane symmetric) model of the Universe. We study and solve Einstein field equations. We investigate the effects of such a model of the Universe; in particular, these results are important in understanding the effect of the combined presence of an inhomogeneous and anisotropic universe. The observational magnitude-redshift data deviated from the UNION 2 catalog have been analyzed in the framework of this LTB anisotropic universe, and the fit has been achieved without the inclusion of any dark energy.

  8. Evolution of multidimensional flat anisotropic cosmological models

    SciTech Connect

    Beloborodov, A. ); Demianski, M. Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw International Center for Relativistic Astrophysics , Universita di Roma I, La Sapienza, Rome ); Ivanov, P.; Polnarev, A.G. )

    1993-07-15

    We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means.

  9. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  10. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  11. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  12. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy. PMID:24941308

  13. Ballooning stability of anisotropic, rotating plasmas

    NASA Technical Reports Server (NTRS)

    Wang, X.-H.; Bhattacharjee, A.

    1990-01-01

    The linearized equation of motion is given in a Lagrangian representation for a rotating plasma with anisotropic pressure. A WKB theory is developed for large-n ballooning modes in an axisymmetric configuration with field-aligned and rigid toroidal flows. In the presence of field-aligned flows, it is shown that a resonance occurs which is strongly suggestive of a generalized mirror instability. In the presence of toroidal rotation, a possible stabilizing effect is identified for P(normal) greater than P(parallel). Finally, as a special case of the theory, the necessary and sufficient conditions for stability in a static, anisotropic plasma are obtained.

  14. δN formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjaee, Javad T.; Firouzjahi, Hassan E-mail: emami@ipm.ir E-mail: firouz@mail.ipm.ir

    2013-08-01

    We present the consistent δN formalism for curvature perturbations in anisotropic cosmological backgrounds. We employ our δN formalism to calculate the power spectrum, the bispectrum and the trispectrum in models of anisotropic inflation with the background gauge fields in Bianchi I universe. Our results coincide exactly with the recent results obtained from in-in formalism. To satisfy the observational constraints the anisotropies generated on power spectrum are kept small but large orientation-dependent non-Gaussianities can be generated. We study the Suyama-Yamaguchi inequality for the amplitudes of the bispectrum and the trispectrum in the presence of anisotropic shapes.

  15. Examination of the role of the O14(α,p)F17 reaction rate in type-I x-ray bursts

    NASA Astrophysics Data System (ADS)

    Hu, J.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Ma, P.; Su, J.; Wang, H. W.; Nakao, T.; Wakabayashi, Y.; Teranishi, T.; Hahn, K. I.; Moon, J. Y.; Jung, H. S.; Hashimoto, T.; Chen, A. A.; Irvine, D.; Lee, C. S.; Kubono, S.

    2014-08-01

    The O14(α,p)F17 reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type-I x-ray bursts (XRBs). The resonant properties in the compound nucleus Ne18 have been investigated through resonant elastic scattering of F17+p. The radioactive F17 beam was separated by the Center for Nuclear Study radioactive ion beam separator (CRIB) and bombarded a thick H2 gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ΔE-E silicon telescopes at laboratory angles of θlab≈3∘,10∘, and 18∘. Five resonances at Ex=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an R-matrix analysis. In particular, Jπ=1- was firmly assigned to the 6.15-MeV state which dominates the thermonuclear O14(α ,p)F17 rate below 2 GK. As well, a possible new excited state in Ne18 was observed at Ex=6.85±0.11 MeV with tentative J =0 assignment. This state could be the analog state of the 6.880 MeV (0-) level in the mirror nucleus O18, or a bandhead state (0+) of the six-particle four-hole (6p-4h) band. A new thermonuclear O14(α ,p)F17 rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only a modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.

  16. Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing

    SciTech Connect

    Devereaux, T.P.; Einzel, D.

    1995-06-01

    A gauge-invariant theory for electronic Raman scattering for superconductors with anisotropic pairing symmetry is analyzed in detail. It is shown that Raman scattering in anisotropic superconductors provides a wealth of polarization-dependent information that probes the detailed angular dependence of the superconducting ground-state order parameter. The Raman spectra shows a unique polarization dependence for various anisotropic pair-state symmetries which affects the peak position of the spectra and generates symmetry-dependent low-frequency and temperature power laws that can be used to identify the magnitude and predominant symmetry of the energy gap. In particular, we calculate the collective modes and the subsequent symmetry-dependent Raman spectra for a {ital d}{sub {ital x}}{sup 2}{minus}{ital y}{sup 2} superconductor and compare our results to the relevant data on the cuprate systems as well as theoretical predictions for {ital s}-wave, anisotropic {ital s}-wave, and mixed-state energy gaps. Favorable agreement is shown with the predictions for {ital d}{sub {ital x}}{sup 2}{minus}{ital y}{sup 2} pairing and the experimental data on YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, and Tl{sub 2}Ba{sub 2}CuO{sub 6}.

  17. A generalized anisotropic deformation formulation for geomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  18. Data-driven imaging in anisotropic media

    SciTech Connect

    Volker, Arno; Hunter, Alan

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  19. On anisotropic black branes with Lifshitz scaling

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  20. Wave simulation in anisotropic, saturated porous media

    SciTech Connect

    Carcione, J.M.

    1995-12-31

    Porous media are anisotropic due to bedding, compaction and the presence of aligned microcracks and fractures. Here, I assume that the skeleton (and not the solid itself) is anisotropic. The rheological model also includes anisotropic tortuosity and permeability. The poroelastic equations are based on a transversely isotropic extension of Biot`s theory, and the problem is of plane strain type, i.e., two dimensional, and describes qP - qS propagation. In the high-frequency case, the (two) viscodynamic operators are approximated by Zener relaxation functions, that allow a close differential formulation of Biot`s equation of motion. The propagation is solved numerically, with a direct grid method and a time splitting integration algorithm, allowing the solution of the stiff part of the differential equations in closed analytical form. Snapshots in sandstone show that three waves propagate when the fluid is ideal (zero viscosity): the fast compressional and shear waves and the slow compressional wave. Anisotropic tortuosity has not a major influence on the faster modes, but significantly affects the slow wavefront. On the other hand, when the fluid is viscous, the slow wave becomes diffusive and appears as a static mode at the source location.

  1. Vibrations and stresses in layered anisotropic cylinders

    NASA Technical Reports Server (NTRS)

    Mulholland, G. P.; Gupta, B. P.

    1976-01-01

    An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.

  2. Highly Anisotropic, Highly Transparent Wood Composites.

    PubMed

    Zhu, Mingwei; Song, Jianwei; Li, Tian; Gong, Amy; Wang, Yanbin; Dai, Jiaqi; Yao, Yonggang; Luo, Wei; Henderson, Doug; Hu, Liangbing

    2016-07-01

    For the first time, two types of highly anisotropic, highly transparent wood composites are demonstrated by taking advantage of the macro-structures in original wood. These wood composites are highly transparent with a total transmittance up to 90% but exhibit dramatically different optical and mechanical properties. PMID:27147136

  3. COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CLUSTER FORMATION WITH ANISOTROPIC THERMAL CONDUCTION

    SciTech Connect

    Ruszkowski, M.; Lee, D.; Parrish, I.; Oh, S. Peng E-mail: dongwook@flash.uchicago.edu E-mail: iparrish@astro.berkeley.edu

    2011-10-20

    The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the cluster center. At z = 0 the field is amplified by a factor of about 10{sup 6} compared to the uniform magnetic field that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM is more easily mixed and the winding up of the frozen-in magnetic

  4. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  5. Anisotropic N=4 Super-Yang-Mills Plasma and Its Instabilities

    SciTech Connect

    Mateos, David; Trancanelli, Diego

    2011-09-02

    We present a type-IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super-Yang-Mills plasma. The solution is static and completely regular. The full geometry can be viewed as a renormalization group flow from an ultraviolet anti-de Sitter geometry to an infrared Lifshitz-like geometry. The anisotropy can be equivalently understood as resulting from a position-dependent {theta} term or from a nonzero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e., mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

  6. Structural orderings of anisotropically confined colloids interacting via a quasi-square-well potential

    NASA Astrophysics Data System (ADS)

    Campos, L. Q. Costa; Apolinario, S. W. S.

