Science.gov

Sample records for anita balloon-borne radio

  1. Observation of ultrahigh-energy cosmic rays with the ANITA balloon-borne radio interferometer.

    PubMed

    Hoover, S; Nam, J; Gorham, P W; Grashorn, E; Allison, P; Barwick, S W; Beatty, J J; Belov, K; Besson, D Z; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; Dowkontt, P F; DuVernois, M A; Field, R C; Goldstein, D; Vieregg, A G; Hast, C; Israel, M H; Javaid, A; Kowalski, J; Learned, J G; Liewer, K M; Link, J T; Lusczek, E; Matsuno, S; Mercurio, B C; Miki, C; Miočinović, P; Naudet, C J; Ng, J; Nichol, R J; Palladino, K; Reil, K; Romero-Wolf, A; Rosen, M; Ruckman, L; Saltzberg, D; Seckel, D; Varner, G S; Walz, D; Wu, F

    2010-10-01

    We report the observation of 16 cosmic ray events with a mean energy of 1.5 × 10¹⁹ eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2° for the event arrival directions. PMID:21230887

  2. Balloon borne Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Lubin, Philip M.

    2015-08-01

    We report on modeling of a balloon borne mission to survey the 1-5 micron region with sensitivity close to the zodiacal light limits in portions of this band. Such a survey is compelling for numerous science programs and is complimentary to the upcoming Euclid, WFIRST and other orbital missions. Balloons borne missions offer much lower cost access and rapid technological implementation but with much less exposure time and increased backgrounds. For some science missions the complimentary nature of these is extremely useful. .

  3. Balloon-Borne Polarimetry

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Murphy, G.; Strohbehn, K.; Keller, C. U.

    1996-03-01

    For about two weeks in 1995, the balloon-borne Flare Genesis Experiment will continuously observe the Sun well above the turbulent, image-blurring layers of the Earth's atmosphere. The polarization-free 80 cm telescope will supply images to a liquid-crystal based vector magnetograph, which will measure magnetic features at a resolution of 0.2 arcsec. An electrically tunable lithium-niobate Fabry-Perot provides a spectral resolution of about 0.015 nm. In a follow-up series of Antarctic balloon flights, the Flare Genesis Experiment (FGE) will provide unprecedented details about sunspots, flares, magnetic elements, filaments, and the quiet solar atmosphere.

  4. Uncertainties in energy reconstruction of cosmic rays for ANITA III caused by differences in models of radio emission in atmospheric showers

    NASA Astrophysics Data System (ADS)

    Bugaev, Viatcheslav; Rauch, Brian; Schoorlemmer, Harm; Lam, Joe; Urdaneta, David; Wissel, Stephanie; Belov, Konstantin; Romero-Wolf, Andrew; Anita Collaboration

    2015-04-01

    The third flight of the high-altitude balloon-borne Antarctic Impulsive Transient Antenna (ANITA III) was launched on a high-altitude balloon from McMurdo, Antarctica on December 17th, 2014 and flew for 22 days. It was optimized for the measurement of impulsive radio signals from the charged component of extensive air showers initiated by ultra-high energy cosmic rays in the frequency range ~ 180 - 1200 MHz. In addition it is designed to detect radio impulses initiated by high-energy neutrinos interacting in the Antarctic ice, which was the primary objective of the first two ANITA flights. Based on an extensive set of Monte Carlo simulations of radio emissions from cosmic rays (CR) with the ZHAireS and CoREAS simulation packages, we estimate uncertainties in the electric fields at the payload due to different models used in the two packages. The uncertainties in the emission are then propagated through an algorithm for energy reconstruction of individual CR showers to assess uncertainties in the energy reconstruction. We also discuss optimization of this algorithm. This research is supported by NASA under Grant # NNX11AC49G.

  5. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  6. Balloon-borne transform spectroscopy

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1976-01-01

    The design and construction of a high-resolution far-infrared Fourier-transform spectrometer for use on the Smithsonian balloon-borne one-meter telescope is described. The instrument will operate at a resolution of about 0.1 kayser in the region from 25 to 150 microns. It will be used to obtain spectra of Jupiter, Venus, Orion, and other H II and molecular cloud regions, as well as the terrestrial stratosphere.

  7. Overview and initial results from the ANITA HiCal Experiment

    NASA Astrophysics Data System (ADS)

    Stockham, Jessica; Anita Collaboration

    2015-04-01

    The ANtarctic Impulsive Transient Antenna (ANITA) is a balloon-borne apparatus that surveys the Antarctic ice looking for radio signals produced by ultra-high energy (UHE) neutrinos and cosmic rays. Neutrino signals originating from shower events in the ice and cosmic ray signals originating from shower events in the atmosphere arrive at ANITA after being, respectively, transmitted through or reflected from the ice surface. Since these signals interact with the air-ice interface, it is important to understand the impact of the transmission or reflection on the signal, specifically decoherence caused by surface roughness, in reconstructing the properties of the initial UHE particle. HiCal is a calibration pulsing unit employing a piezo-electric sparking device coupled to a dipole antenna that transmits a UHE-like impulsive signal. The first HiCal payload was launched on a second balloon in conjunction with ANITA-III, with the objective of transmitting pulses that would be received by ANITA both directly and as signals reflected from the ice surface. A ratio of the amplitudes of reflected to direct signals would provide a direct measurement of any decoherence effects caused by surface roughness. The design, testing, and initial results from the first HiCal flight will be discussed. NASA Grant NNX11AC47G.

  8. A balloon-borne integrating nephelometer

    SciTech Connect

    Brown, G.S.; Apple, M.L. ); Weiss, R.E. )

    1990-09-01

    A balloon-borne integrating nephelometer has been successfully developed and flown by Sandia National Laboratories and Radiance Research. This report details instrument design, calibration and data conversion procedure. Free and tethered balloon transport and telemetry systems are described. Data taken during March 1989 South-Central New Mexico free flight ascents are presented as vertical profiles of atmospheric particle scattering coefficient, temperature and balloon heading. Data taken during December 1989 Albuquerque, New Mexico tethered flights are also presented as vertical profiles. Data analysis shows superior instrument performance. 5 refs., 22 figs.

  9. Balloon borne optical disk mass storage system

    NASA Technical Reports Server (NTRS)

    Vanek, M. D.; Jennings, D. A.

    1991-01-01

    An on-board data recording system for balloon-borne interferometer using a vacuum operable, ruggedized WORM optical drive is presented. This system, as presently under development, provides 320 Mbytes of data storage (or approximately 11 hrs at the 64 kbits/sec telemetry rate of the experiment). It has the capability of recording the unmodified telemetry bit system as transmitted or doing some preprocessing of the data onboard. The system is compact and requires less than 28 watts of battery power to operate.

  10. Balloon-borne molecular oxygen search

    NASA Astrophysics Data System (ADS)

    Koch, Timothy C.

    1994-01-01

    An experiment is described that is designed to detect molecular oxygen in interstellar molecular clouds. Oxygen is the third most abundant element in our galaxy. The oxygen-bearing molecules that have been detected do not account for the expected oxygen abundance in molecular clouds. Molecular oxygen (O2) could be a major reservoir for the missing oxygen. At the University of California, Santa Barbara (UCSB) in conjunction with the Jet Propulsion Laboratory and Bell Laboratories, a balloon-borne, millimeter-wavelength receiver with the capability of observing the primary isotopes of O2 (118, 750 MHz; N = 1, J = 1-0) and CO (115, 271 MHz; J = 1-0) has been designed, built, and flown. This system uses a superconducting-insulating-superconducting (SIS) mixer and a digital auto-correlator spectrometer. The SIS spectrometer (SISS) has achieved a double sideband receiver temperature of 5 K and a spectral resolution of 1 km/s. Using the 1-meter primary mirror on the UCSB balloon-borne gondola, the SISS has an 11 arcsecond beam (FWHM). The first flight was executed in August 1993. Although pointing and cryogenic problems prevented taking astronomical data, it proved to be an excellent engineering flight.

  11. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.

  12. The MIPAS balloon borne trace constitutent experiment

    NASA Technical Reports Server (NTRS)

    Oelhaf, H.; Vonclarmann, TH.; Fischer, H.; Friedl-Vallon, F.; Fritzsche, CHR.; Piesch, CHR.; Rabus, D.; Seefeldner, M.; Voelker, W.

    1994-01-01

    A novel cryogenic Fourier transform spectrometer (FTS) has been developed for limb emission measurements in the mid IR-region from balloon-borne platforms. The FTS is a rapid scanning interferometer using a modified Michelson arrangement which allows a spectral resolution of 0.04 cm(exp -1) to be achieved. Solid carbon-dioxide cooling of the spectrometer and liquid-helium cooling of the detectors provide adequate sensitivity. The line of sight can be stabilized in terms of azimuth and elevation. A three-mirror off-axis telescope provides good vertical resolution and straylight rejection. Calibration is performed by high elevation and internal blackbody measurements. Four balloon flights were performed, two of them during spring turn-around 1989 and 1990 over mid-latitudes (Aire sur L'Adour, France, 44 deg N) and two near the northern polar circle in winter 1992 (Esrange, Sweden, 68 deg N). Limb emission spectra were collected from 32 km to 39 km floating altitudes covering tangent heights between the lower troposphere and the floating altitude. The trace gases CO2, H2O, O3, CH4, N2O, HNO3, N2O5, ClONO2, CF2Cl2, CFCl3, CHF2Cl, CCl4, and C2H6 have been identified in the measured spectra. The 1989 data have been analyzed to retrieve profiles of O3, HNO3, CFCl3 and CF2Cl2. The flights over Kiruna have provided the first ever reported profile measurements of the key reservoir species ClONO2 and N2O5 inside the polar vortex.

  13. EBEX: A Balloon-Borne CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel; Aboobaker, A. M.; Ade, P.; Aubin, F.; Baccigalupi, C.; Bandura, K.; Bao, C.; Borrill, J.; Didier, J.; Dobbs, M.; Gold, B.; Grain, J.; Grainger, W.; Hanany, S.; Helson, K.; Hillbrand, S. N.; Hilton, G.; Hubmayr, H.; Irwin, K.; Johnson, B.; Jaffe, A.; Jones, T. J.; Kisner, T.; Klein, J.; Korotkov, A.; Leach, S.; Lee, A. T.; Levinson, L.; Limon, M.; MacDermid, K.; Miller, A. D.; Milligan, M.; Pascale, E.; Raach, K.; Reichborn-Kjennerud, B.; Sagiv, I.; Smecher, G.; Stompor, R.; Tristram, M.; Tucker, G. S.; Westbrook, B.; Zilic, K.

    2014-01-01

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX is the first balloon-borne astrophysical polarimeter to use a continuously rotating achromatic half-wave plate on a superconducting magnetic bearing and over 1000 transition edge sensor bolometers read out with SQUID amplifiers. The instrument completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. We will provide an overview of the experiment and the Antarctic flight, and give an update on the analysis.

  14. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  15. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high speed, high capacity digital data storage system was developed for a new balloon-borne gamma-ray telescope. The system incorporates economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  16. Prototype TIGRE Compton γ-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; O'Neill, T. J.; Akyüz, A.; Samimi, J.; Zych, A. D.

    2004-02-01

    A prototype balloon-borne telescope is being constructed for γ-ray observations in the MeV energy range. The Tracking and Imaging Gamma-Ray Experiment (TIGRE) uses multi-layers of thin silicon detectors to track and measure the energy losses of Compton recoil electrons. When combined with the direction and energy of the Compton scattered γ-ray a unique incident direction for each photon event is determined. This facilitates background rejection, improved sensitivity and image reconstruction. The converter/tracker also serves as an electron-positron pair detector for γ-rays up to 100 MeV. The initial continental US flight will be used to determine the sub-orbital atmospheric backgrounds and search for polarized γ-emission for the Crab pulsar. Longer southern hemisphere flights with an enhanced instrument will map out the 26Al emissions from the galactic center region.

  17. Collection of Stratospheric Samples using Balloon-Borne Payload System

    NASA Astrophysics Data System (ADS)

    Prakash, Ajin; Safonova, Margarita; Murthy, Jayant; Sreejith, A. G.; Kumble, Sheshashayi; Mathew, Joice; Sarpotdar, Mayuresh; Kj, Nirmal; Suresh, Ambily; Chakravortty, Dipshikha; Rangarajan, Annapoorni

    2016-07-01

    Earth's atmosphere at stratospheric altitudes contains dust particles from soil lifted by weather, volcanic dust, man-made aerosols, IDP (Interplanetary Dust Particles) - remnants of comets and asteroids, and even interstellar dust. Satellite observations suggest that approximately 100--300 tons of cosmic dust enter Earth's atmosphere every day. However, very little is known about the microbial life in the upper atmosphere, where conditions are very much similar to that on Mars and possibly on some exoplanets. Stratosphere provides a good opportunity to study the existence or survival of biological life in these conditions. Despite the importance of this topic to astrobiology, stratospheric microbial diversity/survival remains largely unexplored, probably due to significant difficulties in the access and ensuring the absence of contamination of the samples. To conduct a detailed study into this, we are developing the balloon-borne payload system SAMPLE (Stratospheric Altitude Microbiology Probe for Life Existence) to collect dust samples from stratosphere and bring them in an hygienic and uncontaminated manner to a suitable laboratory environment, where further study will be conducted to establish the possibility of microbial life in the upper atmosphere. This balloon-borne payload system will rise through the atmosphere till it reaches an altitude of about 25-30 km above sea level. The payload consists of detachable pre-sterilized sampling chambers designed to collect and contain the dust samples and get them back to the surface without contamination during the flight, a microprocessor and a controller which will determine the altitude of the payload system to actively monitor the opening and closing of the sample collection chambers. For contamination control, we will have two extra chambers, one of which will fly but not open, and one will remain closed on the ground. Other onboard devices include environmental sensors, GPS tracking devices, cameras to monitor

  18. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Pascale, E.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N.; Truch, M. D. P.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 μm. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30'' at 250 μm. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30''; postflight pointing reconstruction to lesssim5'' rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hr flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hr, circumpolar flight from McMurdo Station, Antarctica, in 2006 December.

  19. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Semisch, Christopher; BLAST Collaboration

    2007-12-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250µm, 350µm, and 500µm. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250µm. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of 30"; post-flight pointing reconstruction to < 5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. Since a test-flight in 2003, BLAST has made two scientifically productive long-duration balloon flights: a 100-hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in June 2005, and a 250-hour, circumpolar-flight from McMurdo Station, Antarctica, in December 2006.

  20. Collecting Ground Samples for Balloon-Borne Instruments

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq

    2009-01-01

    A proposed system in a gondola containing scientific instruments suspended by a balloon over the surface of the Saturn moon Titan would quickly acquire samples of rock or ice from the ground below. Prototypes of a sample-collecting device that would be a major part of the system have been tested under cryogenic and non-cryogenic conditions on Earth. Systems like this one could also be used in non-cryogenic environments on Earth to collect samples of rock, soil, ice, mud, or other ground material from such inaccessible or hazardous locations as sites of suspected chemical spills or biological contamination. The sample-collecting device would be a harpoonlike device that would be connected to the balloon-borne gondola by a tether long enough to reach the ground. The device would be dropped from the gondola to acquire a sample, then would be reeled back up to the gondola, where the sample would be analyzed by the onboard instruments. Each prototype of the sample-collecting device has a sharp front (lower) end, a hollow core for retaining a sample, a spring for holding the sample in the hollow core, and a rear (upper) annular cavity for retaining liquid sample material. Aerodynamic fins at the rear help to keep the front end pointed downward. In tests, these prototype devices were dropped from various heights and used to gather samples of dry sand, moist sand, cryogenic water ice, and warmer water ice.

  1. Status of EBEX, a Balloon Borne CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Hubmayr, Johannes; EBEX Collaboration

    2006-12-01

    We discuss the status of EBEX, a NASA funded balloon-borne polarimeter equipped with 1462 bolometric transition edge sensor (TES) detectors and designed to measure the B-mode polarization of the cosmic microwave background radiation. EBEX will scan 350 square degrees of the sky over a 14 day long-duration balloon flight. Given the expected sensitivity we will put a 2σ upper limit of r ≤ 0.03. The EBEX instrument employs a 1.5 meter Gregorian-type telescope giving 8 arcminute resolution. Three frequency bands at 150, 250 and 420 GHz provide strong leverage against polarized dust foreground. Systematic errors are controlled by modulating the input polarization with a continuously rotating achromatic half wave plate (AHWP). Signal is detected in 1462 independent polarimeters distributed over two focal planes such that both polarization states are detected simultaneously. A superconducting magnetic bearing (SMB) allows smooth rotation of the AHWP with low heat dissipation suitable for a long duration balloon flight. The detectors are read out with a frequency domain multiplexing SQUID system.

  2. Demonstration of a Balloon Borne Arc-second Pointer Design

    NASA Astrophysics Data System (ADS)

    Deweese, K.; Ward, P.

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear

  3. EBEX: a balloon-borne CMB polarization experiment

    NASA Astrophysics Data System (ADS)

    Reichborn-Kjennerud, Britt; Aboobaker, Asad M.; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from l = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constraints on r using expected noise levels show that, for a likelihood centered around zero and with negligible foregrounds, 99% of the area falls below r = 0.035. This value increases by a factor of 1.6 after a process of foreground subtraction. This estimate does not include systematic uncertainties. An engineering flight was launched in June, 2009, from Ft. Sumner, NM, and the long duration science flight in Antarctica is planned for 2011. These proceedings describe the EBEX instrument and the North American engineering flight.

  4. A Balloon-Borne Cloud Condensation Nuclei Counter

    NASA Technical Reports Server (NTRS)

    Delene, David J.; Deshler, Terry; Wechsler, Perry; Vali, Gabor A.

    1997-01-01

    A balloon-borne instrument was constructed for observations of vertical profiles of cloud condensation nucleus (CCN) concentrations, active at 1% supersaturation. Droplet concentration in the static thermal-gradient diffusion chamber is deduced from the amount of scattered laser light detected by a photodetector. The photodetector is calibrated using a video camera and computer system to count the number of droplets produced from NaCl aerosol. Preliminary data are available from nine early morning profiles obtained at Laramie, Wyoming, between June 1995 and January 1997. To complement the CCN measurements, instruments that measure condensation nuclei (CN) and aerosols with diameter greater than 0.30 micrometers (D(sub 0.3) were also included on the balloon package. CCN concentrations exhibited a general decrease from the surface to the top of the boundary layers, were generally uniform through well-mixed layers, and show variability above well-mixed layers. In general, the structure of the CCN profile appears to be closely related to the structure in the CN and D(sub 0.3) profiles. Summer profiles generally have CCN concentration greater than 200/cu cm up to 500 mbar, whereas winter profiles are less than 200/cu cm at all levels.

  5. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  6. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  7. Polarization analysis of a balloon-borne solar magnetograph

    NASA Technical Reports Server (NTRS)

    Reiley, Daniel J.; Chipman, Russell A.

    1987-01-01

    The main text of the report contains the particular results of our research which relate to the Experimental Vector Magnetograph (EXVM) and the Balloon-borne Vector Magnetograph (BVM). A brief overview of which elements in the EXVM and BVM that are relevant to this polarization analysis are presented. The possible meaning of the 10(exp -5) polarization specification for the BVM is discussed qualitatively. A recommendation of which polarization specification is most relevant for the BVM is provided. A diattenuation budget for the various surfaces in the BVM which will allow the polarization specification to be met is discussed. An explanation of the various coating specifications which are recommended is presented. Optical design of the EXVM and coating specification sheets for the BVM are presented. The appendices of this report contain the more general results of our research on the general topic of polarization aberrations. A general discussion of polarization aberration theory, in terms of the SAMEX solar magnetograph, and rigorous derivations for the Mueller matrices of optical systems are also presented in the appendices.

  8. A Balloon-borne Telescope for Planetary Observations

    NASA Astrophysics Data System (ADS)

    Shoji, Yasuhiro; Takahashi, Yukihiro; Taguchi, Makoto; Yoshida, Kazuya; Sakamoto, Yuji; Watanabe, Makoto; Nakano, Toshihiko; Fujimura, Ryosuke; Yamamoto, Mutsumi

    2012-07-01

    This presentation reports the development status of the balloon-borne telescope(BBT) for planetary observations which is scheduled to launch in August 2012. The BBT flies in the stratosphere where the atmosphere is as 1/100 thin as that around the ground, and is higher than the ozone layer. The telescope can receive star light with the band from NIR to UV through less atmospheric distortions. Our project aims to take images of target planets from the BBT in such advantageous environment, and to observe atmospheric phenomena in other planets. As the technology demonstration, a prototype flight system with a 30cm diameter telescope was launched in 2009 in Japan. The second demonstration with an improved system is scheduled to launch in this August. With the improved flight system, the BBT is expected to take images of Venus with the resolution of as high as 0.2 arc-seconds in a few hours. Eventually, the BBT is planned to launch into the polar jet stream and to observe target planets in a few hundreds hours. For the following flight observation, the successor flight system is already being developed. In this presentation, the target planets and its science which the project aims are briefly introduced. And also the development status of the flight system for the next launch is introduced.

  9. Beam Tests of the Balloon-Borne ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.

  10. Support of the balloon-borne ultraviolet stellar spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    A (256 x 1024)-pixel imaging ultraviolet Multi-mode Microchannel Array (MAMA) detector system for flight was fabricated, evaluated, and environmentally tested for flight on the Balloon Borne Ultraviolet Stellar Spectrograph (BUSS). The goal of the program was to replace the existing SEC Vidicon with the pulse-counting MAMA detector in order to, first, improve the overall sensitivity of the BUSS telescope and spectrograph for observations of stars down to m sub v = 7 and fainter, and, second, to improve the spectral resolution and wavelength accuracy by eliminating the image drifts in the Vidicon caused by magnetic field effects. A sealed MAMA detector tube structure employing a remotely processed photocathode mounted on a window in proximity focus with the front face of the MCP was developed to avoid contamination produced by a noisy and unstable device. The configuration of the BUSS detector system in its flight ready configuration is shown. The quantum efficiency curve for the semi-transparent Cs2Te photocathode is also shown.