    2015-01-01

    We implement Brownian dynamics to investigate the static properties of colloidal particles confined anisotropically and interacting via a potential which can be tailored in a repulsive-attractive-respulsive fashion as the interparticle distance increases. A diverse number of structural phases are self-assembled, which were classified according to two aspects, that is, their macroscopic and microscopic patterns. Concerning the microscopic phases we found the quasicrystalline, triangular, square, and mixed orderings, where this latter is a combination of square and triangular cells in a 3 ×2 proportion, i.e., the so-called (33,42) Archimedian lattice. On the macroscopic level the system could self-organize in a compact or perforated single cluster surrounded or not by fringes. All the structural phases are summarized in detailed phases diagrams, which clearly show that the different phases are extended as the confinement potential becomes more anisotropic.

  7. Coarse-grained depletion potentials for anisotropic colloids: Application to lock-and-key systems.

    PubMed

    Law, Clement; Ashton, Douglas J; Wilding, Nigel B; Jack, Robert L

    2016-08-28

    When colloids are mixed with a depletant such as a non-adsorbing polymer, one observes attractive effective interactions between the colloidal particles. If these particles are anisotropic, analysis of these effective interactions is challenging in general. We present a method for inference of approximate (coarse-grained) effective interaction potentials between such anisotropic particles. Using the example of indented (lock-and-key) colloids, we show how numerical solutions can be used to integrate out the (hard sphere) depletant, leading to a depletion potential that accurately characterises the effective interactions. The accuracy of the method is based on matching of contributions to the second virial coefficient of the colloids. The simplest version of our method yields a piecewise-constant effective potential; we also show how this scheme can be generalised to other functional forms, where appropriate. PMID:27586946

  8. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  9. Anisotropic flow in transport + hydrodynamics hybrid approaches

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah

    2014-12-01

    This contribution to the focus issue covers anisotropic flow in hybrid approaches. The historical development of hybrid approaches and their impact on the interpretation of flow measurements is reviewed. The major ingredients of a hybrid approach and the transition criteria between transport and hydrodynamics are discussed. The results for anisotropic flow in (event-by-event) hybrid approaches are presented. Some hybrid approaches rely on hadronic transport for the late stages for the reaction (so called afterburner) and others employ transport approaches for the early non-equilibrium evolution. In addition, there are ‘full’ hybrid calculations where a fluid evolution is dynamically embedded in a transport simulation. After demonstrating the success of hybrid approaches at high Relativistic Heavy Ion Collider and Large Hadron Collider energies, existing hybrid caluclations for collective flow observables at lower beam energies are discussed and remaining challenges outlined.

  10. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  11. Cosmological signatures of anisotropic spatial curvature

    NASA Astrophysics Data System (ADS)

    Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  12. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  13. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  14. Modelling Fracture Propagation in Anisotropic Rock Mass

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Siren, Topias; Rinne, Mikael

    2015-05-01

    Anisotropic rock mass is often encountered in rock engineering, and cannot be simplified as an isotropic problem in numerical models. A good understanding of rock fracturing processes and the ability to predict fracture initiation and propagation in anisotropic rock masses are required for many rock engineering problems. This paper describes the development of the anisotropic function in FRACOD—a specialized fracture propagation modelling software—and its recent applications to rock engineering issues. Rock anisotropy includes strength anisotropy and modulus anisotropy. The level of complexity in developing the anisotropic function for strength anisotropy and modulus anisotropy in FRACOD is significantly different. The strength anisotropy function alone does not require any alteration in the way that FRACOD calculates rock stress and displacement, and therefore is relatively straightforward. The modulus anisotropy function, on the other hand, requires modification of the fundamental equations of stress and displacement in FRACOD, a boundary element code, and hence is more complex and difficult. In actual rock engineering, the strength anisotropy is often considered to be more pronounced and important than the modulus anisotropy, and dominates the stability and failure pattern of the rock mass. The modulus anisotropy will not be considered in this study. This paper discusses work related to the development of the strength anisotropy in FRACOD. The anisotropy function has been tested using numerical examples. The predicted failure surfaces are mostly along the weakest planes. Predictive modelling of the Posiva's Olkiluoto Spalling Experiment was made. The model suggests that spalling is very sensitive to the direction of anisotropy. Recent observations from the in situ experiment showed that shear fractures rather than tensile fractures occur in the holes. According to the simulation, the maximum tensile stress is well below the tensile strength, but the maximum

  15. Improved Beam Theory for Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The behavior of beams made of anisotropic material was investigated in order to develop an appropriate model of such behavior. Closed form solutions of the problem were derived using two alternative approaches. In the first approach, the axial displacements are expanded as a series of eigenwarpings. In the second approach, the axial stresses are expanded as a series of eigenwarpings. A finite element solution was also derived using the same displacement field as in the first approach.

  16. A viscoplastic theory for anisotropic materials

    NASA Technical Reports Server (NTRS)

    Nouailhas, D.; Freed, A. D.

    1992-01-01

    The purpose of this work is the development of a unified, cyclic, viscoplastic model for anisotropic materials. The first part of the paper presents the foundations of the model in the framework of thermodynamics with internal variables. The second part considers the particular case of cubic symmetry, and addresses the cyclic behavior of a nickel-base single-crystal superalloy, CMSX-2, at high temperature (950 C).

  17. Determining the Orientation of Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Sugg, F. E.; Hodgetts, P. J.

    1983-01-01

    Ultrasonics probe direction of tile fibers. Hand-held acoustic transducer determines fiber orientation of heat resistant tiles. Transducers head placed on outer surface of painted tile. Signals from receiving transducers displayed on two-channel oscilloscope. Application suggests extending technique to inspection of other anisotropic materials. Plywood and fiber/epoxy composites examined to determine fiber direction; ultrasonics used to find direction of roll in sheet metal and other rolled products.

  18. Nonparaxial solitary waves in anisotropic dielectrics

    SciTech Connect

    Alberucci, Alessandro; Assanto, Gaetano

    2011-03-15

    We account for the vectorial character of electromagnetic waves in the study of nonlinear self-action and transverse localization in dielectric anisotropic media. With reference to uniaxials, we address spatial solitons propagating in the nonparaxial regime in the presence of an arbitrary degree of nonlocality, going from the standard Kerr response to the highly nonlocal case, unveiling various effects, including transverse profile asymmetry and bending of the trajectory, as well as a weak effective nonlocality even in local media.

  19. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  20. Anisotropic resonant scattering from polymer photonic crystals.

    PubMed

    Haines, Andrew I; Finlayson, Chris E; Snoswell, David R E; Spahn, Peter; Hellmann, G Peter; Baumberg, Jeremy J

    2012-11-20

    Hyperspectral goniometry reveals anisotropic scattering which dominates the visual appearance of self-assembled polymer opals. The technique allows reconstruction of the reciprocal-space of nanostructures, and indicates that chain defects formed during shear-ordering are responsible for the anisotropy in these samples. Enhanced scattering with improving order is shown to arise from increased effective refractive index contrast, while broadband background scatter is suppressed by absorptive dopants. PMID:22915079

  1. Multidimensional reaction rate theory with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-01

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  2. Symmetry analysis for anisotropic field theories

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  3. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction. PMID:26516073

  4. Anisotropic materials appearance analysis using ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Filip, Jiří; Vávra, Radomír.

    2015-03-01

    Many real-world materials exhibit significant changes in appearance when rotated along a surface normal. The presence of this behavior is often referred to as visual anisotropy. Anisotropic appearance of spatially homogeneous materials is commonly characterized by a four-dimensional BRDF. Unfortunately, due to simplicity most past research has been devoted to three dimensional isotropic BRDFs. In this paper, we introduce an innovative, fast, and inexpensive image-based approach to detect the extent of anisotropy, its main axes and width of corresponding anisotropic highlights. The method does not rely on any moving parts and uses only an off-the-shelf ellipsoidal reflector with a compact camera. We analyze our findings with a material microgeometry scan, and present how results correspond to the microstructure of individual threads in a particular fabric. We show that knowledge of a material's anisotropic behavior can be effectively used in order to design a material-dependent sampling pattern so as the material's BRDF could be measured much more precisely in the same amount of time using a common gonioreflectometer.

  5. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  6. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  7. Highly anisotropic Dirac fermions in square graphynes

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Wang, Zhengfei; Rao, Jiansheng; Li, Ziheng; Huang, Wulin; Wang, Zhiming; Du, Shixuan; Gao, Hongjun; Liu, Feng

    Recently, there have been intense search of new 2D materials, and one especially appealing class of 2D materials is the all-carbon allotropes of Dirac materials. Here, we predict a new family of 2D carbon allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac Fermions, using first-principle calculations within density functional theory. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 x 105 to 7.2 x 105 m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. Our findings enrich the Dirac physics founded in other 2D Dirac systems, and offer a new design mechanism for creating Dirac band by tuning the interaction range. We envision that the highly anisotropic Dirac crescent may be exploited in all-carbon-based electronic devices for manipulating anisotropic electron propagation.

  8. Highly anisotropic Dirac fermions in square graphynes

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Wang, Zhengfei; Rao, Jiansheng; Li, Ziheng; Huang, Wulin; Wang, Zhiming; Du, Shixuan; Gao, Hongjun; Liu, Feng

    Recently, there have been intense search of new 2D materials, and one especially appealing class of 2D materials is the all-carbon allotropes of Dirac materials. Here, we predict a new family of 2D carbon allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac Fermions, using first-principle calculations within density functional theory. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 ×105 to 7.2 ×105 m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. Our findings enrich the Dirac physics founded in other 2D Dirac systems, and offer a new design mechanism for creating Dirac band by tuning the interaction range. We envision that the highly anisotropic Dirac crescent may be exploited in all-carbon-based electronic devices for manipulating anisotropic electron propagation.

  9. Monotonic solution of heterogeneous anisotropic diffusion problems

    NASA Astrophysics Data System (ADS)

    Aricò, Costanza; Tucciarelli, Tullio

    2013-11-01

    Anisotropic problems arise in various areas of science and engineering, for example groundwater transport and petroleum reservoir simulations. The pure diffusive anisotropic time-dependent transport problem is solved on a finite number of nodes, that are selected inside and on the boundary of the given domain, along with possible internal boundaries connecting some of the nodes. An unstructured triangular mesh, that attains the Generalized Anisotropic Delaunay condition for all the triangle sides, is automatically generated by properly connecting all the nodes, starting from an arbitrary initial one. The control volume of each node is the closed polygon given by the union of the midpoint of each side with the “anisotropic” circumcentre of each final triangle. A structure of the flux across the control volume sides similar to the standard Galerkin Finite Element scheme is derived. A special treatment of the flux computation, mainly based on edge swaps of the initial mesh triangles, is proposed in order to obtain a stiffness M-matrix system that guarantees the monotonicity of the solution. The proposed scheme is tested using several literature tests and the results are compared with analytical solutions, as well as with the results of other algorithms, in terms of convergence order. Computational costs are also investigated.

  10. ARTc: Anisotropic reflectivity and transmissivity calculator

    NASA Astrophysics Data System (ADS)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  11. Efficient Anisotropic Filtering of Diffusion Tensor Images

    PubMed Central

    Xu, Qing; Anderson, Adam W.; Gore, John C.; Ding, Zhaohua

    2009-01-01

    To improve the accuracy of structural and architectural characterization of living tissue with diffusion tensor imaging, an efficient smoothing algorithm is presented for reducing noise in diffusion tensor images. The algorithm is based on anisotropic diffusion filtering, which allows both image detail preservation and noise reduction. However, traditional numerical schemes for anisotropic filtering have the drawback of inefficiency and inaccuracy due to their poor stability and first order time accuracy. To address this, an unconditionally stable and second order time accuracy semi-implicit Craig-Sneyd scheme is adapted in our anisotropic filtering. By using large step size, unconditional stability allows this scheme to take much fewer iterations and thus less computation time than the explicit scheme to achieve a certain degree of smoothing. Second order time accuracy makes the algorithm reduce noise more effectively than a first order scheme with the same total iteration time. Both the efficiency and effectiveness are quantitatively evaluated based on synthetic and in vivo human brain diffusion tensor images, and these tests demonstrate that our algorithm is an efficient and effective tool for denoising diffusion tensor images. PMID:20061113

  12. SUPPLEMENTARY COMPARISON: Final report on the APMP comparison of capacitance at 100 pF (APMP supplementary comparison APMP.EM-S7)

    NASA Astrophysics Data System (ADS)

    Johnson, Leigh; Chua, Wey; Corney, Andrew; Hsu, Jimmy; Sardjono, Hadi; Lee, Rae Duk; Zhonghua, Zhang; Charoensook, Ajchara; Coogan, Peter; Nakamura, Yasuhiro; Moodley, Alan; Saxena, A. K.; Yan, Y. K.; Zainal Abidin, Abdul Rashid Bin; Lee, Jinni; Semenov, Yuri

    2008-01-01

    A comparison of capacitance at 100 pF was conducted between thirteen participating laboratories from the Asia-Pacific region. Measurements were made over the period 2004 to 2006. The behaviour of the travelling artefact was consistent with a steady linear drift at a rate of less than 0.1 µF/F per year. Despite the wide range of capabilities within the region, the results showed good agreement between all participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. KEY COMPARISON: Final report on the APMP comparison of capacitance at 10 pF: APMP.EM-K4.1

    NASA Astrophysics Data System (ADS)

    Johnson, Leigh; Chua, Wey; Corney, Andrew; Hsu, Jimmy; Sardjono, Hadi; Lee, Rae Duk; Zhonghua, Zhang; Charoensook, Ajchara; Coogan, Peter; Nakamura, Yasuhiro; Moodley, Alan; Saxena, A. K.; Yan, Y. K.; Zainal Abidin, Abdul Rashid Bin; Lee, Jinni; Semenov, Yuri

    2009-01-01

    A comparison of capacitance at 10 pF was conducted between thirteen participating laboratories from the Asia-Pacific region. Measurements were made between 2004 and 2006. The behaviour of the travelling artefact was consistent with a steady linear drift at a rate of approximately 0.1 µF/F per year. Despite the wide range of capabilities within the region, the results showed good agreement between all but one of the participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  14. Understanding conoscopic interference patterns in anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Olorunsola, Oluwatobi Gabriel

    The interference patterns observed in conoscopy are important in studying the optical and geometrical properties of anisotropic materials. They have also been used to identify minerals and to explore the structure of biological tissues. In a conoscopic interferometer, an optically anisotropic specimen is placed between two crossed linear polarizers and illuminated by a convergent light beam. The interference patterns are produced because in an anisotropic material an incident light is split into two eigenwaves, namely the ordinary and the extraordinary waves. We report our work on the theoretical simulation and experimental observation of the conoscopic interference patterns in anisotropic crystals. In our simulation, the interference patterns are decomposed into fringes of isogyres and isochromates. For each light propagation direction inside the crystal there exist two eigenwaves that have their own characteristic velocities and vibration directions. The isogyres are obtained by computing the angle between the polarization of the incident light and the vibration directions of the two eigenwaves. The isochromates are obtained by computing the phase retardance between the two eigenwaves inside the crystal. The interference patterns are experimentally observed in several crystals, with their optic axes either parallel or perpendicular to their surfaces. An external electric field is applied to deform the crystals from uniaxial to biaxial. The results of our experimental observation agree well with our computer simulation. In conventional interferometers the isochromatic interference fringes are observed by using a circular polarizer and a circular analyzer, both constructed by a linear polarizer and a quarter wave plate. However, due to the dispersion of the quarter wave plates, the phase-retardance between the two light waves inside the quarter wave plates is wavelength-dependent, which results in different conoscopic interference patterns for different colors of

  15. Quantitative Permeability Prediction for Anisotropic Porous Media

    NASA Astrophysics Data System (ADS)

    Sheng, Q.; Thompson, K. E.

    2012-12-01

    Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD

  16. Mixed Dementia

    MedlinePlus

    ... bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from the first ... disease. For example, in the Memory and Aging Project study involving long-term cognitive assessments followed by ...