  11. The balloon-borne exoplanet spectroscopy experiment (BETSE)

    NASA Astrophysics Data System (ADS)

    Pascale, E.

    2015-10-01

    The balloon-borne exoplanet spectroscopy experiment (BETSE) is a proposed balloon spectrometer operating in the 1-5 μm band with spectral resolution of R = 100. Using a 50 cm diameter telescope, BETSE is desgnied to have sufficient sensitivity and control of systematics to measure the atmospheric spectra of representative sample of known hot Jupiters, few warm Neptunes, and some of the exoplanets TESS will soon begin to discover. This would for the first time allow us to place strict observational constraints on the nature of exo-atmospheres and on models of planetary formation. In a LDB flight from Antarctica, BETSE would be able to characterize the atmospheres of 20 planets. If a ULDB flight is available, the combination of a longer flight and night time operations would enable BETSE to ground-breakingly characterize the atmospheres of more than 40 planets. Prior to an LDB or ULDB flight, BETSE would be tested in a 24 hr flight from Fort Sumner, NM, in order to test all subsystems, also observing more than 4 planets with SNR greater than 5.

  12. Feasibility of observer system for determining orientation of balloon borne observational platforms

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Gagliardi, J. C.

    1982-01-01

    An observer model for predicting the orientation of balloon borne research platforms was developed. The model was employed in conjunction with data from the LACATE mission in order to determine the platform orientation as a function of time.

  13. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  14. Balloon Borne Arc-Second Pointer Feasibility Study

    NASA Technical Reports Server (NTRS)

    Ward, Philip R.; DeWeese, Keith D.

    2003-01-01

    For many years scientists have been utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The foundation for a high fidelity controller simulation is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static fiction are provided. A unique bearing hub design is introduced that eliminates static fiction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.

  15. Radio Frequency Attenuation Length Estimates In Ice from Antarctic and Greenlandic Radar Depth Sounding Data

    NASA Astrophysics Data System (ADS)

    Stockham, Mark

    2014-03-01

    The balloon-borne Antarctic Impulsive Transient Antenna (ANITA) experiment is designed to detect in-ice neutrino collisions in Antarctica. These collisions produce radio waves that propagate upward to the suite of 32 horn antennas that constitute ANITA. The primary virtue of ANITA is the ability to simultaneously observe 1 million cubic kilometers of ice from its 38 kilometer altitude vantage point. The radio frequency signal strength observed at the balloon, however, depends on the radio frequency attenuation length of the ice through which the neutrino-generated signal must travel. Attenuation length is a location-specific ice property and varies mainly as a function of temperature and chemistry. The Center for Remote Sensing of Ice Sheets (CReSIS) project has data from many locations in Antarctica and Greenland produced by radar depth sounding. Using methods developed by analyzing the continuum signal in radar depth sounding data from Greenland, attenuation length estimates are compared to estimates derived from ice core data.

  16. Arc-Second Pointer for Balloon-Borne Astronomical Instrument

    NASA Technical Reports Server (NTRS)

    Ward, Philip R.; DeWeese, Keith

    2004-01-01

    A control system has been designed to keep a balloon-borne scientific instrument pointed toward a celestial object within an angular error of the order of an arc second. The design is intended to be adaptable to a large range of instrument payloads. The initial payload to which the design nominally applies is considered to be a telescope, modeled as a simple thin-walled cylinder 24 ft (approx.= 7.3 m) long, 3 ft (approx.= 0.91 m) in diameter, weighing 1,500 lb (having a mass of .680 kg). The instrument would be mounted on a set of motor-driven gimbals in pitch-yaw configuration. The motors on the gimbals would apply the control torques needed for fine adjustments of the instrument in pitch and yaw. The pitch-yaw mount would, in turn, be suspended from a motor mount at the lower end of a pair of cables hanging down from the balloon (see figure). The motor in this mount would be used to effect coarse azimuth control of the pitch-yaw mount. A notable innovation incorporated in the design is a provision for keeping the gimbal bearings in constant motion. This innovation would eliminate the deleterious effects of static friction . something that must be done in order to achieve the desired arc-second precision. Another notable innovation is the use of linear accelerometers to provide feedback that would facilitate the early detection and counteraction of disturbance torques before they could integrate into significant angular-velocity and angular-position errors. The control software processing the sensor data would be capable of distinguishing between translational and rotational accelerations. The output of the accelerometers is combined with that of angular position and angular-velocity sensors into a proportional + integral + derivative + acceleration control law for the pitch and yaw torque motors. Preliminary calculations have shown that with appropriate gains, the power demand of the control system would be low enough to be satisfiable by means of storage

  17. Demonstration of a Balloon Borne Arc-Second Pointer Design

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith D.; Ward, Philip R.

    2006-01-01

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup

  18. Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, C.; Contaldi, C. C.; Crill, B. P.; Doré, O. P.; Farhang, M.; Filippini, Jeffrey P.; Fissel, L. M.; Fraisse, A. A.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. K.; Kuo, C.-L.; MacTavish, C. J.; Mason, P. V.; Megerian, K. G.; Moncelsi, L.; Morford, T.; Nagy, J. M.; Netterfield, C. B.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Shariff, J. A.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We introduce the light-weight carbon fiber and aluminum gondola designed for the Spider balloon-borne telescope. Spider is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The Spider gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.

  19. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.

    1988-01-01

    The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.

  20. Far-Infrared Photometry with an 0.4-Meter Liquid Helium Cooled Balloon-Borne Telescope. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobson, M. R.

    1977-01-01

    A 0.4-meter aperture, liquid helium cooled multichannel far-infrared balloon-borne telescope was constructed to survey the galactic plane. Nine new sources, above a 3-sigma confidence level of 1300 Jy, were identified. Although two-thirds of the scanned area was more than 10 degrees from the galactic plane, no sources were detected in that region; all nine fell within 10 degrees and eight of those within 4 degrees of the galactic equator. Correlations with visible, compact H lines associated with radio continuum and with sources displaying spectra steeply rising between 11 and 20 microns were noted, while stellar objects were not detected.

  1. Detailed requirements document for the balloon-borne ultraviolet stellar spectrometer decommutation and formatting programs

    NASA Technical Reports Server (NTRS)

    Brose, J. F.; Bourgeois, V.

    1975-01-01

    The requirements are defined for developing a decommutation and a data reformat program to process test data obtained by the balloon-borne ultraviolet stellar spectrometer used in a joint experiment with the Space Research Laboratory in the Netherlands. Background information and objectives are discussed.

  2. Feasibility of observer system for determining orientation of balloon borne observational platforms

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Gagliardi, J. C.

    1982-01-01

    The instantaneous orientation (i.e., the attitude) of the LACATE instrumentation platform with respect to a local vertical is discussed. An observer model for predicting the orientation of balloon-borne research platforms is described. Determination of the platform orientation as a function of time is addressed.

  3. Submillimeter Astronomy Investigation of Line Specra (SAILS) - a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Seiffert, M. D.; Langer, W. D.; Lord, S. D.; Pearson, J.; McGrath, W. R.

    2000-01-01

    The Submillimeter Astronomy Investigation of Line Specra (SAILS) is a balloon-borne experiment under study for a 100 day ultra-long duration balloon mission. The experiment would survey the galactic plane with 1 arc minute angular resolution and 1 km/sec velocity resolution in the important submillimeter lines of CII, NII, and OI.

  4. Effect of wind gusts on the motion of a balloon-borne observation platform

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Johanek, F. M.

    1982-01-01

    The effect of wind gusts on the magnitude of the pendulation angles of a balloon-borne observation platform is determined. A system mathematical model is developed and the solution of this model is used to determine the magnitude of the observation platforms pendulation angles.

  5. a Pinhole Sun Sensor for Balloon-Borne Experiment Attitude Determination

    NASA Astrophysics Data System (ADS)

    Korotkov, A. L.; English, M.-P.; Tucker, G. S.; Pascale, E.; Gandilo, N.

    2013-09-01

    We report on the design, calibration and in-flight performance of a sun sensor, which is used to determine the attitude of a balloon-borne telescope. The device uses a position-sensitive detector (PSD) in a pinhole camera. By determining the position of the image of the Sun on the PSD, the orientation of the sun sensor and the boresight of the telescope relative to the Sun can be determined. The pinhole sun sensor (PSS) was first flown in the December 2010 flight of the Balloon-borne Large Aperture Submillimeter Telescope with Polarization (BLAST-Pol). In flight the PSS achieved an accuracy (combined azimuth and elevation) of about 0.18°. The accuracy could be improved by increasing the distance between the pinhole and the PSD, but the field-of-view of the PSS would be reduced.

  6. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  7. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1986-01-01

    The study and revision of the gimbal design of the Three-Meter Balloon Borne Telescope (TMBBT) is discussed. Efforts were made to eliminate the alignment and limited rotation problems inherent in the flex-pivot design. A new design using ball bearings to replace the flex-pivots was designed and its performance analyzed. An error analysis for the entire gondola pointing system was also prepared.

  8. A four channel He-3 cooled balloon-borne bolometer radiometer

    NASA Technical Reports Server (NTRS)

    Meyer, Stephan

    1988-01-01

    A four channel He-3 cooled balloon-borne bolometer radiometer was constructed. The principal goal of the instrument is to measure the anisotropy of the 3 K cosmic background radiation on angular scales of 4 to 180 deg. The goal is to improve the sensitivity of the measurements to Delta T/T is less than .00001. A secondary goal is to survey the galactic thermal dust emission in the submillimeter range.

  9. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  10. 'Santa Anita' Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Santa Anita' Panorama (QTVR)

    This color mosaic taken on May 21, 25 and 26, 2004, by the panoramic camera on NASA's Mars Exploration Rover Spirit was acquired from a position roughly three-fourths the way between 'Bonneville Crater' and the base of the 'Columbia Hills.' The area is within a low thermal inertia unit (an area that heats up and cools off quickly) identified from orbit by the Mars Odyssey thermal emission imaging system instrument. The rover was roughly 600 meters (1,968 feet) from the base of the hills.

    This mosaic, referred to as the 'Santa Anita Panorama,' is comprised of 64 pointings, acquired with six of the panoramic camera's color filters, including one designed specifically to allow comparisons between orbital and surface brightness data. A total of 384 images were acquired as part of this panorama. The mosaic is an approximate true-color rendering constructed from images using the camera's 750-, 530- and and 480-nanometer filters, and is presented at the full resolution of the camera.

  11. Search for Signatures of Inflation with the EBEX Balloon-Borne Instrument

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul

    EBEX (E and B EXperiment) is a balloon-borne experiment designed to measure the polarization of the cosmic microwave background radiation. It is a long-duration payload equipped with an array of 1564 bolometric transition edge sensors. The unique combination of sensitivity, resolution and sky coverage enables unprecedented power to constrain inflationary models and to determine the amplitude of the matter power spectrum through measurement of the gravitational lensing of CMB photons. The experiment is optimized to take full advantage of the balloon-borne environment in its frequency coverage, and to measure the yet unknown properties of Galactic dust polarization. EBEX completed a test flight in June of 2009 from Ft. Sumner, NM, and a second end- to-end integration campaign in the summer of 2011. Important milestones have been achieved including the first operation of any transition edge sensor (TES) bolometer in a balloon-borne environment, the first demonstration of any multiplexed readout of TES bolometers in space-like conditions, the first operation of a polarimeter based on continuous rotation of a half-wave plate by means of a superconducting magnetic bearing, and validation of the EBEX optical system and end-to-end polarimetry. The EBEX instrument is now being readied for its first long duration flight, which is scheduled to take place in December 2012, just before the start of this proposed grant period. In this proposal we are requesting funding to analyze and publish the science data generated during the first EBEX science flight. In addition to its science goals EBEX is a technology pathfinder for other experiments and for a future NASA satellite mission. It continues to provide excellent training grounds for student and post-docs. Already 6 Ph.D. theses have been produced based on the project and 7 more are anticipated.

  12. Project of Antarctic Balloon-Borne Measurements of the CR spectrum above 1020 EV.

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Kuzmichev, L. A.; Panasyuk, M. I.; Chernov, D. V.; Nikolsky, S. I.; Sysojeva, T. I.

    Relatively simple detector SPHERE (spherical mirror ˜ 1.5m2 and retina of 100 pixels) is presented for the Antarctic balloon-borne measurements of the CR spectrum. Long time winter flight make it possible to measure the spectrum above 1020 eV . Comparison with satellite and ISS projects of the nearest future show that the efficiency of this detector is sufficiently high. The energy threshold is less (˜ 1018 eV ). The accuracy of the energy definition is high as two methods are together the measurement of the EAS fluorescence track in the atmosphere and the measurement of the full flux of the EAS Cherenkov light.

  13. Balloon infrared astronomy platform (BIRAP). [development and characteristics of a balloon-borne attitude control system

    NASA Technical Reports Server (NTRS)

    Greeb, M. E.; True, G. A.

    1974-01-01

    The development of a balloon-borne attitude control system for infrared astronomy studies is discussed. The Balloon Infrared Astronomy Platform (BIRAP) is the result of the development effort. The BIRAP uses electronic gimballing for the offset pointing which eliminates a set of mechanical gimbals. Guide stars with visual magnitudes as low as plus 6 are used for fine tracking assuring that all areas of the sky can be covered. The BIRAP control concept uses a closed loop system in the airborne equipment with automatic update through a command link that can be operated either manually or automatically by a ground based computer.

  14. Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.

    1980-01-01

    Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.

  15. A secondary wobbling mechanism for a balloon-borne infrared telescope

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Hiromoto, Norihisa; Shibai, Hiroshi; Nakagawa, Takao; Okuda, Haruyuki; Maihara, Toshinori

    1991-11-01

    A wobbling mechanism for a secondary mirror has been developed for a balloon-borne infrared telescope. Friction of the wobbling mechanism is negligibly small, and hence the wobbling mechanism is very reliable for the use in a severe environment at balloon altitudes. Motion is controlled by servo electronics, whose transfer function includes the second-order differential term of the error signal in order to improve the waveform. Good performance of the drive mechanism has been confirmed in two balloon flights in 1988 at an altitude of 31 km.

  16. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  17. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.

    1988-01-01

    Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.

  18. A cryogenically-cooled, balloon-borne far infrared survey telescope

    NASA Technical Reports Server (NTRS)

    Campbell, M. F.

    1979-01-01

    The design and performance of the Arizona cryogenically-cooled, balloon-borne, multiband far infrared survey telescope are described. The 40 cm Cassegrain telescope is completely contained in a liquid helium dewar. The focal plane array consists of Fabry optics and four detectors which each have a 12 arc minute field of view. Both photoconductive and bolometer detectors are utilized at effective wavelengths of 20, 80, 100 and 150 microns. In 1977 the telescope was used to make multicolor large scale maps of 70 square degrees in the Cygnus X region and the W3 region.

  19. Balloon-borne cryogenic spectrometer for measurement of lower stratospheric trace constituents

    NASA Technical Reports Server (NTRS)

    Brasunas, J. C.; Kunde, V. G.; Hanel, R. A.; Walser, D.; Herath, L. W.

    1986-01-01

    A liquid-nitrogen cooled, multidetector Fourier transform spectrometer has been constructed to measure minor stratospheric constituents via high resolution, earth-limb emission spectroscopy from a balloon-borne platform. Cryogenic cooling, combined with the use of extrinsic silicon photoconductor detectors cooled to liquid-helium temperature, allows the detection of weak emission features of gaseous species. The spectrometer has two basic scan modes: the first mode records the continuous spectrum from 650-2100/cm with 0.2/cm resolution; the second simultaneously records four preselected narrow intervals (about 175/cm bandpass each) with 0.02/cm resolution, unapodized. Filtering of the interferogram signal is done by real-time, digital signal processing. The most important feature of this flat mirror Michelson system, with respect to remote balloon-borne operation, is the dynamic alignment system which maintains the relative parallelism of the two flat reflectors of the interferometer. Species identified to date in data obtained during a Nov. 6, 1984, flight include: CO2, O3, H2O, CH4, HNO3, N2O, NO2, NO, CCl3F (Freon-11) and CF2Cl2 (Freon-12).

  20. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Aoki, Shigeki; Kamada, Keiki; Mizutani, Saki; Nakagawa, Ryo; Ozaki, Keita; Rokujo, Hiroki

    2015-04-01

    The GRAINE project (Gamma-Ray Astro-Imager with Nuclear Emulsion) has been developed for the observation of cosmic γ-rays in the energy range 10 MeV-100 GeV with a precise (0.08°} at 1-2 GeV), polarization-sensitive, large-aperture-area (˜10 m^2) emulsion telescope by repeated long-duration balloon flights. In 2011, the first balloon-borne experiment was successfully performed with a 12.5 × 10cm^2 aperture area and 4.6 hour flight duration for a feasibility and performance test. Systematic detection, energy reconstruction, and timestamping of γ-ray events were performed across the whole area of the emulsion film, up to 45° incident zenith angle, down to 50 MeV γ-ray energy, with 97% detection reliability, 0.2 sec timestamp accuracy, and 98% timestamp reliability. A γ-ray data checking and calibration method was created using the γ-rays produced in the converter. We measured the atmospheric γ-ray flux in the energy range 50-300 MeV and obtained a first understanding of the cosmic γ-ray background. By combining the attitude data, we established a procedure for determining the γ-ray arrival direction in celestial coordinates. The first flight of the balloon-borne emulsion telescope confirmed its potential as a high-performance cosmic γ-ray detector.

  1. Development of position sensitive scintillation counter for balloon-borne hard x-ray telescope

    NASA Astrophysics Data System (ADS)

    Tamura, Keisuke; Kunieda, Hideyo; Ogasaka, Yasushi; Furuzawa, Akihiro; Shibata, Ryo; Nakamura, Tomokazu; Ohnishi, Katsuhiko; Kanou, Yasufumi; Miyata, Emi; Tsunemi, Hiroshi

    2006-06-01

    We have been developing position sensitive scintillation counter as focal plane detector of hard X-ray telescope onboard a balloon borne experiment. This detector consists NaI(TI) scintillator and position sensitive photo-multiplier tube. Focal plane detector has to have high efficiency in hard X-ray region, enough position resolution and detection area. 3mm thickness of NaI(TI) scintillator can achieve almost 100% efficiency below 80 keV. We measured position resolved energy and position resolution in synchrotron radiation facility SPring-8 BL20B2. Position resolution of 2.4mm at 60keV is about half of plate scale of half power diameter of X-ray telescope. The detector has 6 cm diameter window and it corresponds to 25 arcmin field of view, and it is enough lager than the that of telescope, which is 12 arcmin in FWHM. Balloon borne experiment for observation of the background was performed on May 24, 2005 from Sanriku balloon center. We could obtain background data for 3 hours at altitude of 40 km.

  2. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    NASA Astrophysics Data System (ADS)

    Stachnik, R. A.; Millán, L.; Jarnot, R.; Monroe, R.; McLinden, C.; Kühl, S.; Puķīte, J.; Shiotani, M.; Suzuki, M.; Kasai, Y.; Goutail, F.; Pommereau, J. P.; Dorf, M.; Pfeilsticker, K.

    2013-03-01

    Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO) were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor) submillimeterwave heterodyne limb sounder (SLS). The balloon was launched from Ft. Sumner, New Mexico (34° N) on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry), derived from BrO vmr (volume mixing ratio) using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  3. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    NASA Astrophysics Data System (ADS)

    Stachnik, R. A.; Millán, L.; Jarnot, R.; Monroe, R.; McLinden, C.; Kühl, S.; Pukīte, J.; Kasai, Y.; Goutail, F.; Pommereau, J. P.; Dorf, M.; Pfeilsticker, K.

    2012-11-01

    Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO) were made using observations of BrO otational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor) submillimeterwave heterodyne receiver. The balloon was launched from Ft. Sumner, New Mexico (34°N) on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry), derived from BrO vmr (volume mixing ratio) using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  4. A mid-latitude balloon-borne observation of total odd nitrogen

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Matthews, W. A.; Sheldon, W. R.; Benbrook, J. R.

    1990-01-01

    A balloon-borne instrument to measure total odd nitrogen NO(y) has been developed. A converter which enables catalytic conversion of NO(y) into nitric oxide on a heated gold surface is combined with a chemiluminescence detector. The conversion efficiency for NO2 was measured to be close to 100 percent at pressures between 60 and 7 mb. The major source of errors in the balloon-borne measurements are the uncertainties in the estimates of the sample flow rate and the zero level of the instrument. The NO(y) concentration was measured at altitudes between 12 and 28 km with a precision of about 25 percent on a balloon experiment conducted at latitude 44 deg N in June 1989. The NO(y) concentration has been measured to be 1.5 + or - 0.4, 3 + or - 0.7, 10 + or - 3, and 14 + or - 4 ppbv at altitudes of 17, 20, 25, and 28 km, respectively.

  5. An assessment of image reconstruction from balloon-borne and the IRAS data

    NASA Technical Reports Server (NTRS)

    Ghosh, S. K.; Das, B.; Rengarajan, T. N.; Verma, R. P.

    1994-01-01

    Angular resolution and structural information from the far-infrared mapping of astronomical sources (Galactic star forming regions, spiral galaxies, etc.) made using the TIFR 1 m balloon-borne telescope and the IRAS have been compared. The effective wavelengths of the TIFR two-band photometer are 58 and 150 microns. From IRAS, the survey COADD data, additional observations (AO's) made with the survey detectors with different Macros (DPS, DSD, DPM), as well as the chopped photometric channel (CPC) data have been considered here. The observed signals have been processed using different deconvolution strategies, either based on a maximum entropy method (MEM) developed at TIFR or the HiRes package developed at IPAC. Relative merits of each of these, under different conditions of signal to noise ratio, are highlighted. The following sources have been selected for illustration: Carina complex, W31 region, IRAS 10361-5830 (all Galactic), M101 and M81 (extragalactic). The main conclusions are: far-infrared maps from MEM deconvolution of balloon-borne data have the best angular resolution; MEM deconvolution of IRAS AO's gives resolution comparable to HiRes but with less amount of computation, though the dynamic range in MEM maps is less than in HiRes maps.

  6. [Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System].