  17. Transport of anisotropic chiral particles in a confined structure

    NASA Astrophysics Data System (ADS)

    Hu, Cai-tian; Ou, Ya-li; Wu, Jian-chun; Ai, Bao-quan

    2016-03-01

    Directed transport of anisotropic chiral particles is numerically investigated in the presence of the regular arrays of rigid half-circle obstacles. It is found that due to the rotational-translational coupling, the transport of anisotropic particles is considerably more complicated compared to the isotropic case. For isotropic chiral particles, the transport direction is completely determined by the chirality of particles. However, for anisotropic chiral particles, the competition between the chirality and the anisotropic degree determines the transport direction. For a given chirality, by suitably tailoring parameters (the anisotropic degree and the self-propulsion speed), particles with different anisotropic degrees (or self-propulsion speed) can move in different directions and can be separated.

  18. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles. PMID:21293517

  19. Testing different formulations of leading-order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2016-02-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  20. Relativistic Modelling of Stable Anisotropic Super-Dense Star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.

    2015-08-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to the Schwarzschild exterior solution across the pressure-free boundary. It is observed that most of the new anisotropic solutions are well-behaved and are used to construct the super-dense star models such as neutron stars and pulsars.

  1. Stability conditions for the Bianchi type II anisotropically inflating universes

    SciTech Connect

    Kao, W.F.; Lin, Ing-Chen E-mail: g9522528@oz.nthu.edu.tw

    2009-01-15

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space.

  2. On uniqueness and non-degeneracy of anisotropic polarons

    NASA Astrophysics Data System (ADS)

    Ricaud, Julien

    2016-05-01

    We study the anisotropic Choquard-Pekar equation which describes a polaron in an anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we derive the symmetry properties of minimizers and prove that the kernel of the associated linearized operator is reduced, apart from three functions coming from the translation invariance, to the kernel on the subspace of functions that are even in each of the three principal directions of the medium.

  3. Relativistic heavy quark spectrum on anisotropic lattices

    NASA Astrophysics Data System (ADS)

    Liao, Xiaodong

    We report a fully relativistic quenched calculation of the heavy quark spectrum, including both charmonium and bottomonium, using anisotropic lattice QCD. We demonstrate that a fully relativistic treatment of a heavy quark system is well-suited to address the large systematic errors in non-relativistic calculations. In addition, the anisotropic lattice formulation is a very efficient framework for calculations requiring high temporal resolutions. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with JPC = 1-+ , 0+-, 2+-) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. The lowest lying exotic hybrid 1-+ lies at 4.428(41) GeV, slightly above the D**D (S + P wave) threshold of 4.287 GeV. Another two exotic hybrids 0+- and 2 +- are determined to be 4.70(17) GeV and 4.895(88) GeV, respectively. Our finite volume analysis confirms that our lattices are large enough to accommodate all the excited states reported here. We did the first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretization in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04--0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativistic simulations.

  4. Anisotropic mechanosensing by mesenchymal stem cells

    PubMed Central

    Kurpinski, Kyle; Chu, Julia; Hashi, Craig; Li, Song

    2006-01-01

    Mesenchymal stem cells (MSCs) are a potential source for the construction of tissue-engineered vascular grafts. However, how vascular mechanical forces regulate the genetic reprogramming in MSCs is not well understood. Mechanical strain in the vascular wall is anisotropic and mainly in the circumferential direction. We have shown that cyclic uniaxial strain on elastic substrates causes the cells to align perpendicularly to the strain axis, which is different from that in the vascular wall. To simulate the vascular cell alignment and investigate the anisotropic mechanical sensing by MSCs, we used soft lithography to create elastomeric membranes with parallel microgrooves. This topographic pattern kept MSCs aligned parallel to the strain axis, and the cells were subjected to 5% cyclic uniaxial strain (1 Hz) for 2–4 days. DNA microarray analysis revealed global gene expression changes, including an increase in the smooth muscle marker calponin 1, decreases in cartilage matrix markers, and alterations in cell signaling (e.g., down-regulation of the Jagged1 signaling pathway). In addition, uniaxial strain increased MSC proliferation. However, when micropatterning was used to align cells perpendicularly to the axis of mechanical strain, the changes of some genes were diminished, and MSC proliferation was not affected. This study suggests that mechanical strain plays an important role in MSC differentiation and proliferation, and that the effects of mechanotransduction depend on the orientation of cells with respect to the strain axis. The differential cellular responses to the anisotropic mechanical environment have important implications in cardiovascular development, tissue remodeling, and tissue engineering. PMID:17060641

  5. Chromo-natural model in anisotropic background

    SciTech Connect

    Maleknejad, Azadeh; Erfani, Encieh E-mail: eerfani@ipm.ir

    2014-03-01

    In this work we study the chromo-natural inflation model in the anisotropic setup. Initiating inflation from Bianchi type-I cosmology, we analyze the system thoroughly during the slow-roll inflation, from both analytical and numerical points of view. We show that the isotropic FRW inflation is an attractor of the system. In other words, anisotropies are damped within few e-folds and the chromo-natural model respects the cosmic no-hair conjecture. Furthermore, we demonstrate that in the slow-roll limit, the anisotropies in both chromo-natural and gauge-flation models share the same dynamics.

  6. Multichannel image regularization using anisotropic geodesic filtering

    SciTech Connect

    Grazzini, Jacopo A

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  7. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, A.L.; Mondy, L.A.; Guell, D.C.

    1993-11-16

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

  8. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  9. Glueball spectrum from an anisotropic lattice study

    SciTech Connect

    Morningstar, C.J.; Peardon, M.

    1999-08-01

    The spectrum of glueballs below 4 GeV in the SU(3) pure-gauge theory is investigated using Monte Carlo simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm. Systematic errors from discretization and finite volume are studied, and the continuum spin quantum numbers are identified. Care is taken to distinguish single glueball states from two-glueball and torelon-pair states. Our determination of the spectrum significantly improves upon previous Wilson action calculations. {copyright} {ital 1999} {ital The American Physical Society}

  10. Watertight Anisotropic Surface Meshing Using Quadrilateral Patches

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Aftosmis, Michael J.

    2004-01-01

    This paper presents a simple technique for generating anisotropic surface triangulations using unstructured quadrilaterals when the CAD entity can be mapped to a logical rectangle. Watertightness and geometric quality measures are maintained and are consistent with the CAPRI default tessellator. These triangulations can match user specified criteria for chord-height tolerance, neighbor triangle dihedral angle, and maximum triangle side length. This discrete representation has hooks back to the owning geometry and therefore can be used in conjunction with these entities to allow for easy enhancement or modification of the tessellation suitable for grid generation or other downstream applications.

  11. Anisotropic perturbations due to dark energy

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Moss, Adam

    2006-08-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  12. Some analytical models of anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan

    2016-01-01

    Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.

  13. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  14. Anisotropic de Gennes Narrowing in Confined Fluids

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2016-04-01

    The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries.

  15. Coarsening dynamics in elastically anisotropic alloys

    SciTech Connect

    Pfau, B.; Stadler, L.-M.; Sepiol, B.; Vogl, G.; Weinkamer, R.; Kantelhardt, J. W.; Zontone, F.

    2006-05-01

    We study in situ the coarsening dynamics in elastically anisotropic phase-separating alloys, taking advantage of coherent x rays. Temporally fluctuating speckle intensities are analyzed for two different Ni-Al-Mo samples with different lattice misfits between precipitates and matrix. The detected long-term correlations depend not only on the norm but strongly on the direction of the scattering vector--an unambiguous proof of direction-dependent coarsening dynamics. For strong lattice misfits, our results indicate coalescence of precipitates in the {l_brace}100{r_brace} planes.

  16. Local thermodynamics of a magnetized, anisotropic plasma

    SciTech Connect

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-02-15

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  17. Anisotropic Tribological Properties of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.

  18. A transitioning universe with anisotropic dark energy

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  19. Vector anisotropic filter for multispectral image denoising

    NASA Astrophysics Data System (ADS)

    Ben Said, Ahmed; Foufou, Sebti; Hadjidj, Rachid

    2015-04-01

    In this paper, we propose an approach to extend the application of anisotropic Gaussian filtering for multi- spectral image denoising. We study the case of images corrupted with additive Gaussian noise and use sparse matrix transform for noise covariance matrix estimation. Specifically we show that if an image has a low local variability, we can make the assumption that in the noisy image, the local variability originates from the noise variance only. We apply the proposed approach for the denoising of multispectral images corrupted by noise and compare the proposed method with some existing methods. Results demonstrate an improvement in the denoising performance.

  20. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2015-11-16

    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations. PMID:26698490

  1. Direct Template Approach for the Formation of (Anisotropic shape) Hollow Silicate Microparticles

    NASA Astrophysics Data System (ADS)

    Rivera Virtudazo, R. V.; Watanabe, H.; Shirai, T.; Fuji, M.; Takahashi, M.

    2011-10-01

    Non-uniform bulk or surface morphology of hollow particles has been an emerging interest because of the potential applications involving chemical storage, delivery and self-assembly for novel functional materials. There had been reports that experimental anisotropic (non-uniform) particles are much more difficult than synthesizing particles with uniform bulk and surface. Hence, this study reported a simple direct approach for the formation of unique hollow anisotropic amorphous silicate microparticles (10 to 20 μm). This was successfully prepared at room temperature via hydrolysis and condensation of tetraethylorthosilicate (TEOS), with ammonia water (NH4OH) as catalyst, ethanol (EtOH) and inorganic micro-size calcium carbonate (CaCO3) as template. The molar ratio used was 1.88:28.85:1:2.85 (CaCO3: EtOH: TEOS: NH4OH), mixed/stirred (at room temperature for 2 h), then filtered/washed by ethanol/water, after then dried and acid treated (3.0 mole/L) to obtained a micro-sized hollow SiO2 particles. This simple approach for the formation of unique anisotropic shape hollow silicate micro-sized particles can be a good alternative for a possible application as large porous carrier for nanoparticles (large drug delivery (LPP's)).

  2. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).

    PubMed

    Feerick, Emer M; Liu, Xiangyi Cheryl; McGarry, Patrick

    2013-04-01

    Anisotropic damage initiation criteria were developed for extended finite element method (XFEM) prediction of crack initiation and propagation in cortical bone. This anisotropic damage model was shown to accurately predict the dependence of crack propagation patterns and fracture toughness on mode mixity and on osteon orientations, as observed experimentally. Four initiation criteria were developed to define crack trajectories relative to osteon orientations and max principal stress for single and mixed mode fracture. Alternate failure strengths for tensile and compressive loading were defined to simulate the asymmetric failure of cortical bone. The dependence of cortical bone elasticity and failure properties on osteon orientation is analogous to the dependence of composite properties on fibre orientation. Hence, three of the criteria developed in the present study were based upon the Hashin damage criteria. The fourth criterion developed was defined in terms of the max principal stress. This criterion initiated off axis crack growth perpendicular to the direction of the max principal stress. The unique set of parameters calibrated accurately predicted; (i) the relationship between fracture energy and osteon alignment, (ii) the alternate crack patterns for both varying osteon orientations and loading angle. Application of the developed anisotropic damage models to cortical bone screw pullout highlights the potential application for orthopaedic device design evaluation. PMID:23455165

  3. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Jinkui; Gong, Xinglong; Fan, Yanceng; Xia, Hesheng

    2010-10-01

    Highly filled polytetramethylene ether glycol (PTMEG)-based polyurethane (PU) magnetorheological elastomers (MREs) with anisotropic structure and good mechanical properties were prepared. The difficulty in dispersion and orientation of iron particles in the PU elastomer was overcome by ball milling mixing and further in situ one-step polycondensation under a magnetic field. The microstructure and properties of the composite were characterized in detail. Scanning electron microscopy (SEM) showed that a chain-like structure of carbonyl iron was formed in the PU matrix after orientation under a magnetic field of 1.2 T. The aligned chain-like structure of carbonyl iron in PU greatly enhanced the thermal conductivity, the compression properties and the magnetorheological (MR) effect of anisotropic PU MREs compared to that of the isotropic one. When the test frequency is 1 Hz, the maximum absolute and relative MR effect of anisotropic PU MREs with 26 wt% hard segment and 70 wt% carbonyl iron were ~ 1.3 MPa and ~ 21%, respectively.

  4. Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2007-12-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.

  5. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  6. Final report: Interamerican Metrology System (SIM) Regional Metrology Organization (RMO) capacitance comparison. SIM.EM-K4.1, 10 pF fused-silica standard capacitor at 1000 Hz and SIM.EM-S4.1, 100 pF fused-silica standard capacitor at 1000 Hz

    NASA Astrophysics Data System (ADS)

    Sanchez, H.; Castro, B. I.; Koffman, A. D.; Zhang, N. F.; Wang, Y.; Shields, S.

    2015-01-01

    Two bilateral capacitance comparisons between the National Institute of Standards and Technology (NIST) and the Instituto Costarricense de Electricidad (ICE) were carried out to demonstrate the significant improvements achieved in capacitance metrology by ICE. These comparisons were a follow-up to the 2006 SIM.EM-K4, -S3, and -S4 capacitance comparisons. These bilateral activities consist of capacitance comparison SIM.EM-K4.1, comparing a 10 pF fused-silica standard at 1000 Hz, and comparison SIM.EM-S4.1, comparing a 100 pF fused-silica standard at 1000 Hz. The result of these bilateral comparisons have provided improved degrees of equivalence between ICE and the participants of the SIM.EM-K4, -S3, and -S4 capacitance comparisons. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Gravitomagnetic Instabilities in Anisotropically Expanding Fluids

    NASA Astrophysics Data System (ADS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas

    Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.

  8. Anisotropic interpolation of sparse generalized image samples.

    PubMed

    Bourquard, Aurélien; Unser, Michael

    2013-02-01

    Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples. We express our solution in the continuous domain, considering consistent resampling as a data-fidelity constraint. To make the problem well posed and ensure edge-preserving solutions, we develop an efficient anisotropic regularization approach that is based on an improved version of the edge-enhancing anisotropic diffusion equation. Following variational principles, our reconstruction algorithm minimizes successive quadratic cost functionals. To ensure fast convergence, we solve the corresponding sequence of linear problems by using multigrid iterations that are specifically tailored to their sparse structure. We conduct illustrative experiments and discuss the potential of our approach both in terms of algorithmic design and reconstruction quality. In particular, we present results that use as little as 2% of the image samples. PMID:22968212

  9. Real ray tracing in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2008-11-01

    Ray tracing equations applicable to smoothly inhomogeneous anisotropic viscoelastic media are derived. The equations produce real rays, in contrast to previous ray-theoretical approaches, which deal with complex rays. The real rays are defined as the solutions of the Hamilton equations, with the Hamiltonian modified for viscoelastic media, and physically correspond to trajectories of high-frequency waves characterized by a real stationary phase. As a consequence, the complex eikonal equation is satisfied only approximately. The ray tracing equations are valid for weakly and moderately attenuating media. The rays are frequency-dependent and must be calculated for each frequency, separately. Solving the ray tracing equations in viscoelastic anisotropy is more time consuming than in elastic anisotropy. The main difficulty is with determining the stationary slowness vector, which is generally complex-valued and inhomogeneous and must be computed at each time step of the ray tracing procedure. In viscoelastic isotropy, the ray tracing equations considerably simplify, because the stationary slowness vector is homogeneous. The computational time for tracing rays in isotropic elastic and viscoelastic media is the same. Using numerical examples, it is shown that ray fields in weakly attenuating media (Q higher than about 30) are almost indistinguishable from those in elastic media. For moderately attenuating anisotropic media (Q between 5-20), the differences in ray fields can be visible and significant.

  10. Anisotropic texture of ice sheet surfaces

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin E.; Raymond, Charles F.; Scambos, Theodore

    2006-03-01

    In this paper we analyze the magnitude and spatial organization of small-scale surface features (the surface texture) of the Greenland and Antarctic ice sheets. The texture is revealed in shaded relief maps of digital elevation models because surface slopes emphasize short-wavelength topography. We show that the surface slope components parallel to and perpendicular to the ice flow direction of ice sheets are both qualitatively and quantitatively different from one another. The parallel component variations are larger in magnitude than the perpendicular component variations, and features in maps of the parallel component are elongated perpendicular to the ice flow direction, while features in maps of the perpendicular component are elongated at a diagonal to the ice flow direction. These properties may be explained by a simple model of glacier dynamics in which a linearly viscous slab of ice flows over a random, isotropic, red noise bed. In this model an anisotropic surface results from an isotropic bed because the surface anisotropy derives from the anisotropic transfer of bed topography to the surface by viscous flow dynamics. The modeling results suggest that analysis of surface texture magnitude and anisotropy can be used to identify areas of sliding ice from surface topography data alone and can be used to roughly estimate sliding rates where bed topography is known.