    PubMed

    Yao, Lu; Liu, Wen-qing; Liu, Jian-guo; Kan, Rui-feng; Xu, Zhen-yu; Ruan, Jun; Yuan, Song

    2015-10-01

    The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004. 02 nm, R(16), v1+v3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system's power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm x 100 mm x 25 mm, and the measurement accuracy is ± 0.6 x 10(-6) at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection. PMID:26904819

  7. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    Presented are scientific objectives, engineering analysis and design, and results of technology development for a Three-Meter Balloon-Borne Far-Infrared and Submillimeter Telescope. The scientific rationale is based on two crucial instrumental capabilities: high angular resolution which approaches eight arcseconds at one hundred micron wavelength, and high resolving power spectroscopy with good sensitivity throughout the telescope's 30-micron to 1-mm wavelength range. The high angular resolution will allow us to resolve and study in detail such objects as collapsing protostellar condensations in our own galaxy, clusters of protostars in the Magellanic clouds, giant molecular clouds in nearby galaxies, and spiral arms in distant galaxies. The large aperture of the telescope will permit sensitive spectral line measurements of molecules, atoms, and ions, which can be used to probe the physical, chemical, and dynamical conditions in a wide variety of objects.

  8. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  9. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  10. Dual-Polarization-Sensitive Kinetic Inductance Detectors for Balloon-borne Sub-millimeter Polarimetry

    NASA Astrophysics Data System (ADS)

    Hubmayr, J.; Beall, J. A.; Becker, D.; Brevik, J. A.; Cho, H. M.; Che, G.; Devlin, M.; Dober, B.; Gao, J.; Galitzki, N.; Hilton, G. C.; Irwin, K. D.; Li, D.; Mauskopf, P.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.

    2014-08-01

    We are developing arrays of kinetic inductance detectors for sub-millimeter polarimetry that will be deployed on the BLAST balloon-borne instrument. The array is feedhorn-coupled, and each pixel contains two lumped-element kinetic inductance detectors (LEKIDs) made of TiN. The absorbing, inductive sections of the LEKID-pair are orthogonal, which allows simultaneous measurement of both horizontal and vertical polarizations within one spatial pixel. In this paper, we show efficient absorption in TiN films when coupled to waveguide at room temperature and present dark measurements of single polarization devices with varying capacitor geometries. We show that it will be difficult to achieve background-limited performance in BLAST with stoichiometric TiN films with T K, and that non-stoichiometric films with lower T will be required.

  11. GPS-aided gravimetry at 30 km altitude from a balloon-borne platform

    NASA Technical Reports Server (NTRS)

    Lazarewicz, Andrew R.; Evans, Alan G.

    1989-01-01

    A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.

  12. Balloon-Borne Hard X-Ray Spectrometer Using CdTe Detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Tsuneta, S.; Tamura, T.; Kumagai, K.; Katsukawa, Y.; Kubo, M.; Sakamoto, Y.; Kohara, N.; Yamagami, T.; Saito, Y.; Mori, K.

    2008-08-01

    Spectroscopic observation of solar flares in the hard X-ray energy range, particularly the 20 ˜ 100 keV region, is an invaluable tool for investigating the flare mechanism. This paper describes the design and performance of a balloon-borne hard X-ray spectrometer using CdTe detectors developed for solar flare observation. The instrument is a small balloon payload (gondola weight 70 kg) with sixteen 10×10×0.5 mm CdTe detectors, designed for a 1-day flight at 41 km altitude. It observes in an energy range of 20-120 keV and has an energy resolution of 3 keV at 60 keV. The second flight on 24 May 2002 succeeded in observing a class M1.1 flare.

  13. Stratospheric ozone and hydroxyl radical measurements by balloon-borne lidar

    NASA Technical Reports Server (NTRS)

    Heaps, W. S.; Mcgee, T. J.; Hudson, R. D.; Caudill, L. O.

    1982-01-01

    An experiment is reported in which a balloon-borne lidar system was used to measure ozone and the hydroxyl radical in the stratosphere by two lidar techniques. Ozone was measured in the 20-37 km altitude range using differential absorption lidar, and the hydroxyl radical was measured in the 34-37 km range using remote laser-induced fluorescence. Ozone concentrations were determined with a vertical resolution of 0.5 km, and in addition, horizontally resolved ozone measurements with 0.15-km resolution were obtained over a 2-km range. The temporal variation of the hydroxyl radical concentration ranged from 40 parts/trillion shortly after noon to about 5 parts/trillion two hours after sunset. Possible modifications to the system are discussed which can yield an improvement in the sensitivity of between one and two orders of magnitude, thus permitting measurements of the hydroxyl radical in the 20-30-km altitude range.

  14. Antarctic balloon-borne detector of high-energy cosmic rays (SPHERE project)

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Chernov, D. V.; Korosteleva, E. E.; Kuzmichev, L. A.; Maksimuk, O. A.; Panasyuk, M. I.; Chernikov, S. P.; Sysoeva, T. I.; Slavatinsky, S. A.; Shaulov, S. B.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2006-08-01

    The experiment SPHERE is based on a A.E. Chudakov's suggestion to use a new method for investigations of the energy spectrum of ultrahigh-energy primary cosmic rays. A small device lifted up off a snowed surface of the Earth detects Cherenkov light of an extensive air shower that is reflected from the surface. A contemporary status of the experiment SPHERE, a description of the method, the first measurements of the background night starlight in the region of the Russian Antarctic station Novolazarevskaya are presented. A relatively simple detector SPHERE-2 including a spherical mirror of the diameter 1.5 m and a 100-pixel retina is developed for Antarctic balloon-borne measurements of the cosmic ray spectrum. A long-time winter flight makes it possible to measure the spectrum above 1020 eV. A comparison with satellite and ISS projects of the nearest future shows that efficiency of this detector is sufficiently high.

  15. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    NASA Technical Reports Server (NTRS)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  16. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  17. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    This is the second Semiannual Report submitted under Grant NAGW-509 for the development of a Balloon-Borne Three-Meter Telescope for Far-Infrared and Submillimeter Astronomy. It covers the period 1 March 1984 through 31 August 1984. This grant covers work at the Smithsonian Astrophysical Observatory (SAO), University of Arizona (UA) and the University of Chicago (UC). SAO is responsible for program management, the gondola structure including the attitude control and aspect systems, mechanical systems, and telemetry and command systems; the UA is responsible for optics design and fabrication; the UC is responsible for determining provisions for focal-plane instrumentation. SAO and the UA share responsibility for the ground support data and control computer.

  18. New method for scanning spacecraft and balloon-borne/space-based experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1991-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in X-ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  19. Large area double scattering telescope for balloon-borne studies of neutrons and gamma rays

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Herzo, D.; Koga, R.; Millard, W. A.; Moon, S.; Ryan, J.; Wilson, R.; White, R. S.; Dayton, B.

    1975-01-01

    A large area double scattering telescope for balloon-borne research is described. It measures the flux, energy and direction of 2-100 MeV neutrons and 0.5-30 MeV gamma rays. These measurements are made using time-of-flight and pulse height analysis techniques with two large tanks of mineral oil liquid scintillator. Results from Monte Carlo calculations of the efficiency, energy resolution and angular resolution are presented and the electronics implementation for the processing of 80 photomultiplier tubes signals will be discussed. The detector weighs 800 kg with a large part of this weight being the liquid scintillator (320 kg). It will be flown at 3 mbars for flight durations up to 40 hours. The first flight is planned for Spring, 1975.

  20. A balloon-borne 102-cm telescope for far-infrared astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    In the early 1970's, the Smithsonian Astrophysical Observatory and the University of Arizona engaged in a cooperative program to develop a balloon-borne 102-cm telescope capable of carrying out far infrared (40 to 250 micron) observations of astronomical interest above the earth's atmosphere. Since 1972, the telescope has flown and successfully recovered a total of nineteen times. Thirteen of the flights produced high-quality astronomical data, resulting in more than 92.5 hours of photometric and spectroscopic observations of numerous objects, such as H 2 regions, dark clouds, molecular clouds, a planetary nebula, a galaxy, the galactic center, the planets, and an asteroid. From the launch site in Palestine, Texas, sources as far south as -50 degrees declination were observed. The balloon-borne telescope was one of the most sensitive instruments ever used for observation in the far infrared region of the spectrum. It was most productive in producing high resolution maps of large areas (typically square degrees) centered on known H 2 regions, molecular clouds, and dark cloud complexes. In many cases, these scans produced the first far infrared maps of these regions, and many new sources were discovered. The results have led to a better understanding of the distribution of gas and dust in these regions, the evolution of H 2 regions, and the processes of star formation in giant molecular clouds. The following topics are presented: (1) the focal plane instrumentation; (2) the history and flight record; (3) scientific results and publications; (4) eduational aspects; and (5) future planes.

  1. High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert

    2014-01-01

    On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  2. Balloon-borne laser spectrometer measurements of NO2 with gas absorption sensitivities below 10 to the -5th

    NASA Technical Reports Server (NTRS)

    May, Randy D.; Webster, Christopher R.

    1990-01-01

    Infrared spectra of NO2 recorded during a recent flight of the Balloon-borne Laser In-Situ Sensor instrument have been analyzed to determine sensitivity limits for various signal integration times. Implications for direct detection of ClO, HOCl, H2O2, COF2, OH, and HO2 are discussed.

  3. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  4. Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA

    NASA Astrophysics Data System (ADS)

    Gorham, P. W.; Nam, J.; Romero-Wolf, A.; Hoover, S.; Allison, P.; Banerjee, O.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dailey, B.; Deaconu, C.; Cremonesi, L.; Dowkontt, P. F.; Duvernois, M. A.; Field, R. C.; Fox, B. D.; Goldstein, D.; Gordon, J.; Hast, C.; Hebert, C. L.; Hill, B.; Hughes, K.; Hupe, R.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mottram, M.; Mulrey, K.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Reil, K.; Roberts, J.; Rosen, M.; Rotter, B.; Russell, J.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Schoorlemmer, H.; Stafford, S.; Stockham, J.; Stockham, M.; Strutt, B.; Tatem, K.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wissel, S. A.; Wu, F.; Anita Collaboration

    2016-08-01

    We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ -lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ -neutrino cross section.

  5. Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA.

    PubMed

    Gorham, P W; Nam, J; Romero-Wolf, A; Hoover, S; Allison, P; Banerjee, O; Beatty, J J; Belov, K; Besson, D Z; Binns, W R; Bugaev, V; Cao, P; Chen, C; Chen, P; Clem, J M; Connolly, A; Dailey, B; Deaconu, C; Cremonesi, L; Dowkontt, P F; DuVernois, M A; Field, R C; Fox, B D; Goldstein, D; Gordon, J; Hast, C; Hebert, C L; Hill, B; Hughes, K; Hupe, R; Israel, M H; Javaid, A; Kowalski, J; Lam, J; Learned, J G; Liewer, K M; Liu, T C; Link, J T; Lusczek, E; Matsuno, S; Mercurio, B C; Miki, C; Miočinović, P; Mottram, M; Mulrey, K; Naudet, C J; Ng, J; Nichol, R J; Palladino, K; Rauch, B F; Reil, K; Roberts, J; Rosen, M; Rotter, B; Russell, J; Ruckman, L; Saltzberg, D; Seckel, D; Schoorlemmer, H; Stafford, S; Stockham, J; Stockham, M; Strutt, B; Tatem, K; Varner, G S; Vieregg, A G; Walz, D; Wissel, S A; Wu, F

    2016-08-12

    We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section. PMID:27563945

  6. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    NASA Astrophysics Data System (ADS)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and a VLF antenna system.

  7. Initial Results from the ANITA 2006-2007 Balloon Flight

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /Hawaii U. /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U. /UC, Irvine

    2011-11-16

    We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysis now begin to eliminate the highest cosmogenic neutrino models.

  8. Balloon-borne measurement of the aerosol size distribution from an Icelandic flood basalt eruption

    NASA Astrophysics Data System (ADS)

    Vignelles, D.; Roberts, T. J.; Carboni, E.; Ilyinskaya, E.; Pfeffer, M.; Dagsson Waldhauserova, P.; Schmidt, A.; Berthet, G.; Jegou, F.; Renard, J.-B.; Ólafsson, H.; Bergsson, B.; Yeo, R.; Fannar Reynisson, N.; Grainger, R. G.; Galle, B.; Conde, V.; Arellano, S.; Lurton, T.; Coute, B.; Duverger, Vincent

    2016-11-01

    We present in situ balloon-borne measurements of aerosols in a volcanic plume made during the Holuhraun eruption (Iceland) in January 2015. The balloon flight intercepted a young plume at 8 km distance downwind from the crater, where the plume is ∼15 min of age. The balloon carried a novel miniature optical particle counter LOAC (Light Optical Aerosol Counter) which measures particle number concentration and size distribution in the plume, alongside a meteorological payload. We discuss the possibility of calculating particle flux by combining LOAC data with measurements of sulfur dioxide flux by ground-based UV spectrometer (DOAS). The balloon passed through the plume at altitude range of 2.0-3.1 km above sea level (a.s.l.). The plume top height was determined as 2.7-3.1 km a.s.l., which is in good agreement with data from Infrared Atmospheric Sounding Interferometer (IASI) satellite. Two distinct plume layers were detected, a non-condensed lower layer (300 m thickness) and a condensed upper layer (800 m thickness). The lower layer was characterized by a lognormal size distribution of fine particles (0.2 μm diameter) and a secondary, coarser mode (2.3 μm diameter), with a total particle number concentration of around 100 cm-3 in the 0.2-100 μm detection range. The upper layer was dominated by particle centered on 20 μm in diameter as well as containing a finer mode (2 μm diameter). The total particle number concentration in the upper plume layer was an order of magnitude higher than in the lower layer. We demonstrate that intercepting a volcanic plume with a meteorological balloon carrying LOAC is an efficient method to characterize volcanic aerosol properties. During future volcanic eruptions, balloon-borne measurements could be carried out easily and rapidly over a large spatial area in order to better characterize the evolution of the particle size distribution and particle number concentrations in a volcanic plume.

  9. PoGOLite - a circumpolar balloon-borne mission for hard X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Pearce, Mark

    Mark Pearce For the PoGOLite Collaboration. KTH Royal Institute of Technology, Dept. of Physics, Stockholm, Sweden. pearce@kth.se Abstract Emission processes in astrophysical systems can yield polarised hard X-rays. The orientation of the polarisation plane is a powerful probe of the physical environment around compact astrophysical sources. Despite the wealth of sources accessible to polarisation measurements, and the importance of these measurements, it is 40 years since the last dedicated mission for X-ray polarimetry of point sources. PoGOLite is a balloon-borne hard X-ray polarimeter operating in the 25-100 keV energy band. Polarisation is determined using coincident Compton scattering and photo-absorption in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. PoGOLite was launched from the Esrange Space Center on July 12th 2013 with the Crab nebula and pulsar as primary observation targets. The mission was terminated on July 25th after an almost complete circumpolar flight. The PoGOLite mission was conducted as a collaboration between Swedish, Japanese, Russian and US scientific teams. The PoGOLite circumpolar mission will be reviewed and the outcome of the 2013 flight discussed.

  10. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    NASA Astrophysics Data System (ADS)

    Benton, S. J.; Ade, P. A.; Amiri, M.; Angilè, F. E.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S. R.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Ogburn, R. W.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.

  11. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    NASA Astrophysics Data System (ADS)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  12. Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro; Sato, Kaoru; Hirasawa, Naohiko; Tsutsumi, Masaki; Nakamura, Takuji

    2015-12-01

    Balloon-borne observations of lower stratospheric water vapor were conducted with the Cryogenic Frostpoint Hygrometer (CFH) in July, September, and November 2013 at Syowa Station (69.0oS, 39.6oE) in the Antarctic. High-precision and high vertical resolution data of water vapor concentration up to an altitude of about 28 km were obtained successfully except for a contamination in the observation of July 2013. A comparison between the CFH and coincident satellite (i.e., Aura/MLS) observations showed a good agreement within their uncertainty. A position of Syowa Station relative to the stratospheric polar vortex edge varied depending on both the observation date and altitude. Temperature and pressure histories of the observed air parcels were examined by 10-day backward trajectories. These analyses clearly demonstrated that most air parcels observed in the lower stratosphere above Syowa Station experienced final dehydration inside the polar vortex. On the other hand, a clear signature of rehydration or incomplete dehydration was also observed around a 25 hPa pressure level in the observation of July 2013.

  13. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    SciTech Connect

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; Bogaert, G.; Fukazawa, Y.; Saito, Y.; Takahashi, T.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  14. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  15. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  16. Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1985-01-01

    Stratospheric levels of particles with r or = 0.15 microns were monitored with optical particle counters in approximately monthly balloon soundings at Laramie, Wyoming (41 deg N) since 1971. These measurements were used to characterize the background stratospheric aerosol layer and the disturbed layer following major volcanic eruptions. Levels of particles with r or = 0.01 microns have also been measured with balloon-borne counters since 1973. The latter are collectively called condensation nuclei (CN) as they are characteristic of aerosol in the early stages of growth. While they dominate the size distribution in the tropsophere, they are a trace species in the undisturbed stratosphere. From 1972 until 1980, annual balloon soundings from McMurdo Station (78 deg S) and/or Amundsen-Scott Station (90 deg S), in Antarctica, have also been conducted to crudely monitor Southern Hemisphere aerosol levels. These measurements were continued in 1983 and 1984. Profiles of r 0.15 microns aerosol concentrations as measured during January at the south pole from 1972 to 1975 and in 1980 are given. The former are typical of undisturbed conditions and indicate the small degree of variability under these conditions. The latter indicates the effect of minor volcanic activity, visible in the 10 to 15 km region.

  17. Reel Down - A balloon borne winch system for stratospheric sounding from above

    NASA Technical Reports Server (NTRS)

    Hazen, N. L.; Anderson, J. G.

    1984-01-01

    A balloon-borne winch system has been developed and flight tested which permits the repetitive lowering and hoisting of a stratospheric sampling payload for distances of up to 20 km from a float altitude of 35-40 km. This new approach to in situ stratospheric measurements permits multiple scans of various depths and velocities, closely spaced over a period of hours or days, thus dramatically increasing observational effectiveness. The motor driven winch permits control of ascent velocities from 0-9 m/s with energy derived from a large battery; for descent, the motors are used as generators, velocity is controlled over the same range, and the energy is dumped radiatively to space. The 1.75 mm diameter tether is of braided Kevlar construction with a nylon jacket; it exhibits a 2900 N break strength. Both the winch and the payload suspended by the tether are fully instrumented to evaluate potentially destructive system-induced dynamics and the effects of stratospheric wind shears. The system was successfully flight tested by lowering a 62 kg payload for a distance of 12 km from a float altitude of 38.5 km and hoisting it back up again, both at velocities ranging between 5-9 m/s. Observations indicated minimal system-induced dynamical effects, and no adverse effects due to the 8 m/s wind shear present during flight.

  18. The Debris Disk Explorer: A Balloon-Borne Coronagraph for Observing Debris Disks

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C. Jr; Bryden, Geoffrey; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known debris disks accessible only to DDX. It will achieve a raw contrast of 10(exp -7), with a processed contrast of 10(exp -8). A technology benefit of DDX is that operation in the near-space environment will raise the Technology Readiness Level of internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  19. Balloon-Borne Observations of BrO in the Tropical Upper Troposphere/Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Dorf, M.; Kreycy, S.; Prados, C.; Pfeilsticker, K.

    2009-04-01

    Due to the ozone destroying capabilities of bromine bearing compounds, the stratospheric budget of inorganic bromine is of major interest for modelling ozone depletion and assessing the future evolution of the ozone layer. It has recently been shown that the contribution of very short-lived substances (VSLS) to the bromine budget enhances ozone depletion at mid-latitudes and polar regions. Here we report for the first time on observations of the diurnal variation in stratospheric BrO by means of balloon-borne limb scanning observations. When combined with photochemical modelling, new insight into the photochemistry of stratospheric bromine and its budget is obtained. In particular we report on observations made during three balloon soundings at tropical northeastern Brazil (5°S, 43°W) in June 2005 and June 2008 from deployments of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer), IASI (Infrared Atmospheric Sounding Interferometer) and MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) payloads. Our measurements reveal that the diurnal cycle of BrO is primarily controlled by the reaction with NO2, and the photolysis of BrONO2 at daytime. Assimilation of our BrO measurements to photochemical modelling indicates that total stratospheric bromine is in agreement with the amount inferred by our direct sun observations, therefore providing further evidence for the importance of brominated very short-lived species (VSLS) for total stratospheric bromine.

  20. Status of the Balloon-Borne X-ray Polarimetry Mission X-Calibur

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Kislat, Fabian; Stuchlik, David; Okajima, Takashi; de Geronimo, Gianluigi

    2016-04-01

    We report on the status of the balloon borne hard X-ray polairmetry mission X-Calibur. The missions combines a focussing hard X-ray mirror from the InFOCuS collaboration with a scattering polarimeter and the WASP (Wallops Arc Second Pointer) pointing system. The mission is scheduled for a conventonal ~1 day balloon flight in Fall 2016 and a long duration (~30 day) balloon flight from McMurdo (Ross Island) in 2018/2019. X-Calibur will allow us to measure ~5% polarization fractions for strong sources with a Crab-like enegry spectra and fluxes. The science targets of the first balloon flights will include the stellar mass black holes GRS 1915+105 and Cyg X-1, Her X-1, Sco X-1, and the Crab nebula and pulsar. The long duration balloon flight will target several X-ray binaries and the extragalactic mass accreting supermassive black hole Cen A. In this contribution we give an update on the status of the mission, and the expected science return.

  1. A Novel Anti-Stealth Technique Based on Stratospheric Balloon-Borne Radar in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Barbary, Mohamed; Zong, Peng

    2015-05-01

    Radar cross section (RCS) of a stealth target model like F-117A can be improved by multichannel stratospheric balloon-borne bistatic radar at higher aspect angle. The potential problem is that the stealth target may produce range walk in clutter heterogeneous environments, thus it is difficult to determine the range ambiguity under quadratic range cell migration (QRCM). In this paper, a novel detection technique known as hybrid modified fractional-radon Fourier transform (MFrRFT) and knowledge-aided space-time adaptive processes (KA-STAP) is proposed to impact this kind of problem simultaneously. KA-STAP is applied to suppress the non-homogeneous clutter in the received data, and MFrRFT is used to eliminate the QRCM along with the second-order keystone transform (SOKT), so as to estimate the range ambiguity and compensate the stealth target's range walk. The hybrid MFrRFT/KA-STAP scheme is simple and applicable to the small RCS of fast stealth target with a long-time coherent integration. Finally, to achieve high accuracy of locating stealth target, a non-parametric detection technique based on Legendre orthogonal polynomials is applied to reconstruct the probability density function (pdf) of real RCS data predicted by physical optics (PO) approximation method.