  11. New formulation of leading order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2015-05-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.

  12. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  13. Electromagnetic properties of anisotropic plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Elser, Justin Lee

    In this dissertation we study the electromagnetic properties of plasmonic metamaterials. We develop an analytical description to solve the fundamental problem of free-space scattering in planar plasmonic systems by utilizing anisotropic metamaterials. We show with exact numerical simulations that these manufactured materials do completely eliminate the scattering, and even in the case of fabrication defects the scattering is greatly minimized. We further show that the standard effective medium theory calculations for the cases of anisotropic metamaterials constructed of metal-dielectric layers fails to account for nonlocal effects in the cases where the constituent materials have large differences in permittivity. We show how it is possible to construct a plasmon waveguide out of such a structure and describe a new naming scheme based on the bulk plasmon modes that are supported. Finally, we study the effective medium theory applied to the case of plasmonic wires embedded in a dielectric host. We describe the effect the geometric properties of the structure has on effective permittivities. For example, we show that a 10% stretching/compression of the distance between nanowires can change the sign of elements of the permittivity tensor. These results can be applied to high-performance optical sensing, optical polarizers, novel lenses including the hyper- and superlenses, and subdiffraction imaging.

  14. Structure/function studies of resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) copolymer ion-exchange resins

    SciTech Connect

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Hogan, M.O.; Hallen, R.T.; Brown, G.N.; Linehan, J.C.

    1996-09-01

    he U.S. Department of Energy`s (DOE) Hanford Site was established to produce plutonium for the U.S. defense mission. Over the course of decades, hazardous, toxic, and radioactive chemical wastes were generated and disposed of in a variety of ways including storage in underground tanks. An estimated 180 million tons of high-level radioactive wastes are stored in 177 underground storage tanks. During production of fissile plutonium, large quantities of 90Sr and 137CS were produced. The high abundance and intermediate length half- lives of these fission products are the reason that effort is directed toward selective removal of these radionuclides from the bulk waste stream before final tank waste disposal is effected. Economically, it is desirable to remove the highly radioactive fraction of the tank waste for vitrification. Ion-exchange technology is being evaluated for removing cesium from Hanford Site waste tanks. This report summarizes data and analysis performed by Pacific Northwest National Laboratory (PNNL)for both resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) resins and relates their observed differences in performance and chemical stability to their structure. The experimental approach used to characterize the resins was conducted using primarily two types of data: batch distribution coefficients (Kds) and solid-state 13C NMR. Comparison of these data for a particular resin allowed correlation of resin performance to resin structure. Additional characterization techniques included solid-state 19F NMR, and elemental analyses.

  15. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells.

    PubMed

    Camarasa, María Vicenta; Gálvez, Víctor Miguel

    2016-01-01

    Cystic fibrosis is one of the most frequent inherited rare diseases, caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. Apart from symptomatic treatments, therapeutic protocols for curing the disease have not yet been established. The regeneration of genetically corrected, disease-free epithelia in cystic fibrosis patients is envisioned by designing a stem cell/genetic therapy in which patient-derived pluripotent stem cells are genetically corrected, from which target tissues are derived. In this framework, we present an efficient method for seamless correction of pF508del mutation in patient-specific induced pluripotent stem cells by gene edited homologous recombination. Gene edition has been performed by transcription activator-like effector nucleases and a homologous recombination donor vector which contains a PiggyBac transposon-based double selectable marker cassette.This new method has been designed to partially avoid xenobiotics from the culture system, improve cell culture efficiency and genome stability by using a robust culture system method, and optimize timings. Overall, once the pluripotent cells have been amplified for the first nucleofection, the procedure can be completed in 69 days, and can be easily adapted to edit and change any gene of interest. PMID:26861665

  16. Anisotropic artificial substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  17. Anisotropic superfluidity in a dipolar Bose gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M; Bohn, John L

    2010-11-04

    so that the in-plane interaction is anisotropic. By induding repulsive contact interactions to ensure a stable system, we perform direct numeric simulations of an obstacle moving through the system in directions parallel and perpendicular to the tilt of the dipoles. We observe a distinct anisotropic superfluid response in these cases, both for dissipation into quasipartides and topological excitations (vortices), in the form of an anisotropic critical velocity that is larger in the direction of the dipole tilt than in the perpendicular direction. Interestingly, we find that, while the roton displays an anisotropic character, the speed of sound in the systrm is isotropic. Thus, we characterize the DBEC as an fmisotropic superfluid while illuminating the crucial role that the roton plays in this anisotropic behavior.

  18. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  19. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  20. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    NASA Astrophysics Data System (ADS)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  1. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  2. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  3. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  4. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    SciTech Connect

    Vasques, R.

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  5. [Mixed marriages].

    PubMed

    Harmsen, C N

    1998-08-01

    The author examines the extent and characteristics of mixed marriages in the Netherlands. "Nine out of ten married persons born in Turkey or Morocco have a partner who was born in the same country. The majority of married Surinamese also have a partner originating from the same country. Those who spend (a part of) their youth in Indonesia (the former Dutch East Indies), on the other hand, are mostly married to someone born in the Netherlands." (EXCERPT) PMID:12294179

  6. Thermally-induced interlaminar crack-tip singularities in laminated anisotropic composites

    NASA Astrophysics Data System (ADS)

    Choi, Hyung J.; Thangjitham, S.

    1993-04-01

    Thermally-induced stress singularities of an interlaminar crack in a fiber-reinforced composite laminate under a state of generalized plane deformation are examined within the framework of steady-state anisotropic thermoelasticity. The crack is assumed to be embedded within a matrix-rich interlaminar region of the composite. The Fourier integral transform technique and the flexibility/stiffness matrix method are introduced to formulate the current mixed boundary value problem. As a result, two sets of simultaneous Cauchy-type singular integral equations of the first kind are derived for the heat conduction and thermoelasticity. Within the context of linear elastic fracture mechanics, the mixed-mode thermal stress intensity factors are defined in terms of the solutions of the corresponding integral equations. Numerical results are presented, addressing the effects of laminate stacking sequence, crack 1ocation, and crack surface partial insulation on the values of thermal stress intensity factors.

  7. Control of anisotropic interactions with microwaves in ultracold NaK molecules

    NASA Astrophysics Data System (ADS)

    Yan, Zoe; Loh, Huanqian; Park, Jee Woo; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold polar molecules offer long range anisotropic interactions, which can provide access to novel phases of condensed matter physics. The recent creation of fermionic NaK polar molecules in the ground hyperfine-rovibronic state, which is chemically stable, demonstrates an important step towards the study of new dipolar physics. To engineer dipolar interactions between molecules with large electric dipole moments, one can apply microwaves to mix the lowest and first excited rotational states. Hyperfine interaction in the first excited rotational state mixes nuclear spin and rotation, leading to states with rich character, which we map out by performing microwave spectroscopy. The admixed hyperfine character serves as a tool to engineer wide ranges of ``magic'' trap polarization angles, at which the lowest and first excited rotational states have matching polarizabilities. Finally, we demonstrate that we can access large dipole moments by coherently dressing the molecules with microwaves.

  8. Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria

    NASA Technical Reports Server (NTRS)

    Chow, W-T.; Wang, L.; Atluri, S. N.

    1998-01-01

    This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.

  9. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  10. Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

    NASA Astrophysics Data System (ADS)

    Placidi, Luca; Greve, Ralf; Seddik, Hakime; Faria, Sérgio H.

    2010-03-01

    A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen’s flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.

  11. Primordial power spectra from anisotropic inflation

    SciTech Connect

    Dulaney, Timothy R.; Gresham, Moira I.

    2010-05-15

    We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Wald's no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the ''in-in'' formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.

  12. Tunable anisotropic superfluidity in optical Kagome superlattice

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian

    2015-03-01

    We study the extended Bose-Hubbard model for the optical Kagome superlattice which is generated by enhancing the long wavelength laser in one direction. By combining Quantum Monte Carlo simulations with the Generalized Effective Potential Landau Theory, we find not only the Mott insulator-superfluid quantum phase transition, but also striped solid phases with non-integer filling factors. Furthermore, we determine with high accuracy the quantum phase diagram for different trap potential offsets. Due to the delicate interplay between onsite repulsion and artificial symmetry breaking, the superfluid density turns out to be anisotropic which reveals its tensorial property. Counterintuitively, the bias of the anisotropy is alternating between x- and y-direction while tuning the particle number or the hopping strength. Finally, we discuss how to observe such phenomenon experimentally, in particular via time-of-flight absorption measurements. Supported by OPTIMAS and the Deutsche Forschungsgemeinschaft via the SFB/TR49

  13. Anisotropic star on pseudo-spheroidal spacetime

    NASA Astrophysics Data System (ADS)

    Ratanpal, B. S.; Thomas, V. O.; Pandya, D. M.

    2016-02-01

    A new class of exact solutions of Einstein's field equations representing anisotropic distribution of matter on pseudo-spheroidal spacetime is obtained. The parameters appearing in the model are restricted through physical requirements of the model. It is found that the models given in the present work is compatible with observational data of a wide variety of compact objects like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4, Cen X-3. A particular model of pulsar PSR J1614-2230 is studied in detail and found that it satisfies all physical requirements needed for physically acceptable model.

  14. The anisotropic nanomovement of azo-polymers.

    PubMed

    Ishitobi, H; Tanabe, M; Sekkat, Z; Kawata, S

    2007-01-22

    Nanoscale polymer movement is induced by a tightly focused laser beam in an azo-polymer film just at the diffraction limit of light. The deformation pattern that is produced by photoisomerization of the azo dye is strongly dependent on the incident laser polarization and the longitudinal focus position of the laser beam along the optical axis. The anisotropic photo-fluidity of the polymer film and the optical gradient force played important roles in the light induced polymer movement. We also explored the limits of the size of the photo-induced deformation, and we found that the deformation depends on the laser intensity and the exposure time. The smallest deformation size achieved was 200 nm in full width of half maximum; a value which is nearly equal to the size of the diffraction limited laser spot. PMID:19532288

  15. Current collection in an anisotropic collisionless plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1992-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  16. Constitutive modeling of inelastic anisotropic material response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.

    1984-01-01

    A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.

  17. Transient motion of thick anisotropic plates

    NASA Technical Reports Server (NTRS)

    Nayfeh, Adnan H.; Taylor, Timothy W.

    1991-01-01

    Analyses are developed for the response of anisotropic plate strips to a transient load. The load is taken in the form of a line load of normal stress on the surface or within the body of the strip. The characteristic free vibrational modes of the strip are derived and used to derive the secular equation for this case in closed form and to isolate the mathematical conditions for symmetric and antisymmetric wave mode propagation in completely separate terms. The applied loads are expanded in terms of these normal modes and the response of the plate is obtained by superposition of the appropriate components. Material systems of higher symmetry are contained implicitly in the analysis.

  18. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  19. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  20. Quarkonium states in an anisotropic QCD plasma

    SciTech Connect

    Dumitru, Adrian; Guo Yun; Mocsy, Agnes; Strickland, Michael

    2009-03-01

    We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.

  1. Anisotropic acoustic metafluid for underwater operation.

    PubMed

    Popa, Bogdan-Ioan; Wang, Wenqi; Konneker, Adam; Cummer, Steven A; Rohde, Charles A; Martin, Theodore P; Orris, Gregory J; Guild, Matthew D

    2016-06-01

    The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality. PMID:27369158

  2. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  3. Anisotropic de Gennes Narrowing in Confined Fluids.

    PubMed

    Nygård, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2016-04-22

    The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries. PMID:27152823

  4. Translation correlations in anisotropically scattering media

    NASA Astrophysics Data System (ADS)

    Judkewitz, Benjamin; Horstmeyer, Roarke; Vellekoop, Ivo M.; Papadopoulos, Ioannis N.; Yang, Changhuei

    2015-08-01

    Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.

  5. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  6. Spin liquids on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Schaffer, Robert; Hwang, Kyusung; Huh, Yejin; Kim, Yong Baek

    Much recent theoretical and experimental effort has been devoted to the search for quantum spin liquids, which arise in the presence of strong frustration of magnetic interactions. Motivated by recent experiments on the vanadium oxyfluoride material DQVOF, we examine possible spin liquid phases on an anisotropic kagome lattice of S = 1 / 2 spins, in which the C6 symmetry is broken to C3. Using the projective symmetry group analysis, we determine the possible phases for both bosonic and fermionic Z2 spin liquids on this lattice. Using VMC, we study the Heisenberg model on this lattice, and show that a Z2 spin liquid emerges as the ground state in the presence of this anisotropy.

  7. Anisotropic thermal conductivity of semiconducting graphene monoxide

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-06-01

    The intrinsic thermal conductivity of monolayer graphene monoxide is determined via first-principles calculations. The phonon transport in graphene monoxide is anisotropic, with the lattice thermal conductivity along the armchair direction (…C-2O-C…) about five times higher than that along the zigzag (…C-C…) direction. The predicted thermal conductivity (>3000 Wm-1K-1 at 300 K) of graphene monoxide is 80% of that of graphene along the armchair direction for large sample lateral sizes (>5 μm). In addition, heat is predominantly carried by longitudinal acoustic phonons along the armchair direction, while the contribution from the transverse acoustic phonon mode is prevalent along the zigzag direction.

  8. Surface phonon polaritons on anisotropic piezoelectric superlattices

    NASA Astrophysics Data System (ADS)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon A.; Shaffer, James P.

    2016-01-01

    A theoretical study of surface phonon polaritons (SPhPs) on periodically poled lithium niobate and periodically poled lithium tantalate surfaces is presented. We calculate the dielectric response for six different superlattice orientations and the associated SPhP dispersion relations. Our study of SPhPs accounts for the anisotropic nature of the dielectric response of the semi-infinite piezoelectric superlattices. We find that two different types of SPhPs can be supported. The first type consists of real surface dipole oscillations coupled to photons. The second type consists of virtual surface dipole oscillations driven by the incident photons. The dependence of the SPhPs on temperature and superlattice geometry is addressed. The use of these metamaterial excitations is discussed in the context of hybrid quantum systems.

  9. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  10. Gauge field optics with anisotropic media.

    PubMed

    Liu, Fu; Li, Jensen

    2015-03-13

    By considering gauge transformations on the macroscopic Maxwell's equations, a two-dimensional gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices. PMID:25815934

  11. Long-range interaction of anisotropic systems

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Y.; Schwingenschlögl, U.

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, \\varepsilon(D) \\propto -D-3-O(D-4) , is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form \\varepsilon(D) \\propto -D-4 .

  12. A realizable EDQNM model for anisotropic scalars

    NASA Astrophysics Data System (ADS)

    Collins, Lance; Ulitsky, Mark

    1999-11-01

    As noted in the previous talk and abstract, the direct application of the edqnm formalism to two scalars with different diffusivities leads to a scalar covariance spectrum that violates the Cauchy-Schwartz inequality. This can be remedied by eliminating the explicit dependence of the eddy damping time scales on the molecular diffusivities, which can be shown to be unphysical at short times. Here we present an extension of this idea to anisotropic scalars. Anisotropy in this case results from uniform mean gradients of the scalar concentration in one direction. The approach we take is similar to the one described in Herr, Wang and Collins (Phys. Fluids 8:1588, 1996), except we substitute the modified eddy damping coefficients derived earlier for the isotropic scalar. The resulting edqnm model yields a realizable covariance spectrum for all times and for all combinations of the scalar diffusivities we considered. Several example calculations will be presented.