  2. GRAPE: A Balloon-Borne Hard X-ray Polarimeter for Solar Flares

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; McConnell, M. L.; Legere, J. S.; Macri, J. R.; Ryan, J. M.; Narita, T.

    2006-06-01

    We present the current status of the gamma-ray polarimetry experiment (GRAPE) project to measure linear polarization in solar flares in the hard X-ray range (50-300 keV). Polarimetry measurements offer a new way to measure the extent to which energetic electrons in flares are beamed, which has important implications for particle acceleration models. Each GRAPE detector consists of an array of plastic scintillators and high-Z calorimeter crystals read out by a single multi-anode photomultiplier tube (MAPMT). X-ray photons Compton scatter in the plastic elements and are subsequently absorbed in the calorimeter elements, and the azimuthal scattering angle and total energy are recorded. The degree of asymmetry in the distribution of scatter angles reveals the degree of linear polarization in the incident X-rays. We present our latest laboratory test results and describe plans for a balloon flight of a prototype and for a full balloon-borne science payload. Monte Carlo simulations indicate that an array of 25 GRAPE detectors carried on a scientific balloon would be sensitive to polarization levels of 5% or less for a M5 flare in a 5 minute exposure.

  3. The nuclear compton telescope: A balloon-borne soft γ-ray spectrometer, polarimeter, and imager

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Jean, P.; Lin, R. P.; Smith, D. M.; von Ballmoos, P.; Madden, N. W.; Luke, P. N.; Amman, M.; Burks, M. T.; Hull, E. L.; Craig, W.; Ziock, K.

    2001-10-01

    Our collaboration has begun the design and development of a prototype high resolution Compton telescope utilizing 3-D imaging germanium detectors. The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma-ray (0.2-15 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. NCT is a prototype design for the Advanced Compton Telescope, to study gamma-ray radiation with very high spectral resolution, moderate angular resolution, and high sensitivity. The instrument has a novel, ultra-compact design optimized for studying nuclear line emission in the critical 0.5-2 MeV range, and polarization in the 0.2-0.5 MeV range. We have proposed to develop and fly NCT on a conventional US balloon flight in Summer of 2004. This first flight will perform gamma-ray polarization measurements the Crab nebula, Crab pulsar, and Cyg X-1, and 26Al emission from the Cygnus Region. This flight will critically test the novel instrument technologies and analysis techniques we have developed for high resolution Compton telescopes, and qualify the payload to begin a series of ~10-day long duration ballon flights from Alice Springs, Australia starting in Spring 2005. .

  4. Balloon-borne DOAS measurements for the validation of SCIAMACHY UV/Vis data products

    NASA Astrophysics Data System (ADS)

    Fitzenberger, R.; Bösch, H.; Camy-Peyret, C.; Chipperfield, M. P.; Dorf, M.; Hirsekorn, M.; Platt, U.; Payan, S.; Weidner, F.; Pfeilsticker, K.

    2001-08-01

    Level 1 and 2 ENVISAT products with a particular emphasis on the SCIAMACHY data products "solar irradiances" and "atmospheric trace gas profiles" will be validated by means of LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) balloon-borne measurements. The balloon flights will be conducted at different latitudes and seasons in order to allow us to validate the products for a manifold of different geophysical conditions. The simultaneous direct Sun spectroscopic measurements of the French (LPMA) FTIR and the German (IUP-HD) DOAS from the same balloon platform are ideally suited to validate the SCIAMACHY products since the balloon spectrometers essentially cover the same wavelength range as the SCIAMACHY instrument. The balloon instruments share the sun-pointing devices, i.e. the azimuth control of the gondola and a sun-tracker as well, and so they intrinsically observe the same air masses in which either line-of-sight absorption and/or profiles of O3, NO2, NO3, BrO, OClO, IO, CO, CO2, N2O and others will be measured.

  5. High resolution imaging and polarimetry with SUNRISE, a balloon-borne stratospheric solar observatory

    NASA Astrophysics Data System (ADS)

    Barthol, Peter; Chares, Bernd; Deutsch, Werner; Feller, Alex; Gandorfer, Achim; Grauf, Bianca; Hirzberger, Johann; Meller, Reinhard; Riethmueller, Tino; Schuessler, Manfred; Solanki, Sami K.; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Title, Alan

    SUNRISE is an international collaboration for the development and operation of a meter-class balloon-borne stratospheric solar observatory. Prime science goal is the study of structure and dynamics of the magnetic field in the solar atmosphere and the interaction of the magnetic field with convective plasma flows. These processes are studied by high resolution imaging in the UV and polarimetry at visible wavelengths. The instrument has been successfully launched on June 8, 2009 from ESRANGE, Kiruna, Northern Sweden. During the more than 5 days flight about 1.5 TByte of scientific data were collected. The paper gives an overview of the instrument and mission, examples of the scientific output will also be presented. SUNRISE is a joint project of the Max-Planck-Institut fuer Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Spanish IMaX consortium.

  6. A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter PoGOLite

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Craig, W.; Madejski, G.; Ng, J.; Tajima, H.; Varner, G.; Carlson, P.; Klamra, W.; Pearce, M.; Bjornsson, C.; Larsson, S.; Ryde, F.; Kataoka, J.; Kawai, N.; Mizuno, T.; Takahashi, T.

    2006-09-01

    Development status of a new balloon-borne polarimeter, PoGOLite, will be presented. PoGOLite is designed to detect 10% polarization of a 100 mCrab source in one 6 hour balloon observation in the 25 keV - 100 keV energy range. Its design is based on the well-type phoswich counter technology. Polarization is measured by recording Compton scattering and photo-absorption in an array of 217 phoswich detector cells made of plastic and BGO scintillators, surrounded by active BGO shields. The design has been optimized through 4 rounds of tests at synchrotron beams and a proton beam, and flight model production has began: it can reduce the large background produced by cosmic-ray particles to about 10 mCrab level in most of its energy coverage. Potential systematic instrumental bias to the polarization measurement will be removed by rotating the polarimeter telescope around its axis. We plan to observe northern sky sources including the Crab pulsar/nebula, Cygnus X-1, and Hercules X-1 in the first flight scheduled in 2009. Our future plans include long duration balloon flights from Sweden to North America, and launching within a few weeks of gamma-ray flare detection from jet sources such as Mkn 501 by GLAST.

  7. Comparison of mechanical cryocoolers versus stored cryogens for balloon-borne observations

    NASA Astrophysics Data System (ADS)

    Paine, Christopher G.

    2014-11-01

    This study examines the relative mass required in the use of stored cryogens and mechanical cryocoolers, for cooling of detectors and optics in stratospheric-balloon-borne observatories. Lofted mass per unit heat removed from a cryogenic instrument is calculated, as a function of temperature, for three cooling approaches: (a) the use of stored cryogens; (b) use of an acoustic-Stirling ('pulse tube') mechanical cryocooler powered by electric storage batteries; and (c) the same cryocooler with solar-electric energy collection partially or fully replacing storage batteries. For the latter case, the mission duration at which the systems masses are equal is also found. Principal conclusions are (1) stored cryogens can provide cooling for lower mass than storage-battery-operated cryocoolers over most of the temperature range considered, but the difference is not large; (2) solar-conversion systems can be the lower-mass option at higher temperature, but the mission duration for equal mass increases rapidly below ∼30 K.

  8. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.

    1988-01-01

    The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.

  9. Design and Implementation of an experiment-specific Payload Orientation Platform for balloon-borne Experiment .

    NASA Astrophysics Data System (ADS)

    Devarajan, Anand; Rodi, Ashish; Ojha, Devendra

    2012-07-01

    To investigate the mesospheric dynamics and its coupling to the upper atmospheric regions above, a Balloon-borne optical Investigation of Regional-atmospheric Dynamics (BIRD) experiment was jointly conducted by Physical Research Laboratory Ahmedabad and Boston University, on 08 March 2010 from TIFR Balloon Facility, Hyderabad. Along with the BIRD payload, a nano payload of University of York, Canada was also flown for aerosol studies during sunset. The balloon carrying a 335kg BIRD payload was launched at 1052 hrs, reached a float altitude of 34.8km amsl at 1245 hrs and was allowed to float till 1825 hrs before it was parachuted down. To achieve the experimental objectives, it was essential that the payload Gandola, comprising of two optical spectrographs, is programmed to rotate azimuthally in 3 steps of 30 degrees each from East-West (E-W) to North-South (N-S) direction, stop at each step for 5 minutes for data acquisition, return to the original E-W position and keep repeating the sequence continuously with a provision to start or stop the orientation from Ground station through telecommand. To meet these unique requirements, we designed developed and implemented a Payload Orientation Platform (POP), using flux-gate magnetometer for direction-finding, which worked satisfactorily in the BIRD flight. This paper presents an overview of the POP implemented, focuses on the design considerations of the associated electronics and finally presents the results of the performance during the entire balloon flight.

  10. Balloon-borne ultraviolet stellar spectrometer: Acquisition, tracking and command systems

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.

    1974-01-01

    The NASA Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) which is carried to an altitude of 40 km by a 15 million cubic foot balloon for night-time observations of ultraviolet stellar spectra is discussed. The BUSS optical system, comprising an 0.40 m aperture Cassegrain telescope and an Ebert-Fastie spectrometer, points at various selected stars and focuses a portion of their spectra on the photocathode of an image dissector tube. The spectral region between 2,775 Angstroms and 2,825 Angstroms is sampled by the detector at 0.25 Angstroms increments using photon counting techniques. The pointing system for the payload uses a pair of orthogonal magnetometers which sense the earth's magnetic field for an aximuth reference, and a platform potentiometer for an elevation reference. This pointing system places the target star within the 3x1 degree field of view of an outer optical star tracker. The outer star tracker is then used to point the entire instrument to within one arc minute of the target star.

  11. Preliminary results from SPIRALE balloon-borne in situ stratospheric measurements during 2009 polar summer

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Huret, N.; Berthet, G.; Krysztofiak, G.; Thiéblemont, R.; Robert, C.

    2010-12-01

    The SPIRALE (french acronym for infrared absorption spectroscopy by tunable laser diodes) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N - 21.1°E) during summer, at the beginning and at the end of august 2009. In situ measurements of the trace gases O3, CH4, CO, OCS, N2O, HNO3, NO2 and HCl have been performed between 10 and 34 km height, with very high vertical resolution (~5 m). The stratospheric profiles of these species present specific structures associated with tropical intrusion in the low levels. The both flight results are compared between each other in order to evaluate the impact of the turn-around occurring during this season on the chemical composition of the stratosphere. Their interpretation is made with the help of results from several modelling tools and available satellite data. SPIRALE flights were part of the balloon campaign conducted by CNES within the frame of the StraPolÉté project funded by French agencies ANR, CNES and IPEV, contributing to the International Polar Year.

  12. Measurements of springtime Antarctic ozone depletion and development of a balloon borne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon borne ultraviolet photometer to measure ozone and the results of a flight using this instrument. The second part describes modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. Photometric measurements of ozone in the atmosphere can be accomplished by exploiting 253.65 nanometer absorption feature of ozone. Using a single light source and beam splitting optics, matched optical paths can be generated through two absorption cells. The ozonesonde data gave a very clear picture of the development of the Ozone Hole. The results can be summarized as follows: (1) Depletion occurs between about 12 and 20 km. (2) The most efficient region of ozone depletion decreases in altitude with time. Height profiles show subregions where ozone removal is highly efficient. (3) At 18 km, the ozone mixing ratio decays with a half-life of 25 days.

  13. Super-TIGER: A Balloon-Borne Instrument to Probe Galactic Cosmic Ray Origins

    NASA Astrophysics Data System (ADS)

    Rauch, Brian

    2012-07-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a balloon-borne instrument under construction for a long-duration flight from Antarctica in 2012. It is designed to measure the relative abundances of the ultra-heavy (UH) Galactic cosmic rays (GCR) with individual-element resolution from _{30}Zn to _{42}Mo and make exploratory measurements through _{56}Ba, as well as the energy spectra of the GCR from _{10}Ne to _{29}Cu between 0.8 and 10 GeV/nucleon. The UH measurements will test the OB association origin model of the GCR, as well as the model of preferential acceleration of refractory elements. The GCR spectrum measurements will probe for microquasars or other sources that could superpose spectral features. Super-TIGER is a ˜ 4 × larger evolution of the preceding TIGER instrument, and is comprised of two independent modules with a total area of 5.4 m^{2}. A combination of plastic scintillation detectors, acrylic and silica-aerogel Cherenkov detectors, and scintillating fiber hodoscopes are used to resolve particle charge, kinetic energy per nucleon, and trajectory. Refinements in the Super-TIGER design over TIGER, including reduced material in the beam, give it a collecting power that is ˜ 6.4× larger. This paper will report on the instrument development status, the expected flight performance, and the scientific impact of the anticipated Super-TIGER GCR measurements. This research was supported by NASA under Grant NNX09AC17G

  14. HX-POL-A Balloon-Borne Hard X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Krawczynski, H.; Garson, A., III; Martin, J.; Li, Q.; Beilicke, M.; Dowkontt, P.; Lee, K.; Wulf, E.; Kurfess, J.; Novikova, E. I.; De Geronimo, G.; Baring, M. G.; Harding, A. K.; Grindlay, J.; Hong, J. S.

    2009-01-01

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors. Index Terms Gamma-ray astronomy, gamma-ray astronomy detectors, polarization, semiconductor radiation detectors, X-ray astronomy, X-ray astronomy detectors.

  15. Low-frequency (f less than about 1 Hz) stratospheric electrical noise measured by balloon-borne sensors

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Mohl Madsen, M.; Dangelo, N.

    1983-01-01

    Low-frequency (f less than about 1 Hz) stratospheric electrical noise is occasionally observed by balloon-borne sensors. The phenomenon occurs 1-3 percent of the time, with maximum incidence during the morning hours. It appears to be related to fluctuations of the electrical conductivity of the medium around the balloons, produced by air turbulence due to the wind shear and/or gravity waves.

  16. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    PubMed

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere. PMID:25537163

  17. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-06-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  18. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    NASA Astrophysics Data System (ADS)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  19. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  20. EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel

    2015-05-01

    EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.

  1. InFOCuS: A Balloon-borne Hard X-ray Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.; Tueller, J.; Furuzawa, A.; Koss, M.; Kunieda, H.; Ogasaka, Y.; Okajima, T.

    2009-01-01

    InFOCuS is a new generation balloon-borne hard X-ray telescope with focusing optics and spectroscopy. After several successful flights in recent years it is being refurbished for a 2010 flight from Australia to map the hard X-ray emission from the galactic center region. in this poster, we present the status of the mirror, detectors and attitude control system. The grazing incidence optics consists of a depth-graded platinum-carbon multilayer mirror with an 8-meter focal length. It has an effective area of 78 cm(sup 2) at 30 keV. an angular resolution of 2.0 arcmin (HPD), and a field of view of 10 arcmin. The detector is a CdZnTe solid-state device capable of imaging spectroscopy. The detector is surrounded by a 3-cm thick CsI anti-coincidence shield to reduce background from particles and photons not incident along the mirror focal direction. The gondola is being reconfigured in a floating ball configuration to improve pointing control and allow the telescope to be pointed vertically. Tracking will be accomplished with a suite of on-axis and off-axis star cameras. The payload will be ready to fly from Alice Springs, Australia in Spring 2010. In this flight, InFOCuS will have the angular resolution and sensitivity to determine whether Sgr A* is the source of the hard X-rays detected by Swift/BAT and INTEGRAL and determine if there are other nearby hard X-ray sources.

  2. Balloon borne measurements of aerosol and cloud particles over Japan during PACDEX

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Orikasa, N.; Nagai, T.; Murakami, M.; Tajiri, T.; Saito, A.; Yamashita, K.

    2007-12-01

    This paper presents the preliminary result of the balloon borne measurements of the aerosol and cloud microphysical properties over Tsukuba (36.1°N, 140.1°E), Japan, on 10 and 22 May 2007. The purpose of the measurement is to study the influence of Asian mineral dust on ice clouds formation in the middle and upper troposphere. The balloon measured the vertical distributions of aerosol number size distribution (0.13 to 3.9 μm in threshold radius, 8 sizes) by use of the optical particle counter, cloud size (10 μ m to 5 mm in the longest dimension), shape, and number concentration by use of the hydrometer videosonde, humidity by use of SnowWhite hygrometer, and temperature and pressure by use of Meisei RS-01G radiosonde between altitudes of 0 and 16 km. The aerosol size distribution showed bimodal distribution with mode radii of <0.13 μm (fine mode) and about 0.8 μm (coarse mode) over the troposphere (0-13.5 km in altitude). The number concentrations ranged from 150 to 1 cm-3 in the fine mode and from 3 to 0.1 cm-3 in the coarse mode. High depolarization ratio (>10%) obtained from the ground-based Raman lidar measurement revealed the presence of nonspherical dust in the coarse mode. Columnar, bullet-like, and irregular ice crystals with 10-400 μm in size were detected between altitudes of 8 and 13 km on 10 May and 10 and 13 km on 22 May. The maximum crystal concentration was 0.15 cm-3. We discuss the possibility of the formation of the ice cloud from the dust based on the result of the measurements.

  3. High Energy Replicated Optics to Explore the Sun: Hard X-Ray Balloon-Borne Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Apple, Jeff; StevensonChavis, Katherine; Dietz, Kurt; Holt, Marlon; Koehler, Heather; Lis, Tomasz; O'Connor, Brian; RodriquezOtero, Miguel; Pryor, Jonathan; Ramsey, Brian; Rinehart-Dawson, Maegan; Smith, Leigh; Sobey, Alexander; Wilson-Hodge, Colleen; Christe, Steven; Cramer, Alexander; Edgerton, Melissa; Rodriquez, Marcello; Shih, Albert; Gregory, Don; Jasper, John; Bohon, Steven

    2013-01-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist

  4. Mapping the southern polar cap with a balloon-borne millimeter-wave telescope

    NASA Astrophysics Data System (ADS)

    Crawford, Thomas Mcfarland

    2003-10-01

    TopHat is a balloon-borne millimeter-wave telescope designed to make a map of a 48°-diameter region centered on the South Celestial Pole. The instrument consists of telescope optics, radiometer, rotational drive system, sun/earth shield, attitude and thermal sensors, and support electronics mounted on top of a 28-million cubic foot balloon, with a support gondola hanging below. The five-channel, single- pixel radiometer sits at the focus of an on-axis Cassegrain telescope with a 1-meter primary aperture. The detectors are monolithic, ion-implanted silicon bolometers, cooled to 265 mK by a sorption-pumped helium- 3 fridge. The five frequency bands have effective centers of 175, 245, 400, 460, and 630 GHz. The two lowest- frequency bands are designed to be sensitive to the 2.7 K Cosmic Microwave Background (CMB), while the three highest bands are designed to monitor thermal emission from interstellar dust grains. Together with a modified Winston cone at the Cassegrain focus, the telescope optics define a beam designed to be steeper than gaussian with a full-width at half-maximum of 20', rendering TopHat in principle sensitive to fluctuations in the CMB from scales of less than a degree up to the diameter of the map (6 ≤ ℓ ≤ 600). TopHat was launched on 4 January 2001 from McMurdo Station, Antarctica as part of the NASA National Scientific Balloon Facility (NSBF) Polar Long-Duration Balloon program and observed for four sidereal days until cryogens were exhausted. An unexpected ˜5° tilt in the mounting platform at the top of the balloon resulted in large scan-synchronous instrumental signals which were not removable at the level necessary to make an internally consistent measurement of the CMB power spectrum. Minimum-variance maps of the data in all five channels have been made and used to measure the integrated flux from three regions in the Magellanic Clouds, using a flux analysis technique that minimizes the aforementioned instrumental contamination. When

  5. Transport of tropospheric and stratospheric ozone over India: Balloon-borne observations and modeling analysis

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Sahu, L. K.; Manchanda, R. K.; Sheel, V.; Deushi, M.; Kajino, M.; Schultz, M. G.; Nagendra, N.; Kumar, P.; Trivedi, D. B.; Koli, S. K.; Peshin, S. K.; Swamy, Y. V.; Tzanis, C. G.; Sreenivasan, S.

    2016-04-01

    This study describes the spatio-temporal variation of vertical profiles of ozone (O3) measured by balloon-borne ozonesondes over two tropical sites of Trivandrum (TVM) and Hyderabad (HYD) in India from January 2009 to December 2010. In the lower troposphere, the mixing ratios of O3 over HYD (18-66 ppbv) were similar to TVM (18-65 ppbv). In the free troposphere, the O3 mixing ratios over HYD were higher than those over TVM throughout the year. In the tropical tropopause layer (TTL) region (above 15 km), the mixing ratios of O3 over TVM were higher (83-358 ppbv) compared to those measured over HYD (89-216 ppbv). Prevailing of O3 laminae between about 14 and 17 km is seen for both sites for most profiles. A strong seasonal variation of O3 is observed in the lower stratosphere between 18 and 24 km over TVM, however, it is not pronounced for HYD. Transport of air masses from the biomass burning region of the central Africa, Southeast Asia and the Indo Gangetic plains (IGP) influenced and led to enhancements of lower and mid-tropospheric O3 over HYD and TVM while, the isentropic (325 K) potential vorticity (PV) at 100 hPa showed transport of O3-rich air from the lower stratosphere to the upper troposphere during winter and spring months over both sites. The free tropospheric O3 mixing ratios (FT-O3; 0-4 km) contribute substantially to the tropospheric column O3 (TCO) with an annual average fraction of 30% and reveal the similar seasonal variations over HYD and TVM. The vertical profiles of O3 obtained from the Monitoring Atmospheric Composition and Climate - Interim Implementation (MACC-II) reanalysis and the Meteorological Research Institute-Chemistry Climate Model version 2 (MRI-CCM2) are compared with the ozonesonde data over both sites. The simulated magnitude, phase and vertical gradient of O3 from both MRI-CCM2 and MACC-II are in good agreement with measurements in the stratosphere while there are significant differences in the tropospheric columns.

  6. A Balloon-borne Limb-Emission Sounder at 650-GHz band for Stratospheric observations

    NASA Astrophysics Data System (ADS)

    Irimajiri, Yoshihisa; Ochiai, Satoshi

    We have developed a Balloon-borne Superconducting Submillimeter-Wave Limb-Emission Sounder (BSMILES) to observe stratospheric minor constituents like ozone, HCl etc. BSMILES carries a 300mm-diameter offset parabolic antenna, a 650-GHz heterodyne superconducting (SIS) low-noise receiver, and an acousto-optical spectrometer (AOS) with the bandwidth of 1GHz and the resolution of 1MHz. Gondola size is 1.35 m x 1.35 m x 1.26 m. Total weight is about 500 kg. Limb observations are made by scanning the antenna beam of about 0.12 degrees (FWHM) in vertical direction. A calibrated hot load (CHL) and elevation angle of 50 degrees are ob-served after each scan for calibration. The DSB system noise temperature of the SIS receiver is less than 460 K at 624-639 GHz with a best value of 330 K that is 11 times as large as the quantum limit. Data acquisition and antenna control are made by on-board PCs. Observed data are recorded to PC card with 2 GB capacity to collect after the observations from the sea, and HK data are transmitted to the ground. Gondola attitude is measured by three-axis fiber-optical gyroscope with accuracy less than 0.01 degrees, three-axis accelerometer, and a two-axis geoaspect sensor. Electric power is supplied by lithium batteries. Total power con-sumption is about 150W. Almost all systems are put in pressurized vessels for waterproofing, heat dissipation, and noise shield, etc. BSMILES was launched from Sanriku Balloon Center of Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), at the east coast of Japan, in the summer of 2003, 2004, and 2006. The gondola was carried to an altitude of 35 km by a balloon of 100,000 m3 in volume and the observations were made for 1.5 hours in 2004. All systems operated normally by keeping their temperature within the limit of operation by keeping gondola warm with styrene foam. After the observations, the gondola was dropped and splashed on the Pacific Ocean by a parachute and

  7. PoGOLite A high sensitivity balloon-borne soft gamma-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Andersson, Viktor; Arimoto, Makoto; Axelsson, Magnus; Marini Bettolo, Cecilia; Björnsson, Claes-Ingvar; Bogaert, Gilles; Carlson, Per; Craig, William; Ekeberg, Tomas; Engdegård, Olle; Fukazawa, Yasushi; Gunji, Shuichi; Hjalmarsdotter, Linnea; Iwan, Bianca; Kanai, Yoshikazu; Kataoka, Jun; Kawai, Nobuyuki; Kazejev, Jaroslav; Kiss, Mózsi; Klamra, Wlodzimierz; Larsson, Stefan; Madejski, Grzegorz; Mizuno, Tsunefumi; Ng, Johnny; Pearce, Mark; Ryde, Felix; Suhonen, Markus; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takuya; Thurston, Timothy; Ueno, Masaru; Varner, Gary; Yamamoto, Kazuhide; Yamashita, Yuichiro; Ylinen, Tomi; Yoshida, Hiroaki

    2008-09-01

    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow field of view (FWHM = 1.25 msr, 2.0 deg × 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (˜228 cm 2 at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm 2 indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a ˜100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and

  8. Model reference adaptive control for the azimuth-pointing system of a balloon-borne stabilized platform

    NASA Technical Reports Server (NTRS)

    Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.

    1991-01-01

    A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.

  9. A Model-Based Study of On-Board Data Processing Architecture for Balloon-Borne Aurora Observation

    NASA Technical Reports Server (NTRS)

    Lim, Chester

    2011-01-01

    This paper discusses an application of ISAAC design methodology to a balloon-borne payload electronic system for aurora observation. The methodology is composed of two phases, high level design and low level implementation, the focus of this paper is on the high level design. This paper puts the system architecture in the context of a balloon based application but it can be generalized to any airborne/space-borne application. The system architecture includes a front-end detector, its corresponding data processing unit, and a controller. VisualSim has been used to perform modeling and simulations to explore the entire design space, finding optimal solutions that meet system requirements.

  10. Stratospheric temperature profile from balloon-borne measurements of the 10.4-micron band of CO2

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F.J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1983-01-01

    The technique of nonlinear least squares spectral curve fitting has been used to derive the stratospheric vertical temperature profile from balloon-borne measurements of the 10.4 micron band of CO2. The spectral data were obtained at sunset with the approximately 0.02 per cm resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The r.m.s. deviation between the retrieved temperature profile and correlative radiosonde measurements is 2.2 K.

  11. Daytime wave characteristics in the mesosphere lower thermosphere region: Results from the Balloon-borne Investigations of Regional-atmospheric Dynamics experiment

    NASA Astrophysics Data System (ADS)

    Pallamraju, Duggirala; Baumgardner, Jeffrey; Singh, Ravindra P.; Laskar, Fazlul I.; Mendillo, Christopher; Cook, Timothy; Lockwood, Sean; Narayanan, R.; Pant, Tarun K.; Chakrabarti, Supriya

    2014-03-01

    Results obtained from a joint INDO-US experiment on the investigations of mesosphere/lower thermosphere wave dynamics using balloon-borne optical dayglow measurements in combination with ground-based optical, radio, and magnetometer data are presented. Ultraviolet OI 297.2 nm dayglow emissions that originate at ~ 120 km were measured from low-magnetic latitudes from onboard a balloon on 8 March 2010. This paper describes the details of a new spectrograph that is capable of making high spectral resolution (0.2 nm at 297.2 nm) and large (80°) field of view ultraviolet dayglow emission measurements and presents the first results obtained from its operation onboard a high-altitude balloon. Waves of scale sizes ranging from 40 to 80 km in the zonal direction were observed in OI 297.2 nm emissions. Meridional scale sizes of similar waves were found to be 200 km as observed in the OI 557.7 nm emissions that originate from ~ 100 km. Periodicities were also derived from the variations of equatorial electrojet strength and ionospheric height on that day. Common periodicities of waves (in optical, magnetic, and radio measurements) were in the range of 16 to 30 min, which result in intrinsic horizontal wave speeds in the range of 21 to 77 m s-1. It is argued that gravity waves of such scale sizes and speeds at these heights are capable of propagating well into the thermosphere because the background wind directions were favorable. These waves were potentially capable of forming the seeds for the generation of equatorial plasma irregularities which did occur on that night.

  12. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  13. New spectral features of stratospheric trace gases identified from high-resolution infrared balloon-borne and laboratory spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1989-01-01

    A new Michelson-type interferometer system operating in the infrared at very high resolution has been used to record numerous balloon-borne solar absorption spectra of the stratosphere, ground-based solar absorption spectra, and laboratory spectra of molecules of atmospheric interest. In the present work results obtained for several important stratospheric trace gases, HNO3, CIONO2, HO2NO2, NO2, and COF2, in the 8- to 12-micron spectral region are reported. Many new features of these gases have been identified in the stratospheric spectra. Comparison of the new spectra with line-by-line simulations shows that previous spectral line parameters are often inadequate and that new analysis of high-resolution laboratory and atmospheric spectra and improved theoretical calculations will be required for many bands. Preliminary versions of several sets of improved line parameters under development are discussed.

  14. Balloon-borne ozonesonde and rocket temperature and wind data gathered during the July 1977 intertropical convergence zone experiment

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Kloos, G.

    1979-01-01

    In middle latitudes, it is possible for large concentrations of stratospheric air to be brought down to the tropopause through folds or breaks in the tropopause. The exchange of air from the tropopause into higher altitudes is not well understood. Thus, the ITCZ (Intertropical Convergence Zone) experiment, conducted from July 16 through July 31, 1977, included a series of balloon-borne ozone soundings. The results of these soundings are presented and explain in the vertical exchange of air and provide information on the short vertical scales-of-motion. Rocketsonde data was also gathered in the ITCZ experiment in support of a stratospheric scales-of-motion study. The investigation was to determine whether rocketsonde and satellite information currently used yield information on the stratospheric horizontal wave spectrum and its importance with respect to tropospheric and mesospheric interaction and transport.

  15. The Ultraviolet Filter Imager (SuFI) onboard the Sunrise balloon-borne solar observatory: Instrument description and first results

    NASA Astrophysics Data System (ADS)

    Gandorfer, Achim; Barthol, Peter; Feller, Alex; Grauf, Bianca; Hirzberger, Johann; Riethmueller, Tino; Solanki, Sami K.; Berkefeld, Thomas; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Title, Alan

    We describe the design of the near UV filter imager SuFi onboard Sunrise, which was successfully flown in the stratosphere in June 2009. During its five days flight SuFI captured the highest contrast images of solar granulation ever. SuFI is a diffraction limited filter imager with an effective focal length of 121m, working in 5 distinct wavelength bands between 210nm and 397nm. It is based on a two mirror modified Schwarzschild microscope, which is integral part of the central Image stabilization and light Distribution unit (ISLiD) of Sunrise, which acts as the reimaging optics between the 1m telescope and the science instruments. The key technical features of the instrument are presented under the view of the specific demands of balloon-borne optical systems. First results obtained with the instrument are presented to demonstrate the capabilities of the instrument.

  16. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol): Instrument and 2010 Science Campaign

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; BLAST-Pol Collaboration

    2012-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a 1.8-m telescope that observes polarized dust emission with a resolution of 1'. BLAST-Pol images the sky onto a focal plane that consists of 270 feed-horn coupled bolometers at 250, 350, and 500 microns. In January 2011, BLAST-Pol completed a successful 9.5-day flight over Antarctica. Eight science targets were observed, and a second flight is planned for December 2012. I will give an overview of the instrument performance during the first science campaign and present preliminary maps. BLAST-Pol maps will provide an excellent dataset for studying the role of magnetic fields in star formation.

  17. Balloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rolf, S. R.; Rosen, J. M.

    1987-01-01

    The vertical distribution of ozone measured at McMurdo Station, Antarctica using balloon-borne sensors on 33 occasions during November 6, 1986 - August 25, 1986 is described. These observations suggest a highly structured cavity confined to the 12-20 km altitude region. In the 17-19 km altitude range, the ozone volume mixing ratio declined from about 2 ppm at the end of August to about 0.5 ppm by mid-October. The average decay in this region can be described as exponential with a half life of about 25 days. While total ozone, as obtained from profile integration, declined only about 35 percent, the integrated ozone between 14 and 18 km declined more than 70 percent. Vertical ozone profiles in the vortex revealed unusual structure with major features from 1 to 5 km thick which had suffered ozone depletions as great as 90 percent.

  18. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  19. Constraints on JN2O5 from balloon-borne limb scanning measurements of NO2 in the tropics

    NASA Astrophysics Data System (ADS)

    Kritten, Lena; Butz, Andre; Deutschmann, Tim; Dorf, Marcel; Kreycy, Sebastian; Prados-Roman, Cristina; Pfeilsticker, Klaus

    2010-05-01

    The NOx ozone cycle (NOx = NO + NO2) is of great importance for the budget of stratospheric ozone and in future may even become more important due to increasing stratospheric N2O concentrations (Ravishankara et al., 2009). A regulating process for the amount of stratospheric NOx and thus for the efficiency of the NOx mediated ozone loss cycle is photolytic release of N2O5 at daytime since N2O5 acts as a nighttime reservoir gas for stratospheric NOx radicals. Observations of UV/vis scattered skylight by balloon-borne limb scanning spectrometry support the detection of time dependent trace gas and radical profiles, in particular of NO2. Here we present balloon borne measurements of time dependent NO2 profiles from the tropical stratosphere - taken at north-eastern Brazil (5° S, 43° W) in June 2005 - where excess stratospheric ozone is produced and transported to higher latitudes by the Brewer-Dobson circulation. The photolysis rate of N2O5 - uncertain by a factor of 2 (JPL-2006) - is constrained from the comparison of the measured and modelled diurnal variation of NO2. For the photochemical model initial conditions are based on our own observations of O3 and NO2, MIPAS-B measurements and on output of the 3-D SLIMCAT model. The kinetic and thermodynamic parameters and absorption cross-sections are taken from the JPL-2006 compilation (Sander et. al, 2006). Overall it is found that, the observed rate of diurnal NO2 increase requires a N2O5 photolysis frequency at the upper limit of values possible according to the uncertainty range given by the JPL-2006 compilation. In conclusion it suggested that the NOx mediated ozone loss in the tropical stratosphere is probably larger than assumed by many photochemical models, and in future may even relatively become more important.

  20. The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description

    NASA Astrophysics Data System (ADS)

    Gandorfer, A.; Grauf, B.; Barthol, P.; Riethmüller, T. L.; Solanki, S. K.; Chares, B.; Deutsch, W.; Ebert, S.; Feller, A.; Germerott, D.; Heerlein, K.; Heinrichs, J.; Hirche, D.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Schäfer, R.; Tomasch, G.; Knölker, M.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Feger, B.; Heidecke, F.; Soltau, D.; Tischenberg, A.; Fischer, A.; Title, A.; Anwand, H.; Schmidt, E.

    2011-01-01

    We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data.

  1. Intercomparison of remote and balloon-borne sensors operated at JAPE-91

    NASA Technical Reports Server (NTRS)

    Okrasinski, Richard J.; Cook, Greg J.; Olsen, Robert O.

    1993-01-01

    In recent years, there has been an increased availability of different types of remote sensors for measuring atmospheric parameters. With the introduction of remote sensors into field operation, questions have arisen as to their accuracy and precision. An attempt was made to address this issue by analyzing and intercomparing sets of wind and temperature data obtained during the Joint Acoustic Propagation Experiment (JAPE-9l) conducted at White Sands Missile Range, New Mexico, in Jul. and Aug. 1991. The remote sensing systems that were deployed included a 924 MHz wind profiler, two Doppler acoustic sodars, and a Radio Acoustic Sounding System (RASS). In situ measurements of wind, temperature, and humidity were also obtained from radiosondes. Individual system characteristics and the results of intercomparing the derived wind and temperature data from each of the systems are presented.

  2. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  3. The high energy replicated optics to explore the sun mission: a hard x-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Christe, Steven D.; Shih, Albert; Rodriguez, Marcello; Cramer, Alex; Gregory, Kyle; Edgerton, Melissa; Gaskin, Jessica; Wilson-Hodge, Colleen; Apple, Jeff; Stevenson Chavis, Katherine; Jackson, Amanda; Smith, Leigh; Dietz, Kurt; O'Connor, Brian; Sobey, Alex; Koehler, Heather; Ramsey, Brian

    2013-09-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HEROES gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. The overall payload will be discussed as well as the new solar aspect system. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  4. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  5. Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-08-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile.

  6. Balloon-borne radiometer measurements of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-12-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. We therefore find no evidence of long-term changes in the HNO3 summer mid-latitude profile, although the uncertainty of our measurements precludes a conclusive trend analysis.

  7. First implementation of TES bolometer arrays with SQUID-based multiplexed readout on a balloon-borne platform

    NASA Astrophysics Data System (ADS)

    Aubin, François; Aboobaker, Asad M.; Ade, Peter; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hubmayr, Johannes; Hyland, Peter; Hillbrand, Seth; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Smecher, Graeme; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    EBEX (the E and B EXperiment) is a balloon-borne telescope designed to measure the polarisation of the cosmic microwave background radiation. During a two week long duration science flight over Antarctica, EBEX will operate 768, 384 and 280 spider-web transition edge sensor (TES) bolometers at 150, 250 and 410 GHz, respectively. The 10-hour EBEX engineering flight in June 2009 over New Mexico and Arizona provided the first usage of both a large array of TES bolometers and a Superconducting QUantum Interference Device (SQUID) based multiplexed readout in a space-like environment. This successful demonstration increases the technology readiness level of these bolometers and the associated readout system for future space missions. A total of 82, 49 and 82 TES detectors were operated during the engineering flight at 150, 250 and 410 GHz. The sensors were read out with a new SQUID-based digital frequency domain multiplexed readout system that was designed to meet the low power consumption and robust autonomous operation requirements presented by a balloon experiment. Here we describe the system and the remote, automated tuning of the bolometers and SQUIDs. We compare results from tuning at float to ground, and discuss bolometer performance during flight.

  8. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Lind, J.; Strömberg, J.-E.; Welin, O.; Iyudin, A.; Shifrin, D.; Pearce, M.

    2016-02-01

    In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

  9. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  10. A Balloon-Borne Platform for Measuring Vertically-Resolved Concentrations of Black Carbon in the Troposphere

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Wilson, D.; Hadley, O. L.; Corrigan, C.; Blair, J.

    2012-12-01

    Sunlight-absorbing black carbon (BC) particles emitted during combustion of fossil and biomass fuels contribute to climate change. Modeling studies agree that the climate impacts of BC depend on its vertical distribution in the atmosphere. Since vertically-resolved BC concentrations have scarcely been measured, this project is developing a balloon-borne platform for inexpensive routine vertical profiling. Our current platform, which includes an improved micro-Aethalometer and a small optical particle counter integrated with a data acquisition and tracking system, weighs less than six pounds and is therefore unrestricted by the Federal Aviation Administration. Compared to its predecessor, the improved micro-Aethalometer has been redesigned to increase stability and sensitivity during high altitude operation. In addition to aerosol data, temperature, pressure, humidity and location are recorded. At a predetermined altitude, the onboard computer releases the instrument payload from the balloon, a parachute deploys, and the payload descends back to the Earth's surface. Transmitters incorporated into the instrument package relay the location of the payload to a ground operator's laptop throughout the flight allowing the payload to be recovered after each mission. Video and data from completed test flights will be shown during the presentation.

  11. Constraints on JN2O5 from balloon-borne limb scanning measurements of NO2 in the tropics

    NASA Astrophysics Data System (ADS)

    Kritten, L. K.; Dorf, M.; Butz, A.; Kreycy, S.; Prados-Roman, C.; Pfeilsticker, K.

    2009-12-01

    A recent study [Ravishankara et al., 2009] revealed the growing importance of N2O and the related partitioning of NOx/NOy for stratospheric ozone in the coming decades. Evidently, the related NOx/NOy photochemistry is most important in the tropical mid-stratosphere where most ozone is formed. We report on measurements of the diurnal variation of NO2 in the tropical upper troposphere and lower stratosphere, observed during stratospheric balloon flights at north eastern Brazil (5°S, 43°W) in June 2005. The diurnal variation of stratospheric NO2 profiles is inferred from limb scanning balloon-borne spectroscopic measurements in the UV/visible range. Furthermore, photochemical modelling indicates that the observed increase of stratospheric NO2 in the tropical stratosphere is primarily due to the photolysis of N2O5 at daytime. Accordingly our NO2 data is interpreted with respect to the photolysis rate of N2O5 (JN2O5). Together with calculated actinic fluxes, conclusions on the magnitude of the N2O5 absorption cross-section and its uncertainty can be drawn as e.g. compiled in the JPL-2006 data base. Diurnal variation of NO2 measured by limb scattered skylight observations on June 30, 2005.

  12. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  13. A mercuric detector system for X-ray astronomy. 2. Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.

    1982-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.

  14. Crest - A Balloon-borne Instrument To Measure Cosmic-ray Electrons Above TeV Energies.

    NASA Astrophysics Data System (ADS)

    Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N.; Tarlé, G.; Wakely, S.; Yagi, A.

    2009-01-01

    The observation of high energy (E > 1 TeV) electrons in the cosmic radiation provides important information on the distribution and energetics of local cosmic-ray sources. Galactic cosmic-ray electrons are thought to be shock accelerated in supernova remnants as evident from observations of non-thermal X-rays and TeV gamma rays. Their locally observed energy spectrum above 1 TeV is expected to reflect the distribution and abundance of nearby acceleration sites. However, the rates at these energies are low and the direct detection would require unfeasibly large balloons or satellite born detectors. CREST, a balloon-borne detector array of 1024 BaF2 crystals, overcomes this hurdle: it will measure the intensity and spectrum of multi-TeV electrons by detecting synchrotron photons emitted from electrons passing through the earth's magnetic field. Thus CREST's acceptance is several times its geometric area providing sensitivity up to about 50 TeV. Following an engineering flight in spring of 2009, CREST will be flown in a circumpolar orbit on an upcoming Antarctic long-duration balloon flight. This work is supported by NASA and CSBF.

  15. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  16. New limits on the ultrahigh energy cosmic neutrino flux from the ANITA experiment.

    PubMed

    Gorham, P W; Allison, P; Barwick, S W; Beatty, J J; Besson, D Z; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; Dowkontt, P F; Duvernois, M A; Field, R C; Goldstein, D; Goodhue, A; Hast, C; Hebert, C L; Hoover, S; Israel, M H; Kowalski, J; Learned, J G; Liewer, K M; Link, J T; Lusczek, E; Matsuno, S; Mercurio, B C; Miki, C; Miocinović, P; Nam, J; Naudet, C J; Ng, J; Nichol, R J; Palladino, K; Reil, K; Romero-Wolf, A; Rosen, M; Ruckman, L; Saltzberg, D; Seckel, D; Varner, G S; Walz, D; Wang, Y; Wu, F

    2009-07-31

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers. PMID:19792479

  17. Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Brogniez, Colette; Catoire, Valery; Fussen, Didier; Goutail, Florence; Oelhaf, Hermann; Pommereau, Jean-Pierre; Roscoe, Howard K.; Wetzel, Gerald; Chartier, Michel; Robert, Claude; Balois, Jean-Yves; Verwaerde, Christian; Auriol, Frédérique; François, Philippe; Gaubicher, Bertrand; Wursteisen, Patrick

    2008-02-01

    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles.

  18. The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory

    NASA Astrophysics Data System (ADS)

    Martínez Pillet, V.; Del Toro Iniesta, J. C.; Álvarez-Herrero, A.; Domingo, V.; Bonet, J. A.; González Fernández, L.; López Jiménez, A.; Pastor, C.; Gasent Blesa, J. L.; Mellado, P.; Piqueras, J.; Aparicio, B.; Balaguer, M.; Ballesteros, E.; Belenguer, T.; Bellot Rubio, L. R.; Berkefeld, T.; Collados, M.; Deutsch, W.; Feller, A.; Girela, F.; Grauf, B.; Heredero, R. L.; Herranz, M.; Jerónimo, J. M.; Laguna, H.; Meller, R.; Menéndez, M.; Morales, R.; Orozco Suárez, D.; Ramos, G.; Reina, M.; Ramos, J. L.; Rodríguez, P.; Sánchez, A.; Uribe-Patarroyo, N.; Barthol, P.; Gandorfer, A.; Knoelker, M.; Schmidt, W.; Solanki, S. K.; Vargas Domínguez, S.

    2011-01-01

    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne solar observatory in June 2009 for almost six days over the Arctic Circle. As a polarimeter, IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual-beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mÅ. IMaX uses the high-Zeeman-sensitive line of Fe i at 5250.2 Å and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15 - 0.18 arcsec range over a 50×50 arcsec field of view. Time cadences vary between 10 and 33 s, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are 4 G for longitudinal fields and 80 G for transverse fields per wavelength sample. The line-of-sight velocities are estimated with statistical errors of the order of 5 - 40 m s-1. The design, calibration, and integration phases of the instrument, together with the implemented data reduction scheme, are described in some detail.

  19. Pollination biology of basal angiosperms (ANITA grade).

    PubMed

    Thien, Leonard B; Bernhardt, Peter; Devall, Margaret S; Chen, Zhi-Duan; Luo, Yi-Bo; Fan, Jian-Hua; Yuan, Liang-Chen; Williams, Joseph H

    2009-01-01

    The first three branches of the angiosperm phylogenetic tree consist of eight families with ∼201 species of plants (the ANITA grade). The oldest flower fossil for the group is dated to the Early Cretaceous (115-125 Mya) and identified to the Nymphaeales. The flowers of extant plants in the ANITA grade are small, and pollen is the edible reward (rarely nectar or starch bodies). Unlike many gymnosperms that secrete "pollination drops," ANITA-grade members examined thus far have a dry-type stigma. Copious secretions of stigmatic fluid are restricted to the Nymphaeales, but this is not nectar. Floral odors, floral thermogenesis (a resource), and colored tepals attract insects in deceit-based pollination syndromes throughout the first three branches of the phylogenetic tree. Self-incompatibility and an extragynoecial compitum occur in some species in the Austrobaileyales. Flies are primary pollinators in six families (10 genera). Beetles are pollinators in five families varying in importance as primary (exclusive) to secondary vectors of pollen. Bees are major pollinators only in the Nymphaeaceae. It is hypothesized that large flowers in Nymphaeaceae are the result of the interaction of heat, floral odors, and colored tepals to trap insects to increase fitness. PMID:21628182

  20. ProtoEXIST: balloon-borne technology development for wide-field hard X-ray imaging

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We report on the development of the ProtoEXIST balloon-borne experiment for development of wide-field coded aperture imaging with high spatial resolution imaging Cd-Zn-Te (CZT) arrays in close-tiled, large area configurations. ProtoEXIST1 will incorporate two coded aperture telescopes, each with 16 x 16cm close-tiled imaging CZT with 2.5mm pixels that maintain registration across the full detector. The detector plane incorporates new-technology low powered ASIC readout on each 20 x 20 x 5mm CZT crystal. A 2 x 4 array of such crystals are closetiled on a single board (DCA) with vertical integration to a controlling and readout-enabling FPGA. Detector readout modes can be commanded through the FPGA and selected in flight: from simple peak pixel, to peak plus neighbor pixels to larger pixel-selected modes, which will improve spatial/spectral resolution as well as allow for future tests of Compton imaging. The full readout consists of a 2 x 4 array of DCAs for each of the two telescopes. The detector plane is shielded from below by an active shield (2cm CsI) on one telescope vs. an equivalent graded-passive shield on the other to enable direct imaging comparisons of background rejection in a balloon environment. Both telescopes incorporate otherwise identical graded-passive side shields and laminated coded aperture masks (5mm pixels, laser-cut in W sheet). The telescopes each have 20o x 20o fields of view (FWHM), with 21arcmin resolution across the field. The ProtoEXIST gondola is derived from the old Harvard EXITE gondola but now with new pointing system and daytime star camera as developed at MSFC for the HERO balloon payload. A first flight is planned for September/October, 2008. Tests will include not only the first tests of this multipixel, controllable ASIC-readout system but also tests of the scanning coded aperture imaging as planned for the proposed EXIST mission. Followup flight(s) will test the higher-spatial resolution CZT imager (0.6mm pixels) now planned

  1. Analysis of charge transport during lightning using balloon-borne electric field sensors and Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Sonnenfeld, Richard G.; Aslan, Beyza Caliskan; Lu, Gaopeng; Winn, William P.; Boeck, William L.

    2007-09-01

    Recently, wide band measurements of the electric field near a lightning flash have been obtained by a balloon-borne electric field sonde or Esonde. This paper develops new techniques for analyzing lightning-associated charge transport in a thundercloud by using both the Esonde data and simultaneous Lightning Mapping Array (LMA) measurements of VHF pulses emitted during lightning breakdown processes. Innovations in this paper include the following: (1) A filtering procedure is developed to separate the background field associated with instrument rotation and cloud charging processes from the lightning-induced electric field change. Because of the abrupt change in the signal caused by lightning, standard filtering techniques do not apply. A new mathematical procedure is developed to estimate the background electric field that would have existed if the lightning had not occurred. The estimated background field is subtracted from the measured field to obtain the lightning-induced field change. (2) Techniques are developed to estimate the charge transport due to lightning. At any instant of time during a cloud-to-ground (CG) flash, we estimate the charge transport by a monopole. During an intracloud (IC) flash, we estimate the charge transport by a dipole. Since the location of the monopole and dipole changes with time, they are referred to as a dynamic monopole and a dynamic dipole. The following physical constraints are used to achieve a unique fit: charge conservation during an IC flash, separation (distance between the CG monopole charge center and the ground and separation between IC dipole charge centers both exceed a minimum threshold), location (charge is placed on lightning channel), and likelihood (after a statistical analysis based on instrument uncertainty, highly unlikely charge locations are excluded). To implement the constraint that the charge is located on the lightning channel, we develop a mathematical object called the "pulse graph." Vertices in the

  2. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Misawa, Ruka; Bernard, Jean-Philippe

    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is one of the next observational challenges of modern astronomy and cosmology. In particular, detection of the B-mode polarization from the Cosmic Microwave Background (CMB) may reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude stronger than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to the process of star formation, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field, on the basis of extinction and emission measurements from the ground and airborne experiments and in the context of the recent measurements with the Planck satellite. I will then describe the concept and science goals of the PILOT balloon-borne experiment project (http://pilot.irap.omp.eu). This project is funded by the French space agency (CNES: “Centre National des Etudes Spatiales”) and currently under final assembly and tests. The experiment is dedicated to measuring precisely the linear polarization of the faint interstellar diffuse dust emission in the Far-Infrared in our Galaxy and nearby galaxies. It is composed of a 0.83 m diameter telescope and a Helium 4 deware accommodating the rest of the optics and 2 focal plane arrays with a total of 2048 individual bolometers cooled to 300 mK, developed for the PACS instruments on board the Hershel satellite. It will be operating in two broad photometric

  3. Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight

    NASA Astrophysics Data System (ADS)

    Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.; García-Fernández, D.; Bugaev, V.; Wissel, S. A.; Allison, P.; Alvarez-Muñiz, J.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Carvalho, W. R., Jr.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Gorham, P. W.; Hast, C.; Huege, T.; Heber, C. L.; Hoover, S.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mulrey, K.; Nam, J.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Roberts, J.; Reil, K.; Rotter, B.; Rosen, M.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Urdaneta, D.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wu, F.; Zas, E.

    2016-04-01

    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ∼36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.

  4. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  5. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Biasotti, M.; Cei, F.; Ceriale, V.; Corsini, D.; Fontanelli, F.; Galli, L.; Gallucci, G.; Gatti, F.; Incagli, M.; Grassi, M.; Nicolò, D.; Spinella, F.; Vaccaro, D.; Venturini, M.

    2016-07-01

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  6. A Multi-Band Far-Infrared Survey with a Balloon-Borne Telescope. Final Report, 20 Nov. 1972 - 19 Feb. 1978. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobson, M. R.; Harwit, M.; Frederick, C.; Ward, D. B.; Melnick, G.; Stasavage, G.

    1978-01-01

    Nine additional radiation sources, above a 3-sigma confidence level of 1300 Jy, were identified at 100 microns by far infrared photometry of the galactic plane using a 0.4 meter aperture, liquid helium cooled, multichannel far infrared balloon-borne telescope. The instrument is described, including its electronics, pointing and suspension systems, and ground support equipment. Testing procedures and flight staging are discussed along with the reduction and analysis of the data acquired. The history of infrared astronomy is reviewed. General infrared techniques and the concerns of balloon astronomers are explored.

  7. Development of a Peltier-based chilled-mirror hygrometer and cloud particle counter for balloon-borne TTL observations

    NASA Astrophysics Data System (ADS)

    Sugidachi, T.; Arai, T.; Fujiwara, M.; Shimizu, K.; Ibata, K.; Kanai, Y.; Okumura, S.; Sagara, K.; Hayashi, M.

    2013-12-01

    Dehydration processes in the TTL determines the amount of water vapor entering the stratosphere. 'In-situ' measurements of water vapor and cloud particles in the TTL are still a technical challenge, and the observational evidence of dehydration is still limited. Accumulation of the observational data is thus necessary to improve the understanding of the TTL dehydration and transport processes. In this study, we have developed a hygrometer and cloud particle counter for balloon-born TTL observations. A Peltier-based digitally-controlled chilled-mirror hygrometer has been developed to measure atmospheric water vapor accurately. The developed sensor is environmentally-friendly and ease-to-handle in nature because this sensor does not use a cryogenic material to cool the mirror. In January of 2012 and 2013, we have conducted some flight tests at Biak, Indonesia (1.18°S, 136.11°E) under the Soundings of Ozone and Water in the Equatorial Region (SOWER) project to evaluate the performances of this sensor. The results of simultaneous measurements with the Cryogenic Frostpoint Hygrometer (CFH) showed that the frost point temperature from the developed sensor is consistent with that from CFH within ~0.5 K in the whole troposphere. In the stratosphere, however, it was found that the controller, which keeps the frost layer on the mirror constant, needs to be further improved. A cloud particle counter has also been developed to measure cloud-particle number density, size distribution, and the particle phase (i.e. liquid water or ice). It is a low-cost and light-weighted (~200 g) particle counter based on a pollen sensor to be used in an air purifier. This sensor consists of a light-emitting part (linearly-polarized light by laser diode) and two light-receiving parts (one detects scattering light directly, while the other detects scattering lights through a polarization plate to estimate the degree of polarization by particles). It is considered that the counts, magnitude of

  8. 1. Historic American Buildings Survey (Sold by Anita Pacheco last ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey (Sold by Anita Pacheco last owner of Pacheco Estate 8 years ago. Now owned by Pentecost Church Society. YEAR BUILT: 1830 - Salvio Pancheco Adobe, 2030 Adobe Street, Concord, Contra Costa County, CA

  9. Balloon-borne cryogenic frost-point hygrometer observations of water vapour in the tropical upper troposphere and lower stratosphere over India: First results

    NASA Astrophysics Data System (ADS)

    Sunilkumar, S. V.; Muhsin, M.; Emmanuel, Maria; Ramkumar, Geetha; Rajeev, K.; Sijikumar, S.

    2016-03-01

    Balloon-borne cryogenic frost-point hygrometer (CFH) observations of water vapour in the upper troposphere and lower stratosphere (UTLS) region carried out over India, from Trivandrum [8.5°N, 76.9°E] and Hyderabad [17.5°N, 78.6°E], were compared with that obtained from quasi-collocated Aura-Microwave Limb Sounder (MLS) satellite observations. Comparisons show a small dry bias for MLS in the stratosphere. Saturated or super-saturation layers observed near the base of tropical tropopause layer (TTL) are consistent with the quasi-collocated space-based observations of tropical cirrus from KALPANA-1 and CALIPSO. Disturbance of large scale waves in the upper troposphere appears to modulate the water vapour and cirrus distribution.

  10. Balloon-borne in situ measurements of ClO and ozone - Implications for heterogeneous chemistry and mid-latitude ozone loss

    NASA Technical Reports Server (NTRS)

    Avallone, L. M.; Toohey, D. W.; Brune, W. H.; Salawitch, R. J.; Dessler, A. E.; Anderson, J. G.

    1993-01-01

    In situ measurements of chlorine oxide (ClO) obtained on 31 March 1991 with a new balloon-borne instrument are compared to results from a photochemical model which incorporates hydrolysis of N2O5 on sulfate aerosols. With the addition of this process, there is better agreement between calculation and measurement over most of the profile, except below 20 km where observed ClO is greater by as much as a factor of four. In a model which is constrained to reproduce the observed ClO below 20 km, ozone loss by catalytic cycles involving halogen oxides becomes larger than that from NO(x), which would dominate under gas-phase or standard heterogeneous conditions.

  11. In situ stratospheric measurements of HNO3 and HCl near 30 km using the balloon-borne laser in situ sensor tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    May, R. D.; Webster, C. R.

    1989-01-01

    In situ stratospheric measurements of the concentrations of the reservoir species HNO3 and HCl made during two flights of the high-resolution (0.0005/cm) balloon-borne laser in situ sensor instrument from Palestine, Texas, are reported. A measured HNO3 volume mixing ratio of 4.3 parts per billion by volume (ppbv) at 31 km altitude is about 1 ppbv larger than previously reported measurements at 32 deg N. An HCl mixing ratio of 1.6 ppbv at 29 km is in agreement with values obtained from earlier remote sensing techniques within the experimental uncertainties. Upper limits at 31 km of 0.4 ppbv for H2O2 and 0.2 ppbv for HOCl are also derived from analyses of spectra recorded near 1252/cm.

  12. Rotating-unbalanced-mass Devices for Scanning Balloon-borne Experiments, Free-flying Spacecraft, and Space Shuttle/space Station Experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1990-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  13. Development of balloon-borne CO2 sonde: CO2 vertical profile (0-10km) observations and comparison with the air craft measurements

    NASA Astrophysics Data System (ADS)

    Ouchi, M.; Matsumi, Y.; Nakayama, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Tanaka, T.; Morino, I.; Uchino, O.

    2012-12-01

    The atmospheric CO2 concentration has drastically increased since the Industrial Revolution due to the mass consumption of fossil fuels and natural gas by human activities. CO2 is considered to be a major factor of global warming; therefore it is important to measure CO2 correctly. CO2 vertical profile measurement is the key to estimate CO2 sources and sinks in high precision. However, current CO2 monitoring sites are limited and there are few CO2 vertical profile measurements. We have been developing a balloon-borne instrument that can measure the vertical distribution of CO2 in any place in the world under any kind of weather conditions (CO2 sonde). The target specifications of altitude range is from surface to 10 km. Time resolution is 1min. The CO2 sensor, originally developed for upper air sounding by our team, is based on the non-dispersed infrared absorption spectroscopy technique (NDIR) at the wavelengths of 4.0 and 4.3 micrometer. The data of the optical infrared absorption are transmitted through a GPS sonde with temperature, humidity and GPS data every second. In this study, we will show simultaneous measurement campaigns of the balloon-borne instruments and in-situ aircraft measurements in January and February 2011 in the Tokyo metropolitan area in Japan. We will present the comparisons between the results of CO2 sonde (5 flights) and two types of aircraft measurements. One is observed by the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) and the other is chartered flight measurements operated by NIES/JAXA.

  14. Bright Points in the Quiet Sun as Observed in the Visible and Near-UV by the Balloon-borne Observatory SUNRISE

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.; Martínez Pillet, V.; Hirzberger, J.; Feller, A.; Bonet, J. A.; Bello González, N.; Franz, M.; Schüssler, M.; Barthol, P.; Berkefeld, T.; del Toro Iniesta, J. C.; Domingo, V.; Gandorfer, A.; Knölker, M.; Schmidt, W.

    2010-11-01

    Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here, we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using SUNRISE balloon-borne observatory data of the quiet Sun at the disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm, we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m s-1, but some display strong down- or upflows reaching a few km s-1.

  15. Optimising a balloon-borne polarimeter in the hard X-ray domain: From the PoGOLite Pathfinder to PoGO+

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Jackson, M.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Takahashi, H.; Pearce, M.

    2016-09-01

    PoGOLite is a balloon-borne hard X-ray polarimeter dedicated to the study of point sources. Compton scattered events are registered using an array of plastic scintillator units to determine the polarisation of incident X-rays in the energy range 20-240 keV. In 2013, a near circumpolar balloon flight of 14 days duration was completed after launch from Esrange, Sweden, resulting in a measurement of the linear polarisation of the Crab emission. Building on the experience gained from this Pathfinder flight, the polarimeter is being modified to improve performance for a second flight in 2016. Such optimisations, based on Geant4 Monte Carlo simulations, take into account the source characteristics, the instrument response and the background environment which is dominated by atmospheric neutrons. This paper describes the optimisation of the polarimeter and details the associated increase in performance. The resulting design, PoGO+, is expected to improve the Minimum Detectable Polarisation (MDP) for the Crab from 19.8% to 11.1% for a 5 day flight. Assuming the same Crab polarisation fraction as measured during the 2013 flight, this improvement in MDP will allow a 5σ constrained result. It will also allow the study of the nebula emission only (Crab off-pulse) and Cygnus X-1 if in the hard state.

  16. Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS

    NASA Astrophysics Data System (ADS)

    Ghysels, Mélanie; Riviere, Emmanuel D.; Khaykin, Sergey; Stoeffler, Clara; Amarouche, Nadir; Pommereau, Jean-Pierre; Held, Gerhard; Durry, Georges

    2016-03-01

    In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, São Paulo state, Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within small-volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for balloon-borne measured stratospheric water mixing ratio constitutes one of the best agreement reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B data sets are mutually consistent.

  17. Simultaneous balloon-borne measurements of the key inorganic bromine species BrO and BrONO2 in the stratosphere: DOAS and MIPAS-B evaluation

    NASA Astrophysics Data System (ADS)

    Kazarski, Sebastian; Maucher, Guido; Ebersoldt, Andreas; Butz, André; Friedl-Vallon, Felix; Höpfner, Michael; Kleinert, Anne; Nordmeyer, Hans; Oelhaf, Hermann; Pfeilsticker, Klaus; Sinnhuber, Björn-Martin; Wetzel, Gerald; Orphal, Johannes

    2015-04-01

    Inorganic bromine contributes to a loss of stratospheric ozone of about 25 - 30%. Past studies have demonstrated several uncertainties in the photochemistry of stratospheric bromine, especially by considering the three body reaction (kBrONO2) BrO + NO2 + M → BrONO2 + M, and the photolysis frequencies of BrONO2 (jBrONO2). Hence, an improved knowledge of the ratio jBrONO2/kBrONO2 is crucial to better assess the bromine-related loss of ozone as well as the total amount of bromine in the stratosphere. Here, we report on the first simultaneous balloon-borne measurements of NO2, BrO, and BrONO2 in the stratosphere, performed over Timmins (Ontario, 49 °N, Canada) on Sept., 7th and 8th, 2014. During the flight the targeted species were monitored by remote sensing in the UV, visible and mid-IR spectral ranges by Differential Optical Absorption Spectroscopy (DOAS) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B), respectively. The analysis and interpretation of the measurements involves radiative transfer as well as photochemical modelling. Major features of the applied techniques are reported and first results of the DOAS as well as MIPAS-B evaluation are discussed. Further investigations address inter-comparisons of the retrieved NO2, BrO, and O3 concentrations and volume mixing ratios, to demonstrate validations of both evaluation methods.

  18. SPECIES: a versatile spectrometer based on optical-feedback cavity-enhanced absorption for in situ balloon-borne and airborne measurements

    NASA Astrophysics Data System (ADS)

    Jacquet, Patrick; Catoire, Valery; Robert, Claude; Chartier, Michel; Huret, Nathalie; Desbois, Thibault; Marocco, Nicola; Kassi, Samir; Kerstel, Eric; Romanini, Daniele

    2015-04-01

    Over the last twenty years, thanks to significant technological advances in measurement techniques, our understanding of the chemistry and dynamics of the upper troposphere and stratosphere has progressed significantly. However some key questions remain unsolved, and new ones arise in the changing climate context. The full recovery of the ozone layer and the delay of recovery, the impact of the climate change on the stratosphere and the role of this one as a feedback are almost unknown. To address these challenges, one needs instruments able to measure a wide variety of trace gas species simultaneously with a wide vertical range. In this context, LPC2E and LIPHY are developing a new balloon-borne and airborne instrument: SPECIES (SPECtromètre Infrarouge à lasErs in Situ, i.e. in-Situ Infrared lasEr SPECtrometer). Based on the Optical Feedback Cavity Enhanced Spectroscopy technique, combined with mid-infrared quantum cascade lasers, this instrument will offer unprecedented performances in terms of the vertical extent of the measurements, from ground to the middle stratosphere, and the number of molecular species simultaneously measured with sub-ppb detection limits (among others: NO, N2O, HNO3, H2O2, HCl, HOCl, CH3Cl, COF2, HCHO, HCOOH, O3, NH3 NO2, H2O, OCS, SO2). Due to high frequency measurement (>0.5 Hz) it shall offer very high spatial resolution (a few meters).

  19. Planetary Science with Balloon-Borne Telescopes: A Summary of the BOPPS Mission and the Planetary Science that may be Possible Looking Forward

    NASA Astrophysics Data System (ADS)

    Kremic, T.; Cheng, A.; Hibbitts, K.; Young, E. F.

    2015-09-01

    well as some of the residual motion from the gondola that was not addressed by the gondola's coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge, but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored, and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance/characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.

  20. Balloon-Borne Gamma-Ray Polarimeter (PoGO) to Study Black Holes, Pulsars, and AGN Jets: Design and Calibration(SULI)

    SciTech Connect

    Apte, Zachary; /Hampshire Coll. /SLAC

    2005-12-15

    Polarization measurements at X-ray and gamma-ray energies can provide crucial information on the emission region around massive compact objects such as black holes and neutron stars. The Polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from such astrophysical objects in the 30-100 keV range, under development by an international collaboration with members from United States, Japan, Sweden and France. The PoGO instrument has been designed by the collaboration and several versions of prototype models have been built at SLAC. The purpose of this experiment is to test the latest prototype model with a radioactive gamma-ray source. For this, we have to polarize gamma-rays in a laboratory environment. Unpolarized gamma-rays from Am241 (59.5 keV) were Compton scattered at around 90 degrees for this purpose. Computer simulation of the scattering process in the setup predicts a 86% polarization. The polarized beam was then used to irradiate the prototype PoGO detector. The data taken in this experiment showed a clear polarization signal, with a measured azimuthal modulation factor of 0.35 {+-} 0.02. The measured modulation is in very close agreement with the value expected from a previous beam test study of a polarized gamma-ray beam at the Argonne National Laboratories Advanced Photon Source. This experiment has demonstrated that the PoGO instrument (or any other polarimeter in the energy range) can be tested in a libratory with a simple setup to a similar accuracy.

  1. Abundance of the Radioactive Be-10 in the Cosmic Radiation up to 2 GeVnucleon-l with the Balloon-borne Instrument ISOMAX1998

    NASA Technical Reports Server (NTRS)

    Hams, T.; Barbier, L. M.; Bremerich, M.; Christian, E. R.; deNolfo, G. A.; Geier, S.; Goebel, H.; Gupta, S. K.; Hof, M.; Menn, W.

    2004-01-01

    The Isotope Magnet Experiment (ISOMAX) a balloon-borne superconducting magnet spectrometer was designed to measure the isotopic composition of the light isotopes (3 less than or equal to Z less than or equal to 8) of the cosmic radiation up to 4 GeV nucleon (exp -1) with a mass resolution of better than 0.25 amu by using the velocity vs. rigidity technique. To achieve this stringent mass resolution ISOMAX was comprised of three major detector systems, a magnetic rigidity spectrometer with a precision drift chamber tracker in conjunction with a three-layer time-of-flight system and two silica-aerogel Cherenkov counters for the velocity determination. A special emphasis of the ISOMAX program was the accurate measurement of radioactive Be-10 with respect to its stable neighbor isotope Be-9, which provides important constraints on the age of cosmic rays in the Galaxy. ISOMAX had its first balloon flight on August 4-5, 1998, from Lynn Lake, Manitoba, Canada. Thirteen hours of data were recorded during this flight at a residual atmosphere of less than 5 g per square centimeter. The isotopic ratio at the top of the atmosphere for Be-10/Be-9 was measured to be 0.195 plus or minus 0.036 (statistical) plus or minus 0.039 (systematic) between 0.26 - 1.03GeV nucleon (exp -1) and 0.317 plus or minus 0.109 (statistical) plus or minus 0.042 (systematic) between 1.13 - 2.03GeV nucleon(exp -1). This is the first measurement of its kind above 1 GeV nucleon (exp -1). ISOMAX results tend to be higher than predictions from current propagation models.

  2. Constraints for the photolysis rate and the equilibrium constant of ClO-dimer from airborne and balloon-borne measurements of chlorine compounds

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Khosravi, Maryam; Urban, Joachim; Canty, Timothy; Salawitch, Ross J.; Toon, Geoffrey C.; Küllmann, Harry; Notholt, Justus

    2014-06-01

    We analyze measurements of ClO across the terminator taken by the Airborne Submillimeter Radiometer (ASUR) in the activated vortices of the Arctic winters of 1995/1996, 1996/1997, and 1999/2000 to evaluate the plausibility of various determinations of the ClO-dimer photolysis cross section and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. We use measured ClO during sunlit conditions to estimate total active chlorine (ClOx). As the measurements suggest nearly full chlorine activation in winter 1999/2000, we compare ClOx estimates based on various photolysis frequencies of ClO-dimer with total available inorganic chlorine (Cly), estimated from an N2O-Cly correlation established by a balloon-borne MkIV interferometer measurement. Only ClO-dimer cross sections leading to the fastest photolysis frequencies in the literature (including the latest evaluation by the Jet Propulsion Laboratory) give ClOx mixing ratios that overlap with the estimated range of available Cly. Slower photolysis rates lead to ClOx values that are higher than available Cly. We use the ClOx calculated from sunlit ClO measurements to estimate ClO in darkness based on different equilibrium constants, and compare it with ASUR ClO measurements before sunrise at high solar zenith angles. Calculations with equilibrium constants published in recent evaluations of the Jet Propulsion Laboratory give good agreement with observed ClO mixing ratios. Equilibrium constants leading to a higher ClO/ClOx ratio in darkness yield ClO values that tend to exceed observed abundances. Perturbing the rates for the ClO + BrO reaction in a manner that increases OClO formation and decreases BrCl formation leads to lower ClO values calculated for twilight conditions after sunset, resulting in better agreement with ASUR measurements.

  3. Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.; Ade, Peter A. R.; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2016-06-01

    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2.‧5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p \\propto {{\\boldsymbol{N}}}-0.45 {{\\boldsymbol{S}}}-0.60, where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations.

  4. Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; VöMel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; Valverde Canossa, J. M.; Selkirk, H. B.; Oltmans, S. J.

    2010-09-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10°N) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  5. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; ValverdeCanossa, J. M.; Selkirk, H. B.; Oltmans, S. J.

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  6. Detection in the summer polar stratosphere of air plume pollution from East Asia by balloon-borne in situ CO measurement

    NASA Astrophysics Data System (ADS)

    Huret, N.; Krysztofiak, G.; Thiéblemont, R.; Catoire, V.; Payan, S.; Té, Y. V.; Jegou, F.; Drouin, M.; Robert, C.

    2011-12-01

    The SPIRALE (french acronym for infrared absorption spectroscopy by tunable laser diodes) and SWIR-balloon (shortwave infrared Fourier transform spectrometer in nadir-looking) balloon-borne instruments have been launched in the Arctic polar region (Kiruna, Sweden, 67.9°N - 21.1°E) during summer on 7 and 24 August 2009 and on 14 August 2009, respectively. SPIRALE instrument performed in situ measurements of several trace gases including CO and O3 between 10 and 34 km height, with very high vertical resolution (~5 m) and SWIR-balloon instrument measured total column of several species including CO. The balloon CO measurements for the 3 dates are compared with the satellite data from IASI instrument and show a good agreement. However, the stratospheric profile from SPIRALE on 7 August 2009 presents specific structures associated with a tropical intrusion in the low levels (320-380K potential temperature corresponding to 10-14 km altitude) with respect to the 24 august measurements, which is confirmed by the 15-20% increase of the total column of IASI. Their interpretation is made with the help of results from several modelling tools (MIMOSA, FLEXTRA, REPROBUS and GIRAFE) and from satellite data (MODIS on board TERRA/AQUA, IASI instrument on board MetOp-A and GEOS). The results suggest the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer. The SPIRALE O3 vertical profile was also used in correlation with CO to calculate the proportion of recent air in polar stratosphere. SPIRALE and SWIR-balloon flights were part of the balloon campaign conducted by CNES within the frame of the StraPolÉté project funded by French agencies ANR, CNES and IPEV, contributing to the International Polar Year.

  7. Overview of balloon-borne aerosol measurements with the aerosol counter LOAC, with focus on the ChArMEx 2013 campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Renard, Jean-Baptiste

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not

  8. [Anita: a Maya peasant woman on the rise].

    PubMed

    Elmendorf, M

    1980-01-01

    Chan Kom, a village of 623 inhabitants in the Yucatan peninsula whose population lives primarily by slash-and-burn maize agriculture, has been well studied by social scientists for over 50 years. The roles of women during that time have been interpreted by men, and it is the object of this article to examine the needs and desires of women and the ways in which they seek to improve life for themselves and their families. Anita at 38 has 7 living children from 10 pregnancies. Her husband is a subsistence farmer who works part time at a variety of jobs. The oldest daughter married at 17. A 16-year-old son Emiliano attended an agricultural vocational school to which his family sent him after great sacrifice. After completing school Emiliano became a promoter for the National Indigenist Institute. A daughter finishiing primary school wished to continue studying but her father objected that she would probably get married and her mother worried about her safety if she left home to study. She and a sister were sent to live with the daughter of her mother's comadre in a nearby city in the hope that she would learn office work. A 12-year-old son at home, who is not such a good student, helps the father in farming. 2 little girls are the only other children still at home. Anita's last 2 deliveries were difficult and dangerous, and for 3 years she and her husband have been attempting to avoid another pregnancy, using a combination of withdrawal and rhythm. She and her husband discussed vasectomy with a Maya-speaking North American doctor, but came to no decision. Anita states that many Maya women do not menstruate between pregnancies, or do so only once or twice. Anita has had 2 miscarriages and 2 daughters since deciding that she wanted no more children. She accepted a prescription for pills but was afraid to take them. Fear of disturbing the "tipte," a regulating organ believed by Maya women to lie behind the navel, prevented her from choosing sterilization. PMID:12264283

  9. Balloon Borne Soundings of Water Vapor, Ozone and Temperature in the Upper Tropospheric and Lower Stratosphere as Part of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-2)

    NASA Technical Reports Server (NTRS)

    Voemel, Holger

    2004-01-01

    The main goal of our work was to provide in situ water vapor and ozone profiles in the upper troposphere and lower stratosphere as reference measurements for the validation of SAGE III water vapor and ozone retrievals. We used the NOAA/CMDL frost point hygrometer and ECC ozone sondes on small research balloons to provide continuous profiles between the surface and the mid stratosphere. The NOAA/CMDL frost point hygrometer is currently the only lightweight balloon borne instrument capable of measuring water vapor between the lower troposphere and middle stratosphere. The validation measurements were based in the arctic region of Scandinavia for northern hemisphere observations and in New Zealand for southern hemisphere observations and timed to coincide with overpasses of the SAGE III instrument. In addition to SAGE III validation we also tried to coordinate launches with other instruments and studied dehydration and transport processes in the Arctic stratospheric vortex.

  10. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  11. CO2 and O3 vertical distributions over the Showa Station, Antarctica before and during the ozone hole formation in 2014, measured by balloon-borne CO2 and O3 instruments

    NASA Astrophysics Data System (ADS)

    Miyaji, K.; Matsumi, Y.; Nakayama, T.; Ouchi, M.; Imasu, R.; Kawasaki, M.

    2015-12-01

    The vertical and horizontal distributions of CO2 mixing ratio in the troposphere and stratosphere are considered to include the information on the source and sink of CO2, as well as transport of air masses in the atmosphere. However, only a limited number of vertical profiles for CO2 mixing ratio, which were typically obtained based on aircraft-based observations, are available. We have originally developed a new balloon-born instrument (CO2 sonde) to measure CO2 vertical profile from surface up to about 10 km in altitude. The ozone hole formation is typically observed in the early spring over Antarctica. To our knowledge, no study focusing on the change in the CO2 vertical profile before and after the ozone hole formation has been reported. In the present study, we launched four CO2 sondes at Syowa Station, Antarctica between June and October in 2014 to obtain CO2 vertical distributions before and during the ozone hole formation. Observations of ozone vertical distributions using traditional ozone sondes were also conducted on the same days. In the presentation, we will report the relationships between the vertical distributions of CO2 and ozone.

  12. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  13. Measurement of the Abundance of Radioactive Be-10 and Other Light Isotopes in Cosmic Radiation Up to 2 GeV /Nucleon with the Balloon-Borne Instrument Isomax

    NASA Technical Reports Server (NTRS)

    Hams, T.; Barbier, L. M.; Bremerich, M.; Christian, E. R.; deNolfo, G. A.; Geier, S.; Goebel, H.; Gupta, S. K.; Hof, M.; Menn, W.

    2004-01-01

    The Isotope Magnet Experiment (ISOMAX), a balloon-borne superconducting magnet spectrometer, was designed to measure the isotopic composition of the light isotopes (3 les than or = Z less than or = 8) of cosmic radiation up to 4 GeV/nucleon with a mass resolution of better than 0.25 amu by using the velocity versus rigidity technique. To achieve this stringent mass resolution, ISOMAX was composed of three major detector systems: a magnetic rigidity spectrometer with a precision drift chamber tracker in conjunction with a three-layer time-of-flight system, and two silica-aerogel Cerenkov counters for velocity determination. A special emphasis of the ISOMAX program was the accurate measurement of radioactive Be-10 with respect to its stable neighbor isotope Be-9, which provides important constraints on the age of cosmic rays in the Galaxy. ISOMAX had its first balloon flight on 1998 August 4-5 from Lynn Lake, Manitoba, Canada. Thirteen hours of data were recorded during this flight at a residual atmosphere of less than 5 g/sq cm. The isotopic ratio at the top of the atmosphere for Be-10/Be-9 was measured to be 0.195 +/- 0.036 (statistical) +/- 0.039 (systematic) between 0.26 and 1.03 GeV/nucleon and 0.317 +/- 0.109(statistical) +/- 0.042(systematic) between 1.13 and 2.03 GeV/nucleon. This is the first measurement of its kind above l GeV/nucleon. ISOMAX results tend to be higher than predictions from current propagation models. In addition to the beryllium results, we report the isotopic ratios of neighboring lithium and boron in the energy range of the time-of-flight system (up to approx. 1 GeV/nucleon). The lithium and boron ratios agree well with existing data and model predictions at similar energies.

  14. Balloon-borne In-Situ Measurements of ClO and ClONO2 in the late 2010/2011 Arctic Polar Vortex: Instrument Calibration and Results

    NASA Astrophysics Data System (ADS)

    Stroh, F.; Heinecke, F.; Afchine, A.; Barthel, J.; Engel, A.; Grooß, J.; von Hobe, M.; Richter, A.; Schönfeld, A.; Suminska, O.; Tan, V.

    2011-12-01

    Since 1995 we have carried out balloon-borne in-situ measurements of ClO and BrO. Lately we have designed an upgraded balloon instrument to additionally measure the ClO dimer and the reservoir species ClONO2. The halogen oxide measurements are carried out employing the chemical conversion resonance fluorescence technique (Brune et al., 1989) in a fast flow through two parallel ducts generated by modified roots blowers. The inlet of one duct is equipped with a dedicated heating element enabling controlled air temperatures in excess of 550K at pressures lower than 50 hPa. This causes the ClO dimer to thermolyze forming two ClO molecules at around 380K as well as additional thermolysis of ClONO2 to ClO and NO2 at around 540K. The ClO generated within the thermolysis is then detected on top of the ambient ClO. Temperature cycling and intercomparisons with the first unheated duct allow the differentiation of the chlorine species. Details of the instrumental setup, instrument calibration, and performance will be discussed. Profiles for ClO and ClONO2 from a flight carried out from ESRANGE near Kiruna, Sweden, on April-01-2011 in the edge region of the degrading arctic vortex will be presented marking the first ClONO2 in-situ measurements above research aircraft altitudes (20km). Brune, W. H., et al., Insitu Observations Of ClO In The Antarctic - Er-2 Aircraft Results From 54-Degrees-S To 72-Degrees-S Latitude, Journal Of Geophysical Research-Atmospheres, 94, 16649-16663, 1989.

  15. Vertical distribution of non-volatile species of upper tropospheric and lower stratospheric aerosol observed by balloon-borne optical particle counter above Ny-Aalesund, Norway in the winter of 2015

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Hayashi, M.; Shibata, T.; Neuber, R.; Ruhe, W.

    2015-12-01

    The polar lower stratosphere is the sink area of stratospheric global circulation. The composition, concentration and size distribution of aerosol in the polar stratosphere are considered to be strongly influenced by the transportations from mid-latitude to polar region and exchange of stratosphere to troposphere. In order to study the aerosol composition and size distribution in the Arctic stratosphere and the relationship between their aerosol microphysical properties and transport process, we carried out balloon-borne measurement of aerosol volatility above Ny-Aalesund, Norway in the winter of 2015. In our observation, two optical particle counters and a thermo denuder were suspended by one rubber balloon. A particle counter measured the heated aerosol size distribution (after heating at the temperature of 300 degree by the thermo denuder) and the other measured the ambient aerosol size distribution during the observation. The observation was carried out on 15 January, 2015. Balloon arrived at the height of 30km and detailed information of aerosol size distributions in upper troposphere and lower stratosphere for both heated aerosol and ambient aerosol were obtained. As a Result, the number ratio of non-volatile particles to ambient aerosol particles in lower stratosphere (11-15km) showed different feature in particle size range of fine mode (0.3

  16. Balloon-borne radiometer profiler: Field observations

    SciTech Connect

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given.

  17. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986

    SciTech Connect

    Weiler, K.W.

    1987-01-01

    The scientific aims and technological implementation of planned and proposed space radio observatories are examined in reviews and reports. Observations at mm and submm, cm, dkm, and hm wavelengths are considered, and particular attention is given to astrophysical problems requiring space-based observations; radio astronomy from the moon; coordination of ground, airborne, balloon-borne, and space-based mm and submm astronomy; microwave-background observations at 15-90 GHz, the Large Deployable Reflector, the Space Station mm-wave facility, the use of TDRSS as an orbiting VLBI observatory, and interstellar scattering and resolution limitations. Also discussed are Quasat, Astro-Array, VLBA, solar-system radio astronomy at low frequencies, radio emission from coronal and interplanetary shocks, and Tasmanian LF Galactic background surveys.

  18. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France

  19. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France

  20. Past Cultural Restrictions in Anita Rau Badami's "Can You Hear the Night Bird Call?" and "'Tamarind Mem"

    ERIC Educational Resources Information Center

    Johny, S.

    2014-01-01

    The objective of the thesis is to bring out the trauma of the immigrants who are stuck up by the nostalgic and glorious past in their alien world. The cultural and social restrictions faced by the characters who live in their separate but intertwined worlds are brought in a detailed manner. Anita Rau Badami, one of the newest writers in the field…

  1. Comparative study of MC-50 and ANITA neutron beams by using 55 nm SRAM

    NASA Astrophysics Data System (ADS)

    Baeg, Sanghyeon; Lee, Soonyoung; Bak, Geun Yong; Jeong, Hyunsoo; Jeon, Sang Hoon

    2012-09-01

    Single event upset (SEU) is mainly caused by neutrons in the terrestrial environment. In addition, SEU effects become more and more problematic as technology scales. It is, therefore, important to understand the SEU behaviors of semiconductor devices under neutron reactions. ANITA (atmospheric-like neutrons from thick target) in TSL (The Svedberg Laboratory), Sweden, resembles the neutron energy and flux spectrum to neutrons at the terrestrial level and are typically used to estimate the soft error rate (SER). On the other hand, the neutron energy and flux spectrum from the MC-50 cyclotron at KIRAMS (Korea Institute of Radiological & Medical Sciences) differs greatly from the atmospheric environment. The main objective of this work is finding the efficacy of the neutron beam at KIRAMS for a SEU analysis by using a comparative analysis; 55 nm SRAM is used to determine SEU difference under the beams at two different locations. Since MCU (multi-cell upset) is the dominant effect in emerging technologies with smaller critical charges, the MCU cross sections from the two different beam tests are compared.

  2. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  3. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    NASA Astrophysics Data System (ADS)

    Frisoni, Manuela

    2016-03-01

    ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1) containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2) containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG) of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E) are shown and discussed in this paper.

  4. The HEROES Balloon-borne Hard X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen; Gaskin, Jessica; Christe, Steven; Shih, Albert Y.; Swartz, Douglas A.; Tennant, Allyn F.; Ramsey, Brian; Kilaru, Kiranmayee

    2014-08-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules (HP 33"), each consisting of 13-14 nickel replicated optics shells and 8 matching Xenon-filled position-sensitive proportional counter detectors (dE/E=0.05 @ 60 keV). Our targets included the Sun, the Crab Nebula and pulsar and the black hole binary GRS 1915+105. HEROES was pointed using a day/night star camera system for astrophysical observations and a newly developed Solar Aspect System for solar observations (with a shutter protecting the star camera.) We have successfully imaged the Crab Nebula. Analyses for GRS 1915+105 and the Sun are ongoing. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, preliminary results, and plans for follow-on missions.

  5. Astrophysical Observations with the HEROES Balloon-borne Payload

    NASA Astrophysics Data System (ADS)

    Wilson, Colleen; Gaskin, J.; Christe, S.; Shih, A. Y.; Swartz, D. A.; Tennant, A. F.; Ramsey, B.

    2014-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules, each consisting of 13-14 nickel replicated optics shells and 8 Xenon-filled position-sensitive proportional counter detectors. HEROES is unique in that it is the first hard X-ray telescope that will observe the Sun and astrophysical targets in the same balloon flight. Our astrophysics targets include the Crab nebula and pulsar and the black hole binary GRS 1915+105. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, and preliminary astrophysics results.

  6. Proliferation kinetics of paramecium tetraurelia in balloon-borne experiments

    SciTech Connect

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Rousseille, R.; Planel, H.

    1982-06-01

    Experiments were carried out to demonstrate the effect of cosmic radiation, at a balloon-flight ceiling of about 36,500 m (120,000 ft) on single-cell organism proliferation. Paramecium tetraurelia were placed in air-tight containers and maintained at 25 degrees +/- 0.1 degrees C. Cellular growth was determined by cell count, either after recovery or during the flight, by means of an automatic fixation device. Dosimetry was performed by a tissue equivalent proportional counter and was of about 0.5 mrad/h. Flight ceiling duration ranged from 48 min - 22 h. A secondary stimulating effect of growth rate, preceded by a temporary decrease, was observed after recovery. Because of the high bacterial concentration in the trans-Mediterranean flight culture medium, the temporary drop of the growth rate, due to the radiolysis products, disappears. Researchers consider that the stimulating effect can be the result of enzymatic intracellular scavenging of radiolysis products generated in the cell.

  7. Balloon-borne match measurements of midlatitude cirrus clouds

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Luo, B. P.; Engel, I.; Wienhold, F. G.; Sprenger, M.; Krieger, U. K.; Weers, U.; Romanens, G.; Levrat, G.; Jeannet, P.; Ruffieux, D.; Philipona, R.; Calpini, B.; Spichtinger, P.; Peter, T.

    2014-07-01

    Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg-1) and high crystal number densities (> 1 cm-3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2-15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear-sky or cloudy-sky conditions, highlighting the importance of proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive 4 km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or - much more likely - by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed-phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the special humidity conditions in the upper troposphere.

  8. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  9. GRAPE: a balloon-borne gamma-ray polarimeter

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Bancroft, Christopher; Bloser, Peter F.; Connor, Taylor; Legere, Jason; Ryan, James M.

    2009-08-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module that has been calibrated at a polarized hard X-ray beam and flown on an engineering balloon test flight. A full-scale scientific balloon payload, consisting of up to 36 modules, is currently under development. The first flight, a one-day flight scheduled for 2011, will verify the expected scientific performance with a pointed observation of the Crab Nebula. We will then propose long-duration balloon flights to observe gamma-ray bursts and solar flares.

  10. Thermal Control of the Balloon-Borne HEROES Telescope

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian

    2013-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) telescope is scheduled to fly on a high altitude balloon from Fort Sumner, New Mexico in the Fall of 2013. Once it reaches an altitude of 40km it will observe the Sun, Crab Nebula, and other astrophysical objects in the hard X-Ray spectrum (20-75keV) for around 28 hours. The HEROES project is a joint effort between Marshall and Goddard Space Flight Centers (MSFC and GSFC), and will utilize the High Energy Replicated Optics (HERO) telescope, which last flew in 2011 in Australia. The addition of new systems will allow the telescope to view the Sun, and monitor the mechanical alignment of the structure during flight. This paper will give an overview of the telescope, and then provide a description of the thermal control method used on HEROES. The thermal control is done through a passive cold-bias design. Detailed thermal analyses were performed in order to prove the design. This will be discussed along with the results of the analyses. HEROES is funded by the NASA Hands-On Project Experience (HOPE) Training Opportunity. The HOPE opportunity provides early career employees within NASA hands on experience with a yearlong flight project. HOPE was awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.

  11. BALLOON-BORNE PARTICULATE SAMPLING FOR MONITORING POWER PLANT EMISSIONS

    EPA Science Inventory

    The report describes a lightweight remote-controlled sampler, carried aloft by a tethered balloon, that has been developed to collect particulates from the plumes of fossil-fueled power plants at various downwind distances. The airborne sampler is controlled from the ground by a ...

  12. Astrophysical Observations with the HEROES Balloon-borne Payload

    NASA Technical Reports Server (NTRS)

    Wilson, C.; Gaskin, J.; Christe, S.; Shih, A. Y.; Swartz, D. A.; Tennant, A. F.; Ramsey, B.

    2014-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules, each consisting of 13-14 nickel replicated optics shells and 8 Xenon-filled positionsensitive proportional counter detectors. HEROES is unique in that it is the first hard X-ray telescope that will observe the Sun and astrophysical targets in the same balloon flight. Our astrophysics targets include the Crab nebula and pulsar and the black hole binary GRS 1915+105. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, and preliminary astrophysics results.

  13. The HEROES Balloon-Borne Hard X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C.; Gaskin, J.; Christe, S.; Shih, A. Y.; Swartz, D. A.; Tennant, A. F.; Ramsey, B.; Kilaru, K.

    2014-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules (HPD approximately 33" as flown), each consisting of 13-14 nickel replicated optics shells and 8 matching Xenon-filled position-sensitive proportional counter detectors (dE/E=0.05 @ 60 keV). Our targets included the Sun, the Crab Nebula and pulsar and the black hole binary GRS 1915+105. HEROES was pointed using a day/night star camera system for astrophysical observations and a newly developed Solar Aspect System for solar observations (with a shutter protecting the star camera.) We have successfully detected the Crab Nebula. Analyses for GRS 1915+105 and the Sun are ongoing. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, preliminary results, and plans for follow-on missions.

  14. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  15. Educational Radio.

    ERIC Educational Resources Information Center

    Arafeh, Sousan

    1999-01-01

    Examines the effectiveness of the radio in education and the crucial role of the radio in distance education in first half of the 20th century; dramatic social changes in the 1960s that led to a review of educational institutions and of educational media; and the radio today as a neglected but inexpensive medium of communication that should be…

  16. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  17. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  18. Radio receivers

    NASA Astrophysics Data System (ADS)

    Bankov, V. N.; Barulin, L. G.; Zhodzishskii, M. I.; Malyshev, I. V.; Petrusinskii, V. V.

    The book is concerned with the design of microelectronic radio receivers and their components based on semiconductor and hybrid integrated circuits. Topics discussed include the hierarchical structure of radio receivers, the synthesis of structural schemes, the design of the principal functional units, and the design of radio receiver systems with digital signal processing. The discussion also covers the integrated circuits of multifunctional amplifiers, analog multipliers, charge-transfer devices, frequency filters, piezoelectronic devices, and microwave amplifiers, filters, and mixers.

  19. Educational Radio.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report summarizes information about the history, technology, and operation of educational radio in the U.S. Also presented are the Federal Communications Commission's (FCC) rules and regulations concerning the licensing and channel assignment of educational radio, and its auxiliary special broadcast services. Included are the application…

  20. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  1. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  2. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  3. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  4. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  5. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  6. A technique for detection of PeV neutrinos using a phased radio array

    NASA Astrophysics Data System (ADS)

    Vieregg, A. G.; Bechtol, K.; Romero-Wolf, A.

    2016-02-01

    The detection of high energy neutrinos (1015-1020 eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (~1 PeV) and the predicted cosmogenic flux at higher energies (~1018 eV) . Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of ice to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.

  7. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  8. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  10. Impact of Postoperative Radiation Therapy on Survival in Patients With Complete Resection and Stage I, II, or IIIA Non-Small-Cell Lung Cancer Treated With Adjuvant Chemotherapy: The Adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial

    SciTech Connect

    Douillard, Jean-Yves Rosell, Rafael; De Lena, Mario; Riggi, Marcello; Hurteloup, Patrick; Mahe, Marc-Andre

    2008-11-01

    Purpose: To study the impact of postoperative radiation therapy (PORT) on survival in the Adjuvant Navelbine International Trialist Association (ANITA) randomized study of adjuvant chemotherapy. Methods and Materials: ANITA is a randomized trial of adjuvant cisplatin and vinorelbine chemotherapy vs. observation in completely resected non-small-cell lung carcinoma (NSCLC) Stages IB to IIIA. Use of PORT was recommended for pN+ disease but was not randomized or mandatory. Each center decided whether to use PORT before initiation of the study. We describe here the survival of patients with and without PORT within each treatment group of ANITA. No statistical comparison of survival was performed because this was an unplanned subgroup analysis. Results: Overall, 232 of 840 patients received PORT (33.3% in the observation arm and 21.6% in the chemotherapy arm). In univariate analysis, PORT had a deleterious effect on the overall population survival. Patients with pN1 disease had an improved survival from PORT in the observation arm (median survival [MS] 25.9 vs. 50.2 months), whereas PORT had a detrimental effect in the chemotherapy group (MS 93.6 months and 46.6 months). In contrast, survival was improved in patients with pN2 disease who received PORT, both in the chemotherapy (MS 23.8 vs. 47.4 months) and observation arm (median 12.7 vs. 22.7 months). Conclusion: This retrospective evaluation suggests a positive effect of PORT in pN2 disease and a negative effect on pN1 disease when patients received adjuvant chemotherapy. The results support further evaluation of PORT in prospectively randomized studies in completely resected pN2 NSCLC.

  11. Identification of isolated NO lines in balloon-borne infrared solar spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Goldman, A.; Murcray, D. G.; Cook, G. R.; Van Allen, J. W.; Blatherwick, R. D.

    1980-01-01

    Ballon-borne infrared solar spectra at about 0.02/cm resolution show a number of atmospheric NO lines isolated from other atmospheric and solar lines in the 1830-1930/cm region. Typical spectra are presented and NO total column values are derived.

  12. HERO: A Balloon-Borne Hard-X-Ray Focusing Telescope

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian

    HERO, for High Energy Replicated Optics, is an evolutionary balloon payload featuring hard-xray grazing-incidence nickel optics. The HERO payload is designed to perform high-sensitivity, fine spatial resolution observations of galactic and extragalactic sources in an energy range that is as yer unexplored with grazing-incidence optics. A proof-of-concept flight with just 6 x-ray mirrors was completed in 2001 and captured the first focused hard-x-ray images galactic sources. Since that time, the payload has been greatly expanded and now features 100, in-house-fabricated mirror shells with an attendant large increase in sensitivity. In its current form, HERO was flown in 2007, from Fort Sumner, NM, and is schedules to fly again in September 2009, from Alice Springs, NT. Full details of the HERO payload will be provided in this presentation together with a discussion of the challenges of flying moderate resolution x-ray optics from a balloon platform.

  13. Measurement of trace stratospheric constituents with a balloon borne laser radar

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Mcgee, Thomas J.

    1990-01-01

    The objective of this research was to measure the concentration of the stratospheric hydroxyl radical and related chemical species as a function of altitude, season, and time of day. Although hydroxyl plays a very important role in the chemistry controlling stratospheric ozone, little is known about its behavior because it has been a difficult species to measure. The instrument employed in this program was a laser radar, employing the technique of remote laser induced fluorescence. This instrument offers a number of attractive features including extreme specificity and sensitivity, a straightforward relationship between observed quantity and the desired concentration, and immunity to self-contamination.

  14. Searching for Extra-solar Planets with a Diffraction-Limited Balloon Borne Telescope

    NASA Astrophysics Data System (ADS)

    Ford, H. C.; Petro, L. D.; Allen, R.; Bely, P.; Burrows, C. J.; Krist, J.; Rafal, M.; White, R. L.; Jaffe, W.; Le Poole, R.; Crocker, J.; Dopita, M. A.; Grindlay, J. E.

    1998-12-01

    Our goal is to fly a diffraction limited 2.5-m optical telescope and coronagraph on long duration balloon flights at an altitudes of 35 km above 99.99% of the Earth's atmosphere to search for Jupiter-like planets around nearby stars. Analysis of radiosonde data from Mauna Kea and the South Pole suggests that at optical wavelengths and altitudes above 20 km r0 will be much greater than 6 meters anywhere in the world. A telescope equipped with an ultra smooth mirror and/or adaptive optics and coronagraph would provide three orders of magnitude improvement over the coronagraph in the Advanced Camera for Surveys (to be installed in Hubble in May 2000), four orders of magnitude improvement over the HST WFPC-2 camera, and five orders of magnitude improvement over ground based telescopes. A 2.5-m telescope could detect Jupiters and Saturns around the brightest stars within 10 parsecs of the Earth. No present or planned HST instruments will have this capability. Before we can design, build, and fly high resolution telescopes, we must first understand the high altitude balloon environment in detail. We need to know the spatial and temporal spectrum of wavefront errors, and the differential wind forces that will act on the telescope. We must understand the balloon environment sufficiently well to be able to discharge waste heat without spoiling the local thermal environment. We will discuss the major issues for high altitude "site testing" and subsequent high-resolution observations.

  15. Space-quality data from balloon-borne telescopes: The High Altitude Lensing Observatory (HALO)

    NASA Astrophysics Data System (ADS)

    Rhodes, Jason; Dobke, Benjamin; Booth, Jeffrey; Massey, Richard; Liewer, Kurt; Smith, Roger; Amara, Adam; Aldrich, Jack; Berge, Joel; Bezawada, Naidu; Brugarolas, Paul; Clark, Paul; Dubbeldam, Cornelis M.; Ellis, Richard; Frenk, Carlos; Gallie, Angus; Heavens, Alan; Henry, David; Jullo, Eric; Kitching, Thomas; Lanzi, James; Lilly, Simon; Lunney, David; Miyazaki, Satoshi; Morris, David; Paine, Christopher; Peacock, John; Pellegrino, Sergio; Pittock, Roger; Pool, Peter; Refregier, Alexandre; Seiffert, Michael; Sharples, Ray; Smith, Alexandra; Stuchlik, David; Taylor, Andy; Teplitz, Harry; Ali Vanderveld, R.; Wu, James

    2012-10-01

    We present a method for attaining sub-arcsecond pointing stability during sub-orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at ˜1-2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermo-mechanical stability to match the pointing stability. This concept is motivated by advances in the development and testing of Ultra Long Duration Balloon (ULDB) flights which promise to allow observation campaigns lasting more than three months. The design incorporates a multi-stage pointing architecture comprising: a gondola coarse azimuth control system, a multi-axis nested gimbal frame structure with arcsecond stability, a telescope de-rotator to eliminate field rotation, and a fine guidance stage consisting of both a telescope mounted angular rate sensor and guide CCDs in the focal plane to drive a Fast-Steering Mirror. We discuss the results of pointing tests together with a preliminary thermo-mechanical analysis required for sub-arcsecond pointing at high altitude. Possible future applications in the areas of wide-field surveys and exoplanet searches are also discussed.

  16. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  17. HERO: A Balloon-Borne Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2008-01-01

    HERO, for High Energy Replicated Optics, is an evolutionary balloon payload featuring hard-x-ray grazing-incidence nickel optics. The HERO payload is designed to perform high-sensitivity, fine spatial resolution observations of galactic and extragalactic sources in an energy range that is as yet unexplored with grazing-incidence optics. A proof-of-concept flight with just 6 x-ray mirrors was completed in 2001 and captured the first focused hard-x-ray images galactic sources. Since that time, the payload has been greatly expanded and now features 100, in-house-fabricated mirror shells with an attendant large increase in sensitivity. In its current form, HERO was flown in 2007, from Fort Sumner, NM, and is schedules to fly again in September 2009, from Alice Springs, NT. Full details of the HERO payload will be provided in this presentation together with a discussion of the challenges of flying moderate resolution x-ray optics from a balloon platform.

  18. HERO: A Hard-X-Ray Balloon-Borne Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Stahl, H. Philip

    2008-01-01

    HERO, for High Energy Replicated Optics, is an evolutionary balloon payload featuring hard-X-ray grazing-incidence nickel optics. The payload provides a scientific instrument capable of high-sensitivity observations in an energy regime that is relatively unexplored at fine spatial scales, and also serves as a demonstration vehicle for in-house fabricated optics and focal plane detectors. After a proof-of-concept flight in 2001, which captured the first focused hard-X-ray images galactic sources, HERO has been significantly expanded from just 6, 3-m-focal length mirror shells to its current complement of nearly 100, 6-m-focal length mirrors. HERO was flown in 2007, from Fort Sumner, NM, and is scheduled to fly again in September 2009, from Alice Springs, NT. Full details of the payload will be provided along with preliminary data from the previous flight and science targets for the next flight, where the galactic center region will be imaged.

  19. Low energy gamma ray observations with the MPI-Compton telescope. [balloon-borne detectors

    NASA Technical Reports Server (NTRS)

    Graml, F.; Penningsfeld, F. P.; Schoenfelder, V.

    1978-01-01

    Although the evaluation of data from the first balloon-flight of a large area Compton telescope is incomplete, two preliminary results are discussed. From the measured background spectrum at float altitude, the sensitivity of the telescope for the detection of cosmic gamma ray lines is estimated. The energy spectra is determined for an enhanced gamma ray flux observed from the direction of the Seyfert galaxy NGC 4151. A schematic drawing of the telescope is presented and discussed.

  20. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Technical Reports Server (NTRS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at midlatitudes (about 45 deg N) and tropical latitudes (12-25 deg S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At +/- 0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  1. Note: A balloon-borne accelerometer technique for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Marlton, Graeme J.; Giles Harrison, R.; Nicoll, Keri A.; Williams, Paul D.

    2015-01-01

    A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s-2. Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10-3 and 10-2 m2 s-3 to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

  2. SMILE-II: Balloon-Borne Telescope for Background-Suppressed Soft Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Sawano, T.; Tanimori, T.; Kubo, H.; Takada, A.; Parker, J. D.; Mizumoto, T.; Sonoda, S.; Mizumura, Y.; Tomono, D.; Nakamura, K.; Matsuoka, Y.; Komura, S.; Sato, Y.; Nakamura, S.; Miuchi, K.; Kabuki, S.; Kishimoto, Y.; Kurosawa, S.; Iwaki, S.; Tanaka, M.; Ikeno, M.; Uchida, T.

    We have developed an Electron-Tracking Compton Camera (ETCC) for an all-sky survey at the MeV gamma-ray band. The ETCC consists of a gaseous tracker and a position sensitive scintillation camera to measure the momentum of the Compton-recoil electron and the scattering gamma ray so that we can reconstruct the energy and momentum of the incident gamma ray photon by photon. Also the ETCC has strong background rejection methods using tracking information such as the dE/dx particle identification and theCompton kinematics test. To confirm feasibility of observing celestial objects in space, we performed a balloon experiment to successfully observe the diffuse cosmic and atmospheric gamma rays, which confirmed the effectiveness of the background rejection capability. Based on the first balloon experiment result, we are developing a large ETCC and plan to launch it for the test of the imaging property. The performance of the SMILE-II ETCC is simulated and then it will obtain an effective area of 1.1 cm2 for 200 keV by improving the electron track reconstruction efficiency by a factor of about 10, which results in the detection of Crab nebula at >5σ level for several-hour observation in the middle latitude with an altitude of 40 km.

  3. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    SciTech Connect

    Pruvost, P.; Lenoble, J. ); Ovarlez, J. ); Chu, W.P. )

    1993-03-20

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at mid-latitudes ([approximately]45[degrees]N) and tropical latitudes (12[degrees]S-25[degrees]S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At [plus minus]0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more). 17 refs., 4 figs.

  4. The Asian Tropopause Aerosol Layer Through Satellite and Balloon-Borne Measurements Combined With Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Vernier, J.-P.; Fairlie, T. D.; Natarajan, M.; Wegner, T.; Baker, N.; Crawford, J.; Moore, J.; Deshler, T.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; Raj, A.; Kumar, H.; Kumar, S.; Singh, A.; Vignelles, D.; Stenchikov, G.; Wiehold, F.; Bian, J.

    2016-01-01

    The Asian Tropopause Aerosol Layer-ATAL is a confined area of enhanced aerosol associated Summer Asia Monsoon spanning from the E. Med Sea to W. China. It essentially extends from top of convective outflow over much of SE Asia Existence recognize through CALIPSO observations.

  5. Interference of sulphur dioxide to balloon-borne ECC ozone sensors over the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Kanda, I.; Basaldud, R.; Horikoshi, N.; Okazaki, Y.; Benítez Garcia, S. E.; Ortínez, A.; Ramos Benítez, V. R.; Cárdenas, B.; Wakamatsu, S.

    2014-01-01

    Abnormal decrease in the ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City. Sharp drops around 5 km a.s.l. and above were observed in November 2011, and a broad deficit in the convective boundary layer in March 2012. Various circumstantial evidence indicates that the decrease was due to interference of SO2 gas to Electrochemical Concentration Cell (ECC) ozone sensors. The sharp drops in November 2011 are considered to be caused by the SO2 plume from the Popocatépetl volcano to the south-east of Mexico City. Response experiments of the ECC sensor to representative atmospheric trace gases showed that only SO2 could generate the observed abrupt drops. The vertical structure of the plume reproduced by a Lagrangian particle diffusion simulation also supported this assumption. The near-ground deficit in March 2012 is considered to be generated by the SO2 plume from the Tula industrial complex to the north-west of Mexico City. Sporadic large SO2 emission is known to occur from this region, and before and at the ozonesonde launching time, large intermittent peaks of SO2 concentration were recorded at the ground-level monitoring stations. The difference between the O3 concentration obtained by ozonesonde and that by UV-based O3 monitor was consistent with the SO2 concentration measured by a UV-based monitor on the ground. The plume vertical profiles estimated by the Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in Mexico City revealed that the Popocatépetl effect is most likely to occur from June to October, and the Tula effect all the year.

  6. A general-purpose balloon-borne pointing system for solar scientific instruments

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1990-01-01

    A general purpose balloonborne pointing system for accommodating a wide variety of solar scientific instruments is described. It is designed for precise pointing, low cost, and quick launch. It offers the option of three-axis control, pitch-yaw-roll, or two-axis control, pitch-yaw, depending on the needs of the solar instrument. Simulation results are presented that indicate good pointing capability at Sun elevation angles ranging from 10 to 80 deg.

  7. The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.

    PubMed

    Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C

    1967-01-01

    This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments. PMID:11973839

  8. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  9. Twenty years of balloon-borne tropospheric aerosol measurements at Laramie, Wyoming

    NASA Technical Reports Server (NTRS)

    Hofmann, David J.

    1993-01-01

    The paper examines the tropospheric aerosol record obtained over the period 1971 to 1990, during which high-altitude balloons with optical particle counters were launched at Laramie, Wyoming, in a long-term study of the stratospheric sulfate aerosol layer. All aerosol particle size ranges display pronounced seasonal variations, with the condensation nuclei concentration and the optically active component showing a summer maximum throughout the troposphere. Mass estimates, assuming spherical sulfate particles, indicate an average column mass between altitudes of 2.5 and 10 km of about 4 and 16 mg/sq m in winter and summer, respectively. Calculated optical depths vary between 0.01 and 0.04 from winter to summer; the estimated mass scattering cross section is about 3 sq m/g throughout the troposphere. There is evidence for a decreasing trend of 1.6-1.8 percent/yr in the optically active tropospheric aerosol over the past 20 yr, which may be related to a similar reduction in SO2 emission in the U.S. over this period.

  10. Balloon-borne measurements of the ultraviolet flux in the Arctic stratosphere during winter

    NASA Technical Reports Server (NTRS)

    Schiller, Cornelius; Mueller, Martin; Klein, Erich; Schmidt, Ulrich; Roeth, Ernst-Peter

    1994-01-01

    Filter radiometers sensitive from 280 to 320 nm and from 280 to 400 nm, respectively, were used for measurements of the actinic flux in the stratosphere. Since the instruments are calibrated for absolute spectral sensitivity the data can be compared with model calculations of the actinic flux. Data were obtained during seven balloon flights during the European Arctic Stratospheric Ozone Experiment (EASOE).