  13. Thermodynamics of anisotropic fluids using isotropic potentials

    SciTech Connect

    Bastea, S; Ree, F H

    1999-08-16

    We study the effectiveness and limitations of the median potential recipe for mixtures such as N{sub 2} + O{sub 2} and N{sub 2} + CO{sub 2}, that are important in detonation applications. Conversely, we treat effective spherical potentials extracted from Hugoniot experiments (e.g., N{sub 2} and O{sub 2}) as median potentials and invert them to extract atom-atom potentials. The resulting non-spherical potentials compare remarkably well with the atom - atom potentials used in studies of solid state properties. Finally, we propose a method to improve the median potential for stronger anisotropic fluids such as CO{sub 2} and its mixtures.

  14. Anisotropic Cloth Modeling for Material Fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  15. Isotropic and anisotropic surface wave cloaking techniques

    NASA Astrophysics Data System (ADS)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  16. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  17. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  18. Adiabatic theory for anisotropic cold molecule collisions.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  19. Simple Models for Polymeric and Anisotropic Liquids

    NASA Astrophysics Data System (ADS)

    Kröger, Martin

    We hope that the complexity of the world is neither in contrast with the simplicity of the basic laws of physics [1] nor with the simple physical models to be reviewed or proposed in the following. However, physical phenomena occurring in complex materials cannot be encapsulated within a single numerical paradigm. In fact, they should be described within hierarchical, multi-level numerical models in which each sub-model is responsible for different spatio-temporal behavior and passes out the averaged parameters to the model, which is next in the hierarchy (Fig. 1.1). Polymeric liquids far from equilibrium belong to the class of anisotropic liquids.1 This monograph is devoted to the understanding of the anisotropic properties of polymeric and complex fluids such as viscoelastic and orientational behavior of polymeric liquids, the rheological properties of ferrofluids and liquid crystals subjected to external fields, based on the architecture of their molecular constituents. The topic is of considerable concern in basic research for which models should be as simple as possible, but not simpler. Certainly, it is also of technological relevance. Statistical physics and nonequilibrium thermodynamics are challenged by the desired structure-property relationships. Experiments such as static and dynamic light and neutron scattering, particle tracking, flow birefringence etc. together with rheological measurements have been essential to adjust or test basic theoretical concepts, such as a ‘linear stressoptic rule’ which connects orientation and stress, or the effect of molecular weight, solvent conditions, and external field parameters on shape, diffusion, degradation, and alignment of molecules.

  20. Highly anisotropic conductivity in organosiloxane liquid crystals

    NASA Astrophysics Data System (ADS)

    Gardiner, D. J.; Coles, H. J.

    2006-12-01

    In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.

  1. Standing shear waves in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Krit, T.; Golubkova, I.; Andreev, V.

    2015-10-01

    We studied standing shear waves in anisotropic resonator represented by a rectangular parallelepiped (layer) fixed without slipping between two wooden plates of finite mass. The viscoelastic layer with edges of 70 mm × 40 mm × 15 mm was made of a rubber-like polymer plastisol with rubber bands inside. The bands were placed vertical between the top and the bottom plate. Mechanical properties of the plastisol itself were carefully measured previously. It was found that plastisol shows a cubic nonlinear behavior, i.e. the stress-strain curve could be represented as: σ = μɛ + βμɛ3, where ɛ stands for shear strain and σ is an applied shear stress. The value of shear modulus μ depends on frequency and was found to be several kilopascals which is common for such soft solids. Nonlinear parameter β is frequency dependent too and varies in range from tenths to unity at 1-100 Hz frequency range, decreasing with frequency growth. Stretching the rubber bands inside the layer leads to change of elastic properties in resonator. Such effect could be noticed due to frequency response of the resonator. The numerical model of the resonator was based on finite elements method (FEM) and performed in MatLab. The resonator was cut in hundreds of right triangular prisms. Each prism was provided with viscoelastic properties of the layer except for the top prisms provided with the wooden plate properties and the prisms at the site of the rubber bands provided with the rubber properties. The boundary conditions on each prism satisfied the requirements that resonator is inseparable and all its boundaries but bottom are free. The bottom boundary was set to move horizontally with constant acceleration amplitude. It was shown numerically that the resonator shows anisotropic behavior expressed in different frequency response to oscillations applied to a bottom boundary in different directions.

  2. Mixed results with mixed disulfides.

    PubMed

    Brigelius-Flohé, Regina

    2016-04-01

    A period of research with Helmut Sies in the 1980s is recalled. Our experiments aimed at an in-depth understanding of metabolic changes due to oxidative challenges under near-physiological conditions, i.e. perfused organs. A major focus were alterations of the glutathione and the NADPH/NADP(+) system by different kinds of oxidants, in particular formation of glutathione mixed disulfides with proteins. To analyze mixed disulfides, a test was adapted which is widely used until today. The observations in perfused rat livers let us believe that glutathione-6-phosphate dehydrogenase (G6PDH), i.a. might be activated by glutathionylation. Although we did not succeed to verify this hypothesis for the special case of G6PDH, the regulation of enzyme/protein activities by glutathionylation today is an accepted posttranslational mechanism in redox biology in general. Our early experimental approaches are discussed in the context of present knowledge. PMID:27095221

  3. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    SciTech Connect

    Takezawa, Akihiro Kitamura, Mitsuru

    2014-01-15

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  4. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kitamura, Mitsuru

    2014-01-01

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  5. Anisotropic structures of some microorganisms studied by polarization microscopy.

    PubMed

    Žižka, Zdeněk

    2014-09-01

    Polarization microscopy has been used to study the internal structures of microbial cells and in terms of the birefringence of these structures and its possible relation to the cell function and composition. Cyanobacteria of the genus Phormidium were found to contain no anisotropic structures, while other microorganisms were found to contain them, albeit to a different extent, size, and number. The flagellate Euglena was found to contain two large anisotropic bodies, whereas the flagellate of the genus Phacus belonging to the same systematic group Euglenales was observed to contain only one large anisotropic body (storage substances--paramylon). On the other hand, green algae of the genus Scenedesmus, whose cells form four--celled coenobia, contained clusters of small anisotropic granules composed also of storage substances (volutin). Minute anisotropic granules (storage substances) in two smaller clusters were found also in diatoms of the genus Navicula, whereas the green alga of the genus Mougeotia was revealed to contain, in addition to minute anisotropic granules (storage substances) occurring in low numbers in the cytoplasm, also a strongly birefringent cell wall (shape birefringence). Cells of the amoeba of the genus Naegleria and heliozoans of the genus Heterophrys were observed to contain only isolated tiny anisotropic granules (storage substances). PMID:24557733

  6. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  7. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  8. 3D, 9-C anisotropic seismic modeling and inversion

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, Herurisa

    The most complete representation of an elastic medium consists of an elastic tensor with 21 independent moduli. All 21 can be estimated from compressional and shear wave polarization and slowness vectors corresponding to wide apertures of polar and azimuth angles. In isotropic media, when seismic source and receiver components have the same orientation (such as XX and YY), the reflection amplitude contours align approximately perpendicular to the particle motions. The mixed components (such as XY and YX) have amplitude patterns that are in symmetrical pairs of either the same, or of opposite, polarity on either side of the diagonal of the 9-C response matrix. In anisotropic media, amplitude variations with azimuth show the same basic patterns and symmetries as for isotropic, but with a superimposed tendency for alignment parallel to the strike of the vertical cracks. Solutions for elastic tensor elements from synthetic slowness and polarization data calculated directly from the Christoffel equation are more sensitive to the polar angle aperture than to the azimuth aperture. Nine-component synthetic elastic vertical seismic profile data for a model with triclinic symmetry calculated by finite-differencing allows estimation of the elastic 21 tensor elements in the vicinity of a three-component borehole receiver. Wide polar angle and azimuth apertures are needed for accurately estimating the elastic tensor elements. The tensor elements become less independent as the data apertures decrease. Results obtained by extracting slowness and polarization data from the corresponding synthetic seismograms show similar results. The inversion algorithm has produced good results from field vertical seismic profile data set from the Weyburn Field in Southern Saskatchewan in Canada. Synthetic nine-component seismograms calculated from the extracted tensor are able to explain most of the significant features in the field data. The inverted stiffness elastic tensor shows orthorhombic

  9. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  10. Fabrication of anisotropic multifunctional colloidal carriers

    NASA Astrophysics Data System (ADS)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally