These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Annual burned area across a precipitation gradient in northwestern patagonia steppe  

NASA Astrophysics Data System (ADS)

Fire is one of the most important disturbances on the Earth affecting most terrestrial ecosystems. Evidence suggests that since the last glaciations there has been a substantial interaction among climate, vegetation and fire. In fact fire is recognized as an emergent property of climate and vegetation type, which determine that distinct regions are differently affected by wildfires. For instance, it has been suggest that relative roles of weather/climate and fuel on fire activity change along the global productivity/aridity (intermediate fire-productivity hypothesis). At one extreme of the gradient we find dry-unproductive regions (deserts) where fire is absent owing to very low fuel loads, while at the other extreme we have wet-productive environments (rain forest) with fire being unlikely due to high fuel moisture. Environments located around middle of the gradient, such as Mediterranean ecosystems, have a high fire activity but is difficult to predict if the fuel moisture conditions are a stronger constrain on the fire regime or it is constrained by biomass production (i.e. fuel load). The intermediate fire-productivity hypothesis has been tested in recent works at global scale. However, data resolution at global scale is coarse and thus is not possible know the fire variability occurring at scales of more spatial detail. Therefore, it is necessary to complement the information obtained at global scale with studies at finer scales exploring fire-productivity/aridity relationships in particular portions of the gradient. We elaborate fire cartography from Landsat temporal series (1973-2011) for a portion (560250 ha - regional scale) of northwestern Patagonian steppe. The study zone corresponds to a Mediterranean environment and is part of a gradient defined by a sharp drop in the precipitation regime (600mm to 280mm). This environmental gradient predisposes a change in fuel load and fuel moisture and therefore could be affecting the fire regime. We divided the study area in relation to precipitation gradient establishing two zones (wet and xeric). To delimit area of wildfires on Landsat scenes we used the NBR index. Then, we calculated the annual burned area in each zone, compared the annual burned area between zones and also explored relationships between that variable of the fire regime and precipitation/temperature data. We expect to contribute to the discussions about the importance of drought/fuel on the fire activity across the productivity/aridity gradient, specifically on Mediterranean environments. Finally, with this work we expect to improve future management and conservation practices in Northwestern Patagonia grasslands.

Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa

2013-04-01

2

Burned area, active fires and biomass burning - approaches to account for emissions from fires in Tanzania  

NASA Astrophysics Data System (ADS)

Eleven years of data from the globally available MODIS burned area and the MODS Active Fire Product have been analysed for Tanzania in conjunction with GIS data on land use and cover to provide a baseline for fire activity in this East African country. The total radiated energy (FRE) emitted by fires that were picked up by the burned area and active fire product is estimated based on a spatio-temporal clustering algorithm over the burned areas, and integration of the fire radiative power from the MODIS Active Fires product over the time of burning and the area of each burned area cluster. Resulting biomass combusted by unit area based on Wooste?s scaling factor for FRE to biomass combusted is compared to values found in the literature, and to values found in the Global Fire Emissions Database (GFED). Pyrogenic emissions are then estimated using emission factors. According to our analysis, an average of 11 million ha burn annually (ranging between 8.5 and 12.9 million ha) in Tanzania corresponding to between 10 and 14 % of Tanzaniás land area. Most burned area is recorded in the months from May to October. The land cover types most affected are woodland and shrubland cover types: they comprise almost 70 % of Tanzania's average annual burned area or 6.8 million ha. Most burning occurs in gazetted land, with an annual average of 3.7 million ha in forest reserves, 3.3 million ha in game reserves and 1.46 million ha in national parks, totalling close to 8.5 million ha or 77 % of the annual average burned area of Tanzania. Annual variability of burned area is moderate for most of the analysed classes, and in most cases there is no clear trend to be detected in burned area, except for the Lindi region were annual burned area appears to be increasing. Preliminary results regarding emissions from fires show that for larger fires that burn over a longer time, biomass burned derived through the FRP method compares well to literature values, while the integration over smaller fires with fewer observations yields unstable results due to undersampling issues and uncertainty in the start and end time of the fire events. Options for mitigating these issues using ancillary data such as fire weather information are discussed.

Ruecker, Gernot; Hoffmann, Anja; Leimbach, David; Tiemann, Joachim; Ng'atigwa, Charles

2013-04-01

3

Is proportion burned severely related to daily area burned?  

NASA Astrophysics Data System (ADS)

The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall ? = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

2014-05-01

4

Global Burned Area and Biomass Burning Emissions from Small Fires  

NASA Technical Reports Server (NTRS)

In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

2012-01-01

5

Burns  

MedlinePLUS

NIGMS Home > Science Education > Burns Fact Sheet Burns Fact Sheet Tagline (Optional) Middle/Main Content Area What is a burn? A burn is tissue damage caused by heat, chemicals, electricity, sunlight ...

6

Beaver Creek Burn Area Precipitation Gage  

USGS Multimedia Gallery

During August 2013, the Beaver Creek wildfire burned more than 114,000 acres near the south-central Idaho communities of Sun Valley, Ketchum, and Hailey. Partnering with Blaine County, the USGS installed a network of real-time precipitation gages in the burn area. Real-time information from the gage...

7

78 FR 34031 - Burned Area Emergency Response, Forest Service  

Federal Register 2010, 2011, 2012, 2013, 2014

...AGRICULTURE Forest Service RIN 0596-AC73 Burned Area Emergency Response, Forest Service...its employees in revised procedures for Burned Area Emergency Response. The interim...The Forest Service has administered a Burned Area Emergency Response (BAER)...

2013-06-06

8

Future burned area projections in Iberia  

NASA Astrophysics Data System (ADS)

The spatial and temporal variability of burned area (BA) in the Iberian Peninsula (IP) was assessed and modeled through the merging of BA records from Portugal and Spain, a new dataset which allowed the construction of projections for future BA in different Iberian sectors. For this purpose, statistical models which reproduce the inter-annual BA variability were calibrated using the 1981-2005 period as a reference and then applied to Regional Climate Models (RCM) outputs for the 21st century. The relationship between BA and meteorological forcing was assessed using correlation and regression analysis, using the ERA-Interim reanalysis as a benchmark for the reference period. Then a stepwise regression procedure based on the best meteorology-based predictors was applied in order to develop simple BA statistical models for each cluster (models were cross-validated to avoid the danger of over fitting). We concluded that the use of predictors based on both long-term and short-term conditions provide the best results, particularly for western sectors (Pearson correlation coefficients higher than 0.7). We also showed that the daily scale is vital on the short-term, since predictors based on monthly frequencies of extremely hot days (surpassing high percentiles of noon temperature) are the most effective ones. The reference period bias of four RCM from the ENSEMBLES project was estimated in order to construct future BA scenarios using two different techniques: traditional bias correction and the delta change approach. Multiple scenarios where also developed by using either fixed or moving reference periods, thus highlighting the danger of not considering external variables (e.g. vegetation or land-use changes) when developing such models. Amongst all considered scenarios, our current ensemble projections show the potential for having 2-3 times more BA in the IP by the end of the 21st century.

Sousa, Pedro; Trigo, Ricardo; Pereira, Mário; Camara, Carlos; Gouveia, Célia; Bedia, Joaquín; Gutiérrez, Jose Manuel

2014-05-01

9

78 FR 44523 - Burned Area Emergency Response, Forest Service  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF AGRICULTURE Forest Service RIN 0596-AC73 Burned Area Emergency Response, Forest Service AGENCY: Forest Service...the public more detailed information and time to review the Burned Area Emergency Response revisions. This correction lists...

2013-07-24

10

Global estimation of burned area using MODIS active fire observations  

Microsoft Academic Search

We present a method for estimating monthly burned area globally at 1 spatial resolution using Terra MODIS data and ancillary vegetation cover information. Us- ing regression trees constructed for 14 different global re- gions, MODIS active fire observations were calibrated to burned area estimates derived from 500-m MODIS imagery based on the assumption that burned area is proportional to counts

L. Giglio; Werf van der G. R; J. T. Randerson; G. J. Collatz; P. S. Kasibhatla

2006-01-01

11

Global estimation of burned area using MODIS active fire observations  

Microsoft Academic Search

We present a method for estimating monthly burned area globally at 1° spatial resolution using Terra MODIS data and ancillary vegetation cover information. Using regression trees constructed for 14 different global regions, MODIS active fire observations were calibrated to ''true'' burned area estimates derived from 500-m MODIS imagery based on the conventional assumption that burned area is proportional to counts

L. Giglio; G. R. van der Werf; J. T. Randerson; G. J. Collatz; P. Kasibhatla

2005-01-01

12

Global estimation of burned area using MODIS active fire observations  

Microsoft Academic Search

We present a method for estimating monthly burned area globally at 1° spatial resolution using Terra MODIS data and ancillary vegetation cover information. Using regression trees constructed for 14 different global regions, MODIS active fire observations were calibrated to burned area estimates derived from 500-m MODIS imagery based on the assumption that burned area is proportional to counts of fire

L. Giglio; G. R. van der Werf; J. T. Randerson; G. J. Collatz; P. Kasibhatla

2006-01-01

13

Burned Area Emergency Response Report July 8, 2010  

E-print Network

;Executive Summary Burned Area Report Cost Benefit Analysis Soil Burn Severity Map Treatment Map Values at Risk Resource Area Executive Summaries Botany Geology Heritage Hydrology Soils Wildlife Treatment of the 15,051 acre fire area was mapped as high soil burn severity due to creation of hydrophobic conditions

14

Burns  

MedlinePLUS

... clean dressing. Protect the burn from pressure and friction. Over-the-counter ibuprofen or acetaminophen can help ... heart. Protect the burn area from pressure and friction. You will also need to prevent shock . If ...

15

Error modelling on burned area products  

NASA Astrophysics Data System (ADS)

In the last decade multiple efforts have been undertaken to map burned areas (BA) at global scale. Global BA projects usually carry along a validation phase, which aims to assess product quality. Errors are commonly measured in these validation exercises, but they frequently do not tackle error sources, which hampers the use of BA products as input to earth system models. In this study we present a method to assess the relationships between commission and omission errors on one side and landscape and burned patch characteristics on the other side. Errors were extracted by comparing global BA results and Landsat BA perimeters. Selected factors to explain error distribution were related to landscape characteristics and quality of input data. The former included BA spatial properties, tree cover (from MODIS Vegetation Continous Field), and the land cover type (Globcover 2005). The latter were the number of cloud-free observations, the confidence level of the BA algorithm and the sub-pixel proportion of true BA. The relationship between explanatory variables and errors was estimated using Generalized Additive Models. This analysis was undertaken to assess global BA products within the framework of the fire_cci project (www.esa-fire-cci.org). This project is part of the European Space Agency's Climate Change Initiative, which aims to generate long-term global products of Essential Climate Variables (ECV). The fire_cci project aims to generate time series of global BA, merging data from three sensors: MERIS, (A)ATSR and VEGETATION. The error characterization exercise presented in this paper was based on MERIS BA results from 2005 in four study sites (Australia, Brazil, Canada and Kazakhstan). Results show that errors are more frequent on pixels partially burned, and tend to decrease for high and low tree-cover (when areas have either 0 or 100%), as well as when the product confidence level is high. Detected burned pixels surrounded by other burned pixels were found less likely to be commission errors than isolated patches. Finally, the number of cloud-free observations had little influence on error distribution.

Padilla, M.; Chuvieco, E.

2012-12-01

16

Intercomparison of global burned area products  

NASA Astrophysics Data System (ADS)

The European Space Agency's Climate Change Initiative (CCI) is part of the European contribution to the Global Observing Climate System (GCOS) program. Fire disturbance is one of the Essential Climate Variables included in this phase of the CCI program. The project aims to map globally burned areas (BA) using European sensors (ATSR, VEGETATION and MERIS), and in comparing the performance of the results with other existing datasets (www.esa-fire-cci.org). The project aims at developing and validating algorithms, to produce consistent, stable, error-characterized global BA information. It includes as well algorithms for pre-processing of ATSR, VEGETATION and MERIS data, to improve geometrical accuracy and remove atmospheric effects that may lead to potential confusions with burned areas (clouds, smoke, cloud shadows, water, snow, topographic shadows), as well as algorithms to merge BA from different sensors and adapting the outputs to the needs of the climate modeling community. This paper will present the latest comparisons of the fire_cci BA results with other existing global BA products, using a validation dataset of 100 Landsat multitemporal pairs, from which fire perimeters were semi-automatically drawn. The standard CEOS Cal-Val procedures have been used to document the reference files. The intercomparison method relies on measuring accuracy, error balance and temporal consistency. Preliminary results showed higher accuracy for MCD45, but with lower temporal consistency, particularly in areas dominated by savannah fires.

Chuvieco, E.; Corti, D.; Padilla, M.

2012-12-01

17

The impact of antecedent fire area on burned area in southern California coastal ecosystems.  

PubMed

Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). PMID:23064248

Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

2012-12-30

18

Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks.  

PubMed

In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km(2) of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002-2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity. PMID:25831541

Hart, Sarah J; Schoennagel, Tania; Veblen, Thomas T; Chapman, Teresa B

2015-04-01

19

Relation between wind speed and burned area on global scale  

NASA Astrophysics Data System (ADS)

Global datasets of burned area have been analyzed with respect to different fire drivers. Various studies find, that climatic variables as well as the vegetation composition or the human influence shape the global distribution of burned area. Wind speed datasets have not been included so far in such analysis. Local studies show that wind speed influences the rate of spread and also that the rate of spread can decrease for high wind speeds. The commonly used Rothermel equations suggest a rate of spread which does not further increase when reaching a certain wind limit. Including fire in global models is a relatively new field and analysis of recent global datasets an important source of information for improvement of global scale fire models. Fire is a climate driven and climate relevant process, therefore a realistic response of the modeled fire occurrence with respect to climate variables is crucial. We analyze the correlation between remotely sensed burned area and three global wind speed datasets on different spatial and temporal scales, as well as different land cover types. We find that the burned area peaks for mean wind speeds of about 2 ms-1. Using generalized additive models (GAMs) we analyze the response functions including other important drivers of burned area, e.g. temperature, net primary productivity, precipitation, tree cover and population density. Accounting for these other drivers the response functions confirm increasing burned area with increasing wind speed up to a certain threshold and decreasing burned area thereafter. We used this information in the global land surface model JSBACH that includes a prognostic fire model (SPITFIRE) which is based on the Rothermel fire spread equations. The SPITFIRE model did not include the wind limitation before and model residuals for the burned area compared to present day observations showed a correlation with wind speed. Including the relationship between wind speed and burned area as derived from the observations improved the spatial patterns of modeled burned fraction on global scale.

Lasslop, G.; Kloster, S.

2013-12-01

20

Clinical Application and Efficacy of MEBT\\/MEBO in Treating Deep Large Area Burns  

Microsoft Academic Search

(Abstract)Fifty-one cases of deep large area burn were treated with MEBT\\/MEBO. The largest burn area was 96%, average burn area 60.78%, average third degree burn area 36.47%. Among them, 23 cases were burned by fire, accounted for 45.09%; 24 cases scalded, accounted for 47.05% and 4 cases burned by chemicals, accounted for 7.84%. A comprehensive analysis of the pathophysiological changes

Li Chuanji; Hu Jianwu; Yan Hongmei; Li Rongchun

21

Multi-sensor merging techniques for improving burned area estimates  

NASA Astrophysics Data System (ADS)

The ESA Climate Change Initiative (CCI) aims to create a set of Essential Climate Variables (ECV) to assist climate modellers. One of these is the fire ECV, a product in line with typical requirements of climate, vegetation and ecological modellers investigated by the fire ECV project and documented in the fire product specification document. The product is derived from burned area estimates of three sensors, SPOT VEGETATION (SPOT-VGT), the Along-Track Scanning Radiometer (ATSR) series, and the MEdium Resolution Imaging Spectrometer at Full ReSolution (MERIS FRS). This abstract is concerned with the final stage in the production of the fire product, merging of the burned area estimates from the three sensors into two products. The two products are created at monthly time steps, the pixel (1km) and the aggregated grid product (0.5° and 0.25°). The pixel product contains information on sensors detecting the burn, date of burn detection, confidence of the burn and land cover statistics. The grid product contains aggregated information on burned area totals and proportion, major land cover burned, heterogeneity of burning in the grid cell, confidence and cloud cover levels. The method used to create these products needs to allow for time series gaps due to multiple sensor combinations and different orbital and swath characteristics and comprises a combination statistical, selective, stratification and fusion methods common to the satellite remote sensing community. The method is in three stages, first a combined merge of sensors in the same 1km resolution. The earliest date of detection is recorded and the sensor that performs the best over a particular vegetation type is taken as the most reliable confidence level. The second part involves fusion of the 300 m MERIS FRS data allowing confidence levels and burn dates to be reported to a finer resolution. To allow for MERIS FRS pixels that cross adjacent 1km pixels from the first step the fusion is carried out at 100 m resolution. The third and final step is the statistical aggregation to the final pixel and grid resolutions. Results for the test areas, Northern Australia, Canada, Brazil and Kazakhstan show that there is a good coincidence of SPOT-VGT and ATSR data and that MERIS FRS can be used to increase the detail of date of detection and confidence level. Overall the project has demonstrated the feasibility of producing a merged fire product from different satellite data sources.

Bradley, A.; Tansey, K.; Chuvieco, E.

2012-04-01

22

Preliminary assessment of the Monitoring Trends in Burn Severity burned area accuracy for shrub-steppe wildfires  

NASA Astrophysics Data System (ADS)

Fire is a common disturbance in shrub-steppe, but unlike other ecosystems, few studies have specifically tested burned area mapping methods in these semi-arid to arid environments. The Monitoring Trends in Burn Severity (MTBS) project is an initiative by the United States Forest Service (USFS) and United States Geological Survey (USGS) aimed at mapping burned area perimeters and burn severity for the entire territory of the United States. We conducted a preliminary assessment of the accuracy of the MTBS burned area perimeters on wildfires that exhibited varying degrees of within-fire patch heterogeneity. We cross-compared the MTBS perimeters with a classification produced using both the Relativised differenced Normalized Burn Index (RdNBR) and the mid-infrared burn index (MIRBI). Overall, MIRBI provided the most consistent accuracies, with only small commission errors. The MTBS-based fire perimeters had high burned area commission errors, primarily due to inclusion of unburned islands and fingers within the fire perimeter. The RdNBR burned area maps exhibited very high commission errors, however, when constrained by the MTBS perimeter provided accuracies comparable to MIRBI. Studies seeking to use MTBS data for assessing trends in burned area should use spectral indices able to discriminate burned versus unburned pixels and constrain them by the MTBS perimeters.

Argona, A. K.; Sparks, A. M.; Tinkham, W.; Smith, A. M.; Boschetti, L.; Newingham, B. A.; Lannom, K. O.

2013-12-01

23

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07

24

The Geoland2 BioPar burned area product  

NASA Astrophysics Data System (ADS)

The European Commission Geoland2 project intends to constitute a major step forward to the implementation of the GMES Land Monitoring Core Service (LMCS). The Bio-geophysical Parameters (BioPar) Core Monitoring Service aims at setting-up pre-operational infrastructures for providing regional, European, and global bio-geophysical variables, both in near real time and off-line mode, for describing the vegetation state, the radiation budget at the surface, and the water cycle. The burned area product is part of the BioPar portfolio. The burned area product further builds on the experience of the Global Burned Area (GBA2000) and L3JRC projects. In the GBA2000 project, several algorithms were developed for different geographical regions of the world, and applied to a 1-year time series (the year 2000) of SPOT-VEGETATION data. In the L3JRC project, a single algorithm was improved and applied to a 7-year global dataset of SPOT-VEGETATION data. Since the conception of the Geoland2 project, work has been undertaken to improve the L3JRC algorithm, mainly based on user comments and feedback. Furthermore, the Geoland2 burned area product specification has been developed to meet the requirements of the Core Information Service, specifically LandCarbon and Natural Resource Monitoring in Africa (Narma). The Geoland2 burned area product has the following improvements over the L3JRC product: • It resolves issues with users extracting statistics and burned area estimates for time periods considered to be outside the main seasons for burning. Specifically, this deals with issues in northern latitude winters. • The number of pre-processing steps has been shortened, reducing processing time. • An improved land-water mask has been used. This resolves a problem around the coastlines of land masses which were frequently being detected as being burned. • A season metric calculation is performed over a 1x1 degree grid. For each grid cell, a date is logged against the start of the fire season, peak of the fire season and then the end of the fire season. Once a fire season has been confirmed as being finished, the region effectively resets itself, which means that the land surface can burn again when the next fire season starts. This automated season reset feature enables multiple fire seasons to be analysed. • Provides easy to interpret seasonality tables every 10 days (the reporting period for the product). It is intended that the product will be validated using CEOS-approved protocols and data sets currently being developed through the European Space Agency Fire-CCI project. In this paper, initial results being produced operationally and will be presented along with examples highlighting the performance of the seasonality metric.

Tansey, K.; Bradley, A.; Smets, B.; van Best, C.; Lacaze, R.

2012-04-01

25

Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling  

NASA Astrophysics Data System (ADS)

This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests the cooling and drying of atmosphere induced by burned areas caused the strengthening of subsidence during pre-onset and weakening of upward atmospheric motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly mid-tropospheric vertical wind showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, which supports the hypothesis of reduced convective instability due to wildfires.

De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

2015-02-01

26

Data Summary Report D-Area Burning/Rubble Pits  

SciTech Connect

The purpose of this report is to verify that all analytical data collected at the D-Area Burning/Rubble Pits at the Savannah River Site for use in developing risk assessment and potential remediation procedures have been validated at the appropriate level. Any discrepancies or reasons why the data should be rejected for this purpose will be addressed. This report documents the data validation procedures used by Environmental Monitoring Section, Exploration Resources, and RUST Environment {ampersand} Infrastructure for Assigning qualifiers.

Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1994-10-01

27

The effect of fire on gas exchange and aboveground biomass production in annually vs biennially burned Spartina pectinata wetlands  

Microsoft Academic Search

Photosynthetic and growth responses ofSpartina pectinata were compared in annually and biennially burned wetlands in a northeastern Kansas tallgrass prairie. Photosynthetic CO2 uptake was consistently higher inSpartina pectinata in annually burned wetlands, and there was a seasonal difference in maximum photosynthetic rates. Plants in annually burned\\u000a wetlands reached a maximum photosynthetic rate of 38.2 ?mol m?2 s?1 in late spring,

Stephen R. Johnson; Alan K. Knapp

1993-01-01

28

Methodology for estimating burned area from AVHRR reflectance data  

SciTech Connect

It is well recognized that global fire activity needs to be monitored closely, because of its potential impact on climate and the environment. Two methods are described to determined burned area from Advanced Very High Resolution Radiometer (AVHRR) data. The first method, or the linear method, employs Channel 2 reflectance, R{sub 2}, and is based on the nearly linear relationship between the fraction of pixel burned, P, and R{sub 2}. The second method, or the nonlinear method, employs the Normalized Difference Vegetation Index (NDVI) derived from Channels 1 and 2 reflectances, and is based on the nonlinear relationship P = f(NDVI), a polynomial of order 2 in NDVI. The coefficients of the polynomial are parameterized as a function of the NDVI of the background before the fire event. Radiative transfer simulations indicate that the linear method, unlike the nonlinear method, must be applied to top-of-atmosphere reflectances that have been corrected for atmospheric influence. Sensitivity studies suggest that the methods are subject to some limitations. To avoid discontinuity problems, the original background (just before the fire) must be characterized by a Channel 2 reflectance above 0.07 and by a positive NDVI. To separate the useful signal from atmospheric effects, the fire scar must occupy at least 20% and 12% of the pixel area in the case of savanna and green vegetation (e.g., forest), respectively. When applied to uniform pixels, the mean relative error on the fraction of area burned is about 20% for the linear method and 10% for the nonlinear method. The linear method gives better results for nonuniform pixels, but neither method can be used when the pixel contains low reflectance backgrounds (e.g., water).

Razafimpanilo, H.; Frouin, R.; Iacobellis, S.F.; Somerville, R.C.J. [Scripps Institution of Oceanography, La Jolla, CA (United States)] [Scripps Institution of Oceanography, La Jolla, CA (United States)

1995-12-01

29

Burns  

MedlinePLUS

A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

30

A fire burns in a wooded area on KSC property  

NASA Technical Reports Server (NTRS)

A wooded section of the southeast corner of Kennedy Space Center burns on Monday, June 22, after lightning touched off three different fires Sunday evening in and around Tel IV, Ransom Road and Pine Island Road. This area is part of the Merritt Island National Wildlife Refuge operated by the U.S. Fish and Wildlife Service. The fires were a short distance from operational facilities at the space center and forced the closing of Florida State Route 3. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service.

1998-01-01

31

A fire burns in a wooded area on KSC property  

NASA Technical Reports Server (NTRS)

A fire burns in the background as members of the U.S Fish and Wildlife Service operate firefighting equipment soaking the grass and underbrush in an attempt to keep the fire away from Kennedy Parkway and the wooded area on the other side of the road. Lightning touched off three different fires Sunday evening in and around Kennedy Space Center at Tel IV, Ransom Road and Pine Island Road. This area is part of the Merritt Island National Wildlife Refuge operated by the service. The fires were a short distance from operational facilities at the space center and forced the closing of Florida State Route 3. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service.

1998-01-01

32

Sources of debris flow material in burned areas  

NASA Astrophysics Data System (ADS)

The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9 m 3 of debris produced for every meter of channel length, with an overall average value of 2.5 m 3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3 m 3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable.

Santi, Paul M.; deWolfe, Victor G.; Higgins, Jerry D.; Cannon, Susan H.; Gartner, Joseph E.

2008-04-01

33

Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions  

NASA Technical Reports Server (NTRS)

"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

2004-01-01

34

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31

35

Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach  

USGS Publications Warehouse

Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5?? (latitude ?? longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960-2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991-2000, the results suggest that average area burned per decade will double by 2041-2050 and will increase on the order of 3.5-5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long-term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing Ltd.

Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J.

2009-01-01

36

Relationships between Human Population Density and Burned Area at Continental and Global Scales  

PubMed Central

We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108

Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.

2013-01-01

37

The role of topographic correction in mapping recently burned Mediterranean forest areas from LANDSAT TM images  

Microsoft Academic Search

Operational use of remote sensing as a tool for post?fire, Mediterranean forest management has been limited by problems of classification accuracy arising from confusion of burned and non?burned areas. Frequently, this occurs as a result of slope illumination and shadowing effects caused by the complex topography encountered in many forested areas. Cloud shadows can also be a problem. The aim

I. Z. Gitas; B. J. Devereux

2006-01-01

38

Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain  

NASA Astrophysics Data System (ADS)

Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990-2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance - excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.

Bedia, J.; Herrera, S.; Gutiérrez, J. M.

2014-01-01

39

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01

40

Automated Burned Area Delineation Using IRS AWiFS satellite data  

NASA Astrophysics Data System (ADS)

India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

2014-12-01

41

Burn severity and areas of daily fire growth for 42 forest fires in Idaho and Montana, 2005 - 2011  

NASA Astrophysics Data System (ADS)

This work consisted of two studies of burn severity using infrared perimeter maps and satellite-inferred burn severity data, differenced Normalized Burn Ratio, from 42 wildland fires from central Idaho and western Montana from 2005 to 2007, and 2011. Study 1 examined the proportion of burn severity categories for individual daily areas burned. We defined 2,697 areas, from which we calculated the proportion of three burn severity classes. The proportion of high severity was weakly correlated with size of area burned. Large areas burned do not consistently produced larger proportions of high severity. Study 2 analyzed burn severity relative to 20 environmental variables using the Random Forest machine learning algorithm. We used ten daily weather observations, eight 34-yr climate percentiles, seven topographical index measurements, and four vegetation characteristics from 10,819 randomly located points. We found that higher percentage existing vegetation cover had larger influences on changes in burn severity.

Birch, Donovan Shayne

42

Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System  

NASA Technical Reports Server (NTRS)

Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

1995-01-01

43

Multi-scale burned area mapping in tallgrass prairie using in situ spectrometry and satellite imagery  

NASA Astrophysics Data System (ADS)

Prescribed burning in tallgrass prairie affects a wide range of human and natural systems. Consequently, managing this biome based on sound science, and with the concerns of all stakeholders taken into account, requires a method for mapping burned areas. In order to devise such a method, many different spectral ranges and spectral indices were tested for their ability to differentiate burned from unburned areas at both the field and satellite scales. Those bands and/or indices that performed well, as well as two different classification techniques and two different satellite-based sensors, were tested in order to come up with the best combination of band/index, classification technique, and sensor for mapping burned areas in tallgrass prairie. The ideal method used both the red and near-infrared spectral regions, used imagery at a spatial resolution of at least 250 m, used satellite imagery with daily temporal resolution, and used pixel-based classification techniques rather than object-based techniques. Using this method, burned area maps were generated for the Flint Hills for every year from 2000-2010, creating a fire history of the region during that time period. These maps were compared to active fire and burned area products, and these products were found to underestimate burned areas in tallgrass prairie.

Mohler, Rhett L.

44

Mineral Resources of the Black Mountains North and Burns Spring Wilderness Study Areas, Mohave County, Arizona  

USGS Publications Warehouse

At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.

Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.

1990-01-01

45

A Comparative Analysis of Burned Area Datasets in Canadian Boreal Forest in 2000  

PubMed Central

The turn of the new millennium was accompanied by a particularly diverse group of burned area datasets from different sensors in the Canadian boreal forests, brought together in a year of low global fire activity. This paper provides an assessment of spatial and temporal accuracy, by means of a fire-by-fire comparison of the following: two burned area datasets obtained from SPOT-VEGETATION (VGT) imagery, a MODIS Collection 5 burned area dataset, and three different datasets obtained from NOAA-AVHRR. Results showed that burned area data from MODIS provided accurate dates of burn but great omission error, partially caused by calibration problems. One of the VGT-derived datasets (L3JRC) represented the largest number of fire sites in spite of its great overall underestimation, whereas the GBA2000 dataset achieved the best burned area quantification, both showing delayed and very variable fire timing. Spatial accuracy was comparable between the 5?km and the 1?km AVHRR-derived datasets but was remarkably lower in the 8?km dataset leading, us to conclude that at higher spatial resolutions, temporal accuracy was lower. The probable methodological and contextual causes of these differences were analyzed in detail. PMID:23818817

Núñez-Casillas, Laia; Moreno-Ruiz, José Andrés

2013-01-01

46

Sagebrush Flat Wildlife Area 2008 Annual Report.  

SciTech Connect

The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote the recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we use the bioagent Mecinus janthinus, available through Professor Gary Piper of Washington State University. This year we released 4,000 M. janthinus on the Bridgeport Unit at 6 separate locations. Since 2002 we have released approximately 14,400 of these insects, 80% of these on the Bridgeport Unit. Additional weed control activities included mowing and spot spraying more than 32 miles of roads, cutting and removal of annual weeds within fenced deer exclosures. We upgraded the solar powered irrigation system that supplies water to a stand of water birch trees planted in 2002. Wildlife area staff designed and built a new solar array and installed a higher capacity pump. The increased capacity will ensure that these trees receive adequate water through the hot summer months and allow us to create at least one additional stand. This project is an important part in our effort to expand the available winter habitat for sharp-tailed grouse on the Bridgeport Unit. Maintenance of fences, parking areas and roads continued during throughout the year. Two parking areas, at Chester Butte and Bridgeport, were graded and additional gravel added. Roads on the Bridgeport Unit were graded and repaired following spring runoff. Trespass and dumping issues have increased in recent years on the Bridgeport Unit. To address these problems we constructed four steel gates at access points on this unit. Each gate is tubular steel attached to 8-inch diameter steel posts, 10 feet long that are cemented into the ground. Two gates allow access to BPA substation facilities and power-line right-of ways so placement, construction and locking issues had to be coordinated with BPA's Real Estate staff in Spokane. Environmental Compliance Documentation issues were addressed again this year. This process has the potential to cause delays the completion of projects within the fiscal year. With this in mind and an eye toward the future, we requested that several projects planned for the coming years be surveyed this year. Beginning in August of 2007, area staff worked with BPA staff to identify work elements

Peterson, Dan [Washington Department of Fish and Wildlife

2008-11-03

47

Soil physiochemical changes following 12 years of annual burning in a humid--subtropical tallgrass prairie: a hypothesis  

NASA Astrophysics Data System (ADS)

Burning is known to stimulate growth of grassland vegetation, promote species diversity, and inhibit natural invasion by woody plants. However, the frequency at which grasslands are burned as part of their management can affect soil nutrient content and, ultimately, productivity. The objective of this study was to characterize changes in soil physical and chemical properties in a native tallgrass prairie after 12 years of annual burning. In 1989, five soil samples from the 0 to 10 cm depth were collected along a transect through a 3 ha parcel of native tallgrass prairie in central Arkansas. Soil sampling was repeated in 2001 to assess changes over time. Results showed that soil bulk density, electrical conductivity, extractable P, Na, Fe, and Mn decreased significantly ( P < 0.05), while soil organic matter, total N and C, and the C/N ratio increased significantly ( P < 0.05) within the 12-year period during which annual burning was the only imposed management practice. Mean extractable K, Ca, Mg, S, and Zn levels were all lower in 2001 than in 1989, but differences were not significant, while soil pH did not change. The results of this study indicate that annual export of several essential plant nutrients during prescribed burning of relatively small, remnant prairie fragments exceeds annual imports from atmospheric deposition and/or organic matter mineralization. Annual prescribed burning may be too frequent to maintain optimal ecosystem functioning and productivity. Decreasing the frequency of prescribed burning for native grassland management may help to retain more soil nutrients to sustain a higher level of productivity.

Brye, Kristofor R.

2006-11-01

48

Predicting high severity fire occurrence and area burned in a changing climate for three regions in the Western US  

NASA Astrophysics Data System (ADS)

A long history of fire suppression in the western United States has interrupted the fire regimes of many forest types. This interruption has significantly changed forest structure and ecological function and led to increasingly uncharacteristic fires in terms of size and severity. Research has shown that climate variability drives the occurrence of large fires and is important to predicting fire severity. We found that Western US area burned in high severity fire can be accurately predicted using a generalized Pareto distribution model with covariates of climate, weather, topography, and vegetation. Our model was robust in all but the most extreme fire years, e.g. 1988, 2000, 2002, and 2003, where area burned in high severity was significantly greater than in other years. We modeled the Northern Rocky Mountains, the Sierra Nevada Mountains, and the Southwestern US to determine if regional differences in controls on severity were at play in extreme years. The regional analysis improved model performance by capturing extreme fire years and identified regionally unique covariates. For the Northern Rocky Mountains the addition of elevation and fire regime condition class improved the prediction in extreme years. In the Southwest relative humidity and moisture deficit in the month of fire and total fire size were critical to capturing extreme fire years. The Sierra Nevada model had the most complex set of covariates that included: vegetation, moisture deficit, evapotranspiration, precipitation, and fire regime condition class. By incorporating regionally specific variables, our models were robust in prediction of high severity area burned in all years. For this work, we will apply high and low CO2 emission scenarios from three general circulation models to our regional statistical models to predict probability of high severity fire occurrence as well as area burned in high severity for the period 1950-2099. We used the downscaled climate as an input into the VIC hydrologic model to generate independent variable sets for each future scenario. The modeling output will allow us to identify potential changes in the annual area burned with high severity fire under future climate as well as areas where the probable occurrence of high severity fires might increase.

Keyser, A.; Westerling, A. L.; Milostan, J.

2013-12-01

49

Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area  

NASA Astrophysics Data System (ADS)

Fire plays an important role in terrestrial ecosystems by regulating biogeochemistry, biogeography, and energy budgets, yet despite the importance of fire as an integral ecosystem process, significant advances remain to improve its prognostic representation in carbon cycle models. To recommend and to help prioritize model improvements, this study investigates the sensitivity of a coupled global biogeography and biogeochemistry model, LPJ, to observed burned area measured by three independent satellite-derived products, GFED v3.1, L3JRC, and GlobCarbon. Model variables are compared with benchmarks that include pantropical aboveground biomass, global tree cover, and CO2 and CO trace gas concentrations. Depending on prescribed burned area product, global aboveground carbon stocks varied by 300 Pg C, and woody cover ranged from 50 to 73 Mkm2. Tree cover and biomass were both reduced linearly with increasing burned area, i.e., at regional scales, a 10% reduction in tree cover per 1000 km2, and 0.04-to-0.40 Mg C reduction per 1000 km2. In boreal regions, satellite burned area improved simulated tree cover and biomass distributions, but in savanna regions, model-data correlations decreased. Global net biome production was relatively insensitive to burned area, and the long-term land carbon sink was robust, ~2.5 Pg C yr-1, suggesting that feedbacks from ecosystem respiration compensated for reductions in fuel consumption via fire. CO2 transport provided further evidence that heterotrophic respiration compensated any emission reductions in the absence of fire, with minor differences in modeled CO2 fluxes among burned area products. CO was a more sensitive indicator for evaluating fire emissions, with MODIS-GFED burned area producing CO concentrations largely in agreement with independent observations in high latitudes. This study illustrates how ensembles of burned area data sets can be used to diagnose model structures and parameters for further improvement and also highlights the importance in considering uncertainties and variability in observed burned area data products for model applications.

Poulter, Benjamin; Cadule, Patricia; Cheiney, Audrey; Ciais, Philippe; Hodson, Elke; Peylin, Philippe; Plummer, Stephen; Spessa, Allan; Saatchi, Sassan; Yue, Chao; Zimmermann, Niklaus E.

2015-02-01

50

Scald Burns  

MedlinePLUS

... visit: www.burninstitute.org Safety tipS & info Scald Burns Thousands of scald burns occur annually, and ALL are preventable! The two ... the single most important factor in preventing scald burns. Increased awareness is the key to scald prevention! ...

51

MODIS-Landsat data fusion for continental scale burned area mapping  

NASA Astrophysics Data System (ADS)

Satellite data have been used to monitor fire for more than two decades using computer algorithms that detect the location of active fires at the time of satellite overpass, and in the last decade using burned area mapping algorithms that map the spatial extent of the areas affected by fires. Until the successful launch of the polar-orbiting NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensors there were no environmental satellite systems with dedicated fire monitoring capabilities. The MODIS design includes bands specifically selected for fire detection and MODIS data are being used to systematically generate the daily global 1km active fire and the monthly 500m burned area products. However, neither MODIS product can detect fires reliably at the scale of 10's of meters. The recent U.S. free Landsat data policy now provides the opportunity for continental to global scale Landsat 30m resolution processing. This paper presents a multi-temporal methodology to fuse the MODIS active fire and burned area products with Landsat data to map burned areas at 30m on a temporally rolling basis. To demonstrate the fusion methodology, 30m burned area maps of the conterminous United States (CONUS) are generated using the freely available Web Enabled Landsat (WELD) ETM+ mosaics (http://landsat.usgs.gov/WELD.php). Validation is conducted by systematic comparison with the fire perimeter vectors provided by the USGS Monitoring Trends in Burn Severity project. Prospects for future developments and continental application are discussed. The presented methodology demonstrates the potential for the fusion of the planned NPP/NPOESS VIIRS active fire product with reflectance data sensed by the planned Landsat Data Continuity missions.

Boschetti, L.; Roy, D. P.

2011-12-01

52

Modeling the Spatial Pattern of Wildfire Ignition and Burned Area in Southern Californian Mediterranean Ecosystems  

NASA Astrophysics Data System (ADS)

Wildfire ignition requires a combination of an ignition source and suitable weather and fuel conditions. Models of fire occurrence and burned area provide a good understanding of the physical and climatic factors that constrain and promote fire spread and recurrence, but information on how humans influence ignition patterns and burned area is still lacking at a scale compatible with integrated fire management. We first investigated the relative importance of the physical, climatic, and human factors regulating ignition probability across Southern California. A 30-year exploratory analysis of one-way relationships indicated that distance to roads, distance to housing, and topographic slope were the major determinants of ignition occurrence and frequency. A logistic regression model explained 70% of spatial variability in ignition occurrence (presence or absence of an ignition in each 3 km grid cell) whereas a Poisson-type regression model explained 45% of the spatial variability in ignition frequency in national forests across Southern California. Predicted ignition probability was a key indicator of the spatial variability of burned area, explaining approximately 9% of the variance for Santa Ana fires and 21% of the variance for non-Santa Ana fires across Southern California. In a second step we combined the previous ignition modeling framework with other data sources to model the spatial distribution of burned area. Preliminary results showed that average wind speed alone explained approximately 30% of the spatial variation in burned area from Santa Ana fires. Further integration of the effects of fuel continuity, moisture, and accumulation and their interaction with wind speed and direction improved our spatial assessment of burned area risk in Southern California. Our results may have implications for strategic fire management in the region.

Faivre, N.; Jin, Y.; Goulden, M.; Randerson, J. T.

2013-12-01

53

Total body surface area overestimation at referring institutions in children transferred to a burn center.  

PubMed

Total body surface area (TBSA) burned is a powerful descriptor of burn severity and influences the volume of resuscitation required in burn patients. The incidence and severity of TBSA overestimation by referring institutions (RIs) in children transferred to a burn center (BC) are unclear. The association between TBSA overestimation and overresuscitation is unknown as is that between TBSA overestimation and outcome. The trauma registry at a BC was queried over 7.25 years for children presenting with burns. TBSA estimate at RIs and BC, total fluid volume given before arrival at a BC, demographic variables, and clinical variables were reviewed. Nearly 20 per cent of children arrived from RIs without TBSA estimation. Nearly 50 per cent were overestimated by 5 per cent or greater TBSA and burn sizes were overestimated by up to 44 per cent TBSA. Average TBSA measured at BC was 9.5 ± 8.3 per cent compared with 15.5 ± 11.8 per cent as measured at RIs (P < 0.0001). Burns between 10 and 19.9 per cent TBSA were overestimated most often and by the greatest amounts. There was a statistically significant relationship between overestimation of TBSA by 5 per cent or greater and overresuscitation by 10 mL/kg or greater (P = 0.02). No patient demographic or clinical factors were associated with TBSA overestimation. Education efforts aimed at emergency department physicians regarding the importance of always calculating TBSA as well as the mechanics of TBSA estimation and calculating resuscitation volume are needed. Further studies should evaluate the association of TBSA overestimation by RIs with adverse outcomes and complications in the burned child. PMID:25569067

Swords, Douglas S; Hadley, Edmund D; Swett, Katrina R; Pranikoff, Thomas

2015-01-01

54

Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie  

NASA Technical Reports Server (NTRS)

This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. The objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions.

Asrar, G.; Harris, T. R.; Lapitan, R. L.; Cooper, D. I.

1988-01-01

55

STUDIES ON LARGE AREA SUB-FABRIC BURNS  

Microsoft Academic Search

The detonation of shot one at Bikini Atoll on March 1, 1954, produced a ;\\u000a fallout of radioactive ash upon Rongelap Atoll, Marshall Islands. The ;\\u000a distribution of the radioactive ash on the islands and in the plants and animals ;\\u000a of the area has been studied and evaluated. During the first expedition to ;\\u000a Rongelap Atoll on March 26,

K. M. Berkley; H. E. Pearse

2010-01-01

56

Accuracy assessment of photogrammetric digital elevation models generated for the Schultz Fire burn area  

NASA Astrophysics Data System (ADS)

This paper evaluates the accuracy of two digital photogrammetric software programs (ERDAS Imagine LPS and PCI Geomatica OrthoEngine) with respect to high-resolution terrain modeling in a complex topographic setting affected by fire and flooding. The site investigated is the 2010 Schultz Fire burn area, situated on the eastern edge of the San Francisco Peaks approximately 10 km northeast of Flagstaff, Arizona. Here, the fire coupled with monsoon rains typical of northern Arizona drastically altered the terrain of the steep mountainous slopes and residential areas below the burn area. To quantify these changes, high resolution (1 m and 3 m) digital elevation models (DEMs) were generated of the burn area using color stereoscopic aerial photographs taken at a scale of approximately 1:12000. Using a combination of pre-marked and post-marked ground control points (GCPs), I first used ERDAS Imagine LPS to generate a 3 m DEM covering 8365 ha of the affected area. This data was then compared to a reference DEM (USGS 10 m) to evaluate the accuracy of the resultant DEM. Findings were then divided into blunders (errors) and bias (slight differences) and further analyzed to determine if different factors (elevation, slope, aspect and burn severity) affected the accuracy of the DEM. Results indicated that both blunders and bias increased with an increase in slope, elevation and burn severity. It was also found that southern facing slopes contained the highest amount of bias while northern facing slopes contained the highest proportion of blunders. Further investigations compared a 1 m DEM generated using ERDAS Imagine LPS with a 1 m DEM generated using PCI Geomatica OrthoEngine for a specific region of the burn area. This area was limited to the overlap of two images due to OrthoEngine requiring at least three GCPs to be located in the overlap of the imagery. Results indicated that although LPS produced a less accurate DEM, it was much more flexible than OrthoEngine. It was also determined that the most amount of difference between the DEMs occurred in unburned areas of the fire while the least amount of difference occurred in areas that were highly burned.

Muise, Danna K.

57

Analysis of Area Burned by Wildfires Through the Partitioning of a Probability Model1  

Microsoft Academic Search

An analysis of forest fires by using a partitioned probability distribution is presented. Area burned during afire is fitted to a probability model. This model is partitioned into small, medium, and large fires. Conditional expected values are computed for each partition. Two cases are presented: the two-parameter Weibull and the Truncated Shifted Pareto probability models. The methodology allows a comparison

Ernesto Alvarado; David V. Sandberg; Bruce B. Bare

58

Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit  

SciTech Connect

This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-03-01

59

BIG SAGEBRUSH LEAF AREA DYNAMICS ON A BURNED, GRAZED AND CONTROL SITE IN THE SAGEBRUSH STEPPE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Big sagebrush (Artemisia tridentata Nutt.) is an important shrub for wildlife habitat and carbon sequestration in the western U.S. The effects of fire and grazing on leaf area development of big sagebrush were investigated in plots established on a 16-ha burned site, a 12-ha grazed site and 16-ha c...

60

Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province  

USGS Publications Warehouse

A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in western U.S. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season and area burned dominate in most higher elevation forested provinces, while strong positive associations between anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland provinces. In much of the western U.S., above- and below-normal fire season forecasts were successful 57% of the time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by a fire season at the opposite extreme of that forecast.

Westerling, A.L.; Gershunov, A.; Cayan, D.R.; Barnett, T.P.

2002-01-01

61

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States  

E-print Network

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United Wildland fires can be an important source of greenhouse gases as well as black carbon emissions that have of climate response to fire emissions compared to other emission sources of GHG, aerosols, and black carbon

62

Fire emissions simulated by prescribing burned area observations in a global vegetation model  

NASA Astrophysics Data System (ADS)

The emissions of trace gases and aerosols from large vegetation fires into the atmosphere have an important climate impact. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. A global continuous burned area products provided by GFED (Global Fire Emissions Dataset) were obtained from MODIS (and pre-MODIS) satellites and are available for the time period 1997-2011. We integrate the global burned area product into the global vegetation model JSBACH, a land part of the Earth-System model developed at the Max Planck Institute for Meteorology. JSBACH simulates land biomass in terms of carbon, which can be combined with the satellite burned area information to derive fire carbon emissions. Some assumptions on fire fuel consumptions have to be made during the integration of satellite burned area into the JSBACH. This includes processes such as tree mortality and combustion completeness, i.e. how much of the vegetation biomass gets combusted during a fire. Partially, this information can be also obtained from measurements. In this study we follow closely the approach of GFED, incorporating also GFED supplemental information, to simulate fuel consumption in JSBACH. And we compare simulated by this approach fire carbon emissions with the fire emissions from GFED. Global vegetation models often use prescribed land cover maps. The simulated in the JSBACH vegetation biomass and thus the simulated fire carbon emissions critically depend on the land cover distribution. In our study we derive fire carbon emissions using two different land cover parameterizations, based on two different satellite datasets. We will present the results obtained from simulations using the JSBACH standard MODIS based vegetation distribution and compare them to the results derived using the recently released ESA CCI land cover satellite product to demonstrate the sensitivity of simulated fire carbon emissions to the underlying land cover distribution.

Khlystova, Iryna G.; Wilkenskjeld, Stiig; Kloster, Silvia

2014-05-01

63

18 CFR 141.51 - FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report.  

Code of Federal Regulations, 2011 CFR

...Annual Electric Balancing Authority Area and Planning Area Report. 141.51 Section 141.51 Conservation...REPORTS (SCHEDULES) § 141.51 FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report....

2011-04-01

64

18 CFR 141.51 - FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report.  

Code of Federal Regulations, 2010 CFR

...Annual Electric Balancing Authority Area and Planning Area Report. 141.51 Section 141.51 Conservation...REPORTS (SCHEDULES) § 141.51 FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report....

2010-04-01

65

18 CFR 141.51 - FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report.  

Code of Federal Regulations, 2014 CFR

...Annual Electric Balancing Authority Area and Planning Area Report. 141.51 Section 141.51 Conservation...REPORTS (SCHEDULES) § 141.51 FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report....

2014-04-01

66

18 CFR 141.51 - FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report.  

Code of Federal Regulations, 2012 CFR

...Annual Electric Balancing Authority Area and Planning Area Report. 141.51 Section 141.51 Conservation...REPORTS (SCHEDULES) § 141.51 FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report....

2012-04-01

67

375USDA Forest Service Proceedings RMRSP13. 2000 Abstract.--Following wildfires, burned areas are assessed by  

E-print Network

375USDA Forest Service Proceedings RMRS­P­13. 2000 Abstract.--Following wildfires, burned areas to restore watershed function and minimize damage to soil resources. The objective of burned area emergency alters watershed condition, with erosion increasing as watershed condition deteriorates from good to poor

68

Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption  

NASA Astrophysics Data System (ADS)

Wildfire is one of the main disturbance factors in the boreal zone of Russia. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russia vary substantially due to differences in ecosystem classification and mapping, burned area calculations, and estimates of fuel consumption. We examined uncertainties in different parameters used to estimate biomass burning emissions. Several fire datasets (Institute of Forest burned area product, MCD45, MCD64, MOD14/MYD14, official data) were compared to estimate uncertainties in area burned in Siberia. Area burned was found to differ significantly by data source, with satellite data being by an order of magnitude greater than ground-based data. Differences between mapped ecosystems were also compared and contrasted on the basis of five land cover maps (GLC-2000, Globcover-2009, MODIS Collection 4 and 5 Global Land Cover, and the Digitized Ecosystem map of the Former Soviet Union) to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. The examination of land cover maps showed that estimates of relative proportion of fire by ecosystem type varied substantially for the same year from map to map. Fuel consumption remains one of the main uncertainties in estimates of biomass burning emissions in Siberia. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Global climate change is expected to result in increase of fire hazard and area burned, leading to impacts on global air quality and human health. Accurate emission estimates are required by air quality agencies to calculate local emissions and to develop strategies to mitigate negative smoke impacts. This research was supported by NASA LCLUC Program, Fulbright Program, and Russian Academy of Sciences.

Kukavskaya, E.; Soja, A. J.; Ivanova, G. A.; Petkov, A.; Ponomarev, E. I.; Conard, S. G.

2012-12-01

69

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report  

SciTech Connect

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo

2002-10-01

70

MODIS 250m burned area mapping based on an algorithm using change point detection and Markov random fields.  

NASA Astrophysics Data System (ADS)

Area burned in tropical savannas of Brazil was mapped using MODIS-AQUA daily 250m resolution imagery by adapting one of the European Space Agency fire_CCI project burned area algorithms, based on change point detection and Markov random fields. The study area covers 1,44 Mkm2 and was performed with data from 2005. The daily 1000 m image quality layer was used for cloud and cloud shadow screening. The algorithm addresses each pixel as a time series and detects changes in the statistical properties of NIR reflectance values, to identify potential burning dates. The first step of the algorithm is robust filtering, to exclude outlier observations, followed by application of the Pruned Exact Linear Time (PELT) change point detection technique. Near-infrared (NIR) spectral reflectance changes between time segments, and post change NIR reflectance values are combined into a fire likelihood score. Change points corresponding to an increase in reflectance are dismissed as potential burn events, as are those occurring outside of a pre-defined fire season. In the last step of the algorithm, monthly burned area probability maps and detection date maps are converted to dichotomous (burned-unburned maps) using Markov random fields, which take into account both spatial and temporal relations in the potential burned area maps. A preliminary assessment of our results is performed by comparison with data from the MODIS 1km active fires and the 500m burned area products, taking into account differences in spatial resolution between the two sensors.

Mota, Bernardo; Pereira, Jose; Campagnolo, Manuel; Killick, Rebeca

2013-04-01

71

Long-term Effects of Annual Burning at Dif-ferent Dates in Ungrazed Kansas Tallgrass  

E-print Network

and was the crucial factor effecting vegetation change. Late-spring burning, coinciding with emergence of the warm canescens was favored by all burning treatments. Mulch buildup in unburned, undisturbed plots increased Poa

Owensby, Clenton E.

72

Global Burned Area Mapping from European Satellites: the ESA FIRE_CCI Project  

NASA Astrophysics Data System (ADS)

The European Space Agency (ESA) Climate Change Initiative (CCI) is part of the European contribution to the Global Climate Observing System (GCOS) program. Fire disturbance is one of the Essential Climate Variables (ECV) included in the ESA CCI program. It focus on mapping burned area (BA) using European sensors (ATSR, VEGETATION and MERIS data), and in comparing the performance of the results with other existing datasets. The project aims at developing and validating algorithms to produce consistent, stable, error-characterized global BA information. The project includes as well developing algorithms to generate georeferenced and calibrated reflectances of (A)ATSR, VEGETATION and MERIS data, identifying potential sources of confusion with burned areas (clouds, smoke, cloud shadows, water, snow, topographic shadows). The final product will be a merging of BA information derived from three different sensors . The outputs will be adapted to the needs of the atmospheric and vegetation modelling communities.

Chuvieco, E.; Sandow, C.; Guenther, K. P.; González-Alonso, F.; Pereira, J. M.; Pérez, O.; Bradley, A. V.; Schultz, M.; Mouillot, F.; Ciais, P.

2012-07-01

73

Sagebrush Flat Wildlife Area 2008 Annual Report  

Microsoft Academic Search

The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north\\/south line from Bridgeport in the north to the Douglas\\/Grant

Dan

2008-01-01

74

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01

75

Dominating soil typologies in burned areas of Dz¯u kija National Park (Lithuania)  

NASA Astrophysics Data System (ADS)

A big part of the scientific community consider fire disturbance as an ecological factor which becomes an integral part of the structure and dynamics of the biotic components of forests. In Dz?kija National Park, likewise occurs in other boreal forests, fire perturbation has become over time one of the main natural components which models and structures the landscape. It is indeed know that park's forest territory presents a high sensitivity to wildfire and soil typologies could have certain implications when evaluating vulnerability to fire. To carry out this study, a total of 28 burned-stands were explored. Information collected in the forest related to fire concurrence as well as current dominating overgrowing were registered. In this way, interpretation of field work results was aimed to elucidate dominating soils in burned areas which potentially are more prone to wildfire. The majority of fire-affected stands were found on soils of type "Na" -78% of total sites-, a few ones of "Nb" -18% of burned plots- and, eventually, fire was also evidenced in "Lb" soils -4%. "Na" typology belongs to very dry and unfertilized soils and, thus, very sensitive to fire, with dominating community of Cladonio-pinetum sylvestris. In "Nb" stands there are more fertilized soils with Vaccinium vitis-idaea in some cases with transitional associations of Vaccinium myrtillus. "Lb" typology refers to wetter soils with undergrown of Vaccinium myrtillus. Overall, fire has regularly been occurring in dried and non-fertilized soils, were preconditions for burning increase; whereas burned stands within more humid environments were rarely found.

Martin-Gallego, David; Lapele, Mindaugas; Pereira, Paulo

2013-04-01

76

Daily burned area and carbon emissions from boreal fires in Alaska  

NASA Astrophysics Data System (ADS)

Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time. This data on daily burned area and emissions may be useful for in understanding controls and limits on fire growth, and predicting potential feedbacks of changing fire regimes.

Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

2014-12-01

77

TNX Area 1994 Annual Groundwater Monitoring Report  

SciTech Connect

During 1994, samples from selected wells of well cluster P 26 and the TBG, TNX, XSB, and YSB well series at the TNX Area were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded the final Primary Drinking Water Standards (PDWS). Nitrate and trichloroethylene exceeded the final PDWS most frequently. Five wells in this area currently are part of the Purge Water Containment Program due to high trichloroethylene concentrations. Carbon tetrachloride, gross alpha, nonvolatile beta, and tetrachloroethylene were elevated sporadically in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

Chase, J.A.

1995-05-01

78

Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regime  

NASA Astrophysics Data System (ADS)

Fire is an important global ecological process that determines the distribution of biomes, with consequences for carbon, water, and energy budgets. The modelling of fire is critical for understanding its role in both historical and future changes in terrestrial ecosystems and the climate system. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate the historical burned area and the fire regime for the 20th century. For 2001-2006, the simulated global spatial extent of fire occurrence agrees well with that given by the satellite-derived burned area datasets (L3JRC, GLOBCARBON, GFED3.1) and captures 78-92% of global total burned area depending on which dataset is used for comparison. The simulated global annual burned area is 329 Mha yr-1, which falls within the range of 287-384 Mha yr-1 given by the three global observation datasets and is close to the 344 Mha yr-1 given by GFED3.1 data when crop fires are excluded. The simulated long-term trends of burned area agree best with the observation data in regions where fire is mainly driven by the climate variation, such as boreal Russia (1920-2009), and the US state of Alaska and Canada (1950-2009). At the global scale, the simulated decadal fire trend over the 20th century is in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is systematically underestimated by the model compared with the fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in boreal North America and southern Africa indicate that both the number and the size of big fires are underestimated, which could be related with too low fire spread rate (in the case of static vegetation) and fire duration time. Future efforts should be directed towards building consistent spatial observation datasets for key parameters of the model in order to constrain the model error at each key step of the fire modelling.

Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N.

2014-04-01

79

Subsurface Contaminants Focus Area annual report 1997  

SciTech Connect

In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

NONE

1997-12-31

80

Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery  

NASA Astrophysics Data System (ADS)

Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

2015-06-01

81

Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006  

USGS Publications Warehouse

Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.

Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

2008-01-01

82

A mobile app for measuring the surface area of a burn in three dimensions: comparison to the Lund and Browder assessment.  

PubMed

The aim of this study was to compare the ease and accuracy of measuring the surface area of a severe burn through the use of a mobile software application (BurnMed) to the traditional method of assessment, the Lund and Browder chart. BurnMed calculates the surface area of a burn by enabling the user to first manipulate a three-dimensional model on a mobile device and then by touching the model at the locations representing the patient's injury. The surface area of the burn is calculated in real time. Using a cohort of 18 first-year medical students with no experience in burn care, the surface area of a simulated burn on a mannequin was made using BurnMed and compared to estimates derived from the Lund and Browder chart. At the completion of this study, students were asked to complete a questionnaire designed to assess the ease of use of BurnMed. Users were able to easily and accurately measure the surface area of a simulated burn using the BurnMed application. In addition, there was less variability in surface area measurements with the application compared to the results obtained using the Lund and Browder chart. Users also reported that BurnMed was easier to use than the Lund and Browder chart. A software application, BurnMed, has been developed for a mobile device that easily and accurately determines the surface area of a burn. This system uses a three-dimensional model that can be rotated, enlarged, and transposed by the health care provider to easily determine the extent of a burn. Results show that the variability of measurements using BurnMed is lower than the measurements obtained using the Lund and Browder chart. BurnMed is available at no charge in the Apple™ Store. PMID:24918947

Goldberg, Harry; Klaff, Justin; Spjut, Aaron; Milner, Stephen

2014-01-01

83

Dominating fire direction in burned areas of Dz¯ u kija National Park (Lithuania)  

NASA Astrophysics Data System (ADS)

Fire perturbation has been often breaking out in Dzukija's National Park landscapes over the last 150 years -coinciding with the age of oldest forests in the park's territory. Valuable information was obtained by carrying out a retrospective analysis which helped to reveal ancient presence of fire in the park. The study was developed on previously stipulated old forest stands around the area of Marcinkonys village. Of a total of 28 burned-stands, direction of fire spread was noted down from all standing trees presenting fire traces within two plot areas of 20 meters x 10 meters. It should be stated, however, that for half of the plots fire direction was uncertain and, hence, not taken into account. South-west direction was evidenced in half of the plots, being indeed the one with most presence in the burned stands; west and south direction were dominating in 28.5% and 25% of the plots respectively; in 10.7% of plots north-west was dominating direction; whereas fire traces were rarely observed facing north -only in 3.7% of plots-. Regarding the rest of directions, they were absent in all sampling sites. The direction of fire spread is largely determined by wind flow patterns: specifically wind and relative humidity could significantly change burning conditions. Despite that wind in the region blows predominantly from west and south-west, when analyzing our findings, it appears that dry continental air masses, and in general wind events associated with passing of dry cold fronts, produce more favorable conditions for the occurrence of fire. Wind-driven fires are mostly spreading to south-west as dry wind coming from north-west and west might generate the principle source of ignition and make vegetation more flammable.

Martin-Gallego, David; Lapele, Mindaugas; Pereira, Paulo

2013-04-01

84

L-Area Reactor - 1993 annual - groundwater monitoring report  

SciTech Connect

Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

Chase, J.A.

1994-09-01

85

Biomass Burning  

NASA Technical Reports Server (NTRS)

Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

1993-01-01

86

Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece  

NASA Astrophysics Data System (ADS)

Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

Samara, Constantini

87

Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.  

PubMed

PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality. PMID:24477336

van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

2014-10-01

88

Validation Framework for USGS Landsat-derived Essential Climate Variables: the Burned Area Product Example  

NASA Astrophysics Data System (ADS)

The U.S. Geological Survey (USGS) is generating a suite of Essential Climate Variables (ECVs), as defined by the Global Climate Observing System program, from the Landsat data archive. The Landsat archive will provide high spatial resolution (30 m) and long-term (1972 to present) global land products, meeting the needs of climate and ecological studies at global, national, and regional scales. Validation protocols for these products are being established, paralleling the Committee on Earth Observing Satellites (CEOS) Calibration/Validation Working Groups' best practice guidelines, but also being modified to account for the unique characteristics of the Landsat data. The USGS validation plan is unique in that it incorporates protocols that span not only the breadth of ecoregions but the timespan of the ECV products and Landsat satellite sensors (MSS, TM, TM+, and OLI). To achieve these goals, the incorporation of existing data bases is essential. Protocols are being developed to perform a CEOS Working Group on Calibration/Validation Stage 2 validation with plans on performing a full Stage 4 validation ensuring the spatial and temporal consistency of the ECV products. A Stage 2 validation reports product accuracies over a large number of locations and time periods by comparison with in situ or other suitable reference data. The Stage 3 validation reports product uncertainties in a statistically robust way over multiple locations and time periods representing global conditions. Validation at this stage reports on the accuracies and confidence of products for the user communities as well as to the algorithm developers. The Stage 4 validation calls for continual assessments as new product versions of the algorithms are released. This presentation will report on the validation protocols used for the Burned Area ECV product. The burned area ECV product is unique from other ECV products such as land cover or LAI because of the transitory nature of fires. In the United States, the use of existing fire perimeter data bases from various state and federal agencies as reference data is economical and enables the validation of different time periods and locations. Additionally, the incorporation of existing satellite-derived reference data used to validate other coarser resolution global burned area data sets such as the MCD45 (Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, 500 m spatial resolution), GlobCarbon (Along Track Scanning Radiometer (ATSR) sensor, 1 km spatial resolution), and L3JRC (SPOT-VEGETATION sensor, 1 km spatial resolution) is also being pursued. The validation the approach developed for the USGS ECV products and the challenges of using the vector polygons and raster layers from these reference datasets will be reported in the presentation.

Mladinich, C. S.; Brunner, N. M.; Beal, Y. G.

2013-12-01

89

Multidecadal trends in burn severity and patch size in the Selway-Bitterroot Wilderness Area, 1900-2007  

NASA Astrophysics Data System (ADS)

How the proportion of area burned severely has changed over time is critical to understanding trends in the ecological effects of fire, but most assessments over large areas are limited to 30 years of satellite data. Little is known about multidecadal trends in burn severity, patch size, and implications for species diversity. Our objective was to analyze the change in proportion of area burned severely and patch size across 346,304 ha in the Selway-Bitterroot Wilderness Area in Idaho and Montana, USA. We used 30-meter fire perimeters and burn severity classes inferred from 1984-2007 satellite imagery from the Monitoring Trends in Burn Severity project and 1900-2000 aerial photography. We also analyzed the effect of patch size on species diversity of understory vegetation from field data collected from 20 sites burned in 2000, a year of widespread fires in the region. Fires occurred in 38 out of the 107 years in the record; 13 of these in the early period (1900-1934), 4 in the middle (1935-1974), and 21 in the late (1975-2007). Although 78% (270,918 ha) burned at least once and 48% (131,198) of the area burned severely with >70% tree mortality, there was no trend in total area burned severely through time (n=38, Spearman's Rank Correlation r = -0.14, p = 0.39), nor in proportion of area burned severely through time (n=38, Spearman's Rank Correlation r = -00.27, p = 0.09). Median patch size decreased through time (n= 38, Spearman's Rank Correlation r = -0.73 and p<0.01) and the number of high severity patches increased (n = 38, Spearman's Rank Correlation r = 0.35 and p = 0.02). Median perimeter-to-area ratio of high severity patches increased (n = 38, Spearman's Rank Sum Test r = 0.79 and p <.01); the greater perimeter-to-area ratio and shorter distance to the unburned edge through time is not an artifact of satellite data as patch size inferred from aerial photography 1900-2000 decreased (n= 31, Spearman's Rank, r = -0.42 and p <0.01), but did not for satellite data 1984-2007(n = 16, Spearman's Rank Correlation r = -0.12 and p = 0.64). Total tree seedling density 12 years post-fire was lower in large patches (Kruskal Wallis ANOVA p = 0.005) with fewer trees at 40 m and 80 m than at 10 m from unburned edges in severely burned patches (respectively, Wilcoxon Rank Sum Test p = 0.03 and 0.01). Understory species richness and diversity did not differ with distance from unburned edge, likely because many species resprout or establish from existing seed banks. Understanding how proportion of area burned severely is changing over multiple decades will help ecologists and land managers better understand where, when, and why fires burn severely and their past, present, and future consequences.

Wells, A.; Morgan, P.; Smith, A. M.; Hudak, A. T.; Hicke, J. A.

2013-12-01

90

The spatial and temporal distribution of crop residue burning in the contiguous United States.  

PubMed

Burning crop residue before and/or after harvest is a common farming practice however; there is no baseline estimate for cropland burned area in the contiguous U.S. (CONUS). We present the results of a study, using five years of remotely sensed satellite data to map the location and areal extent of crop residue burning in the CONUS. Our burned area approach combines 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Burn Ratio (dNBR) data, with 1 km MODIS active fire counts calibrated using coincident high resolution satellite data to generate area estimates. Our results show that cropland burning is an extensive and recurring annual event in several states in the CONUS. On average, 1,239,000 ha of croplands burn annually, which is equivalent to 43% of the annual average area of wildland fires in the U.S., as reported by the United States Forest Service for the same period. Several states experience high levels (>30,000 ha yr(-1)) of crop residue burning, including Arkansas, California, Colorado, Florida, Idaho, Kansas, Louisiana, North Dakota, Oklahoma, Oregon, South Dakota, Texas, and Washington. Validation with high resolution burn scar imagery and GPS data collected during targeted field campaigns showed a moderate to high-level accuracy for our burned area estimates, ranging from 78 to 90%. Our approach provides a more consistent methodology for quantifying cropland burned area at regional scales than the previously available U.S. national and state-level statistics on crop residue burning. PMID:19647857

McCarty, Jessica L; Korontzi, Stefania; Justice, Christopher O; Loboda, Tatiana

2009-10-15

91

Comparison of Normalized Burn Ratio, Normalized Difference Vegetation Index, and Enhanced Vegetation Index in Areas Burned by the Jasper Wildfire of Black Hills South Dakota  

NASA Astrophysics Data System (ADS)

The Jasper wildfire of August and September 2000 was the largest fire to occur in the Black Hills in at least a century. The disturbance on ecosystem characteristics will be widespread and long-term. Monitoring postfire vegetation changes using remote sensing data can provide unique and timely information about ecosystem dynamics. In this study, the Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) data were derived from Landsat imagery and compared before and after the Jasper fire. Landsat 5 images acquired on June 2, 2000 (preburn), and June 5, 2001 (10 months postburn), were analyzed. In addition, a Landsat 7 image acquired on May 31, 2002 (22 months postburn), was used in the study. Landsat data were converted to at-sensor reflectance, and NBR, NDVI, and EVI values were calculated for low, moderate, and high burn severity areas defined by using the difference of NBR between 2001 and 2000. NBR values in areas characterized as low burn severity changed very little between 2001 and 2002. Meanwhile, areas characterized as moderate or high severity showed substantial increases in NBR values between 2001 and 2002, implying some ecosystem recovery occurring for these areas over a relatively short time. EVI and NDVI show similar patterns of change, but it was found that EVI and NBR indices are more sensitive than is NDVI for capturing vegetation cover changes during the early postfire years. Further research is planned to use Landsat and MODIS imagery to assess spectral trends as a function of time in areas affected by fire.

Chen, X.; Zhu, Z.

2007-12-01

92

Hydrology of, and water quality in, the open burning area and vicinity, Picatinny Arsenal, New Jersey, 1989-90  

USGS Publications Warehouse

This report presents the results of a study to determine whether shallow ground water at Picatinny Arsenal Morris County, New Jersey, has been con- taminated as a result of operations at the open burning area, which is used for burning of waste explosives and materials contaminated with explosives. Results of previous investigations indicate that the soil in this area is contaminated with metals and organic compounds. Twenty-seven wells were sampled for analysis for inorganic constituents, nutrients, and explosive compounds. Selected wells also were sampled for analysis for base/neutral- and acid-extractable compounds, pesticides, volatile organic compounds, and dioxin and furan compounds. Surface-water and streambed- material samples were collected at three sites in Green Pond Brook. Water-level measurements indicate that ground-water flow generally is nearly horizontal and toward Green Pond Brook. The average velocity of the ground water is estimated to be 0.03 to 1.8 feet per day. Concentrations of iron and manganese in ground-water samples from the unconfined aquifer were consistently greater than U.S. Environmental Protection Agency secondary drinking-water regulations. Because similarly high concentrations of these constituents have been found in ground-water samples at the arsenal, they are not considered to be a consequence of activities at the open burning area. Contaminants from the open burning area appear to be contributing to elevated concentratons of lead, zinc, and explosive com- pounds found in the streambed material. Other trace element and polynuclear aromatic hydrocarbons probably are derived from both the open burning area and upstream sources. Volatile organic compounds were detected in surface-water samples at low concentrations, although most were found upstream from the open burning area. No inorganic or organic constituents were detected in ground-water or surface-water samples in concentrations that exceeded U.S. Environmental Protection Agency primary drinking-water regulations.

Storck, D.A.

1994-01-01

93

ANNUAL REPORT ON PERFORMANCE AUDIT RESULTS FOR POHC TESTING DURING TRIAL BURNS  

EPA Science Inventory

Audit materials containing Principal Organic Hazardous Constituents (POHCs) have been developed by AREAL for use by federal, state, and local agencies or their contractors to assess the accuracy of measurement methods during RCRA trial burn tests. Audit materials are currently av...

94

Investigation of soil contamination at the Riot Control Burning Pit area in J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect

A remedial investigation was conducted to identify soil contamination in the Riot Control Burning Pit area in J-field, Aberdeen Proving Ground, Maryland. The investigation included geophysical surveys to delineate the filled section of the pit, soil-gas surveys to locate the organic contamination area, field X-ray fluorescence measurements along the burning pit to identify the major metal contamination, and surface and subsurface soil analyses to investigate the nature and extent of contamination. This paper presents the results of this investigation

Wang, Ying-Ya; Yuen, C.R.; Martino, L.

1996-05-01

95

P-Area Reactor 1993 annual groundwater monitoring report  

SciTech Connect

Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in P Area: well P 24A in the eastern section of P Area, the P-Area Acid/Caustic Basin, the P-Area Coal Pile Runoff Containment Basin, the P-Area Disassembly Basin, the P-Area Burning/Rubble Pit, and the P-Area Seepage Basins. During 1993, pH was above its alkaline standard in well P 24A. Specific conductance was above its standard in one well each from the PAC and PCB series. Lead exceeded its 50 {mu}g/L standard in one well of the PDB series during one quarter. Tetrachloroethylene and trichloroethylene were detected above their final primary drinking water standards in one well of the PRP well series. Tritium was consistently above its DWS in the PDB and PSB series. Also during 1993, radium-228 exceeded the DWS for total radium in three wells of the PAC series and one well of the PCB series; total alpha-emitting radium exceeded the same standard in a different PCB well. These results are fairly consistent with those from previous years. Unlike results from past years, however, no halogenated volatiles other than trichloroethylene and tetrachloroethylene exceeded DWS in the PRP well series although gas chromatographic volatile organic analyses were performed throughout the year. Some of the regulated units in P Area appear to need additional monitoring by new wells because there are insufficient downgradient wells, sometimes because the original well network, installed prior to regulation, included sidegradient rather than downgradient wells. No monitoring wells had been installed through 1993 at one of the RCRA/CERCLA units named in the Federal Facilities Agreement, the Bingham Pump Outage Pits.

NONE

1994-11-01

96

R-Area Reactor 1993 annual groundwater monitoring report  

SciTech Connect

Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50{mu}g/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells.

Not Available

1994-09-01

97

Chemical burns  

PubMed Central

Objectives To report a burn unit’s experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

1996-01-01

98

Using NASA's World Wind virtual globe for interactive internet visualization of the global MODIS burned area product  

Microsoft Academic Search

Three?dimensional virtual globes are radically changing the way geographic information is perceived by the public. This article describes how NASA World Wind, an open source virtual globe, is currently being used for visualization of the MODIS burned area product. The procedures adopted for converting the product into a format compatible with World Wind, as well as the spatial generalization of

L. Boschetti; D. P. Roy; C. O. Justice

2008-01-01

99

Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil  

Microsoft Academic Search

Strategies for the reduction of greenhouse gas emission in agriculture have been debated for some time, especially in Brazil, where the agricultural sector is an important contributor to the national emission balance. The present study focuses on the change in greenhouse gas balance from the conversion of sugarcane areas from burned to green harvest, considering both agricultural and mobile sources.

Eduardo Barretto De Figueiredo; Newton La Scala

2011-01-01

100

[Fire severity of burnt area in Huzhong forest region of Great Xing' an Mountains, Northeast China based on normalized burn ratio analysis].  

PubMed

Based on the TM images and 3S technology, and by using normalized burn ratio (NBR) , this paper quantitatively evaluated the fire severity of burnt area in Huzhong forest region of the Great Xing' an Mountains from 1986 to 2010, and analyzed the relationships of the fire severity with environmental factors such as vegetation type, elevation, slope, and aspect. In Huzhong forest region, the fire occurrence frequency and total burnt area had an obvious inter-annual change. High incidence of forest fire was from June to August, and heavily burnt area occupied 84. 2% of the total burnt area. In the burnt area, larch forest accounted for 89. 9%. 68. 8% of burnt area located at the elevations from 1000 m to 1500 m, and 62. 5% located in eastern, southern, western, and northern slopes. There was no obvious difference in the burnt area between sunny and shady slopes. The burnt area at the slope degrees 15 degree-25 degrees occupied 38.4% of the total. High severity burnt area was the largest (70% of the total), followed by moderate severity burnt area (about 10%), and low severity burnt area and un-burnt area (<5% ). The majority of the forest fires in Huzhong forest region were of high severity fire, which caused great damages to the forest resources. It was suggested that in the forest fire management in Great Xing' an Mountains forest region, it would be urgent to implement forest fuel treatments to reduce fire severity to guarantee the forest ecosystem security. PMID:23898653

Wang, Xiao-li; Wang, Wen-juan; Chang, Yu; Feng, Yu-ting; Chen, Hong-wei; Hu, Yuan-man; Chi, Jian-guo

2013-04-01

101

Satellite-based Assessment of Climate Controls on US Burned Area  

NASA Technical Reports Server (NTRS)

Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

2012-01-01

102

Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas  

NASA Astrophysics Data System (ADS)

The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

2006-12-01

103

Forrest Conservation Area : Management & Implementation FY 2004 Annual Report.  

SciTech Connect

The Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Conservation Area during July of 2002. The property is located in the Upper John Day subbasin within the Columbia basin. The property consists of two parcels comprising 4,232 acres. The Mainstem parcel consists of 3,445 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem John Day River. The Middle Fork parcel consists of 786 acres and is located one mile to the west of the town of Austin, OR on the Middle Fork John Day River. The Forrest Conservation Area is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. Acquisition of the Forrest Conservation Area was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by hydroelectric facilities on the Columbia River and its tributaries. The intent of the Conservation Area is to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, {section}11.1, {section}7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of management funding for the protection and restoration of fish and wildlife habitat through a memorandum of agreement.

Smith, Brent

2008-12-01

104

Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas  

NASA Astrophysics Data System (ADS)

Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, ?-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of ?-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased linearly with the total cover of vegetation patches, which is consistent with the strong effect of plant patches on the activity of this enzyme. According to our results, variations in the cover and composition of vegetation patches may have profound impacts on the soil enzyme activity and associated nutrient cycling processes in burned Mediterranean areas, particularly in the case of phosphorus. Keywords: wildfires, landscape metrics, Mediterranean shrublands, soil enzyme activity, resprouter species.

Mayor, Á. G.; Goirán, S.; Bautista, S.

2009-04-01

105

Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland  

SciTech Connect

The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

Patton, T.; Benioff, P.; Biang, C.; Butler, J. [and others

1996-06-01

106

Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires  

USGS Publications Warehouse

Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

2003-01-01

107

Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: simulating historical global burned area and fire regimes  

NASA Astrophysics Data System (ADS)

Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001-2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76-92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yr-1, which falls within the range of 287-384 Mha yr-1 as given by the three observation data sets; and is close to the 344 Mha yr-1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930-2009), along with Canada and US Alaska (1950-2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling.

Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N.

2014-11-01

108

A GIS-based hillslope erosion and sediment delivery model and its application in the Cerro Grande burn area  

Microsoft Academic Search

An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130-1130.A profile-based, analytical hillslope erosion model (HEM) is integrated into a geographical information system (GIS) framework to provide a tool to assess the impact of the Cerro Grande fire on erosion and sediment delivery to the many streams draining the burn area. The model, HEM-GIS, calculates rill

Cathy J. Wilson; J. William Carey; Peter C. Beeson; Marvin O. Gard

2001-01-01

109

Correlations between soil respiration and soil properties in sugarcane areas under green and slash-and-burn management systems  

Microsoft Academic Search

Soil management causes changes in soil physical, chemical, and biological properties that consequently affect its CO2 emission. In this work we studied soil respiration (FCO2) in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn

Alan Rodrigo Panosso; Débora M. B. P. Milori; José Marques Júnior; Ladislau Martin-Neto; Newton La Scala Jr.

2010-01-01

110

Can post-wildfire Burned Area Emergency Response treatments mitigate watershed degradation?  

NASA Astrophysics Data System (ADS)

Wildfire is a natural phenomenon that began with the development of terrestrial vegetation in a lightning-filled atmosphere 350 million years ago. As human populations developed in the Pleistocene and Holocene epochs, mankind transformed fire into one of its oldest tools. A negative impact of prime concern in the 21st Century is desertification. This term refers to land degradation, not the immediate creation of classical deserts. It is about the loss of the land's proper hydrologic function and biological productivity as a result of human activities and climate change. It affects 33% of the earth's surface and over a billion people. Fire-related desertification has a number of environmental, social, and economic consequences. The two key environmental consequences are soil erosion and exotic plant invasions. Wildfires typically have exotic plant species abundances ten times that of undisturbed forests (Neary et al. 2003). Seeding has been used for many years in the USA as a prime Burned Area Emergency Response (BAER) treatment. Until recently, this seeding contributed to exotic plant invasions since fast-growing, but non native plants seeds were used. The use of native plant seeds and sterile hybrids has reduced this problem somewhat. Erosion after wildfires documented in the USA can be in the range of <1 to 370 Mg/ha, depending on fire severity, degree of water repellency, slope, and post-fire rainfall events. Soil losses in the high end of that range definitely exceed soil loss tolerances and contribute to desertification. Soil disturbance and degradation after wildfires is a function of fire severity, and the impacts can range from the minimal to catastrophic and long-lasting. The most obvious impact is the loss of organic matter from combustion of the forest floor. Changes in soil physical and chemical properties with high-severity wildfire can produce water repellency, aggravating rainfall runoff and erosion. Since soils take long times to form (50 to 75,000 years), degradation as a result of wildfire-related erosion or soil property changes can result in severe and rapid desertification. Soil degradation is a "one-way street" not easily reversed. Although trees can be replanted on burned sites, soil lost in erosion is rarely replaced, just rehabilitated. There are techniques to rehabilitate these degraded soils but they are quite expensive. Disruptions to soil micro-fauna and micro-flora can also reduce post-fire site vegetation productivity. An environmental consequence of wildfire related to soil disturbance, is the loss of hydrologic function. Again, the level of hydrologic function loss is related to fire severity. Although this ecosystem function tends to recover within 5 - 10 years after wildfire as vegetation cover returns, the immediate impacts can be considerable. The removal of the protective layer of the forest floor by combustion, and the development of water repellent layers in the soil combine to aggrevate flood potentials. Flood peak flows after wildfires with high percentages of high severity wildfire (>30%) commonly have increases of 10-fold. Higher increases (20 to 2,000 fold) have been measured as the percentage of high-severity soil damage approaches 100%. The other side of high flood runoff is the reduction in baseflow that sustains stream flow due to the reduction in rainfall infiltration. This has water supply implications for forested watersheds that are sources for municipal water supplies. In addition, post-wildfire ash slurry flows can substantially degrade the quality of municipal water sources. Although this phenomenon is relatively short lived (<2 years), it can have serious supply impacts. This paper examines the capabilities of BAER treatments in dealing with this problem.

Neary, D.; Ffolliott, P.; Bautista, S.; Wittenberg, L.

2009-04-01

111

Early escharotomy as a measure to reduce intraabdominal hypertension in full-thickness burns of the thoracic and abdominal area.  

PubMed

Intraabdominal hypertension (IAH) can occur in critically ill patients who have undergone surgery, who have required fluid resuscitation after intraabdominal operations, or whose abdominal surgical wound closure was under tension. If IAH remains unrelieved, it can lead to development of the abdominal compartment syndrome (ACS). The latter presents with severe cardiorespiratory and urinary symptoms such as hypotension, hypoventilation, and oliguria, and it can become fatal if it is not diagnosed early and treated properly. Moreover, IAH has been documented in the context of major burns, complicating the initial resuscitation of these patients. This study was set up to investigate the role of full-thickness burns of the thoracic and abdominal areas in IAH during the early resuscitation period, to determine whether escharotomy could influence its levels. During the past 2 years 10 burn patients were enrolled in this study, as they fulfilled the necessary criteria: >35% total body surface area (TBSA) full-thickness burn affecting the anterior, lateral, and most of the posterior surface of the thorax and abdomen (torso), no respiratory mechanical support at admission, and initial evaluation at another facility and transfer to our burn center 2-6 h postburn. Upon admission, the following parameters (indicative of intraabdominal hypertension, IAH) were measured: bladder pressure and gastric pressure. Also, we monitored inferior vena cava pressure, and as a routine, central venous pressure, systolic blood pressure, and arterial blood gases. Elevated intraabdominal pressure to hazardous levels was documented in all patients included in our study. The same escharotomy pattern was performed in every case, and 5-10 min after the procedure all measurements were repeated. Immediate improvement of all the parameters measured was recorded, and the alterations were found statistically significant. These results were indicative of significant relief of the elevated intraabdominal pressure in all patients after escharotomy, as well as the efficacy of the procedure. It is thus demonstrated that full-thickness burns of the thoracic and abdominal areas can cause a significant early increase in intraabdominal pressure that, if left untreated, can lead to the development of ACS. However, the application of simple decompression techniques can offer remarkable, immediate, and often lifesaving results and is absolutely indicated for this reason, as well as for its well-known beneficial effects on respiratory function. PMID:14595519

Tsoutsos, Demosthenis; Rodopoulou, Stavroula; Keramidas, Evangelos; Lagios, Miltiadis; Stamatopoulos, Konstantinos; Ioannovich, John

2003-12-01

112

33 CFR 100.1103 - Northern California and Lake Tahoe area annual marine events.  

Code of Federal Regulations, 2014 CFR

...Waters 1 2014-07-01 2014-07-01 false Northern California and Lake Tahoe area annual marine events. 100.1103 ...SAFETY OF LIFE ON NAVIGABLE WATERS § 100.1103 Northern California and Lake Tahoe area annual marine events. (a)...

2014-07-01

113

33 CFR 100.1103 - Northern California and Lake Tahoe area annual marine events.  

Code of Federal Regulations, 2012 CFR

...Waters 1 2012-07-01 2012-07-01 false Northern California and Lake Tahoe area annual marine events. 100.1103 ...SAFETY OF LIFE ON NAVIGABLE WATERS § 100.1103 Northern California and Lake Tahoe area annual marine events. (a)...

2012-07-01

114

Annual Dynamics of Bobcat (Lynx rufus) Home Range and Core Use Areas in Mississippi  

Microsoft Academic Search

We investigated the annual dynamics of bobcat (Lynx rufus) home range and core use areas by radiotracking 23 female and 6 male bobcats from 10 January 1989 to 31 January 1998 in Mississippi. We quantified space use by measuring changes in the dispersion and central tendency of bobcat locations (i.e., radiotelemetry locations) between annual home range and core use areas.

Bruce W. Plowman; L. Mike Conner; Michael J. Chamberlain; Bruce D. Leopold; Loren W. Burger

2006-01-01

115

Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT  

Microsoft Academic Search

Russian boreal forests contain around 25% of all global terrestrial carbon, some of which is released to the atmosphere when the forests burn. Whilst it is well known that fire is widespread in the boreal environment, there is a lack of good quality quantitative data on the extent of fire activity in Russian forests and on its interannual variation. This

Y.-H. Zhang; M. J. Wooster; O. Tutubalina; G. L. W. Perry

2003-01-01

116

Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico  

USGS Publications Warehouse

In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow Creek, Iron Creek, and West Fork Mogollon Creek. Drainage basins with estimated debris-flow volumes greater than 100,000 m3 for the 25-year-recurrence event, 24 percent of the basins modeled, also include tributaries to Deep Creek, Mineral Creek, Gilita Creek, West Fork Gila River, Mogollon Creek, and Turkey Creek, among others. Basins with the highest combined probability and volume relative hazard rankings for the 25-year-recurrence rainfall include tributaries to Whitewater Creek, Mineral Creek, Willow Creek, West Fork Gila River, West Fork Mogollon Creek, and Turkey Creek. Debris flows from Whitewater, Mineral, and Willow Creeks could affect the southwestern New Mexico communities of Glenwood, Alma, and Willow Creek. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be necessary within a 2- to 3-year period of vulnerability following the Whitewater-Baldy Fire. This work is preliminary and is subject to revision. It is being provided because of the need for timely "best science" information. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.

2012-01-01

117

Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems: Annual and Final Report  

SciTech Connect

The Idaho National Laboratory (INL) contribution to the Nuclear Energy Research Initiative (NERI) project number 2002-005 was divided into reactor physics, and thermal-hydraulics and plant design. The research targeted credible physics and thermal-hydraulics models for a gas-cooled fast reactor, analyzing various fuel and in-core fuel cycle options to achieve a true breed and burn core, and performing a design basis Loss of Coolant Accident (LOCA) analysis on that design. For the physics analysis, a 1/8 core model was created using different enrichments and simulated equilibrium fuel loadings. The model was used to locate the hot spot of the reactor, and the peak to average energy deposition at that location. The model was also used to create contour plots of the flux and energy deposition over the volume of the reactor. The eigenvalue over time was evaluated using three different fuel configurations with the same core geometry. The breeding capabilities of this configuration were excellent for a 7% U-235 model and good in both a plutonium model and a 14% U-235 model. Changing the fuel composition from the Pu fuel which provided about 78% U-238 for breeding to the 14% U-235 fuel with about 86% U-238 slowed the rate of decrease in the eigenvalue a noticeable amount. Switching to the 7% U-235 fuel with about 93% U-238 showed an increase in the eigenvalue over time. For the thermal-hydraulic analysis, the reactor design used was the one forwarded by the MIT team. This reactor design uses helium coolant, a Brayton cycle, and has a thermal power of 600 MW. The core design parameters were supplied by MIT; however, the other key reactor components that were necessary for a plausible simulation of a LOCA were not defined. The thermal-hydraulic and plant design research concentrated on determining reasonable values for those undefined components. The LOCA simulation was intended to provide insights on the influence of the Reactor Cavity Cooling System (RCCS), the containment building, and a Decay Heat Removal System (DHRS) on the natural circulation heat transfer of the core's decay heat. A baseline case for natural circulation had to be established in order to truly understand the impact of the added safety systems. This baseline case did not include a DHRS, although the current MIT design does have a DHRS that features the highly efficient Printed Circuit Heat Exchangers (PCHEs). The initial LOCA analysis revealed that the RCCS was insufficient to maintain the reactor core below the fuel matrix decomposition temperature. A guard containment was added to the model in order to maintain a prescribed backpressure during the LOCA to enhance the natural circulation. The backpressure approach did provide satisfactory natural convection during the LOCA. The necessary backpressure was 1.8 MPa, which was not especially different from the values reported by other gas fast reactor researchers. However, as the model evolved to be more physically representative of a nuclear reactor, i.e., it included radial peaking factors, inlet plenum orificing, and the degradation of SiC thermal properties as a result of irradiation, the LOCA-induced fuel temperatures were not consistently below the decomposition limit.

Kevan D. Weaver; Theron Marshall; James Parry

2005-10-01

118

Burns and Ulcerative Colitis  

PubMed Central

Summary The co-existence of an extensive burn with a systemic disease negatively affects the outcome of the burn as well as the progress of the disease. A case report is presented regarding a 70-yr-old female patient with 45% total body surface area burns and ulcerative colitis under treatment. The outcome of the burns is described and it is pointed out that the healing process of the burns and the remission of the ulcerative colitis were related. PMID:21991043

Castana, O.; Makrodimou, M.; Mantzaris, G.; Tsandoulas, Z.; Prigouris, S.; Alexakis, D.

2006-01-01

119

Burns and ulcerative colitis.  

PubMed

The co-existence of an extensive burn with a systemic disease negatively affects the outcome of the burn as well as the progress of the disease. A case report is presented regarding a 70-yr-old female patient with 45% total body surface area burns and ulcerative colitis under treatment. The outcome of the burns is described and it is pointed out that the healing process of the burns and the remission of the ulcerative colitis were related. PMID:21991043

Castana, O; Makrodimou, M; Mantzaris, G; Tsandoulas, Z; Prigouris, S; Alexakis, D

2006-09-30

120

Fire spatial heterogeneity, fire seasonality and burned area mapping accuracy in the tropical savannas of Northern Australia  

NASA Astrophysics Data System (ADS)

Accurate burned area mapping from remotely sensed data should be able to identify spatial heterogeneity within a fire perimeter, for an improved representation of fire effects as experienced by plants and animals. In order to derive a very high spatial resolution characterization of fire patterns in the tropical savannas of the Northern Territory, Australia, we walked 38.2km of line transects, sampling the presence/absence of burning evidence at 1m intervals, in 35 different fires that occurred between 2009 and 2011. Transects were sampled in the early and in the late dry season, and in five dominant vegetation classes. We used lacunarity analysis and spatial autocorrelation to assess the dominant scale of burned area patches, which turns out to be approximately 200m. Lacunarity analysis also suggests that burnt areas exhibit a clustered pattern and that fire heterogeneity is more pronounced in the early dry season. This is consistent with our observation that patches in the late dry season tend to be smaller and more randomly distributed. Finally, we used our high resolution data date to simulate remote sensing detection of burnt areas for a range of spatial resolutions. We quantify the omission error for each sensor and conclude that if resolution is lower than the dominant scale, then the error tends to be small. Our results also suggest that sensors with spatial resolution higher than the dominant scale have similar omission errors over a broad range of resolution values. The forthcoming Sentinel-2 satellites, which combine 5-day revisit, and systematic acquisition of all land surfaces at 10-20 m spatial resolution, with a large number of spectral bands, ought to allow for very accurate and timely mapping of fire heterogeneity, for improved assessment of fire impacts on biodiversity and pyrogenic emissions.

Oliveira, Sofia L. J.; Campagnolo, Manuel L.; Pereira, Jose M. C.; Russell-Smith, Jeremy

2013-04-01

121

Multi-temporal burned area mapping using logistic regression analysis and change metrics  

Microsoft Academic Search

Describes a procedure developed for continental-scale mapping of burned boreal forest at 10-day intervals. The basis of the technique is a multiple logistic regression model applied to 1 km SPOT VEGETATION (VGT) clear-sky composites. Independent variables consist of multitemporal change metrics representing 10-day and surrounding 30-day changes in reflectance and in two vegetation indices. The metrics account for seasonal phenological

R. Fernandes; R. Latifovic

2002-01-01

122

Responses of a small-mammal community to habitat management through controlled burning in a protected Mediterranean area  

NASA Astrophysics Data System (ADS)

Fire is widely used as a management tool to achieve conservation goals. However, the consequences of such management on non-target species are frequently neglected and unknown. This study examines the effects of traditional management practices of scrubland clearance by controlled burning to improve menaced carnivores on non-target species: rodent and insectivores in Doñana National Park (SW of Iberian Peninsula). We used capture-recapture methods to examine changes in abundance in areas that were burnt one and three years ago, compared with unburnt areas. Results showed that burnt areas had higher species abundances, but mainly on the ecotonal boundaries. Species abundances showed dramatic seasonal differences with high abundances in autumn and winter, and very low abundance in summer. Our study revealed that scrubland management by controlled fires increases the abundance of small mammal species, mainly Mus spretus and Apodemus sylvaticus. We found only four small mammal species between the different treatments. However, some species that were formerly abundant in Doñana, such as Elyomis quercinus, were found only in burnt areas. Our results suggest that controlled burning is not contributing to the current loss of biotic diversity in this community.

Moreno, Sacramento; Rouco, Carlos

2013-05-01

123

Explanation of Significant Difference (ESD) for the A-Area Burning\\/Rubble Pits (731-A\\/1A) and Rubble Pit (731-2A) (U)  

Microsoft Academic Search

The A-Area Burning\\/Rubble Pits (731-A\\/1A) and Rubble Pit (731-2A) (ABRP) operable unit (OU) is located in the northwest portion of Savannah River Site (SRS), approximately 2.4 kilometers (1.5 miles) south of the A\\/M Area operations. Between 1951 and 1973, Pits 731-A and 731-1A were used to burn paper, plastics, wood, rubber, rags, cardboard, oil, degreasers, and solvents. Combustible materials were

2000-01-01

124

Characterization of ambient black carbon and wood burning particles in two urban areas.  

PubMed

Previously it has been suggested that certain organic aerosol components of wood smoke have enhanced ultraviolet absorption at 370 nm relative to 880 nm in two-wavelength aethalometer measurements. This enhanced absorption could serve as an indicator of wood burning particles. Two-wavelength (370 nm and 880 nm) aethalometer measurements were made at urban sites in Rochester, New York and Laredo, Texas from August 1 to December 31, 2009 and from December 23, 2007 to January 2, 2008, respectively. In Rochester, Delta-C (UVBC(370 nm)- BC(880 nm)) values were higher by a factor of 3 during the night than during the day in November and December when residential wood burning was common. In Laredo, particularly high Delta-C values were observed on Christmas Eve and New Year's Eve and were attributed to biomass burning and firework emissions. Exponential decay was found to be a good estimator for predicting BC concentrations at different wind speeds regardless of wind directions. PMID:21607243

Wang, Yungang; Hopke, Philip K; Rattigan, Oliver V; Zhu, Yifang

2011-07-01

125

Wet deposition of major ions in a rural area impacted by biomass burning emissions  

NASA Astrophysics Data System (ADS)

This work concerns the influence of industrialized agriculture in the tropics on precipitation chemistry. A total of 264 rain events were sampled using a wet-only collector in central São Paulo State, Brazil, between January 2003 and July 2007. Electroneutrality balance calculations (considering H +, K +, Na +, NH4+, Ca 2+, Mg 2+, Cl -, NO3-, SO42-, F -, PO43-, H 3CCOO -, HCOO -, CO42- and HCO3-) showed that there was an excess of cations (˜15%), which was attributed to the presence of unmeasured organic anion species originating from biomass burning and biogenic emissions. On average, the three ions NH4+, NO 3- and H + were responsible for >55% of the total ion concentrations in the rainwater samples. Concentrations (except of H +) were significantly higher ( t-test; P = 0.05), by between two to six-fold depending on species, during the winter sugar cane harvest period, due to the practice of pre-harvest burning of the crop. Principal component analysis showed that three components could explain 88% of the variance for measurements made throughout the year: PC1 (52%, biomass burning and soil dust resuspension); PC2 (26%, secondary aerosols); PC3 (10%, road transport emissions). Differences between harvest and non-harvest periods appeared to be mainly due to an increased relative importance of road transport/industrial emissions during the summer (non-harvest) period. The volume-weighted mean (VWM) concentrations of ammonium (23.4 ?mol L -1) and nitrate (17.5 ?mol L -1) in rainwater samples collected during the harvest period were similar to those found in rainwater from São Paulo city, which emphasizes the importance of including rural agro-industrial emissions in regional-scale atmospheric chemistry and transport models. Since there was evidence of a biomass burning source throughout the year, it appears that rainwater composition will continue to be affected by vegetation fires, even after sugar cane burning is phased out as envisaged by recent São Paulo State legislation.

Coelho, Cidelmara H.; Allen, Andrew G.; Fornaro, Adalgiza; Orlando, Eduardo A.; Grigoletto, Tahuana L. B.; Campos, M. Lucia A. M.

2011-09-01

126

First Aid: Burns  

MedlinePLUS

... You can get burned by heat, fire, radiation, sunlight, electricity, chemicals or hot or boiling water. There ... skin. The burned area will be sensitive to sunlight for up to one year, so you should ...

127

Postwildfire preliminary debris flow hazard assessment for the area burned by the 2011 Las Conchas Fire in north-central New Mexico  

USGS Publications Warehouse

The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.

Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

2011-01-01

128

Relationships between vegetation indices and different burn and vegetation ratios: a multi-scale approach applied in a fire affected area  

NASA Astrophysics Data System (ADS)

Vegetation indices have been widely used in remote sensing literature for burned land mapping and monitoring. In the present study we used satellite data (IKONOS, LANDSAT, ASTER, MODIS) of multiple spectral (visible, near, shortwave infrared) and spatial (1-500 meters) resolutions, acquired shortly after a very destructive fire occurred in the mountain of Parnitha in Attica, Greece the summer of 2007. The aim of our study is to examine and evaluate the performance of some vegetation indices for burned land mapping and also to characterize the relationships between vegetation indices and the percent of fire-scorched (burned) and non fire-scorched (vegetated) areas. The available satellite images were processed geometrically, radiometrically and atmospherically. The very high resolution IKONOS imagery was served as a base to estimate the percent of cover of burned areas, bare soil and vegetation by applying the maximum likelihood classification algorithm. The percent of cover for each type was then correlated to vegetation indices for all the satellite images, and regression models were fit to characterize those relationships. In total 57 versions of some classical vegetation indices were computed using LANDSAT, ASTER and MODIS data. Most of them were modified by replacing Red with SWIR channel, as the latter has been proved sensitive to burned area discrimination. IPVI and NDVI showed a better performance among the indices tested to estimate the percent of vegetation, while most of the modified versions of the indices showed highest performance to estimate the percent of burned areas.

Pleniou, M.; Koutsias, N.

2013-08-01

129

Burn care in South Africa: a micro cosmos of Africa.  

PubMed

Burn injuries in Africa are common with between 300,000 and 17.5 million children under 5 years sustaining burn injuries annually, resulting in a high estimated fatality rate. These burns are largely environmentally conditioned and therefore preventable. The Western Cape Province in South Africa can be regarded as a prototype of paediatric burns seen on the continent, with large numbers, high morbidity and mortality rates and an area inclusive of all factors contributing to this extraordinary burden of injury. Most of the mechanisms to prevent burns are not easily modified due to the restraint of low socio-economic homes, overcrowding, unsafe appliances, multiple and complex daily demands on families and multiple psycho-social stressors. Children <4 years are at highest risk of burns with an average annual rate of 6.0/10,000 child-years. Burn care in South Africa is predominantly emergency driven and variable in terms of organization, clinical management, facilities and staffing. Various treatment strategies were introduced. The management of HIV positive children poses a problem, as well as the conflict of achieving equity of burn care for all children. Without alleviating poverty, developing minimum standards for housing, burn education, safe appliances and legislation, we will not be able to reduce the "curse of poor people" and will continue to treat the consequences. PMID:24906348

Rode, H; Cox, S G; Numanoglu, A; Berg, A M

2014-07-01

130

A GIS-based hillslope erosion and sediment delivery model and its application in the Cerro Grande burn area  

NASA Astrophysics Data System (ADS)

An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130-1130.A profile-based, analytical hillslope erosion model (HEM) is integrated into a geographical information system (GIS) framework to provide a tool to assess the impact of the Cerro Grande fire on erosion and sediment delivery to the many streams draining the burn area. The model, HEM-GIS, calculates rill and interrill erosion, transport and deposition along digital flow-pathways generated with GIS software. This new erosion and sediment yield technology accounts for complex terrain attributes and their impact on the connectivity of sediment transport pathways from source areas to streams. GIS digital spatial data, including elevation, vegetation cover, burn severity and soil type, are used as input to the model. Output includes spatially distributed predictions of total event-based sediment yield (tonnes or kilograms per square metre). Here the model is applied across an 800 km2 region of the Pajarito Plateau watershed to assess the sedimentation risks associated with a 100 year design rain event. Although unvalidated for the design storm, the model predicts that the fire may cause runoff to increase by three to six times, and sediment yield to increase by more than an order of magnitude. Published in 2001 John Wiley & Sons, Ltd.

Wilson, Cathy J.; Carey, J. William; Beeson, Peter C.; Gard, Marvin O.; Lane, Leonard J.

2001-10-01

131

Inter-annual Variability of Biomass Burning Aerosol Optical Depth in Southern Amazonia, and the Impact of These Aerosols on the Diurnal Cycle of Solar Flux Reduction  

NASA Astrophysics Data System (ADS)

The inter-annual variability of the magnitude of biomass burning in southern Amazonia has been relatively large over the last decade. The extent of the burning in the latter half of a given dry season (July-October) depends largely on the rainfall amount and timing, with drought years exhibiting many more fires and smoke than average. Additionally, new regulations aimed at controlling burning may also affect inter-annual variability. We present measurements of aerosol optical depth (AOD) from biomass burning smoke as measured by AERONET sites in Rondonia and Mato Grosso from 1993-2002. These AOD measurements are shown to follow similar inter-annual variability as the fire counts determined by the multi-spectral radiance measurements obtained with GOES-8. However, the AOD at these sites exhibit relatively little diurnal variation despite a very large diurnal cycle in satellite detected fire counts. In order to quantify the changes in the diurnal cycle of solar flux reduction as a result of aerosol attenuation at the peak of the burning season, we model the diurnal cycle of total shortwave (SW; 300-4000 nm), photosynthetically active radiation (PAR; 400-700 nm), and Ultraviolet- A (UVA; 320-400 nm) fluxes in mid-September using the AERONET monthly average AOD measurements (AOD(550 nm) = 1.11). These average diurnal cycle flux reductions show significant temporal delays in the morning for equivalent flux levels in all three spectral bands, of ~50 min to 2 hr 15 min at mid-morning (midpoint between sunrise and solar noon). The largest time delays in flux occur in the UVA band and the smallest in the total SW broadband due to a rapid decrease in AOD as wavelength increases for the accumulation mode smoke aerosols. The time delays in solar flux have implications for possible delay of the onset of cumulus convection, the shortening of the photo-period when plants photosynthesize, and reduced time interval for UVA fluxes which may have implications for photochemical reaction rates, survival of airborne bacteria, insect activity, and plant responses.

Eck, T. F.; Holben, B. N.; Schafer, J. S.; Artaxo, P.; Yamasoe, M. A.; Procopio, A. S.; Prins, E. M.; Feltz, J. M.; Smirnov, A.; Dubovik, O.; Reid, J. S.

2002-12-01

132

Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries  

NASA Astrophysics Data System (ADS)

Fire is a critical component of the Earth system, and substantially influences land surface, climate change, and ecosystem dynamics. To accurately predict the fire regimes in the 21st century, it is essential to understand the historical fire patterns and recognize the interaction among fire, human, and environment factors. Until now, few efforts are put on the studies regarding to the long-term fire reconstruction and the attribution analysis of anthropogenic and environmental factors to fire regimes at global scale. To fill this knowledge gap, we developed a 0.5° × 0.5° data set of global burned area from 1901 to 2007 by coupling Global Fire Emission Database version 3 with a process-based fire model and conducted factorial simulation experiments to evaluate the impacts of human, climate, and atmospheric components. The average global burned area is ~442 × 104 km2 yr-1 during 1901-2007 and our results suggest a notable declining rate of burned area globally (1.28 × 104 km2 yr-1). Burned area in tropics and extratropics exhibited a significant declining trend, with no significant trend detected at high latitudes. Factorial experiments indicated that human activities were the dominant factor in determining the declining trend of burned area in tropics and extratropics, and climate variation was the primary factor controlling the decadal variation of burned area at high latitudes. Elevated CO2 and nitrogen deposition enhanced burned area in tropics and southern extratropics but suppressed fire occurrence at high latitudes. Rising temperature and frequent droughts are becoming increasingly important and expected to increase wildfire activity in many regions of the world.

Yang, Jia; Tian, Hanqin; Tao, Bo; Ren, Wei; Kush, John; Liu, Yongqiang; Wang, Yuhang

2014-03-01

133

78 FR 68023 - Annual Surveys in the Manufacturing Area  

Federal Register 2010, 2011, 2012, 2013, 2014

...the Annual Survey of Manufactures, the Business R&D and Innovation Survey (BRDIS), and the Manufacturers...authority of Title 13, United States Code. Business R&D and Innovation Survey The Business R&D and Innovation Survey (BRDIS) measures...

2013-11-13

134

Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California  

USGS Publications Warehouse

Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity-duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings. Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10??min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3??h, with most of the rain falling in less than 1??h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D-??0.7 and I = 9.5D-??0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours). Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16??h, of low-intensity (2-10??mm/h) rainfall. The storms lasted between 5.5 and 33??h, with average intensities between 1.3 and 20.4??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D-0.4, and I = 7.2D-0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D-0.5 is approximately 25??mm/h higher than that developed for the first year following fires. The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes. Crown Copyright ?? 2007.

Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L.

2008-01-01

135

Burn therapist contributions to theAmerican Burn Association and the Journal ofBurn Care and Research: a 45th anniversary review.  

PubMed

The year 2013 marked the 45th anniversary of American Burn Association (ABA) annual meetings. At this significant juncture, a review of contributions of its members is appropriate to celebrate this milestone. Since the first ABA annual meeting and the initiation of the Journal of Burn Care and Research (JBCR), burn therapists, including both occupational and physical therapists, have grown to become integral members of the ABA, and their contributions among all members are highlighted. A systematic manual review of both ABA annual meeting proceedings and the JBCR was performed. The contributions of burn therapists to the ABA as a whole were classified, cataloged, and hand counted. Areas included: 1) quantifying ABA abstract and JBCR articles on authorship and subject matter, 2) representation on ABA committees; 3) participation in special activities; and 4) other recognitions. Burn therapists comprise 9.7% of ABA members overall. During the course of the first 44 ABA meetings, 8381 abstracts have been presented. Of this number, 634 (7.6%) have been delivered by burn therapists as lead authors. Through the end of 2011, no less than 3207 publications by all disciplines have appeared in JBCR. The vast majority of articles have been written by physicians, followed by doctorate-trained professionals. One hundred-forty therapists have 249 publications (7.8%) to their credit. For both abstracts and articles, the top three subject matter topics have been: scarring, splints and casts, and outcomes. Numerous burn therapists have served as faculty and moderators at ABA annual meetings and on ABA committees including JBCR. Burn therapists have made significant contributions to the JBCR and in support of the ABA and its annual meetings over the past 45 years from the clinical, scientific, and Association perspectives. PMID:24823340

Richard, Reginald

2014-01-01

136

An optimized groundwater extraction system for the toxic burning pits area of J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect

Testing and disposal of chemical warfare agents, munitions, and industrial chemicals at the J-Field area of the Aberdeen Proving Ground (APG) have resulted in contamination of soil and groundwater. The discharge of contaminated groundwater to on-site marshes and adjacent estuaries poses a potential risk to ecological receptors. The Toxic Burning Pits (TBP) area is of special concern because of its disposal history. This report describes a groundwater modeling study conducted at J-Field that focused on the TBP area. The goal of this modeling effort was optimization of the groundwater extraction system at the TBP area by applying linear programming techniques. Initially, the flow field in the J-Field vicinity was characterized with a three-dimensional model that uses existing data and several numerical techniques. A user-specified border was set near the marsh and used as a constraint boundary in two modeled remediation scenarios: containment of the groundwater and containment of groundwater with an impermeable cap installed over the TBP area. In both cases, the objective was to extract the minimum amount of water necessary while satisfying the constraints. The smallest number of wells necessary was then determined for each case. This optimization approach provided two benefits: cost savings, in that the water to be treated and the well installation costs were minimized, and minimization of remediation impacts on the ecology of the marsh.

Quinn, J.J.; Johnson, R.L.; Patton, T.L.; Martino, L.E.

1996-06-01

137

To Burn or Not to Burn? Effect of Management Strategy on North American Prairie Vegetation for Public Urban Areas in Germany  

PubMed Central

North American prairie vegetation has been a role model for designing highly attractive plantings for German urban green spaces for the past decade. In combination with gravel mulch top layers on planting sites and non-selective maintenance techniques like mowing or burning, prairie plantings are considered to be cost-effective and low-maintenance. This study was undertaken to assess the impact of different maintenance strategies and especially the necessity of fire management on the development success of ornamental prairie plantings in central Europe. A four factorial split-plot-block design was set up for investigation of different mixtures of prairie species under varying management conditions (mow-only, mowing plus selective weeding, mowing plus weeding and burning) on two differing soil types (in-situ topsoil and in-situ topsoil with a graywacke gravel mulch top layer) over three years. Significant effects of maintenance strategy on mortality rates and vitality were documented for a number of target species, which responded species specifically, either being slightly affected by the burning or thriving on it. Those effects were mostly restricted to topsoil sites. A strong impact on weed species presence and abundance and resulting maintenance times was found on both soil types. On topsoil sites, mow-only treatment resulted in a short-term loss of the original planting due to extensive weed growth. Corresponding gravel mulch sites were generally less colonised and visually dominated by weeds. Differences between weeded and weeded plus burned sites were minor. Unexpectedly, weed species populations were mostly unaffected by the additional burning treatment, while maintenance times and costs increased. No overall benefit of fire management for the establishment of prairie plantings was documented. The most effective management combination proved to be mowing plus regular selective weeding measures on gravel mulched planting sites. PMID:25286061

Schmithals, Anja; Kühn, Norbert

2014-01-01

138

Systematic variation in the apparent burning area of thermonuclear bursts and its implication for neutron star radius measurement  

E-print Network

Precision measurements of neutron star radii can provide a powerful probe of the properties of cold matter beyond nuclear density. Beginning in the late 1970s it was proposed that the radius could be obtained from the apparent or inferred emitting area during the decay portions of thermonuclear (type I) X-ray bursts. However, this apparent area is generally not constant, preventing reliable measurement of the source radius. Here we report for the first time a correlation between the variation of the inferred area and the burst properties, measured in a sample of almost 900 bursts from 43 sources. We found that the rate of change of the inferred area during decay is anticorrelated with the burst decay duration. A Spearman rank correlation test shows that this relation is significant at the sources exhibiting a wide range of burst durations, such as 4U 1636-536 and Aql X-1. We suggest that variations in the colour factor, which relates the colour temperature resulted from the scattering in the neutron star atmosphere to the effective temperature of the burning layer, may explain the correlation. This in turn implies significant variations in the composition of the atmosphere between bursts with long and short durations.

Sudip Bhattacharyya; M. Coleman Miller; Duncan K. Galloway

2009-08-28

139

ANNUAL REPORT ON PERFORMANCE AUDIT RESULTS FOR POHC TESTING DURING RCRA TRIAL BURNS--STATUS REPORT #2  

EPA Science Inventory

Audit materials containing Principal organic Hardous Constituents (P0HCs) have been developed by AREAL for use by federal, state, and local agencies or their contractors to assess the accuracy of measurement methods during RCA trial burn tests. Audit materials are currently avail...

140

Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.  

PubMed

Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 ?g m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 ?g m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust. PMID:23644947

Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

2013-10-01

141

Explanation of Significant Difference (ESD) for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)  

SciTech Connect

The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (ABRP) operable unit (OU) is located in the northwest portion of Savannah River Site (SRS), approximately 2.4 kilometers (1.5 miles) south of the A/M Area operations. Between 1951 and 1973, Pits 731-A and 731-1A were used to burn paper, plastics, wood, rubber, rags, cardboard, oil, degreasers, and solvents. Combustible materials were burned monthly. After burning was discontinued in 1973, Pits 731-A and 731-1A were also converted to rubble pits and used to dispose of concrete rubble, bricks, tile, asphalt, plastics, metal, wood products, and rubber until about 1978. When the pits were filled to capacity, there were covered with compacted clay-rich native soils and vegetation was established. Pit 731-2A was only used as a rubble pit until 1983 after which the area was backfilled and seeded. Two other potential source areas within the OU were investigated and found to be clean. The water table aquifer (M-Area aquifer) was also investigated.

Morgan, Randall

2000-11-17

142

Effect of oral olive oil on healing of 10-20% total body surface area burn wounds in hospitalized patients.  

PubMed

The purpose of this study was to evaluate the effect of consumption of oral olive oil on clinical outcomes and wound healing of thermally injured patients with hospital stays. One hundred patients (mean age; 33.34±7 years) with 10-20% total body surface area, deep second degree and more burn wounds were randomized to receive either oral olive oil or sunflower oil as the oil in their diet. Patients were evaluated daily for occurrence of wound infection, sepsis and healing of the grafted skin. Also the duration of hospitalization and admission to the intensive care unit were compared in two groups. Results showed that there was no significant difference between the olive oil group and the control group in percent of TBSA involvement (14.28±0.53 vs. 13.02±0.48, P=0.7), albumin concentration (3.25±0.5 vs. 3.13±0.5, P=0.5) and mean calorie intake (2034±216.9kcal vs2118±192.1kcal, P=0.2). We found a significant difference in the duration of wound healing (7.2±0.5 vs. 8.7±0.5, P=0.04) and duration of hospitalization (7.4±0.5 vs. 8.9±0.4, P=0.05) in the olive oil group versus the control group. We did not find any difference in ICU admission, wound infection and occurrence of sepsis between two groups. This study showed that an oral diet provided with olive oil in patients with burn may accelerate wound healing and decrease the duration of hospitalization. PMID:25306088

Najmi, Mahtab; Vahdat Shariatpanahi, Zahra; Tolouei, Mohammad; Amiri, Zohreh

2015-05-01

143

Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect

The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-

Biang, C.; Benioff, P.; Martino, L.; Patton, T.

1995-03-01

144

Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho  

E-print Network

Hailey, Central Idaho U.S. Department of the Interior U.S. Geological Survey Open-File Report 2013­1273 Prepared in cooperation with Blaine County, Idaho #12;#12;Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho By Kenneth D. Skinner Prepared

Torgersen, Christian

145

D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study  

SciTech Connect

The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

1995-09-01

146

Comparison of the MODIS Active Fire Product and Burned Area Product in Detecting Fire Affected Pixels in the Ecosystems of Belize 2003 - 2009   

E-print Network

The MODIS Active Fire Product (AFP) and the Burned Area Product (BAP) were used to analyze the spatial and temporal distribution of fire affected pixels in the ecosystems of Belize from 2003-2009. There was an overall trend of decreasing fire...

van, Warmerdam

2010-11-24

147

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01

148

TNX-Area groundwater monitoring report. 1993 Annual report  

SciTech Connect

During 1993, samples from well cluster P 26 and the TBG, TNX, XSB, and YSB well series at the TNX Area were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Seven parameters exceeded the final Primary Drinking Water Standards (PDWS). Dichloromethane (methylene chloride), a common laboratory contaminant, nitrate, and trichloroethylene exceeded PDWS most frequently. Four wells in this area currently are part of the Purge Water Contaminant Program due to high trichloroethylene concentrations. Carbon tetrachloride, gross alpha, lead, and tetrachloroethylene were elevated sporadically in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

Not Available

1994-05-01

149

1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report  

SciTech Connect

Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

Chase, J.

1999-06-02

150

Scotch Creek Wildlife Area 2007-2008 Annual Report.  

SciTech Connect

The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

Olson, Jim [Washington Department of Fish and Wildlife

2008-11-03

151

Shillapoo Wildlife Area, Annual Report 2006-2007.  

SciTech Connect

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 07 contract period October 1, 2006-September 30, 2007. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. The greatest success realized during this contract period was significant positive changes in the vegetative community in several wetland basins throughout the wildlife area. This major goal is being achieved in part by new equipment and operation capability funded under the BPA contract, state capital and migratory bird stamp funds, and the past or ongoing investment of other partners including Ducks Unlimited, The Natural Resources Conservation Service (NRCS), Clark Public Utilities and others. We continue to be challenged by requirements under the archaeological and historic preservation act necessary to protect many sensitive sites known to occur within the wildlife area. The problems encountered to date have been largely administrative in nature and those experienced this year were unforeseen and probably unavoidable. Early in the contract period, WDFW and BPA had agreed to have a BPA staff archaeologist perform the survey and reporting work. Unexpectedly, just prior to the expected start date for the surveys, the employee resigned leaving BPA's staff short handed and necessitated contracting the work with an archaeological consultant. This delay caused us to forego work on several projects that are now deferred until the next contract period. The most notable projects impacted by this unfortunate circumstance are those involving the construction or repair of fences.

Calkins, Brian

2006-10-01

152

TNX area groundwater monitoring report. 1996 Annual report  

SciTech Connect

During 1996, samples from selected wells of well cluster P 26 and the TBG, TIR, TNX, TRW, XSB, and YSB well series at the TNX Area of the Savannah River Plant were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Sixteen parameters exceeded the final Primary Drinking Water Standards (PDWS). Trichloroethylene exceeded the final PDWS most frequently. Antimony, arsenic beryllium, carbon tetrachloride, chloroform, chromium, copper, dichloromethane, gross alpha, lead, mercury, nitrate, nitrate-nitrite, tetrachloroethylene, or trichloroethylene were evaluated in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

NONE

1997-04-01

153

Shillapoo Wildlife Area, Annual Report 2004-2005.  

SciTech Connect

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 05 contract period October 1, 2004-September 30, 2005. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. The greatest success realized during this contract period was completion of the water system that will provide water to wetland basins within the Vancouver Lake Unit and three independent basins on adjoining Clark County owned lands. The water system paid for by Clark Public Utilities was designed and built under the direction of Ducks Unlimited. Having a reliable water supply for these areas has allowed us for the first time to begin making significant progress toward our wetland vegetation management goals on this unit. A reduction in the density of reed canary grass has already been noted and increased levels of native plant occurrence have been observed. Our most notable setback was an increase in the infestation of purple loosestrife within a portion of the Shillapoo Lakebed including parts of the North and South Units. A great deal of effort and time was spent on addressing the problem including hand cutting and spraying individual plants.

Calkins, Brian

2004-10-01

154

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09

155

Annual Variability in Leaf Area Index and Isoprene/Monoterpene Emissions in Texas during  

E-print Network

/Wet Years North/South Central Texas showed substantial LAI reductions between wet and drought years East Texas/Upper Coast exhibits relatively less reduction in LAI for drought years North/South Central TexasAnnual Variability in Leaf Area Index and Isoprene/Monoterpene Emissions in Texas during Drought

Yang, Zong-Liang

156

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2003-2004  

Microsoft Academic Search

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the

2004-01-01

157

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2002-2003  

Microsoft Academic Search

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the

Brian Cochran; Brent Smith

2003-01-01

158

Shillapoo Wildlife Area, Annual Report 2007-2008.  

SciTech Connect

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 08 contract period October 1, 2007-September 30, 2008. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. Significant progress was realized in almost all major work types. Of particular note was progress made in tree plantings and pasture rehabilitation efforts. This year's tree planting effort included five sites detailed below and in terms of the number of plants was certainly the largest effort on the wildlife area to date in one season. The planting itself took a significant amount of time, which was anticipated. However, installation of mats and tubes took much longer than expected which impacted planned fence projects in particular. Survival of the plantings appears to be good. Improvement to the quality of waterfowl pasture habitats is evident on a number of sites due to replanting and weed control efforts. Continuing long-term weed control efforts will be key in improving this particular type of habitat. A prolonged cold, wet spring and a number of equipment breakdowns presented stumbling blocks that impacted schedules and ultimately progress on planned activities. The unusual spring weather delayed fieldwork on pasture planting projects as well as weed control and slowed the process of maintaining trees and shrubs. This time lag also caused the continued deferral of some of our fencing projects. The large brush hog mower had the driveline break twice and the smaller tractor had an engine failure that caused it to be down for over a month. We have modified our budget plan for next year to include a temporary employee that will work primarily on tree maintenance and fencing projects to make sure that we make progress in these areas and we will be investigating whether a heavier duty driveline can be obtained for the mower.

Calkins, Brian

2007-10-01

159

Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

DOE /NV

2001-02-23

160

Slash and burn versus "agronegócio". Tales of forest degradation in the maroon area of Vila Bela da SantíssimaTrindade, Mato Grosso, Brazil  

NASA Astrophysics Data System (ADS)

Over the last four decades, deforestation in Brazil occurred systematically in the area known as the "arcof deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. The deforestation process replaces the forest and the slash and burn agriculture systems by modern intensive agriculture systems targeted at the production of cash crops like cotton, maize or soybeans, and to graze cattle.The so called "agronegócio" system. The reduction of pristine forest areas where traditional (indigenous, maroons and riverside) population conduct slash and burn agriculture, reduces the recovery time of the abandoned fields after exhaustion by agriculture crops, reason why the return to the same spots for another cycle of slash and burn occurs before the forest recovers completely from the previous cycle. In fact, the frequency of the cycles is increasing with the expansion of farm land and the reduction of available forest. This work encompasses the reasons, causes and/or motivations of the deforestation trends in the Vila Bela da SantíssimaTrindade, near the Bolivian border of Mato Grosso in Brazil, over a time span of four decades. The arc of deforestation has passed the region in the 1980's, leaving yet a large area of pristine forest where the traditional communities kept practicing a slash and burn agriculture system. Nevertheless, due to the reduction of available area, and specially due to the exposure of traditional communities to the "western civilization culture", there is an increasing abandonment of the traditional systems and associated culture and knowledge. In this context, the traditional communities may become a deforestation/degradation factor. To prevent this situation, the GUYAGROFOR project was implemented, to value traditional knowledge, identify bottlenecks in the increase of added value to the local traditional products, and to test methodologies to maintain and if possible improve soil fertility near the small households. The deforestation/degradation processes and the impacts of the proposed mitigation action are discussed.

Leite, José C.; Ferreira, António A. J.

2014-05-01

161

Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China  

NASA Astrophysics Data System (ADS)

The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 ?g dm-2?day and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 ?g dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 ?g dm-2?day and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 ?g m-3) in air of kitchen with the improved coal stove was within the reference value (10 ?g m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 ?g m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 ?g m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in traditional flue-curing barn (baking room) was also seriously polluted by fluoride and sulfur. After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air have declined markedly. The way of adding calcined dolomitic siliceous limestone instead of clay as a binder for briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

2013-10-01

162

Erosive burning of propellants  

Microsoft Academic Search

The movement of the gases in the duct of solid propellant motors has an effect on the burning rate of the propellant in two cases: when there is a high ratio of burning surface to the cross-sectional area of the duct (the Pobedonostsev number) and when gasdynamic vibrations occur in the duct and cause quite high acoustic velocities along the

A. M. Klimov

1975-01-01

163

40 CFR 49.133 - Rule for agricultural burning permits.  

Code of Federal Regulations, 2010 CFR

...quantity of agricultural wastes proposed to be burned, including the estimated weight of material to be burned and the area over which burning will be...etc.) and the amount of material to be burned with each method. (vi) A...

2010-07-01

164

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22

165

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01

166

Interim Record of Decision Remedial Alternative Selection for the A-Area Burning\\/Rubble Pits (731-A\\/1A) and Rubble Pit (731-2A) (U)  

Microsoft Academic Search

The A-Area Burning\\/Rubble Pits (731-A\\/1A) and Rubble Pit (731-2A) Operable Unit (OU)(ABRP) is listed as a Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Unit\\/Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS) in Aiken County, South Carolina. The following media are associated

2000-01-01

167

Soil CO 2 emission and its relation to soil properties in sugarcane areas under Slash-and-burn and Green harvest  

Microsoft Academic Search

Soil CO2 emission (FCO2) has been related to soil properties that are strongly influenced by agricultural management. The objective of this work was to study FCO2 and its relation to soil properties in adjacent areas cropped with sugarcane managed with Slash-and-burn (SB) and Green (G) harvest. FCO2 was significantly higher (p<0.01; 2.74?molm?2s?1 in SB and 2.07?molm?2s?1 in G) in SB.

A. R. Panosso; J. Marques; D. M. B. P. Milori; A. S. Ferraudo; D. M. Barbieri; G. T. Pereira; N. La Scala

2011-01-01

168

Spatial and temporal variability of soil CO 2 emission in a sugarcane area under green and slash-and-burn managements  

Microsoft Academic Search

Soil management causes changes in physical, chemical, and biological properties that consequently affect soil CO2 emission (FCO2). Here, we studied the soil carbon dynamics in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB),

A. R. Panosso; J. Marques Jr.; G. T. Pereira; N. La Scala Jr.

2009-01-01

169

A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm  

NASA Astrophysics Data System (ADS)

Since fire is a major threat to forests and wooded areas in the Mediterranean environment of Southern Europe, systematic regional fire monitoring is a necessity. Satellite data constitute a unique cost-effective source of information on the occurrence of fire events and on the extent of the area burned. Our objective is to develop a (semi-)automated algorithm for mapping burned areas from medium spatial resolution (30 m) satellite data. In this article we present a multi-criteria approach based on Spectral Indices, soft computing techniques and a region growing algorithm; theoretically this approach relies on the convergence of partial evidence of burning provided by the indices. Our proposal features several innovative aspects: it is flexible in adapting to a variable number of indices and to missing data; it exploits positive and negative evidence (bipolar information) and it offers different criteria for aggregating partial evidence in order to derive the layers of candidate seeds and candidate region growing boundaries. The study was conducted on a set of Landsat TM images, acquired for the year 2003 over Southern Europe and pre-processed with the LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) processing chain for deriving surface spectral reflectance ?i in the TM bands. The proposed method was applied to show its flexibility and the sensitivity of the accuracy of the resulting burned area maps to different aggregation criteria and thresholds for seed selection. Validation performed over an entire independent Landsat TM image shows the commission and omission errors to be below 21% and 3%, respectively.

Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P. A.

2012-04-01

170

Record of Decision Remedial Alternative Selection for the D-Area Burning/Rubble Pits (431-D and 431-1D)  

SciTech Connect

The D-Area Burning/Rubble Pits (DBRP) (431-D and 431-1D) Waste Unit is listed as a Resource Conservation and Recovery Act (RCRA) 3004(U) Solid Waste Management Unit/Comprehensive Environmental Response Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). This decision document presents the selected remedial alternative for the DBRP located at the SRS in Aiken, South Carolina.

Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

1997-02-01

171

Lava Flow Burning Vegetation  

USGS Multimedia Gallery

Lava flow activity continues to burn vegetation in the kipuka adjacent to the trail, causing the viewing trail to be closed beyond the trailhead. The new viewing area is still very close to the active flows. ...

172

Overview of current pediatric burn care.  

PubMed

Burn injuries affect approximately a million children in the United States on an annual basis. Moderate to severe burns require hospitalization, usually under the direction of a Pediatric Surgical service. Despite advancements in burn treatment, pediatric burn injuries account for approximately 2500 deaths annually. This article provides an overview of the initial evaluation and resuscitative measures for pediatric burn patients, most current wound care, indications for grafting, and the role of nutrition, including use of pharmacologic adjuncts. Use of colloid solutions, indications for use of skin substitutes, and transfer criteria will also be addressed. PMID:25639810

Gonzalez, Raquel; Shanti, Christina M

2015-02-01

173

Left: The extent of the burned area (dark gray) as of September 6. This image was tak-  

E-print Network

the Los Angeles region. Sharing the summit is the Mount Wilson Observatory, founded in 1904 by Caltech for work. The flames also advanced up the slopes of Mount Wilson, overlook- ing Pasadena and home retardant from helicopters and setting backfires on the observatory grounds. While the fire was burning

174

40 CFR 49.132 - Rule for general open burning permits.  

Code of Federal Regulations, 2010 CFR

...provided that no prohibited materials are burned; (4) Forestry and silvicultural burning...and quantity of materials proposed to be burned, including the estimated volume of material to be burned and the area over which burning will...

2010-07-01

175

Controlled Burn  

USGS Multimedia Gallery

GULF OF MEXICO — Dark clouds of smoke and fire emerge as oil burns during a controlled burn in the Gulf of Mexico. The U.S. Coast Guard working in partnership with BP PLC, local residents, and other Federal agencies conducted the controlled burn to aid in preventing the spread of oil following...

176

Malignant degeneration in burn scars.  

PubMed

The malignant potential of burn scars has been recognized since Marjolin's classical description of cancer arising in several types of post-traumatic scars. With improved burn therapy since the last war, there has been a higher survival rate of severe burns with proportionate increase in cancer associated with burn scars. This will create increasing problems of permanent disability and compensation. The younger the patient at the time of the burn, the longer the time required for the cancer to develop. Acute cancer development in burn scars has been reported after a four-week interval. Cancer may develop from six weeks to fifty years or more. The etiology of cancer in burn scars is not known. The most important clinical finding is the fact that most of the burn cancers occur in areas which were not grafted. The most common type of cancer encountered in burn scars is squamous cell carcinoma, which forms in Marjolin ulcers. Basal cell carcinoma may develop in the most superficial of burn scars.Treatment should be directed primarily to prompt and adequate skin grafting in all deep burns in order to prevent malignant degeneration of the burn scars. Once it has developed the treatment is the same as for other malignancies which are not associated with burns. Wide surgical excision with block dissection of the regional lymph nodes when they are involved is the treatment of choice. The prognosis of burn scar cancer is poor, once the process has extended because of early and distant metastasis. PMID:13691372

CASTANARES, S

1961-03-01

177

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001  

SciTech Connect

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

2001-10-01

178

Seasonal and inter-annual variations of lake surface area in Mongolia during 2000-2011  

NASA Astrophysics Data System (ADS)

Mongolia is a land-locked country, mainly comprised of arid and semi-arid environment with limited water resource. In conjunction with increased air temperature, decreased precipitation during the last decade can exert adverse effect on water resource of Mongolia. In this study, we investigated temporal changes of lake surface area from 2000 to 2011 by using MODIS 250m NDVI dataset. For the study sites, approximately, one hundred lakes with lake area greater than 6.25 km2 (i.e. 10-by-10 NDVI pixels) were selected across Mongolia. The 16-day interval timeseries of NDVI subset of each lake were extracted to investigate temporal changes in lake surface area. Our results show that the lake area decreased (r2=0.26) in overall for the period from 2000 to 2011, but with remarkable range of seasonal variability. One-third of the lakes, however, showed the increased trend in lake surface area during the period. Number of dried-up lakes generally increased for the period but with considerable inter-annual variation. The lakes showing increased lake area were distributed mainly in high mountainous regions. In seasonal variation, springtime recharge and summertime reduction of lake area were distinct in most lakes investigated in this study. It was addressed the relationships of lake area change with precipitation and temperature change, and effect of anthropogenic water use by livestock, mining activity, and urbanization, and relevance of permafrost dynamics with the lake area change in northern high mountainous regions.

Kang, S.; Do, N.

2012-12-01

179

75 FR 61553 - National Transit Database: Amendments to the Urbanized Area Annual Reporting Manual and to the...  

Federal Register 2010, 2011, 2012, 2013, 2014

...the 2011 National Transit Database Urbanized Area Annual Reporting...Administration's (FTA) National Transit Database (NTD) reporting requirements...202-493-2251. Mail: Docket Management Facility: U.S. Department...Background The National Transit Database (NTD) is the Federal...

2010-10-05

180

Annual ground-water use in the Twin Cities metropolitan area, Minnesota, 1970-79  

USGS Publications Warehouse

Annual groundwater use in the Twin Cities Metropolitan Area from 1970-79 is presented by aquifer and type of use. Most groundwater is withdrawn from wells in the Prairie du Chien-Jordan aquifer and major uses of the water are for self-supplied industry and public supplies. Annual groundwater-use data are presented by county for each of the five major aquifers; Prairie du Chien-Jordan, Mount Simon-Hinckley, Ironton-Galesville, St. Peter, and drift. The data also are presented by county for each major use type including public supply, self-supplied industry, commercial air-conditioning, irrigation, lake-level maintenance, and dewatering. The data were collected initially by the Minnesota Department of Natural Resources and were supplemented by data collected by the U.S. Geological Survey. (USGS)

Horn, M.A.

1984-01-01

181

PCDD/Fs in Air and Soil around an E-waste Dismantling Area with Open Burning of Insulated Wires in South China.  

PubMed

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air and farmland soil sampled in 2006 around an e-waste dismantling area with open burning of insulated wires in Longtang in south China were investigated. The total toxic equivalent concentrations of PCDD/Fs were 3.2-31.7 pg/m(3) in air and 5.8 12.4 ng/kg in farmland soil at an e-waste site and 0.063-0.091 pg/m(3) in air at a background site. PCDD/Fs in the air at the e-waste site were characterized with dominant 1,2,3,4,6,7,8-HpCDF and OCDF and higher concentrations of furans than dioxins, suggesting open burning of insulated wires was likely to be the main source of PCDD/Fs. Compared with the results in this study, the level of PCDD/F tended to lessen with the average TEQ concentration decreasing by 41 % and the pattern changed to be dominated by OCDD in the air of Longtang in 2010 when insulated wires were openly burned in only a small scale. Our results indicate that the lower chlorinated congeners with higher vapor pressures have enhanced atmospheric transport tendencies. PMID:25749620

Ren, M; Tang, Y H; Peng, P A; Cai, Y

2015-05-01

182

Burns and military clothing.  

PubMed

Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay. PMID:11307683

McLean, A D

2001-02-01

183

Prescribed burning as a natural, long-term experiment in biochar addition - Can prescribed burns contribute to carbon storage in peat soils?  

NASA Astrophysics Data System (ADS)

Prescribed burning is a common land management of UK peatlands where Calluna-vulgaris dominated vegetation is burnt on a cycle of 8 - 25 years. The burning of Calluna by prescribed burning does produce char and thus presents a long-term experiment in biochar addition to a soil. This study will discuss the impacts of biochar additions on soil structure, hydrology, water quality and carbon fluxes from a number of experiments including a study of a chronosequence of nine years. This study proposes that although prescribed burning of moorland dominated by Calluna represents a direct loss of carbon to the atmosphere during the burn itself and destruction of litter production after the burn this loss of carbon is outweighed by the production of both dead biomass and refractory black carbon (char) during the burn itself. The study has produced a model of carbon stock in a peatland under a range of burn frequencies (5- 25 years) and compared this to the carbon stocks of a Calluna-dominated peatland at steady-state biomass. The model was run stochastically with all input parameters being allowed to vary by 50% and run over a period of 51 years. The study shows that: i) In the few years immediately following a burn, there is elevated water colour in soil pore water, but that this is not matched by a rise in dissolved organic carbon (DOC) concentration i.e. the composition varies rather than the absolute concentration. ii) Whilst all the sites examined were net sources of carbon but burnt sites were smaller sources than unburnt sites, i.e. a relative sink was achieved by burning. iii) The conditions under which burning results in a greater annual average sink of carbon than an unburnt site was controlled by the maturity of the Calluna and the extent of severe burning, i.e. the destruction of long term carbon reserves in litter and soil layers. iv) The annual average C flux on an unburnt sink was -8.7 ± 2.6 gC/m2/yr compared to -13.3 ± 2.7 gC/m2/yr for a site burnt every 25 years (equivalent to 100% of the Calluna steady state biomass). The study shows that significant carbon savings could be achieved not by bringing areas of Calluna dominated peatland under burn management but by changing the burn frequency on areas already under burn management and extending it to be as close as possible to the maximum steady-state biomass for the site.

Worrall, F.; Clay, G. D.

2012-04-01

184

Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho  

USGS Publications Warehouse

A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.

Skinner, Kenneth D.

2013-01-01

185

Pre-harvest sugarcane burning emission inventories based on remote sensing data in the state of São Paulo, Brazil  

NASA Astrophysics Data System (ADS)

The state of São Paulo is the largest sugarcane producer in Brazil, with a cultivated area of about 5.4 Mha in 2011. Approximately 2 Mha were harvested annually from 2006 to 2011 with the pre-harvest straw burning practice, which emits trace gases and particulate material to the atmosphere. The development of emission inventories for sugarcane straw burning is crucial in order to assess its environmental impacts. This study aimed to estimate annual emissions associated with the pre-harvest sugarcane burning practice in the state of São Paulo based on remote sensing maps and emission and combustion factors for sugarcane straw burning. Average estimated emissions (Gg/year) were 1130 ± 152 for CO, 26 ± 4 for NOx, 16 ± 2 for CH4, 45 ± 6 for PM2.5, 120 ± 16 for PM10 and 154 ± 21 for NMHC (non-methane hydrocarbons). An intercomparison among annual emissions from this study and annual emissions from four other different approaches indicated that the estimates obtained by satellite fire detection or low spatial resolution approaches tend to underestimate sugarcane burned area, due to unique characteristics of this type of biomass fire. Overall, our results also indicated that government actions to reduce sugarcane straw burning emissions are becoming effective.

França, Daniela; Longo, Karla; Rudorff, Bernardo; Aguiar, Daniel; Freitas, Saulo; Stockler, Rafael; Pereira, Gabriel

2014-12-01

186

Lightning burns.  

PubMed

We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury. PMID:23799482

Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

2014-01-01

187

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01

188

Burn wound management.  

PubMed

In this chapter the local therapy for burns is discussed. Between 400 and 500 children with burns are treated every year at the Red Cross War Memorial Children's Hospital in Cape Town, but in only 10% of them do the burns affect over 20% of the body surface. These latter patients are treated in special rooms equipped for intensive therapy. Open and closed methods of treatment for burns used in addition to early excision are compared. The first aim is early skin cover for areas with skin loss preserving as much function as possible and achieving the best possible cosmetic result. Local therapy must be atraumatic to prevent extension of the skin lesion. Bacterial contamination must be prevented as far as possible by keeping the wound clean. Emergency treatment and the course of wound healing up to the third week after the injury using the appropriate dressings are described. Early excision until the fifth day after the accident should be used mainly for burns of the hand, deep second degree burns of up to 10% of the body surface, deep second degree burns over the joints and deep second degree burns of the neck. It must be admitted that the depth of the burn can only be definitely estimated between the seventh and tenth day after the accident. If no autografts are available homografts or grafts from animals are used. The age of the patient, associated injuries, associated diseases and the extent of the burn all play a role in determining the prognosis. Furthermore endogenous bacterial infections, absorption of local therapeutic agents and the state of the surrounding skin do also influence the healing process. Finally the various local therapeutic agents like sulphamylon, silver sulphadiazine and betadine are discussed. A 0.05% solution of silver nitrate is also active against gram-negative infections. Skin transplants are disinfected with a solution containing one third 0.25% acetic acid, one third 3% cent hydrogen peroxide and one third saline. Hydrogen peroxide must not be applied to burns that are healing spontaneously. A classification of burns to help to choose the appropriate local therapy is proposed. PMID:7012931

Davies, M R; Rode, H; Cywes, S; van der Riet, R L

1981-01-01

189

Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.  

NASA Astrophysics Data System (ADS)

Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. The magnetic mapping with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350 × 300m with 7913 points. The detected anomalies lie in a range between -130 and 176 nT. The maxima are most likely caused by heating of the top sandstones by burning coal, the origin for the high magnetization being the conversion of pyrite and markasit into maghemite, hematite and magnetite. Susceptibility measurements of clinkers in firezone 18 demonstrate this effect. Therefore the identified patches with high magnetic anomalies should have a direct connection to ranges with burning coal within firezone 18. Al the discussed geophysical measurements together allow an integrated interpretation. Each result can be related to the combustion process with a particular likelihood for the vertical projection to the combustion centre. Probability calculations with chosen weight factors for each observation method are discussed. References: Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coalfires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007).

Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

2008-12-01

190

The consequences of global biomass burning  

NASA Technical Reports Server (NTRS)

Global biomass burning encompasses forest burning for land clearing, the annual burning of grasslands, the annual burning of agricultural stubble and waste after harvests, and the burning of wood as fuel. These activities generate CO2, CH4 and other hydrocarbons, CO, H2, NO, NH3, and CH3Cl; of these, CO, CH4 and the hydrocarbons, and NO, are involved in the photochemical production of tropospheric O3, while NO is transformed to NO2 and then to nitric acid, which falls as acid rain. Biomass burning is also a major source of atmospheric particulates and aerosols which affect the transmission of incoming solar radiation and outgoing IR radiation through the atmosphere, with significant climatic effects.

Levine, Joel S.

1991-01-01

191

Burns (For Parents)  

MedlinePLUS

... outlets, etc.) overexposure to the sun Types of Burns Burns are often categorized as first-, second-, or ... if the burn is severe). Continue First-Degree Burns First-degree burns, the mildest of the three, ...

192

Burn and Scald Prevention  

MedlinePLUS

Burn and Scald Prevention Approximately 450,000 burn injuries require medical treatment each year. American Burn Association National Burn Repository (2011 report) Prevent burns and scalds in the kitchen: • Place objects so ...

193

MALIGNANT DEGENERATION IN BURN SCARS  

PubMed Central

The malignant potential of burn scars has been recognized since Marjolin's classical description of cancer arising in several types of post-traumatic scars. With improved burn therapy since the last war, there has been a higher survival rate of severe burns with proportionate increase in cancer associated with burn scars. This will create increasing problems of permanent disability and compensation. The younger the patient at the time of the burn, the longer the time required for the cancer to develop. Acute cancer development in burn scars has been reported after a four-week interval. Cancer may develop from six weeks to fifty years or more. The etiology of cancer in burn scars is not known. The most important clinical finding is the fact that most of the burn cancers occur in areas which were not grafted. The most common type of cancer encountered in burn scars is squamous cell carcinoma, which forms in Marjolin ulcers. Basal cell carcinoma may develop in the most superficial of burn scars. Treatment should be directed primarily to prompt and adequate skin grafting in all deep burns in order to prevent malignant degeneration of the burn scars. Once it has developed the treatment is the same as for other malignancies which are not associated with burns. Wide surgical excision with block dissection of the regional lymph nodes when they are involved is the treatment of choice. The prognosis of burn scar cancer is poor, once the process has extended because of early and distant metastasis. ImagesFigure 1.Figure 2.Figure 2.Figure 3.Figure 3.Figure 4. PMID:13691372

Castañares, Salvador

1961-01-01

194

Fiscal Year 2005 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Performance Assessment (PA) maintenance plan requires an annual review to determine if current operations and conditions at the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) remain consistent with PA and composite analysis (CA) assumptions and models. This report summarizes the fiscal year (FY) 2005 annual review findings for the Area 3 RWMS PA only. The PA Maintenance Plan states that no annual review or summary reporting will be carried out in years that a PA or CA revision is undertaken (Bechtel Nevada [BN], 2002). Updated PA results for the Area 5 RWMS were published in an addendum to the Area 5 RWMS PA report in September 2005. A federal review of the draft addendum report took place in early FY 2006 (October November 2005). The review team found the addendum acceptable without conditions. The review team's recommendation will be presented to the Low-Level Waste Disposal Facility Federal Review Group in early 2006. The addendum was revised in January 2006 and incorporated comments from the review team (BN, 2006). Table 1 summarizes the updated Area 5 RWMS PA results presented in the addendum.

Vefa Yucel

2006-01-01

195

Interim Record of Decision Remedial Alternative Selection for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)  

SciTech Connect

The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) Operable Unit (OU)(ABRP) is listed as a Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Unit/Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS) in Aiken County, South Carolina. The following media are associated with this OU: surface soil and groundwater. An SRS RCRA permit modification is not required at this time since this is an interim action. However, the final permit modification will (1) include the final selection of remedial alternatives under RCRA, (2) be sought for the entire ABRP with the final Statement of Basis/Proposed Plan (SB/PP), and (3) will include the necessary public involvement and regulatory approvals. This Interim Record of Decision (IROD) also satisfies the RCRA requirements for an Interim Measures Work Plan.

Morgan, Randall

2000-11-17

196

Tandir burns: a severe cause of burns in rural Turkey.  

PubMed

Tandir is the name given to an oven used for baking bread in the eastern and south-eastern part of Anatolia. Tandir burn is a special kind of burns in which primarily women and small children fall in it and have deep extensive burns (TBSA %). The records of 60 patients with tandir burn who were treated in our Burn Center from September 1999 to January 2006 were reviewed. The patients consisted of 9.2% of all burned patients. The mean age was 17.10 years (1-60 years) and 61.50% of the patients were female. The mean total body surface area (TBSA) burned was 21.09% (6-58) and 88% of the patients had third-degree burns. Eight of the patients underwent amputation of an extremity, 10 had fasciotomies, and 25 partial thickness skin grafts. The mean hospitalization period was 31.64 days (3-73 days). Fifteen patients (25%) died. Tandir burn is a severe kind of burn with a higher morbidity and mortality. PMID:17689872

Akçay, Müfide Nuran; Oztürk, Gürkan; Aydinli, Bülent; Ozo?ul, Bünyamin

2008-03-01

197

Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil  

PubMed Central

Objective To evaluate the association between the total suspended particles (TSPs) generated from preharvest sugar cane burning and hospital admission due to asthma (asthma hospital admissions) in the city of Araraquara. Design An ecological time?series study. Total daily records of asthma hospital admissions (ICD 10th J15) were obtained from one of the main hospitals in Araraquara, São Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (?g/m3) was obtained using Handi?vol equipment (Energética, Brazil) placed in downtown Araraquara. The local airport provided the daily mean figures of temperature and humidity. The daily number of asthma hospital admissions was considered as the dependent variable in Poisson's regression models and the daily concentration of TSP was considered the independent variable. The generalised linear model with natural cubic spline was adopted to control for long?time trend. Linear terms were used for weather variables. Results TSP had an acute effect on asthma admissions, starting 1?day after TSP concentrations increased and remaining almost unchanged for the next four days. A 10??g/m3 increase in the 5?day moving average (lag1–5) of TSP concentrations was associated with an increase of 11.6% (95% CI 5.4 to 17.7) in asthma hospital admissions. Conclusion Increases in TSP concentrations were definitely associated with asthma hospital admissions in Araraquara and, despite using sugar cane alcohol to reduce air pollution from automotive sources in large Brazilian urban centres, the cities where sugar cane is harvested pay a high toll in terms of public health. PMID:17435205

Arbex, Marcos Abdo; Martins, Lourdes Conceição; de Oliveira, Regiani Carvalho; Pereira, Luiz Alberto Amador; Arbex, Flávio Ferlin; Cançado, José Eduardo Delfini; Saldiva, Paulo Hilário Nascimento; Braga, Alfésio Luís Ferreira

2007-01-01

198

The daily fluorine and arsenic intake for residents with different dietaries and fluorosis risk in coal-burning fluorosis area, Yunnan, Southwest China.  

PubMed

The daily fluorine (F)/arsenic (As) intake (DFI/DAsI) for residents at different ages with different dietaries and dietary changes was investigated to analyze the fluorosis risk in coal-burning fluorosis area in Yunnan, Southwest China. The DFI for residents with a dietary of roasted corn and roasted chili was 5.06, 9.60, and 14.38 mg for age groups 3-7, 8-15, and over 15 years, respectively. Over 90 % of DFI was from roasted foodstuffs. The DFI for residents of the same age group living on rice and roasted chili was 1.94, 3.50, and 4.95 mg, respectively, which were less than that for the former dietary type, and 65 % of DFI was from roasted chili. The main sources for their DFI are roasted foodstuffs. Both were higher than the dietaries with non-roasted foodstuffs and the recommended daily allowances (RDAs) for USA and China at different levels. The DAsI for all residents ranged from 25 to 135 ?g, and at this level of DAsI, it would not influence human health. However, As pollution of roasted foodstuffs might have an important influence for the fluorosis. Residents are changing their staple food from roasted corn to rice, and especially, younger people are more focused on quality life. However, even if residents change their staple food, the habit of eating chili will not change, which also may cause them getting fluorosis. Developing economy, changing dietary types, and changing the habit of drying and keeping chili will help to reduce the fluorosis risk in coal-burning fluorosis area of Southwest China. PMID:25167821

Li, Ling; Luo, Kun-Li; Tang, Yue-Gang; Liu, Yong-Lin

2015-02-01

199

Long term in-situ observations of biomass burning aerosol at a high altitude station in Venezuela - sources, impacts and inter annual variability  

NASA Astrophysics Data System (ADS)

First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron aerosol volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night time and observations of boundary layer air masses during day time and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron aerosol volume reached 1.4 ± 1.3 ?m3 cm-3, heated (300 °C) particle number concentrations 510 ± 420 cm-3 and the absorption coefficient 0.91 ± 1.2 Mm-1. The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19 ± 0.25 ?m3 cm-3, 150 ± 94 cm-3 and 0.15 ± 0.26 Mm-1. A decrease of particle concentrations during the dry seasons from 2007-2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Niño-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Niña conditions, high biomass burning activity followed El Niño conditions.

Hamburger, T.; Matis?ns, M.; Tunved, P.; Ström, J.; Calderon, S.; Hoffmann, P.; Hochschild, G.; Gross, J.; Schmeissner, T.; Krejci, R.

2013-05-01

200

40 CFR 49.134 - Rule for forestry and silvicultural burning permits.  

Code of Federal Regulations, 2010 CFR

...or silvicultural residues proposed to be burned, including the estimated weight of material to be burned and the area over which burning will be...etc.) and the amount of material to be burned with each method. (vi) A...

2010-07-01

201

Significance of biomass open burning on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air.  

PubMed

In southern Taiwan, two areas (L- and Y-) with/without biomass open burning were selected to compare the PCDD/F concentrations and their congener profiles in the ambient air. The results of this study indicate that biomass (rice straw) open burning exhibited a significant impact on the PCDD/F concentration level in the ambient air. During the biomass burning season, the total PCDD/F I-TEQ concentrations in the ambient air of L- and Y-areas were approximately 4 and 17 times higher than those without biomass open burning, respectively. When 10% mass fraction of rice straw was burned, the contribution fraction of biomass burning on annual total PCDD/F I-TEQ emission was 3.28 and 8.11% for KC County and for Taiwan, respectively; however, when the calculation was on a weekly basis, the contribution fraction of biomass burning on weekly total PCDD/F I-TEQ emission was 30.6 and 53.4% for KC County and for Taiwan, respectively. The results of this study imply that during the week of biomass burning, it appears to be the most significant source of total I-TEQ PCDD emission. The results of this research can be applied to the study of other agricultural areas. PMID:17897777

Shih, Shun-I; Lee, Wen-Jhy; Lin, Long-Full; Huang, Jiao-Yan; Su, Jen-Wei; Chang-Chien, Guo-Ping

2008-05-01

202

Burning rubber  

SciTech Connect

Mario Andretti, look out You are about to be surpassed in the burning rubber category by a joint venture between Oxford Energy Company and General Electric. The two companies are building the first whole tire-to-energy facility in the US in Modesto, California. This $41 million facility does not require tires to be shredded prior to incineration; it has the capacity to burn 700 tires per minute. The electricity generated will be provided to a utility company. Oxford says there are two billion waste tires on the ground and this number is increasing by 220 million a year. Of that amount, only 18 million a year are recycled.

Not Available

1987-09-01

203

Global health: burn outreach program.  

PubMed

The objective of this article is to outline the elements of an international burn care outreach program in a resource-constrained country. The program has grown from a collaborative effort with Ukrainian physicians and healthcare officials. With this collaboration, a multipronged approach has been developed to address the gaps in burn care as discovered by years of interaction with the medical community in Ukraine. Contact was initiated with the burn unit of a single municipal hospital in Lviv, Ukraine. Patients with burn injuries were screened and selected patients were comanaged over a 3-year period by American and Ukrainian physicians. This comanagement included repeated evaluation both by telemedicine conferencing as well as annual trips with physicians from Boston, Massachusetts, traveling to Ukraine to assess patients in an outreach clinic and perform surgical procedures. In our first trip in 2011 we assessed 22 patients and operated on 5. In 2012, 38 patients were evaluated and 12 had combined surgical intervention. In our 2013 trip, 63 patients were evaluated and we operated on 22 of these patients. Multiple clinical research projects related to burn prevention and improving perioperative care have been initiated, presented at national meetings, and submitted for publication in peer-reviewed journals. Our outreach program in Lviv, Ukraine, strives to improve overall burn care by a multilayered approach. These elements can serve as a possible template for additional international burn outreach plans as they can be customized for both large and small interventions. PMID:24823335

Fuzaylov, Gennadiy; Anderson, Richard; Knittel, Justin; Driscoll, Daniel N

2015-01-01

204

Mortality and Morbidity of Fireworks-Related Burns on the Annual Last Wednesday of the Year Festival (Charshanbeh Soori) in Iran: An 11-Year Study  

PubMed Central

Background Management of firework-related injuries is costly for the patient, society, and government. Objectives Evaluating effective factors yielding to such injuries may lead to better management of patients and decreased costs and morbidities. Patients and Materials This retrospective cross-sectional study was performed on burn patients referred to Shahid Motahari Burns Hospital on Charshanbeh Soori day festival during the period extending from March 2000 to March 2011 (11 days in an 11-year period). Demographic data, causes of burn injury, severity, and affected body parts were recorded. Data were analyzed using SPSS version 16. Results There were164 patients in the study with a mean age of 18.34 ± 9.31 years; 87% (145/164) were male. Homemade grenades were the most frequent cause of injury. Hand injury was reported in 56% (92/164) of the cases. Amputation was executed in 7 (4.3%) cases, and 6 (3.7%) patients died due to severe burn injuries and facial damage. Conclusions Fireworks- related injuries during Charshanbeh Soori ceremony causes significant morbidities and damage to different body parts (especially upper limbs and face), and some of these injuries will lead to life time disabilities, amputations, and even death. As most of the injured patients are young teenagers and children, special consideration must be taken into account to prevent long term morbidities. PMID:24350158

Vaghardoost, Reza; Ghavami, Yaser; Sobouti, Behnam; Mobayen, Mohammad Reza

2013-01-01

205

Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-10-17

206

Treatment of a severe alkali burn  

Microsoft Academic Search

The case history of a 20-year-old male patient who sustained an 85 per cent total body surface area alkali burn to his skin, after falling into a caustic lime pit, is reported. Considerable problems regarding the correct estimate of burn wound depth, predominant location of the deepest burn on the posterior half of the body, appropriate wound coverage, and lack

D. Erdmann; J. Hussmann; J. O. Kucan

1996-01-01

207

Minor burn - first aid - series (image)  

MedlinePLUS

To treat a minor burn, run cool water over the area of the burn or soak it in a cool water bath (not ice water). ... flushing or soaking for several minutes, cover the burn with a sterile bandage or a clean cloth. ...

208

Effects of agricultural burning on nesting waterfowl  

USGS Publications Warehouse

Agricultural burning in an intensively farmed region within Manitoba's pothole district is shown to affect the nesting activities of ground-nesting ducks. All species, except Blue-winged Teal (Anas discors), preferred unburned nest cover, although success was higher in burned areas, where predators may have exerted less influence. Attitudes of farmers, burning chronology, and nest destruction by fires are also reported.

Fritzell, E.K.

1975-01-01

209

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2003-2004.  

SciTech Connect

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The project during 2003 was crippled due to the aftermath of the BPA budget crisis. Some objectives were not completed during the first half of this contract because of limited funds in the 2003 fiscal year. The success of this property purchase can be seen on a daily basis. Water rights were utilized only in the early, high water season and only from diversion points with functional fish screens. After July 1, all of the OCA water rights were put instream. Riparian fences on the river, Ruby and Granite Boulder creeks continued to promote important vegetation to provide shade and bank stabilization. Hundreds of willow, dogwood, Douglas-fir, and cottonwood were planted along the Middle Fork John Day River. Livestock grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat, while promoting meadow vigor and producing revenue for property taxes. Monitoring of property populations, resources, and management activities continued in 2003 to build a database for future management of this and other properties in the region.

Cochran, Brian

2004-02-01

210

2010 Annual Summary Report for the Area 3 and Area 5 Radioactive Management Sites at the Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Waste Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2010. This annual summary report presents data and conclusions from the FY 2010 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

NSTec Environmental Management

2011-03-01

211

2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R&D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for the determination of the adequacy of the CAs.

Vefa Yucel

2005-01-01

212

Effects of residual biomass burning on the CO2 flux from a paddy field  

NASA Astrophysics Data System (ADS)

Paddy field is one of the most important eco-system in monsoon Asia, and takes a great important role in CO2 uptake. Carbon budget in agricultural field is influenced by some artificial management. After the harvest, residual biomass is burned on fields, brought out from fields, or remained and harrowed into the fields. If open burning was conducted in a field, one part of biomass carbon is emitted into atmosphere as CO2, and the other part is harrowed into soils. In this study, quantity of lost carbon according to burning of residual biomass were investigated at a single rice cropping field in western Japan, in which long-term continuous CO2 flux (NEE) measurement by the eddy-covariance technique was conducted. In addition, an experimental paddy field was divided into two areas to investigate what impact is brought on the annual CO2 flux by the difference of disposal management of residual biomass after the harvest. Residual biomass was burned and plowed into soil at the one area on Nov. 29th, 2011, and residue was not burned and directly plowed into soil at the other area as usual. We illustrate some results for the control term before the burning experiment, and for the comparison term after the experiment.

Murakami, H.; Kunishio, A.; Akaike, Y.; Kawamoto, Y.; Ono, K.; Iwata, T.

2012-12-01

213

Table 1. Annual estimates, uncertainty, and change. Figure 1. Area of forest land and timberland.  

E-print Network

.8 Annual mortality of live trees (thousand ft3 yr-1 ) 238,586.7 4.0 4.0 Annual harvest removals of live wood-using industry, its use of roundwood, and the generation and disposition of wood residues. Below is processed. There was 102.6 million cubic feet of industrial roundwood harvested from Missouri's forests

214

Aztreonam pharmacokinetics in burn patients.  

PubMed Central

The pharmacokinetics of aztreonam in eight adult patients with severe burn injuries (total body surface area burn, 49% +/- 21% [mean +/- standard deviation]) were studied. The time of initiation of study following burn injury was 7.0 +/- 1.4 days. Four patients at first dose and at steady state were studied. Aztreonam concentrations were measured by high-performance liquid chromatography, and a two-compartment model was used to fit the data. No significant differences in any pharmacokinetic parameters between first dose and steady state were observed. Volume of distribution of the central compartment after first dose (0.14 liters/kg) and volume of distribution at steady state (0.31 liters/kg) were approximately 30% higher than those reported for other patient populations. Total drug clearance and renal drug clearance when normalized to creatinine clearance (CLCR) were similar to those previously reported for other critically ill patients. CLCR was strongly correlated with renal drug clearance (r = 0.94) and total drug clearance (r = 0.95). The extent and degree of burn (percent second or third degree burn) were poorly correlated with all pharmacokinetic parameters with the exception of the volume of distribution at steady state, which was correlated with both total body surface area burn (r = 0.95) and percent second degree burn (r = 0.83). Aztreonam pharmacokinetics are altered as a result of thermal injury; however, CLCR can be used to assess the clearance of aztreonam in burn patients. PMID:2014982

Friedrich, L V; White, R L; Kays, M B; Brundage, D M; Yarbrough, D

1991-01-01

215

Ten years of global burned area products from spaceborne remote sensing-A review: Analysis of user needs and recommendations for future developments  

NASA Astrophysics Data System (ADS)

Early global estimates of carbon emissions from biomass burning were based on empirical assumptions of fire return interval in different biomes in the 1980s. Since then, significant improvements of spaceborne remote sensing sensors have resulted in an increasing number of derived products characterizing the detection of active fire or the subsequent burned area (GFED, MODIS MCD45A1, L3JRC, Globcarbon, GBS, GLOBSCAR, GBA2000). When coupled with global land cover and vegetation models allowing for spatially explicit fuel biomass estimates, the use of these products helps to yield important information about the spatial and the temporal variability of emission estimates. The availability of multi-year products (>10 years) leads to a better understanding of uncertainties in addition to increasing accuracy. We surveyed a wide range of users of global fire data products whilst also undertaking a review of the latest scientific literature. Two user groups were identified, the first being global climate and vegetation modellers and the second being regional land managers. Based on this review, we present here the current needs covering the range of end-users. We identified the increasing use of BA products since the year 2000 with an increasing use of MODIS as a reference dataset. Scientific topics using these BA products have increased in diversity and area of application, from global fire emissions (for which BA products were initially developed) to regional studies with increasing use for ecosystem management planning. There is a significant need from the atmospheric science community for low spatial resolution (gridded, 1/2 degree cell) and long time series data characterized with supplementary information concerning the accuracy in timing of the fire and reductions of omission/commission errors. There is also a strong need for precisely characterizing the perimeter and contour of the fire scar for better assimilation with land cover maps and fire intensity. Computer and earth observation facilities remain a significant gap between ideal accuracies and the realistic ones, which must be fully quantified and comprehensive for an actual use in global fire emissions or regional land management studies.

Mouillot, Florent; Schultz, Martin G.; Yue, Chao; Cadule, Patricia; Tansey, Kevin; Ciais, Philippe; Chuvieco, Emilio

2014-02-01

216

Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

NNSA /NV

2002-07-18

217

Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes  

NASA Astrophysics Data System (ADS)

In the tropical Andes, there have been very few systematic studies aimed at understanding the biomass burning dynamics in the area. This paper seeks to advance on our understanding of burning regimes in this region, with the first detailed and comprehensive assessment of fire occurrence and the derived gross biomass burning emissions of an area of the Peruvian tropical Andes. We selected an area of 2.8 million hectares at altitudes over 2000 m. We analyzed fire occurrence over a 12 year period with three types of satellite data. Fire dynamics showed a large intra-annual and interannual variability, with most fires occurring May-October (the period coinciding with the dry season). Total area burned decreased with increasing rainfall until a given rainfall threshold beyond which no relationship was found. The estimated fire return interval (FRI) for the area is 37 years for grasslands, which is within the range reported for grasslands, and 65 years for forests, which is remarkably shorter than other reported FRI in tropical moist forests. The greatest contribution (60-70%, depending on the data source) to biomass burning emissions came from burned montane cloud forests (4.5 million Mg CO2 over the study period), despite accounting for only 7.4-10% of the total burned area. Gross aboveground biomass emissions (7.55 ± 2.14 Tg CO2; 0.43 ± 0.04 Tg CO; 24,012 ± 2685 Mg CH4 for the study area) were larger than previously reported for the tropical Andes.

Oliveras, Immaculada; Anderson, Liana O.; Malhi, Yadvinder

2014-04-01

218

Burn Institute  

MedlinePLUS

... Safety Expo/Demo Derby June 6, 2015 Del Mar Fairgrounds Chiefs’ Party in the Paddock and Golf ... Ball: October 17, 2015 Paddock at the Del Mar Fairgrounds Annual Firefighter Boot Drive Held throughout San ...

219

Overview of the South American biomass burning analysis (SAMBBA) field experiment  

NASA Astrophysics Data System (ADS)

Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.

Morgan, W. T.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Johnson, B. T.; Haywood, J. M.; Freitas, S.; Longo, K.; Artaxo, P.; Coe, H.

2013-05-01

220

Burn resuscitation.  

PubMed

Fluid resuscitation following burn injury must support organ perfusion with the least amount of fluid necessary and the least physiological cost. Under resuscitation may lead to organ failure and death. With adoption of weight and injury size-based formulas for resuscitation, multiple organ dysfunction and inadequate resuscitation have become uncommon. Instead, administration of fluid volumes well in excess of historic guidelines has been reported. A number of strategies including greater use of colloids and vasoactive drugs are now under investigation to optimize preservation of end organ function while avoiding complications which can include respiratory failure and compartment syndromes. Adjuncts to resuscitation, such as antioxidants, are also being investigated along with parameters beyond urine output and vital signs to identify endpoints of therapy. Here we briefly review the state-of-the-art and provide a sample of protocols now under investigation in North American burn centers. PMID:22078326

Endorf, Frederick W; Dries, David J

2011-01-01

221

Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China  

NASA Astrophysics Data System (ADS)

The lung cancer mortality rate in the rural area of the Xuan Wei, Yunnan, is among the highest in China, especially in women. In this paper, the coal-burning indoor and corresponding outdoor PM10 samples were collected at the Hutou village, representing the case of high lung cancer rate, and the Xize village, representing the case of low lung cancer rate. Plasmid scission assay was used to investigate the bioreactivity of the PM10. The inductively coupled plasma-mass spectrometry (ICP-MS) was employed to investigate the trace element compositions of the PM10. The results showed that the oxidative damage caused by both indoor and outdoor PM10 at the Hutou village was obviously higher than that at the Xize village, with the indoor PM10 having higher oxidative damage than corresponding outdoors. Among all analyzed samples, the indoor night PM10 samples from the Hutou village have the highest oxidative capacity. The levels of total water-soluble elements had a higher level in the PM10 of the Hutou village than that of the Xize village. It is interesting that the levels of water-soluble As, Cd, Cs, Pb, Sb, Tl and Zn in PM10 had better positive correlation with DNA damage rates, implying that these elements in their water-soluble state should be one of the main factors responsible for the high oxidative capacity of PM10, thus possibly the higher lung cancer rates, at the Hutou village.

Shao, Longyi; Hu, Ying; Wang, Jing; Hou, Cong; Yang, Yuanyuan; Wu, Mingyuan

2013-10-01

222

Severe burn injury in europe: a systematic review of the incidence, etiology, morbidity, and mortality  

PubMed Central

Introduction Burn injury is a serious pathology, potentially leading to severe morbidity and significant mortality, but it also has a considerable health-economic impact. The aim of this study was to describe the European hospitalized population with severe burn injury, including the incidence, etiology, risk factors, mortality, and causes of death. Methods The systematic literature search (1985 to 2009) involved PubMed, the Web of Science, and the search engine Google. The reference lists and the Science Citation Index were used for hand searching (snowballing). Only studies dealing with epidemiologic issues (for example, incidence and outcome) as their major topic, on hospitalized populations with severe burn injury (in secondary and tertiary care) in Europe were included. Language restrictions were set on English, French, and Dutch. Results The search led to 76 eligible studies, including more than 186,500 patients in total. The annual incidence of severe burns was 0.2 to 2.9/10,000 inhabitants with a decreasing trend in time. Almost 50% of patients were younger than 16 years, and ~60% were male patients. Flames, scalds, and contact burns were the most prevalent causes in the total population, but in children, scalds clearly dominated. Mortality was usually between 1.4% and 18% and is decreasing in time. Major risk factors for death were older age and a higher total percentage of burned surface area, as well as chronic diseases. (Multi) organ failure and sepsis were the most frequently reported causes of death. The main causes of early death (<48 hours) were burn shock and inhalation injury. Conclusions Despite the lack of a large-scale European registration of burn injury, more epidemiologic information is available about the hospitalized population with severe burn injury than is generally presumed. National and international registration systems nevertheless remain necessary to allow better targeting of prevention campaigns and further improvement of cost-effectiveness in total burn care. PMID:20958968

2010-01-01

223

Modeling the impacts of biomass burning on air quality in and around Mexico City  

NASA Astrophysics Data System (ADS)

The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), contributing about 60, 22, 33, and 22% to primary OA (POA), secondary OA (SOA), total OA (TOA), and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

Lei, W.; Li, G.; Molina, L.

2012-09-01

224

Laboratory-scale experimental burning of selected Palaeozoic limestones from the Barrandian area (Prague Basin, Bohemian Massif, Czech Republic): re-evaluation of properties of historical raw material  

NASA Astrophysics Data System (ADS)

Palaeozoic limestones from the Barrandian area (Prague Basin, Bohemian Massif, Czech Republic) have been quarried and utilized, among others, for manufacturing of inorganic binders. Certain beds, e.g. Devonian dvorecko-prokopské limestones were historically burnt for high quality hydraulic lime which is not produced recently. Aiming to evaluate potential of this specific raw material for small-scale production of restoration hydraulic lime, we have conducted some laboratory experimental burning tests in an electrical furnace up to 1200°C. Prior to the burning, all studied lithotypes (4 in total) have been examined for their mineralogy (optical microscopy, cathodoluminescence study, X-ray diffraction of insoluble residue) and geochemistry (wet chemical analyses). Studied biomicritic limestones can be classified as wackstones to packstones. Carbonate content varies from 80 to 90 %, the rest is due to dominant illite and silica, and subordinate kaolinite, feldspars, and/or chlorite. Specific composition of non-carbonate component (specifically high content of illite and silica) positively influences formation of CS, Ca, and/or CAS phases when burnt at calcination temperatures from 850 to 1200°C (in steps of 50°C). In the products formed during firing, mineral phases typical for hydraulic lime, such as larnite, brownmillerite, and gehlenite, along with free lime, quartz and silica phases, and portlandite were identified by X-ray diffraction. The amount of the dominant hydraulic phase, larnite, increased with higher firing temperature. On the other hand, content of free lime, quartz and silica decreased. The amount of portlandite was almost independent of the firing temperature. Higher amounts of larnite and other hydraulic phase were detected during the peak firing temperature of 1200°C in specimens containing higher amount of insoluble residue. From the study performed, it is evident that studied dvorecko-prokopské limestone, which included favourable amount of clay minerals (mainly illite) and silica represents raw material suitable for production of hydraulic limes of moderate hydraulicity. It is evident that high content of clay minerals, quartz and other forms of silica, as well as temperature of firing, have significant influence on the formation of mineral phases typical for hydraulic lime.

Kozlovcev, Petr; Prikryl, Richard; Stastna, Aneta

2013-04-01

225

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2002-2003.  

SciTech Connect

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The 2002 contract period was well funded and the second year of the project. A new manager started in April, allowing the previous manager to focus his efforts on the Forrest Ranch acquisition. However, the Oxbow Habitat manager's position was vacant from October through mid February of 2003. During this time, much progress, mainly O&M, was at a minimum level. Many of the objectives were not completed during this contract due to both the size and duration needed to complete such activities (example: dredge mine tailings restoration project) or because budget crisis issues with BPA ending accrual carryover on the fiscal calendar. Although the property had been acquired a year earlier, there were numerous repairs and discoveries, which on a daily basis could pull personnel from making progress on objectives for the SOW, aside from O&M objectives. A lack of fencing on a portion of the property's boundary and deteriorating fences in other areas are some reasons much time was spent chasing trespassing cattle off of the property. The success of this property purchase can be seen on a daily basis. Water rights were used seldom in the summer of 2002, with minor irrigation water diverted from only Granite Boulder Creek. Riparian fences on the river, Ruby and Granite Boulder creeks help promote important vegetation to provide shade and bank stabilization. Trees planted in this and past years are growing and will someday provide cover fish and wildlife. Even grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat. Monitoring of property populations, resources, and management activities continued in 2002 to build a database for future management of this and other properties in the region.

Cochran, Brian; Smith, Brent

2003-07-01

226

A comparison of burn season effects on nesting birds in North Dakota mixed-grass prairie  

USGS Publications Warehouse

During 1982-1985, the effects of single spring and fall burn treatments on ground nesting birds and residual cover were studied on five paired areas of native mixed-grass prairie in northwestern Stutsman County, ND. Annually, visual obstruction readings to index the height-density of residual cover were taken once and nest searches were made four times on each area. Residual nesting cover on fall burn plots averaged taller and denser than on spring burn plots during post-fire growing years 2-4. A total of 259 duck nests and 63 nests of non-passerine birds were found during the four years. Duck nesting success was significantly greater (P < 0.05) in fall burn plots than in spring burn plots for all species and years combined. Too few nests of other bird species were found for valid comparisons. Results suggest that vegetation structure and duck nesting response to spring and fall burns became similar again by the third post-fire growing season.

Higgins, K.F.

1986-01-01

227

Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.  

PubMed

Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning. PMID:21604164

Vilén, Terhi; Fernandes, Paulo M

2011-09-01

228

Forest Fires in Mediterranean Countries: CO2 Emissions and Mitigation Possibilities Through Prescribed Burning  

NASA Astrophysics Data System (ADS)

Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO2 emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.

Vilén, Terhi; Fernandes, Paulo M.

2011-09-01

229

Burn Severity Mapping in Australia 2009  

NASA Astrophysics Data System (ADS)

In 2009, the Victoria Department of Sustainability and Environment estimated approximately 430,000 hectares of Victoria Australia were burned by numerous bushfires. Burned Area Emergency Response (BAER) teams from the United States were deployed to Victoria to assist local fire managers. The U.S. Geological Survey Earth Resources Observation and Science Center (USGS/EROS) and U.S. Forest Service Remote Sensing Applications Center (USFS/RSAC) aided the support effort by providing satellite-derived "soil burn severity " maps for over 280,000 burned hectares. In the United States, BAER teams are assembled to make rapid assessments of burned lands to identify potential hazards to public health and property. An early step in the assessment process is the creation of a soil burn severity map used to identify hazard areas and prioritize treatment locations. These maps are developed primarily using Landsat satellite imagery and the differenced Normalized Burn Ratio (dNBR) algorithm.

McKinley, R.; Clark, J.; Lecker, J.

2012-07-01

230

Burning Upland, Mixed Prairie in Badlands National Park  

Microsoft Academic Search

Burning research in the northern mixed prairie has focused on sites considered to be more productive, although prescribed burning is usually conducted on heterogeneous landscapes with many different sites. Understanding the impacts of fire on less productive sites is a critical component in planning the frequency of prescribed burning of natural areas. The effects of burn- ing in either April

STEVEN G. WHISENANT; DANIEL W. URESK

231

Hair bleaching and skin burning  

PubMed Central

Summary Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation. PMID:23766754

Forster, K.; Lingitz, R.; Prattes, G.; Schneider, G.; Sutter, S.; Schintler, M.; Trop, M.

2012-01-01

232

Ken Burns  

NSDL National Science Digital Library

Ken Burns is a popular documentarian and, as it turns out, he is now a popular app, in a manner of speaking. This particular app gives interested parties the ability to view scenes from his documentaries (such as "Baseball" and "Jazz") in a variety of settings. The latest version allows visitors to access the Innovation playlist absolutely free while other playlists containing clips from his other programs are available for a small fee. This version is compatible with iPads running iOS 7.0 and newer.

2014-02-10

233

Modelling Fire Frequency in a Cerrado Savanna Protected Area  

PubMed Central

Covering almost a quarter of Brazil, the Cerrado is the world’s most biologically rich tropical savanna. Fire is an integral part of the Cerrado but current land use and agricultural practices have been changing fire regimes, with undesirable consequences for the preservation of biodiversity. In this study, fire frequency and fire return intervals were modelled over a 12-year time series (1997–2008) for the Jalapão State Park, a protected area in the north of the Cerrado, based on burned area maps derived from Landsat imagery. Burned areas were classified using object based image analysis. Fire data were modelled with the discrete lognormal model and the estimated parameters were used to calculate fire interval, fire survival and hazard of burning distributions, for seven major land cover types. Over the study period, an area equivalent to four times the size of Jalapão State Park burned and the mean annual area burned was 34%. Median fire intervals were generally short, ranging from three to six years. Shrub savannas had the shortest fire intervals, and dense woodlands the longest. Because fires in the Cerrado are strongly responsive to fuel age in the first three to four years following a fire, early dry season patch mosaic burning may be used to reduce the extent of area burned and the severity of fire effects. PMID:25054540

Pereira Júnior, Alfredo C.; Oliveira, Sofia L. J.; Pereira, José M. C.; Turkman, Maria Antónia Amaral

2014-01-01

234

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2001-2002.  

SciTech Connect

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Middle Fork Oxbow Ranch. Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. This report is to be provided to the BPA by 30 April of each year. This is the first annual report filed for the Oxbow Ranch property.

Robertson, Shaun; Smith, Brent; Cochran, Brian

2003-04-01

235

On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon  

NASA Astrophysics Data System (ADS)

Spaceborne instruments provide a unique view of global vegetation fire activity many times a day. In this study, we assessed the fire characterization information provided by two major products: the Terra and Aqua MODIS Thermal Anomalies product (MOD14 and MYD14, respectively) and the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) product derived from GOES East Imager. Using higher spatial resolution imagery data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat Enhanced Thematic Mapper Plus (ETM+) instruments, we analyzed the characterization of subpixel fires detected by MOD14, MYD14, and WF_ABBA over parts of Brazilian Amazonia. Our results suggest that MODIS and GOES fire radiative power (FRP) estimates derived for individual fire-pixel clusters are subject to errors due to the effects of the point spread function of those instruments (underestimation of up to 75%), improper fire background characterization (overestimation of up to 80% assuming a 10 K cold bias in background temperature), and omission of small fire lines. Detection limits were approximately 11 and 9 MW for MOD14 and MYD14, respectively, and were equivalent to 27 and 19 MW for WF_ABBA data acquired coincidently with MOD14 and MYD14, respectively. We found a positive correlation between FRP and percentage tree cover indicating that FRP is sensitive to biomass density. Fire area and temperature estimates derived from the application of Dozier's (1981) approach to GOES data did not agree with our reference data (i.e., ASTER and ETM+ active fire masks and in situ fire temperature data), suggesting that large and variable errors could affect the retrieval of those parameters.

Schroeder, Wilfrid; Csiszar, Ivan; Giglio, Louis; Schmidt, Christopher C.

2010-11-01

236

Post-Closure Inspection Report for Corrective Action Unit 90: Area 2 Bitcutter Containment Annual Report, Nevada Test Site, Nevada  

SciTech Connect

Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in Section VII.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility Number NEV HW009, Section VII, Revision 1, March 2003. Post-closure care consists of the following: Semiannual inspections of the unit using an inspection checklist; Photographic documentation; Field note documentation; and Preparation and submittal of an annual report. The annual report consists of copies of the inspection checklist, repair records (if any), photographs, and recommendations and conclusions for the period December 2002 to June 2003. The Post-Closure Inspection Checklists are provided in Attachment A, a copy of the field notes is provided in Attachment B, and copies of the inspection photographs are provided in Attachment C.

K. K. Knapp

2003-09-01

237

Distribution of ecotypes of the genus Trifolium and annual Medicago in grazing areas in southwest Spain  

Microsoft Academic Search

SUMMARY - The need for genetic material to improve the grazing lands of the dehesa has led the Research and Technology Development Service of the Regional Government in Extremadura to establish a germplasm bank for annual leguminous forage plants. This bank contains 3361 accessions of the genus Trifolium, mainly Trifolium subterraneum, and 684 of the genus Medicago, with the majority

F. González; N. Martínez; E. Moreno

238

Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands areas  

E-print Network

1 Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands weathering of marls in two experimental watersheds showing a typical badlands geomorphology (Draix watersheds weathering reach 2.2 to 4.2 t km-2 for the year 2002. These high FOC fluxes from badlands are similar

Paris-Sud XI, Université de

239

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2001-2002  

Microsoft Academic Search

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Middle Fork Oxbow Ranch. Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in

Shaun Robertson; Brent Smith; Brian Cochran

2003-01-01

240

Satellite detection of tropical burning in Brazil  

Microsoft Academic Search

Tropical burning often occurs in remote areas of the world. Satellite remote sensing is the only practical solution for detecting and monitoring this burning. In this paper we demonstrate the capability of the Advanced Very High Resolution Radiometer onboard the National Oceanic and Atmospheric Administration polar orbiting satellites for detecting tropical fire activity in the Manaus, Brazil area.

Michael Matson; Brent Holben

1987-01-01

241

Wood burning furnace  

SciTech Connect

This patent describes a furnace having four walls for burning cellulosic fuel therein, a grate in the furnace bottom on which the fuel is burned, means for introducing cellulosic fuel onto the grate, means for introducing air into the furnace for supporting combustion of the fuel, a rear gas pass connected to the upper end of the furnace, the walls of the furnace being inclined upwardly and outwardly from the grate in such a manner that at a given height above the grate, the cross-sectional flow area is 1 1/2 to 2 times the flow area closely adjacent to the grate, such that most of the partially burned char particles entrained in the gases near the grate reach a height in the furnace where the gas velocity equals the particle terminal velocity, so that most of the particles remain suspended at this height until combustion has reduced their size enough so that they can be carried into the rear pass by the reduced gas velocity.

Bauver, W.P. II

1986-05-20

242

Skin Burns Degree Determined by Computer Image Processing Method  

NASA Astrophysics Data System (ADS)

In this paper a new method determining the degree of skin burns in quantities is put forward. Firstly, with Photoshop9.0 software, we analyzed the statistical character of skin burns images' histogram, and then turned the images of burned skins from RGB color space to HSV space, to analyze the transformed color histogram. Lastly through Photoshop9.0 software we get the percentage of the skin burns area. We made the mean of images' histogram,the standard deviation of color maps,and the percentage of burned areas as indicators of evaluating burns,then distributed indicators the weighted values,at last get the burned scores by summing the products of every indicator of the burns and the weighted values. From the classification of burned scores, the degree of burns can be evaluated.

Li, Hong-yan

243

Assault by burning in Jordan.  

PubMed

Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

Haddadin, W

2012-12-31

244

Rehabilitation of the burn patient  

PubMed Central

Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ‘Burns Rehabilitation’ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration PMID:21321643

Procter, Fiona

2010-01-01

245

American Burn Association  

MedlinePLUS

... burn center and disaster related information View the ABA U.S. Regional Map Click above to access the ... Member Website Fire & Burn Prevention Newsletter - Winter 2014 ABA Membership Newsletter | Spring 2014 National Burn Repository ABA ...

246

Avoiding Household Burns  

MedlinePLUS

... Vehicle Safety En Español Injury Prevention Avoiding Household Burns On average, in the U.S., someone dies in ... minutes. There were 40,000 hospitalizations related to burn injury, including 30,000 at hospital burn centers. " ...

247

Ram Burn Observations (RAMBO)  

NASA Technical Reports Server (NTRS)

Ram Burn Observations (RAMBO) is a Department of Defense experiment that observes shuttle Orbital Maneuvering System engine burns for the purpose of improving plume models. On STS-107 the appropriate sensors will observe selected rendezvous and orbit adjust burns.

2002-01-01

248

Erosive burning of solid propellants  

NASA Technical Reports Server (NTRS)

Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

King, Merrill K.

1993-01-01

249

Mobilizable RDF/d-RDF burning program  

SciTech Connect

The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

Niemann, K.; Campbell, J.

1982-03-01

250

Recovery trajectories after burn injury in young adults: does burn size matter?  

PubMed

The impact of burn size on mortality is well known, but the association of burn size with the trajectories of long-term functional outcomes remains poorly studied. This prospective multi-center study included burned adults ages 19 to 30 years who completed the Young Adult Burn Outcome Questionnaire at initial baseline contact, 2 weeks, and at 6 and 12 months after initial questionnaire administration. Non-burned adults of comparable ages also completed the questionnaire as a reference group. The association between functional recovery and TBSA burned was analyzed longitudinally using generalized linear models with the generalized estimation equation technique. Functional status was characterized in 15 domains: physical function, fine motor function, pain, itch, social function limited by physical function, perceived appearance, social function limited by appearance, sexual function, emotion, family function, family concern, satisfaction with symptom relief, satisfaction with role, work reintegration, and religion. Scores were standardized to a mean of 50 and a SD of 10 based on non-burned controls. There were 153 burned and 112 non-burned subjects with a total of 620 questionnaires. TBSA burned was 11 ± 14% (mean ± SD); 31% had face involvement and 57% had hand involvement. The lag time from burn injury to questionnaire administration was on average 7 ± 7.7 months, with a maximum of 36 months. Lower recovery levels were associated with increasing burn size for physical function, pain, itch, work reintegration, emotion, satisfaction with symptom relief, satisfaction with role, family function, and family concern (P value ranged from .04-<.0001). No significant differences in recovery levels were found with increasing burn size for fine motor function, social function limited by physical function, sexual function, and religion; these areas tracked toward the age-matched non-burned group regardless of burn size. Perceived appearance and social function limited by appearance remained below the non-burn levels throughout the 3-year period regardless of burn size. Three-year recovery trajectories of survivors with larger burn size showed improvements in most areas, but these improvements lagged behind those with smaller burns. Poor perceived appearance was persistent and prevalent regardless of burn size and was found to limit social function in these young adult burn survivors. Expectations for multidimensional recovery from burns in young adults can be benchmarked based on burn size with important implications for patient monitoring and intervening in clinical care. PMID:25501787

Ryan, Colleen M; Lee, Austin; Kazis, Lewis E; Schneider, Jeffrey C; Shapiro, Gabriel D; Sheridan, Robert L; Meyer, Walter J; Palmieri, Tina; Pidcock, Frank S; Reilly, Debra; Tompkins, Ronald G

2015-01-01

251

Vegetation Cover and Habitat Heterogeneity derived from QuickBird data as proxies of Local Plant Species Richness in recently burned areas  

NASA Astrophysics Data System (ADS)

In fire-prone ecosystems, it is very common that, following fire, plant species richness increases very markedly, mainly due to an explosion of annuals, following a rapid change during the first few years after the blaze. Herbs play a major role in the system, among other, by fixing nutrients that might be lost, or by changing competitive interactions with shrubs or tree seedlings. But assessing species richness, particularly, herbaceous one, in space and at large scale is very costly. Furthermore, the scale of measurement is also important. In this work we attempted to asses plant species richness during the first year after fire in an abandoned dehesa (open parkland) at three scales (1 m2, 25 m2 and 100 m2) using QuickBird images. The study area was located in Central Spain (Anchuras, Ciudad Real), and was affected by a large summer fire (ca. 2000 ha). Before the fire the system was composed of a shrubland intermixed with trees and open spaces. Two 90x180 m plots were selected and field species richness measures were made at the three scales, using a nested design. Field-based data were related to remotely sensed data using Regression Trees (RT) and Boosted Regression Trees (BRT) modelling. Explanatory spectral and textural remotely sensed data were ecologically interpreted based on vegetation cover ground-based data. We found that areas with low spectral contrast and high reflectivity were dominated by herbaceous species, and had greater species richness than those characterized by low contrast and medium-low reflectivity, which were dominated by shrubs and trees. The highest species richness was found in the areas characterized by high contrast and medium-high reflectivity, which had a mix of herbs and woody layers. Variance explained varied depending on the modelling approach and the scale, from 21% and 50% for 1 m2 using RT and BRT, respectively; to 65% and 79% for 100 m2. The contribution of different life forms in model fitting was scale-dependent. At smaller scales, herbaceous layer explained the greatest variability of species richness; whereas at higher scales, shrubs and trees increased their contribution in fitting plant species richness. Model's predictions and Moran's Index on residuals indicated that the best sampling scale to predict species richness from QuickBird data was at 100 m2. The high variance explained in most cases indicates that species richness in space can be well predicted by QuickBird derived data. Keywords: plant species richness, local nested scales, vegetation cover, spatial heterogeneity, texture, reflectivity, QuickBird.

Viedma, Olga; Torres, Ivan; Moreno, Jose Manuel

2010-05-01

252

Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil.  

PubMed

This study was conducted at three sites of different characteristics in São Paulo State: São Paulo (SPA), Piracicaba (PRB) and Mata Atlântica Forest (MAT). PM(10), n-alkanes, pristane and phytane, PAHs, water-soluble ions and biomass burning tracers like levoglucosan and retene, were determined in quartz fiber filters. Samplings occurred on May 8th to August 8th, 2007 at the MAT site; on August 15th to 29th in 2007 and November 10th to 29th in 2008 at the PRB site and, March 13th to April 4th in 2007 and August 7th to 29th in 2008 at the SPA site. Aliphatic compounds emitted biogenically were less abundant at the urban sites than at the forest site, and its distribution showed the influence of tropical vascular plants. Air mass transport from biomass burning regions is likely to impact the sites with specific molecular markers. The concentrations of all species were variable and dependent of seasonal changes. In the most dry and polluted seasons, n-alkane and cation total concentrations were similar between the megacity and the biomass burning site. PAHs and inorganic ion abundances were higher at São Paulo than Piracicaba, yet, the site influenced by biomass burning seems to be the most impacted by the organic anion abundance in the atmosphere. Pristane and phytane confirm the contamination by petroleum residues at urban sites; at the MAT site, biological activity and long range transport of pollutants might influence the levels of pristane. PMID:20843540

Vasconcellos, Pérola C; Souza, Davi Z; Sanchez-Ccoyllo, Odon; Bustillos, José Oscar V; Lee, Helena; Santos, Fernando C; Nascimento, Katia H; Araújo, Maria P; Saarnio, Karri; Teinilä, Kimmo; Hillamo, Risto

2010-11-01

253

Does decreased orographic enhancement explain declining annual streamflows and recent increases in wildfire fire activity in the Pacific Northwestern US?  

NASA Astrophysics Data System (ADS)

The influences of changing snowpack on the hydrology of the western US have been well noted, with trends in snowpack declines, early streamflow timing and associated fire activity attributed primarily to warming temperatures. We present several lines of evidence suggesting that historical declines in high elevation precipitation have contributed to early snowmelt timing, reduced annual streamflow, and increased annual area burned in the Pacific Northwest. Using satellite-derived estimates of area burned and area burned severely, we show that annual flow, an integrator of basin-wide precipitation, explains three times as much of the variability in interannual wildfire activity as does the center of timing of annual flow absent the influence of flow variability. Precipitation and snowpack are fundamentally connected to the timing of snowmelt. Thus, while annual wildfire area burned is correlated with snowmelt timing, precipitation quantity and distribution provide a more direct mechanistic explanation of recent wildfire activity in this region. The magnitude of streamflow declines cannot be explained by either increased evapotranspiration or decreases in precipitation at low elevation weather stations, implicating declining orographic enhancement as a possible mechanism for the substantial declines in streamflow observed in recent decades.

Holden, Z. A.; Luce, C.; Morgan, P.; Crimmins, M.; Abatzoglou, J. T.

2013-12-01

254

Wood mouse and box turtle populations in an area treated annually with DDT for five years  

USGS Publications Warehouse

A 117-acre area of dense woodland on the Patuxent Research Refuge received an aerial application of DDT in oil at the rate of 2 pounds per acre gnnually for five years. DDT reached ground level in a much smaller amount (thousandths to hundredths of a pound per acre). Treatment was made during the first week of June of each year from 1945 through 1949. Field studies of the wood mouse population in DDT and check areas showed no significant differences in the two areas before and after the 1949 DDT treatment. There was no significant difference between trapping samples taken in DDT and check areas in 1945 and those taken in 1949. Field studies of the box turtles in DDT and check areas in 1945 and 1949 showed no significant difference in population size. Growth of the four young turtles taken in the DDT area in both 1945 and 1949 appeared to be normal in comparison with growth of check area turtles.

Stickel, L.F.

1951-01-01

255

Association between annual river flood pulse and paediatric hospital admissions in the Mekong Delta area.  

PubMed

The Mekong Delta is the most vulnerable region to extreme climate and hydrological conditions however the association between these conditions and children's health has been little studied. We examine the association between annual river flood pulse and paediatric hospital admissions in a Vietnam Mekong Delta city. Daily paediatric hospital admissions (PHA) were collected from the City Paediatric Hospital, and daily river water level (RWL) and meteorological data were retrieved from the Southern Regional Hydro-Meteorological Centre from 2008 to 2011. We evaluated the association between annual river flood pulse (>=90th percentile of RWL) and PHA using the Poisson distributed lag model, controlling for temperature, relative humidity, day of week, seasonal and long-term trends. The seasonal pattern of PHA was examined using harmonic and polynomial regression models. The cumulative risk ratios estimated for a 15-day period following an extreme RWL was 1.26 (95%CI, 1.2-1.38) for all age groups, 1.27 (95%CI, 1.23-1.30) for under five-years and 1.15 (95%CI, 1.07-1.20) for school-aged children, 1.24 (95%CI, 1.21-1.27) for all-causes, 1.18 (95%CI, 1.12-1.21) for communicable infection, 1.66 (95%CI, 1.57-1.74) for respiratory infection and 1.06 (95%CI, 1.01-1.1) for other diseases. The peak PHA risk is in the September-October period corresponding to the highest RWL, and the PHA-RWL association was modified by temperature. An increase in PHA is significantly associated with annual river flood, and the pattern of PHA is seasonally correspondent to the RWL. These findings combined with projected changes in climate conditions suggest important implications of climate change for human health in the Mekong Delta region. PMID:25282279

Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh

2014-11-01

256

Epidemiologic Characteristics of Occupational Burns in Yazd, Iran  

PubMed Central

Objective: Occupational burns are among the important causes of work-related fatalities and absenteeism. Epidemiologic assessment of these injuries is important to define high-risk jobs. We designed this study to evaluate the epidemiology of occupational burns in Yazd, an industrial province in Iran. Methods: This is a prospective study on work-related burns in a 1-year period (2008-2009). A questionnaire was completed for them about the characteristics of the burn injury. Results: Three Hundred and Thirty Eight patients with occupational burns were identified. Their mean age was 29.64 years. Most burn victims were male workers in the metal industry. The most common job was smelting. Most burns were happened in the morning. Thermal burns were observed more than chemical and electrical burns. Mean total body surface area burned was 6.5%. The most common cause of burn was hot fluid, followed by hot object and flame. There was no any significant relationship between burn type, and burn degree or burned body surface. Conclusions: The highest incidence of occupational burns was in 21-30 year-old workers. There was a male preponderance in work-related burns. Metal industry had the most injured workers and among them, smelters were more frequently injured. PMID:23930193

Mirmohammadi, Seyyed Jalil; Mehrparvar, Amir Houshang; Kazemeini, Kazem; Mostaghaci, Mehrdad

2013-01-01

257

National programme for prevention of burn injuries  

PubMed Central

The estimated annual burn incidence in India is approximately 6-7 million per year. The high incidence is attributed to illiteracy, poverty and low level safety consciousness in the population. The situation becomes further grim due to the absence of organized burn care at primary and secondary health care level. But the silver lining is that 90% of burn injuries are preventable. An initiative at national level is need of the hour to reduce incidence so as to galvanize the available resources for more effective and standardized treatment delivery. The National Programme for Prevention of Burn Injuries is the endeavor in this line. The goal of National programme for prevention of burn injuries (NPPBI) would be to ensure prevention and capacity building of infrastructure and manpower at all levels of health care delivery system in order to reduce incidence, provide timely and adequate treatment to burn patients to reduce mortality, complications and provide effective rehabilitation to the survivors. Another objective of the programme will be to establish a central burn registry. The programme will be launched in the current Five Year Plan in Medical colleges and their adjoining district hospitals in few states. Subsequently, in the next five year plan it will be rolled out in all the medical colleges and districts hospitals of the country so that burn care is provided as close to the site of accident as possible and patients need not to travel to big cities for burn care. The programme would essentially have three components i.e. Preventive programme, Burn injury management programme and Burn injury rehabilitation programme. PMID:21321659

Gupta, J. L.; Makhija, L. K.; Bajaj, S. P.

2010-01-01

258

Cimetidine kinetics during resuscitation from burn shock  

Microsoft Academic Search

Severely burned patients suffer from rapidly changing metabolic and hemodynamic abnormalities that could alter drug kinetics. The kinetics of cimetidine, commonly used in the prophylaxis of acute stress erosions, were studied during fluid resuscitation of 11 patients with mean burn sizes of 45% total body surface area. Six patients were studied after the completion of fluid resuscitation. Total clearance, steady-state

John A Ziemniak; William A Watson; Jeffrey R Saffle; Ian L Smith; John Russo; Glenn D Warden; Jerome J Schentag; Jerome J Schentag PharmD

1984-01-01

259

Treatment for depigmentation following burn injuries  

Microsoft Academic Search

Partial-thickness burn injuries frequently heal with pigmentary changes. Occasionally, permanent depigmentation is observed, especially in areas such as the hands, fingers and wrists. This article reports our surgical technique and our success in using it to treat depigmentation after burn injuries. This technique consists of superficial dermabrasion of the depigmented region, followed by transplantation of melanocytes via epithelial sheet grafts.

A. M. Kahn; M. J. Cohen

1996-01-01

260

Hypercoagulability and venous thromboembolism in burn patients.  

PubMed

To our knowledge, this is the first comprehensive review on the subject of venous thromboembolism (VTE) and hypercoagulability in burn patients. Specific changes in coagulability are reviewed using data from thromboelastography and other techniques. Disseminated intravascular coagulation in burn patients is discussed. The incidence and risk factors associated with VTE in burn patients are then examined, followed by the use of low-molecular-weight heparin thromboprophylaxis and monitoring techniques using antifactor Xa levels. The need for large, prospective trials in burn patients is highlighted, especially in the areas of VTE incidence and safe, effective thromboprophylaxis. PMID:25590525

Meizoso, Jonathan P; Ray, Juliet J; Allen, Casey J; Van Haren, Robert M; Ruiz, Gabriel; Namias, Nicholas; Schulman, Carl I; Pizano, Louis R; Proctor, Kenneth G

2015-02-01

261

Training and burn care in rural India  

PubMed Central

Burn care is a huge challenge in India, having the highest female mortality globally due to flame burns. Burns can happen anywhere, but are more common in the rural region, affecting the poor. Most common cause is flame burns, the culprit being kerosene and flammable flowing garments worn by the women. The infrastructure of healthcare network is good but there is a severe resource crunch. In order to bring a positive change, there will have to be more trained personnel willing to work in the rural areas. Strategies for prevention and training of burn team are discussed along with suggestions on making the career package attractive and satisfying. This will positively translate into improved outcomes in the burns managed in the rural region and quick transfer to appropriate facility for those requiring specialised attention. PMID:21321647

Chamania, Shobha

2010-01-01

262

Z-Area Saltstone Disposal Facility groundwater monitoring report. 1996 annual report  

SciTech Connect

The Z-Area Saltstone Disposal Facility is located in the Separations Area, north of H and S Areas, at the Savannah River Site (SRS). The facility permanently disposes of low-level radioactive waste. The facility blends low-level radioactive salt solution with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults. Z Area began these operations in June 1990. Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). During second quarter 1996, lead was reported above the SCDHEC-proposed groundwater monitoring standard in one well. No other constituents were reported above SCDHEC-proposed groundwater monitoring standards for final Primary Drinking Water Standards during first, second, or third quarters 1996. Antimony was detected above SRS flagging criteria during third quarter 1996. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

NONE

1996-12-01

263

Pre-Harvest Sugarcane Burning: Determination of emission factors through laboratory measurements and quantification of emissions  

NASA Astrophysics Data System (ADS)

Sugarcane is a relevant crop to Brazilian economy and roughly 50% of its production is used to produce ethanol. São Paulo state is the largest producer of sugarcane in Brazil being responsible for almost 60% of its production in a cultivated area of 4.5 Mha in 2010. Sugarcane harvest practice can be performed either with green harvest or with pre-harvest burning. A "Green Ethanol" Protocol is underway to eliminate the pre-harvest burning practice by 2014 in most of the sugarcane cultivated land in São Paulo state. During the last five years close to 2 Mha were annually harvested with the pre-harvest burning practice. This practice emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the burning practice in the near future there is still a significant environmental damage due to the pre-harvest burning practice of sugarcane. Thus the generation of reliable inventories of emissions due to this activity is crucial in order to assess the environmental impact. Presently the official Brazilian emissions inventories do not include the sugarcane pre-harvest burning contribution. Therefore, this work aims to estimate the annual emissions (from 2006 to 2010) associated with pre-harvest sugarcane burning practice in São Paulo state, including the determination of emission factors for some trace gases and particulate material smaller than 2.5 ?m. Annual remote sensing based mappings of burned sugarcane fields throughout the harvest season in each crop year made in the context of Canasat Project (http://www.dsr.inpe.br/laf/canasat/en/) were added to the Brazilian Biomass Burning Emission Model (3BEM) in order to estimate trace gases and aerosols emissions. Two laboratory combustion experiments were carried out to determine the emission factors estimation. Samples of different varieties of sugarcane were harvested in dry weather conditions and in distinct sites in the state of São Paulo to assure a good representativeness. In each experiment a fraction of a specific sample was put on a burning tray with area equal to 1 m2 inside a combustion chamber and burned under controlled conditions. The bottom's tray was covered with a layer of soil with some branches aiming to reproduce the burning condition in the field. The smoke emitted was conducted to trace gas and aerosol particles analyzers measuring the excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons) and PM2.5, allowing the estimation of their respective emission factors. Average values for emission factors estimated (g kg -1 of burned dry biomass) were 1303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.5 ± 1.7 for PM2.5. These emission factors can be used to generate more realistic emission inventories and, therefore, to improve the results of quality air models. Currently, enhanced emission inventories of São Paulo state are obtained with the emission model 3BEM, available at CPTEC-INPE, by the inclusion of these improvements.

de Azeredo Franca, D.; Maria Longo, K.; Gomes Soares Neto, T.; Carlos dos Santos, J.; Rudorf, B. F.; Alves de Aguiar, D.; Freitas, S.; Vieira Cortez, E.; Stockler S. Lima, R.; S. Gacita, M.; Anselmo, E.; A. Carvalho, J., Jr.

2011-12-01

264

Multi-year black carbon emissions from cropland burning in the Russian Federation  

NASA Astrophysics Data System (ADS)

Cropland fires are an important source of black carbon (BC) emissions. Previous research has suggested that springtime cropland burning in Eastern Europe, more specifically Russia, is a main contributor of BC in the Arctic atmosphere, acting as a short-lived climate forcer strongly influencing snow-ice albedo and radiation transmission. BC emissions from cropland burning were estimated for the Russian Federation for years 2003 through 2009 using three satellite fire products, the 1 km MODIS Active Fire Product, 0.5° MODIS Fire Radiative Power monthly climate modeling grid product, and the 500 m MODIS Burned Area Product, and a agricultural statistics approach based on a modified method developed and published by the All-Russian Institute of Organic Peat and Fertilizers to estimate farm- and regional-level residue loading from straw surplus left after grain harvesting, while accounting for agricultural management and agrometeorological inputs. The satellite-based emission calculations utilized several different land cover classification schemas for defining croplands in Russia for both the 1 km MODIS Land Cover Product and the 300 m MERIS GlobCover v2.2 data sets. In general, the peaks of BC emissions from cropland burning occurred during the spring (April-May), summer (July-August), and the fall (October). 2008 had the highest annual BC emissions. The range of average annual BC emissions from cropland burning calculated from the different satellite fire products was 2.49 Gg-22.2 Gg, with the agricultural statistics approach annual average equal to 8.90 Gg. The Global Fire Emissions Database (GFED) version 3 reported an annual average of 11.9 Gg of BC from agricultural burning. The results from this analysis showed that the majority of BC emissions originated in European Russia, followed by smaller contributions from West Siberia, Far East Russia, and East Siberia macro-regions. An uncertainty assessment on data used to calculate the BC emissions found moderate uncertainty in some of the input data used in this first attempt to produce spatially and temporally explicit BC emission estimates from cropland burning in the Russian Federation.

McCarty, Jessica L.; Ellicott, Evan A.; Romanenkov, Vladimir; Rukhovitch, Dmitry; Koroleva, Polina

2012-12-01

265

Area 2 Bitcutter and Post-Shot Injection Wells Corrective Action Unit 90 Post-Closure Inspection Annual Report  

SciTech Connect

Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in {section} VIIB.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, reissued November 20, 2000, Revision 4. Post-closure care consists of the following: Semiannual inspections of the unit using an inspection checklist; photographic documentation; field note documentation; and preparation and submittal of an annual report. The report includes copies of the inspection checklist, photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachment C.

D. S. Tobiason

2001-09-01

266

Area 2 Bitcutter and Post-Shot Injection Wells: Corrective Action Unit 90 Post-Closure Inspection Annual Report  

SciTech Connect

Area 2 Bitcutter and Post-Shot Containment Shop Injection Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in section V.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, modified May 31, 1997, Revision 3. Post-closure care consists of the following: Semiannual inspections of the unit using an inspection checklist; Photographic documentation; Field note documentation; and Preparation and submittal of an annual report. The report includes copies of the inspection checklist, photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachment C.

D. L. Gustafason

2000-09-01

267

ANALYZING ANNUAL CHANGE OF WATER AND HEAT BALANCE IN ARAL SEA BASIN INCLUDING THE IMPACT OF EXPANDING IRRIGATED AREA  

NASA Astrophysics Data System (ADS)

In the last 60 years, huge-scale irrigation project has been carried out and this project has occurred serious water scarcity in the Aral Sea Basin. The Aral Sea has shrunk to 10% of 1960’s level and a lot of people are suffering from serious water scarcity. To solve the problem, sustainable irrigation plan is required. For the plan, quantity of water resources and the impact of global warming must be simulated. In this study, annual water and heat balance in the Aral Sea Basin is analyzed from 1961 to 2003 by SiBUC. SiBUC is one of the land surface models which can analyze water for irrigation in physical way. Water balance in this basin is reproduced in the past and the impacts of expanding irrigated area to water balance in this basin are analyzed.

Touge, Yoshiya; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio

268

Z-Area Saltstone Disposal Facility Groundwater Monitoring Report (1998 Annual Report)  

SciTech Connect

In accordance with SRS Z-Area Saltstone Industrial Solid Waste Permit, wells ZBG-1, ZBG-1A and ZBG-2 are monitored for the parameters listed in this document. Sampling was done during the first and third quarters of 1998. Additional Analyses were also run. The analytical results appear in Appendix 1.

Wells, D.

1999-04-27

269

Bilingual Education Multifunctional Resource Center. Service Area 4. Annual Performance Report, 1992-1993.  

ERIC Educational Resources Information Center

The federally funded Bilingual Education Multifunctional Resource Center (BEMRC) provides support services to programs and individuals serving students of limited English proficiency (LEP) in Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, and Tennessee. LEP students in the mostly rural areas come from…

Oklahoma Univ., Norman. Bilingual Education Multifunctional Resource Center.

270

Evaluation of the Bird Conservation Area Concept in the Northern Tallgrass Prairie Annual Report: 1998  

NSDL National Science Digital Library

This new resource on the management and conservation of grassland/prairie birds has been posted at the Northern Prairie Wildlife Research Center site. This report "contains findings from the first year of a study to test the idea that Bird Conservation Areas can maintain populations of breeding grassland birds."It is available for download in .zip format.

Donovan, Therese M.

1999-01-01

271

Extreme peat burning along peatland-upland interfaces of the Western Boreal Plain  

NASA Astrophysics Data System (ADS)

Wildfire is the largest disturbance affecting peatlands in the Western Boreal Forest, releasing 4700 Gg C a-1 over ~1500 km2 annually. Under future climate scenarios the amount of area burned in this region is forecast to increase by 25-100%, potentially converting these ecosystems into a regional net source of carbon to the atmosphere. During wildfire, the majority of carbon released from peatlands is attributable to peat smouldering with burn depths generally ranging from 5 - 20 cm of peat. However, no study has documented the incidence of an extreme smouldering event and the conditions necessary for such an event to occur. Here we report on a smouldering event during the Utikuma Complex forest fire (SWF-060, ~90,000 ha) in May, 2011 at the Utikuma Lake Research Study Area (URSA) in Alberta's Western Boreal Plain, where peat burn depths exceeded one meter along a peatland-upland interface (range = 0.12 to 1.10 m, mean = 0.54 m). We applied the Peat Smouldering and Ignition model (PSI) at an adjacent unburned peatland-upland interface to characterize the hydrological and hydrophysical conditions necessary for these extreme burn depths. Model outputs indicate that the coupling of dense peat (bulk density > 150 kg m-3) and low peat moisture (GWC < 250%) allow for severe smouldering to propagate deep into the peat profile. We argue that peatland-upland interfaces, which likely release ten times more carbon per meter squared than peatland centers, are hotspots for peat smouldering due to dynamic hydrological conditions that reduce the moisture content of high-density peat during dry periods. We suggest the hydrogeological setting of peatlands is essential for identifying peatland-upland interfaces as areas highly vulnerable to smouldering and for assisting fire managers and scientists in predicting and mitigating the effects of extreme peat burning events. Burned peatland-upland interface

Lukenbach, M.; Hokanson, K.; Devito, K. J.; Kettridge, N.; Thompson, D.; Petrone, R. M.; Waddington, J. M.

2013-12-01

272

Multi-year black carbon emissions from cropland burning in the Russian Federation  

NASA Astrophysics Data System (ADS)

Cropland fires are an important source of black carbon (BC) emissions. Previous research has suggested that springtime cropland burning in Eastern Europe, and more specifically Russia, is a main source of BC in the Arctic atmosphere, acting as a short-lived climate forcer strongly influencing snow-ice albedo and radiation transmission in the atmosphere above the Arctic. BC emissions from cropland burning were estimated for the Russian Federation for years 2003 through 2009 using three satellite fire products, the 1 km MODIS Active Fire Product, 0.5° MODIS Fire Radiative Power monthly climate modeling grid product, and the 500 m MODIS Burned Area Product. Official statistics were also used to estimate BC emissions based on a modified approach developed and published by the All-Russian Institute of Organic Peat and Fertilizers to estimate farm- and regional-level residue loading based on straw surplus left after grain harvesting, while accounting for agricultural management and agrometeorological inputs. The satellite-based emission calculations utilized several different land cover classification schemas for defining croplands in Russia for both the 1 km MODIS Land Cover Product and the 300m MERIS GlobCover v2.2 data sets. In general, the peaks of BC emissions from cropland burning occurred during the spring (April - May), summer (July - August), and the fall (October). 2008 had the highest annual BC emissions. The range of average annual BC emissions from cropland burning calculated from the different satellite products was 2.49 Gg to 22.2 Gg, with the official statistics approach annual average equal to 7.34 Gg. The majority of BC emissions from the Fire Radiative Power and Burned Area satellite analyses originated in European Russia, followed by smaller contributions from West Siberia, Far East Russia, and East Siberia macro-regions, respectively. This presentation will further explore the uncertainties in the calculations of BC emissions from satellite and official statistics approaches, including input variables such as emission factors, fuel loads, and combustion efficiency. For example, a comparison of GIS field masks of three oblasts in European Russia with different levels of agricultural intensification revealed that between 22 to 42% of cropland fires detected by the MODIS 1 km Active Fire Product were incorrectly classified using the 1 km MODIS Land Cover data set's land cover classes of croplands and croplands/natural vegetation mosaic. Finally, we will show results from a comparison of our BC emission estimates with estimated emissions from agricultural burning from the Global Fire Emissions Database (GFED) version 3.

McCarty, J. L.; Ellicott, E. A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.

2011-12-01

273

Hydrologic Effects of the 1988 Galena Fire, Black Hills Area, South Dakota  

USGS Publications Warehouse

The Galena Fire burned about 16,788 acres of primarily ponderosa pine forest during July 5-8, 1988, in the Black Hills area of South Dakota. The fire burned primarily within the Grace Coolidge Creek drainage basin and almost entirely within the boundaries of Custer State Park. A U.S. Geological Survey gaging station with streamflow records dating back to 1977 was located along Grace Coolidge Creek within the burned area. About one-half of the gaging station's 26.8-square-mile drainage area was burned. The drainage basin for Bear Gulch, which is tributary to Grace Coolidge Creek, was burned particularly severely, with complete deforestation occurring in nearly the entirety of the area upstream from a gaging station that was installed in 1989. A study to evaluate effects of the Galena Fire on streamflow, geomorphology, and water quality was initiated in 1988. The geomorphologic and water-quality components of the study were completed by 1990 and are summarized in this report. A data-collection network consisting of streamflow- and precipitation-gaging stations was operated through water year 1998 for evaluation of effects on streamflow characteristics, including both annual-yield and peak-flow characteristics, which are the main focus of this report. Moderately burned areas did not experience a substantial increase in the rate of surface erosion; however, severely burned areas underwent surficial erosion nearly twice that of the unburned areas. The sediment production rate of Bear Gulch estimated 8 to 14 months after the fire was 870 ft3/acre (44 tons/acre). Substantial degradation of stream channels within the severely burned headwater areas of Bear Gulch was documented. Farther downstream, channel aggradation resulted from deposition of sediments transported from the headwater areas. The most notable water-quality effect was on concentrations of suspended sediment, which were orders of magnitude higher for Bear Gulch than for the unburned control area. Effects on several other water-quality constituents, such as organic carbon and nitrogen and phosphorus nutrient constituents, probably were influenced by the large concentrations of suspended matter that were documented in initial post-fire, storm-flow events. The first post-fire stormflow produced the highest measured concentrations of specific conductance, nitrogen, phosphorus, organic carbon, calcium, magnesium, potassium, manganese, and sulfate in the burned areas. For most constituents sampled, differences in concentrations between burned and unburned areas were no longer discernible within about 1 year following the Galena Fire. The effects of the Galena Fire on annual-yield characteristics of Grace Coolidge Creek were evaluated primarily from comparisons with long-term streamflow records for Battle Creek, which is hydrogeologically similar and is located immediately to the north. Annual yield for Grace Coolidge Creek increased by about 20 percent as a result of the fire. This estimate was based on relations between annual yield for Grace Coolidge Creek and Battle Creek for pre- and post-burn periods. Many of the post-burn data points are well beyond the range of the pre-burn data, which is a source of uncertainty for this estimate. Substantial increases in peak-flow characteristics for severely burned drainages were visually apparent from numerous post-fire field observations. Various analyses of streamflow data indicated substantial increases in peak-flow response for burned drainage areas; however, quantification of effects was particularly difficult because peak-flow response diminished quickly and returned to a generally pre-burn condition by about 1991. Field observations of vegetation and analysis of remotely sensed data indicated that establishment of grasses and forbs occurred within a similar timeframe. Comparison of pre-fire peak flows to post-1991 peak flows indicates that these grasses and forbs were equally effective in suppressing peak flows

Driscoll, Daniel G.; Carter, Janet M.; Ohlen, Donald O.

2004-01-01

274

Resuscitation burn card--a useful tool for burn injury assessment.  

PubMed

It is well recognised that the initial assessment of body surface area affected by a burn is often over estimated in Accident and Emergency Departments. A useful aide-memoir in the acute setting is Wallace's "rule of nines" or using the patients' palmar surface of the hand, which approximates 1% of the total body surface area, as a method of assessment. Unfortunately, as with every system, limitations apply. Factors such as patient size and the interpretation of what is exactly the 'palmar surface' may significantly influence burn size estimations and subsequently fluid resuscitation. Our aim is to develop a simple, quick and easy reproducible method of calculating burn injuries for medical professionals in the acute setting. Worldwide, the dimensions of a credit card are standardized (8.5 cm x 5.3 cm), thus producing a surface area of 45 cm2. We created a resuscitation burn card (RBC) using these exact same proportions, upon which a modified body surface area (BSA) nomogram was printed. Knowing the patient height and weight, we calculated the surface area of the card as percentage of total body surface area (TBSA). On the opposite site of the RBC, a Lund and Browder chart was printed, as well as the Parkland formula and a formula to calculate paediatric burn fluid requirements. The plastic, flexible RBC conformed well to the body contour and was designed for single use. We used the resuscitation burn card in the initial assessment of simulated burns in a Regional Burn Centre and in an Accident and Emergency Department. The information present on the card was found to be clear and straightforward to use. The evaluation of burn extent was found to be more accurately measured than the estimation obtained without the RBC. The resuscitation burn card can be a valuable tool in the hands of less experienced medical professionals for the early assessment and fluid resuscitation of a burn. PMID:17222978

Malic, C C; Karoo, R O S; Austin, O; Phipps, A

2007-03-01

275

Developing a trial burn plan  

NASA Astrophysics Data System (ADS)

The Resource Conservation and Recovery Act (RCRA) was designed to ensure that incineration facilities which treat hazardous wastes operate in an environmentally responsible manner. Under the requirements of RCRA, a trial burn must be conducted in order to obtain a fmalized operating permit. A trial burn is a test which determines whether an incinerator is capable of meeting or exceeding RCRA performance standards. If the standards are met, then the trial burn should identify the operating conditions necessary to ensure the incinerator's ability to meet or exceed the performance standards throughout the life of the permit. Development of the trial burn must incorporate interests of both the permit writer and the applicant. The permit writer wishes to obtain sufficient data necessary to establish the final permit conditions. The applicant wishes to obtain a final permit which allows the greatest flexibility of incinerator operating parameters. The areas of interest to be discussed, which allow the applicant and permit writer to achieve their goals, include understanding the problem, selecting a waste feed, choosing the principal organic hazardous constituents (POHCs), determining operating conditions, choosing appropriate sampling methods, and obtaining representative samples (QAIQC). The purpose of this paper is to give an overview of what is required to develop a trial burn plan.

Smith, Walter S.; Wong, Tony; Williams, Gary L.; Brintle, David G.

1991-04-01

276

Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.  

SciTech Connect

Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.

Hirose, Paul; Miller, Marc; Hill, Jim

1998-06-01

277

Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report  

SciTech Connect

Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997.

Roach, J.L. Jr. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-12-01

278

Establishing a quantitative functional relationship between capillary pressure saturation and interfacial area. 1998 annual progress report  

SciTech Connect

'Through an integrated and focused research program that is comprised of theoretical, computational and experimental efforts this research effort is directed at: (1) improving on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (Pc), (2) developing new computational algorithms in conjunction with laboratory measurements to predict Pc, S and a, (3) testing existing theory and developing new theory to describe the relationship between Pc, S and a at the large scale, and (4) synthesizing the results of the experimental, computational and theoretical investigative efforts to develop a generic model based upon an intrinsic soil metric to describe the functional dependence of Pc, S and a. The results of this research could be used to generate a site specific soil moisture characteristic surface. Ultimately the results of this research could serve as the foundation upon which the true health and safety risk of a site could be evaluated, the applicability of various remediation technologies examined, and the performance of implemented treatment strategies controlled. This report summarizes work after 18 months of a 3-year project. The authors are working to integrate the theory, experiments, and numerical simulations into a coherent approach to study the role of interfacial areas in porous media flow physics. The recent efforts have focused on quantifying the relationship between capillary pressure, saturation, and interfacial areas. The theory developed by Gray et al. (1998) indicates clearly that the traditional relationship between capillary pressure and saturation is incomplete, and interfacial area per unit volume must be added to the functional dependence. The theory does not, however, provide the form of that functional dependence; determination of this relationship must be done experimentally. To this end, both the network modelling and the PVI approach are being pursued.'

Montemagno, C.D. [Cornell Univ., Ithaca, NY (US); Celia, M. [Princeton Univ., NJ (US); Gray, W.G. [Univ. of Notre Dame, IN (US)

1998-06-01

279

HOME REMEDY FOR BURNS First aid consists  

E-print Network

. The whites then dried and formed a protective layer. She later learned that the egg white is a natural, no trace was left at all and her skin had regained its normal color. The burned area was totally

Jagannatham, Aditya K.

280

First Aid: Burns  

MedlinePLUS

... KidsHealth in the Classroom What Other Parents Are Reading Measles: What to Know Vaccines: FAQs NBA Exercise ... socket, or chemicals. The burn is on the face, hands, feet, joints, or genitals. The burn looks ...

281

California Burn Scars  

Atmospheric Science Data Center

article title:  Burn Scars Across Southern California     View Larger ... across Southern California between October 21 and November 18, 2003. Burn scars and vegetation changes wrought by the fires are illustrated ...

2014-05-15

282

Burns and Fire Safety  

MedlinePLUS

1 Burns and Fire Safety Fact Sheet (2014) Fatalities ? 325 children ages 19 and under died from fires or ... from 1999 to 2011. 1 1999?2011 Fire/Burn Fatalities and Death Rate Among Children Ages 19 ...

283

Erosive burning. Modeling problems  

Microsoft Academic Search

Existing models for the erosive burning of homogeneous energetic materials ignore the fact that the burning regime can be\\u000a changed radically by exposure to a hot gas blowing over the burning surface. In other words, transition can occur from the\\u000a gasification regime at very high blowing rates (where the burning rate is determined primarily by the heat transfer from the

L. K. Gusachenko; V. E. Zarko

2007-01-01

284

The burning mouth.  

PubMed

Burning in the mouth in and of itself is not all that uncommon. It may result from a variety of local or generalized oral mucosal disorders, or may be secondary to referred phenomena from other locations. Primary burning mouth syndrome, on the other hand, is relatively uncommon. Burning mouth syndrome is an idiopathic pain disorder, which appears to be neuropathic in origin. Thoughts on management of secondary and particularly primary burning mouth syndrome are discussed. PMID:17849966

McDonald, John S

2007-06-01

285

Data Summary Report for the Annual Fourmile Branch and F- and H-Area Seeplines, Appendix IX Metals and Radionuclides, 1998  

SciTech Connect

This report presents a summary of the definitive data validation and verification for the 1998 RFI/RI annual Appendix IX metals and radionuclides survey for Fourmile Branch and the F- and H-Area Seeplines. The validation process began with project mobilization and continued through the delivery of EDDs and this report.

Koch, J.

1999-08-23

286

Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay  

Microsoft Academic Search

An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by

MARY ALTALO TYLER; H. H. Seliger

1978-01-01

287

To burn or not to burn  

SciTech Connect

While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose.

Busch, L.

1993-01-01

288

2004 annual progress report: Stratton Sagebrush Hydrology Study Area: establishment of a long-term research site in a high-elevation sagebrush steppe  

USGS Publications Warehouse

In 2004 the U.S. Geological Survey, Fort Collins Science Center (FORT) and the Bureau of Land Management (BLM), Rawlins Field Office (RFO), began a cooperative effort to reestablish the Stratton Sagebrush Hydrology Study Area (Stratton) as a research location, with the goal of making it a site for long-term research on sagebrush (Artemisia spp.) ecology. No other long-term research sites in high-elevation sagebrush habitat currently exist, and the Stratton area, with its 30+ year history of research and baseline data, was a logical location to restart investigations aimed at answering pertinent and timely questions about sagebrush ecology and sagebrush-obligate species. During the first year of the study, USGS scientists conducted an in-depth literature search to locate publications from research conducted at Stratton. We contacted previous researchers to acquire literature and unpublished reports of work conducted at Stratton. Collated papers and published manuscripts were presented in an annotated bibliography (Burgess and Schoenecker, 2004). A second goal was to establish Stratton as a host location for researchers interested in sagebrush ecology investigations. We contacted staff and professors from Colorado State University and Wyoming and Montana universities to notify them of the opportunities at Stratton. Several institutions showed interest in the area and the potential of such a research site. A major advantage of the Stratton site is the ability of BML to coordinate activities on the land, manipulate grazing in cooperation with permit holders, and direct other activities to accommodate appropriate long-term experimental designs. A third goal was to evaluate grazing management after a prescribed burn. The BLM widely uses prescribed burns as a tool for land management and grazing management. In general, BLM policy restricts grazing after a wildfire for two or more years. Some BLM offices allow no grazing after a wildfire or prescribed treatment for at least two years. Conversely, the RFO often allows grazing following a prescribed burn directly after the peak growing season the following year. This procedure is used for two years post-burn, after which grazing management is directed by local conditions and goals. We are investigating this practice to evaluate the effects on plant production and nutrient cycling. The RFO specifically wants to know if there are any negative effects from grazing one season after a prescribed burn.

Schoenecker, Kate; Lange, Bob; Calton, Mike

2005-01-01

289

Project Burn Prevention: outcome and implications.  

PubMed Central

Project Burn Prevention was designed and implemented to determine the ability of a public education program to increase awareness about burn hazards and reduce the incidence and severity of burn injuries. Media messages were transmitted to residents of a large metropolitan area; separate school and community interventions were implemented in two demographically similar communities within the Standard Metropolitan Statistical Area (SMSA). A second metropolitan area and two of its communities served as control sites. Messages for specific, high-risk age groups emphasized flame burns because of their severity and scalds because of their frequency. Knowledge gains were demonstrable only as a result of the school program. Neither the school program nor the media campaign reduced burn incidence or severity; the community intervention may have brought about a moderate, temporary reduction in injuries. Multiplicity of messages, brevity of the campaign, and separation of the interventions are among possible reasons for the program's failure to significantly reduce burn injuries. Education for personal responsibility is not sufficient. Product modification and environmental redesign must be instituted through education and legislation for successful control of burn injuries. PMID:7058963

McLoughlin, E; Vince, C J; Lee, A M; Crawford, J D

1982-01-01

290

2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

NSTec Environmental Management

2009-03-30

291

Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data  

Microsoft Academic Search

Climatological mean estimates of forest burning and crop waste burning based on broad assumptions of the amounts burned have so far been used for India in global inventories. Here we estimate open biomass burning representative of 1995–2000 from forests using burned area and biomass density specific for Indian ecosystems and crop waste burning as a balance between generation and known

C. Venkataraman; G. Habib; D. Kadamba; M. Shrivastava; J.-F. Leon; B. Crouzille; O. Boucher; D. G. Streets

2006-01-01

292

Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data  

Microsoft Academic Search

Climatological mean estimates of forest burning and crop waste burning based on broad assumptions of the amounts burned have so far been used for India in global inventories. Here we estimate open biomass burning representative of 1995-2000 from forests using burned area and biomass density specific for Indian ecosystems and crop waste burning as a balance between generation and known

C. Venkataraman; G. Habib; D. Kadamba; M. Shrivastava; J.-F. Leon; B. Crouzille; O. Boucher; D. G. Streets

2006-01-01

293

Facial Burns - Our Experience  

PubMed Central

Facial burns are generally considered severe. This is due to the possibility of respiratory complications. First responders check the nostrils for singed hairs. In severe cases there may be soot around the nose and mouth and coughing may produce phlegm that includes ash. Facial and inhalational burns compromise airways. They pose difficulties in pre-hospital resuscitation and are challenge to clinicians managing surviving burn victims in the intensive care setting. Management problems – resuscitation, airway maintenance and clinical treatment of facial injuries are compounded if the victim is child. Inhalational burns reduce survivability, certainly in adult victim. In our retrospective study we found that facial burns dominated in male gender, liquids and scalds are the most common causes of facial burns in children whereas the flame and electricity were the most common causes of facial burns in adults. We came to the conclusion in our study that surgical treatment minimizes complications and duration of recovery. PMID:23687458

Zatriqi, Violeta; Arifi, Hysni; Zatriqi, Skender; Duci, Shkelzen; Rrecaj, Sh.; Martinaj, M.

2013-01-01

294

Modeling the impacts of biomass burning on air quality in and around Mexico City  

NASA Astrophysics Data System (ADS)

The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), increasing primary OA (POA) by ~60%, secondary OA (SOA) by ~22%, total OA (TOA = POA + SOA) by ~33%, and EC by ~22%, on both the local (urban) and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA) simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

Lei, W.; Li, G.; Molina, L. T.

2013-03-01

295

FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS  

SciTech Connect

The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.

Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

2011-01-01

296

Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study  

SciTech Connect

A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

1980-02-01

297

Burns: an update on current pharmacotherapy  

PubMed Central

Introduction The world-wide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision, and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response, and insulin resistance. Here we review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded our understanding of the pathophysiology of severe burns. Expert opinion Existing drugs offer promising advances in the care of burn injuries. Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response. PMID:23121414

Rojas, Yesinia; Finnerty, Celeste C.; Radhakrishnan, Ravi S.; Herndon, David N.

2013-01-01

298

The Sedimentary Charcoal Record of Regional and Global Biomass Burning on Multi-decadal-to-Orbital Time Scales  

NASA Astrophysics Data System (ADS)

The global charcoal database (GCD) assembled by the Global Palaeofire Working Group (GPWG) over the past several years provides over 800 sedimentary charcoal records of biomass burning that allows wildfire to be examined on a range of spatial and temporal scales. These data, and other analyses of sedimentary charcoal records show that: (1) The data-analytical aspects of sedimentary charcoal have matured to the extent that we can show that biomass burning is well represented by these records, that charcoal influx is a general indicator of area or biomass burning, and that peaks of charcoal influx in records with annual-to-decadal resolution provide evidence of individual fires. (2) The spatial coverage of the records is extensive enough to represent much of the global climate space, although coverage of Africa, Siberia, and grassland and desert ecosystems in general could be improved. (3) The temporal coverage is sufficient to resolve millennial-scale environmental changes over the past glacial cycle, and hemispheric and regional variations in biomass burning from the LGM to present. (4) Global biomass burning was very low at the LGM, and increases in biomass burning into the Holocene tracked hemispheric and regional climate changes. (5) Abrupt climate changes during deglaciation caused specific responses in the charcoal records; these responses are replicated during the abrupt warming and cooling episodes accompanying D-O cycles. (6) During the Holocene, biomass burning reflects regional climate changes and does not support the early anthropocene hypothesis. (7) Over the last millennium, biomass burning also tracks regional climate changes, and shows an unambiguous human influence only over the past 250 years. (8) The variations in global biomass burning on multiple time scales described by the sedimentary charcoal record are supported by the emerging ice core records of biomass burning. (9) Increases in biomass burning are strongly linked to temperature increases on all time scales, and are generally higher at intermediate levels of effective moisture, reflecting a tradeoff between fuel (vegetation productivity) and fire-conducive weather and climate; drought becomes an important control only on decadal and shorter time scales. (10) Human activity is neither necessary nor sufficient for explaining the large-scale, long-term variations in biomass burning.

Bartlein, P. J.; Marlon, J.; Global Palaeofire Working Group

2011-12-01

299

75 FR 38021 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...USCG-2010-0063] Safety Zones; Annual Firework Displays Within the Captain of the Port...will enforce the safety zones for annual firework displays in the Captain of the Port...from the hazards associated with the firework displays. During the enforcement...

2010-07-01

300

Ecological Consequences of Shifting the Timing of Burning Tallgrass Prairie  

PubMed Central

In the Kansas Flint Hills, grassland burning is conducted during a relatively narrow window because management recommendations for the past 40 years have been to burn only in late spring. Widespread prescribed burning within this restricted time frame frequently creates smoke management issues downwind. A potential remedy for the concentrated smoke production in late spring is to expand burning to times earlier in the year. Yet, previous research suggested that burning in winter or early spring reduces plant productivity and cattle weight gain while increasing the proportion of undesirable plant species. In order to better understand the ecological consequences of burning at different times of the year, plant production and species abundance were measured for 20 years on ungrazed watersheds burned annually in autumn, winter, or spring. We found that there were no significant differences in total grass production among the burns on either upland or lowland topographic positions, although spring burned watersheds had higher grass culm production and lower forb biomass than autumn and winter burned watersheds. Burning in autumn or winter broadened the window of grass productivity response to precipitation, which reduces susceptibility to mid-season drought. Burning in autumn or winter also increased the phenological range of species by promoting cool-season graminoids without a concomitant decrease in warm-season grasses, potentially widening the seasonal window of high-quality forage. Incorporating autumn and winter burns into the overall portfolio of tallgrass prairie management should increase the flexibility in managing grasslands, promote biodiversity, and minimize air quality issues caused by en masse late-spring burning with little negative consequences for cattle production. PMID:25077487

Towne, E. Gene; Craine, Joseph M.

2014-01-01

301

The mechanism and scenarios of how mean annual runoff varies with climate change in Asian monsoon areas  

NASA Astrophysics Data System (ADS)

Understanding the effects of climate change on runoff is important for the sustainable management of water resources. However, the mechanism of such effects in the Asian monsoon region remains unclear. This study revisits Fu's two-parameter climate elasticity index and enhances it by using the Gardner function to strengthen the former's prediction reliability when the future climate condition is beyond the historical range. Then the improved method was applied to study the elasticity change with temperature and precipitation in the eastern monsoon basins of China, whereas to explore the mechanism of climate change on runoff. Furthermore, the runoff change and the elasticity of the study area from 2020 to 2050 under representative concentration pathways (RCPs) were predicted. Results show that the trend of elasticity change assumes a centrosymmetric picture with the symmetric point (0, 0). Different catchments respond differently to the same climate change scenario: the sensitivity of the Haihe Basin is the highest; those of Yellow, Huaihe, Liaohe, Songhua, Pearl, Yangtze, and Southeast Rivers are lower, in descending order. The changing mode of precipitation and temperature differs greatly to keep the runoff unchanged. For semi-humid regions in which the mean annual temperature ranges from 0.71 °C to 9.0 °C, such as the basins of Songhua, Liaohe, Haihe, and Yellow, a 1 °C increase in temperature requires a corresponding 3.2-4.0% increase in precipitation to keep the runoff unchanged. However, in wet regions, such as the basins of Yangtze, Southeast Rivers, and Pearl, the same change in temperature requires a less than 2.8% increase in precipitation to keep the runoff unchanged. In the future, the runoff in most basins may decrease in different degrees. The decreasing velocity of the runoff is the fastest in the RCP8.5 scenario and the decreasing trend of the runoff slows down under the RCP4.5 and RCP2.6 scenarios. The proposed method can be applied to other basins to assess potential climate change effects on annual runoff. The results of the basins studies can inform planning of long-term basin water management strategies taking into account global change scenarios.

Chen, Junxu; Xia, Jun; Zhao, Changsen; Zhang, Shifeng; Fu, Guobin; Ning, Like

2014-09-01

302

Significant emissions of 210Po by coal burning into the urban atmosphere of Seoul, Korea  

NASA Astrophysics Data System (ADS)

We conducted a year-round survey of precipitation samples to investigate the sources of excess 210Po in the urban atmosphere of Seoul, Korea. The dominant fraction of 210Po in our samples, independent of the in-situ decay of tropospheric 210Pb, was linked with anthropogenic processes. Using vanadium and potassium as tracers, the excess 210Po was mainly attributed to combustion of coal, with minor contributions from biomass burning. The annual integrated amount of 210Po deposited over the Seoul area via precipitation was estimated to be 1.75 × 1010 Bq yr-1, which might represent a potential public health risk in the vicinity of major point sources, due to its highly adverse biological effects. Since the world coal consumption is growing, the magnitude of coal burning derived 210Po is expected to increase in the following decades, which should be carefully monitored.

Yan, Ge; Cho, Hyung-Mi; Lee, Insung; Kim, Guebuem

2012-07-01

303

Physiochemical characterisation of biomass burning plumes in Brazil during SAMBBA  

NASA Astrophysics Data System (ADS)

Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Results are presented here from the South American Biomass Burning Analysis (SAMBBA), which took place during September and October 2012 over Brazil. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Measurements from the Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Soot Photometer (SP2) form the major part of the analysis presented here. The aircraft sampled several fires in close proximity (approximately 150m above the most intense fires) in different areas of Brazil. This included two extensive areas of burning, which occurred in the states of Rondonia and Tocantins. The Rondonia fire was largely dominated by smouldering combustion of a huge single area of rainforest with a visible plume of smoke extending approximately 80km downwind. The Tocantins example contrasted with this as it was a collection of a large number of smaller fires, with flaming combustion being more prevalent. Furthermore, the burned area was largely made up of agricultural land in a cerrado (savannah-like) region of Brazil. Initial results suggest that the chemical nature of these fires differed markedly, with BC concentrations being an order of magnitude greater in the Tocantins case (up to 50 ?g m-3 of BC) compared with the Rondonia case (up to 5 ?g m-3 of BC). Organic matter (OM) concentrations were similar in both cases, with maximum concentrations peaking between 4-5 mg m-3. Such concentrations are approximately more than 100 times greater than those sampled in the "background" regional haze. This variation of BC to OM ratio has potentially large implications for the radiative balance in the respective regions, as BC represents the major absorbing component of biomass burning aerosol. Further analysis will compare the aerosol mass concentrations with gas phase species, as well as probing the chemical and physical evolution of the aerosol as it advects downwind and is diluted with regional air. In particular, such analyses will focus upon the aging of the organic aerosol component as well as examining how the mixing state of the BC particles evolves. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts.

Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

2013-04-01

304

Psychiatric complications of burned adults: a classification.  

PubMed

The psychiatric complications occurring in a group of adult burn patients were correlated with pertinent data in the literature and a classification constructed, based on the three stages of the acute grief response to injury: psychiatric complications occur when the process of mourning is arrested in a regressive episode. Thirty-five adult patients with burns of greater than 7% body surface area were studied. It was found that Body Surface Area burned, the presence of a Premorbid Psychiatric Diagnosis, and Age are all significantly correlated with the occurrence of psychiatric complications following burn injuries and account for 61% of the variance in the sample. The implications of these findings and possibilities for further research are discussed. PMID:846020

Steiner, H; Clark, W R

1977-02-01

305

Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India  

NASA Astrophysics Data System (ADS)

In the present paper, we have determined emission factor of chemical composition of the emission from the burning of biomass (e.g. Dung cake, Acacia, Neem, Mulberry, Indian Rosewood, Pigeon pea etc.) commonly used as a residential fuel in the rural sector of Indo-Gangetic Plain (IGP) (Delhi, Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal), India. For comparison, we have selected only those biomass fuels, which are used in at least three of the above mentioned states. Dung cake from all the states reports highest emission of particulate matter (PM) (15.68 g kg-1), Organic Carbon (OC) (4.32 g kg-1) and Elemental Carbon (EC) (0.51 g kg-1). Among all biomass fuels studied, agricultural residue reports substantial amount of emission of Na+ (104 mg kg-1), K+ (331 mg kg-1) and Cl- (447 mg kg-1) particularly in Pigeon pea and Mustard stem. Eucalyptus (fuel wood) emits large amounts of Ca2+ (21.47 mg kg-1) and NO3- (614 mg kg-1). The emission of PM from dung cake is higher in Delhi (19.31 g kg-1) and followed by Uttar Pradesh (17.58 g kg-1) > Haryana (15.46 g kg-1) > Bihar (14.99 g kg-1) > Punjab (12.06 g kg-1) > West Bengal (5.90 g kg-1). Carbonaceous aerosols (OC and EC) and dominant Ionic species (Cl-, K+, SO42-, NO3- and PO43-) are altogether contributing 40-70% of total emissions. Characteristics and ratios of chemical species of emissions may help to develop a methodology of discriminating the sources of ambient particulate matter. Using a laboratory determined emission factor of chemical species, we have determined the emission budget over IGP, India.

Saud, T.; Saxena, M.; Singh, D. P.; Saraswati; Dahiya, Manisha; Sharma, S. K.; Datta, A.; Gadi, Ranu; Mandal, T. K.

2013-06-01

306

Effects of "open burning" on the greenhouse gas exchange from a single-rice paddy field in Japan  

NASA Astrophysics Data System (ADS)

Paddy fields are artificially maintained wetland and are one of the large source of CH4. Besides, a large quantity of N2O is emitted from the soil surface due to the decomposition of inorganic fertilizer. A long term continuous measurement of GHG fluxes between atmosphere and paddy ecosystem is effective method to clarify the contribution of paddy fields to recent rapid increase of GHG concentration. In this study, three techniques for flux measurement (eddy covariance, aerodynamic gradient, and chamber techniques) were applied to investigate the annual variation of three GHG (CO2, CH4 and N2O) exchanges at a single-rice paddy field for two years. An observational site is located on reclaimed land in the southern part of Okayama Prefecture, Japan. In addition, an experimental paddy field was divided into two areas to investigate what impact is brought on the annual GHG fluxes by the difference of disposal management of residual biomass after the harvest. Residual biomass was burned and plowed into soil at the one area on Nov. 29th, 2011, and residue was not burned and directly plowed into soil at the other area as usual. We illustrate some results for the control term before the burning experiment, and for the comparison term after the experiment.

Kawamoto, Y.; Akaike, Y.; Kunishio, A.; Murakami, H.; Ono, K.; Hayashi, K.; Iwata, T.

2012-12-01

307

Pediatric cutaneous bleach burns.  

PubMed

Bleach is a common household product which can cause caustic injuries. Its effects on mucosal tissues and the eye have been well-described in the literature. However, there is little information published regarding the appearance and effect of bleach on a child's skin. We report three children who sustained chemical burns after contact with bleach. All three children sustained accidental bleach burns while at home, and each child had a distinct brown discoloration to the skin from the injury. All three children had treatment and follow-up for their burns. Two of the children sustained more severe burns, which were extensive and required more time to heal. There was also long-term scarring associated with the severe burns. Like most burns, pain control is required until the injury heals. PMID:23545350

Lang, Cathleen; Cox, Matthew

2013-07-01

308

Carburetion type burning apparatus  

SciTech Connect

A carburetion type burning apparatus is described having a carburetion chamber for evaporating liquid fuel which comprises a timer for counting time from the initiation of burning operation. An ion current detecting device is positioned in the flames for measuring an ion current in the flames (if) at the time after a predetermined time counted by the timer in which the ion current in flames is stabilized, a judging device for judging existence or non-existence of an abnormal burning state by comparing the measured ion current (if) and a predetermined open threshold value of ion current which causes an abnormal burning condition. A burning quantity device controls the quantity of fuel to be burned in response to the output from the judging device and an alarming device for generating an alarm when the judging device provides judgment of abnormal condition.

Kasada, T.

1987-07-28

309

Effect of Burn Sites (Upper and Lower Body Parts) and Gender on Extensive Burns’ Mortality  

PubMed Central

Our recent literature survey indicated a lack of clinical assessment of the influence of gender and site of burn injury on the outcome of patients with extensive burns. This report examines the effect of burn sites and gender on extensive burns’ mortality. Data was gathered from 283 patients with burns larger than 65% of the total body surface area (TBSA) above the belt line or below the belt line; and without underlying diseases and inhalation burn injury. Patients were classified according to gender, site of injury (upper and lower body parts) and hospital stay period. Mortality rates of each category were then compared with each other. The hospital stay period in the female group was significantly higher compared with the male group (P<0.001) and the mortality rate among the female patients was higher compared with the male patients (P=0.004). Although the mortality rate in lower body part of the male group was significantly higher in comparison with the upper body part burn (P=0.001), there was no difference in mortality rate of upper versus lower body part in the female group. The mortality rate was generally higher among the female patients. Additionally, higher mortality rate was observed among male patients with lower body part burn compared with injuries of male patients with upper body part burn. PMID:25821297

Mohammadi, Ali Akbar; Pakyari, Mohammad Reza; Seyed Jafari, Seyed Morteza; Tavakkolian, Ahmad Reza; Tolide-ie, Hamid Reza; Moradi, Zahra; Kherad, Masumeh

2015-01-01

310

Possible risk factors associated with burn wound colonization in burn units of Gaza strip hospitals, Palestine  

PubMed Central

Summary The epidemiological pattern and risk factors of burns and burn infections varies widely in different parts of the world. This study aims to determine the epidemiologic pattern of burn injuries and possible risk factors associated with burn infections in burn units of Gaza strip hospitals. A total of 118 patients were included in the study. The data collected included: patient age and gender, the causes, site, degree, and TBSA of the burns, as well as surgical operations, length of hospital stay, and microbiological profile of samples collected from patients, the environment, and from health care staff. Pediatric and adult patients accounted for 72% and 28% respectively. 58.5% of all patients were male and 41.5% were female. The most common etiological factors in children were scalding, while in adults these were open fire and flammable liquids. The mean TBSA was 12% with a range from 1–90%. Second and third degree burns accounted for 78% and 22% respectively. The area of the body most often affected was the torso (39%), followed by the lower limb (29.7%), and upper limb (17.8%). The predominant microorganisms isolated from burn wounds were Pseudomonas aeruginosa, Enterobacter spp. and Staphylococcus spp. The study showed the highest risk groups to be children and males, and enabled us to identify possible risk factors that can help in future efforts toward prevention and minimizing nosocomial infections in burn units of Gaza strip hospitals. PMID:24133399

Al Laham, N.A.; Elmanama, A.A.; Tayh, G.A.

2013-01-01

311

Engine block burns: Dupuytren's fourth-, fifth-, and sixth-degree burns.  

PubMed

We recently treated two patients with engine block-muffler contact burns and greatly underestimated the devastating injuries to bone, deep fascia, and muscle. As a result, each patient required multiple procedures to close their burn wounds. Ten-year data from the University of Washington Burn Unit confirmed our observation that these burns tend to be considerably deeper than suspected. Eighteen patients with contact burns from engine parts were identified from 1980 through 1990. Nine (50%) of these were initially recognized to be fourth-degree and five (28%) were third-degree thermal injuries, showing that these are deep burns. Eight patients required fascial excisions and four required debridement of devascularized bone. The mean burn size was only 6% total body surface area; however, the patients with fourth-degree burns had an average graft take of only 56% and required a mean hospital stay of 44 days. Patients with third-degree burns also had suboptimal graft take and some required prolonged hospitalization. Thirty-six percent of patients required flaps either as the initial procedure or as a second procedure following an autograft. The four patients with partial-thickness burns healed without surgery and their average length of hospital stay was 3 days. Of the entire group, only four healed without surgery and only five healed with a single operation. Our 10-year data indicate that engine block contact burns are usually small, but most are deceptively deep, involving tendon, muscle, or bone. If the burn appears full thickness, suspicion must be very high at the initial surgical procedure that there is deep tissue destruction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8064911

Gibran, N S; Engrav, L H; Heimbach, D M; Swiontkowski, M F; Foy, H M

1994-08-01

312

Getting beyond burning dirt  

SciTech Connect

To fix and make the nation's Superfund law work, two related questions must be answered. First, where will the innovative technology come from the clean up Superfund and other waste sites Burning dirt--the best technology currently available--is an expensive nonsolution. Second, can man muster the political will to make Superfund a waste cleanup law instead of an expanding welfare program for lawyers Under the sponsorship of EPA, a number of companies and other groups are participating in the Remediation Technology Development Forum, focusing on the areas where the real breakthroughs might occur and the most promising collaborations. Currently, this effort is focused on bioremediation, the lasagna process, soil flushing, and characterization. Another area of investigation is stabilization technology--stabilizing a site to keep contaminants from flowing away. Some scientists, for example, are looking at vitrification technology, which fuses contaminated soil into a glass-like brick. And still other technology efforts include air flushing of contaminated sites and vapor extraction and heating processes. A number of groups and consortia have been working on waste remediation technologies. For the first time since 1980, when Superfund became law, one can give positive answers to the two critical questions. Groups are finding innovative technologies to clean up Superfund and other waste sites. And, as a nation, Americans are exercising the political will to create a Superfund law that will work effectively and fairly.

Mahoney, R.J. (Monsanto Co., St. Louis, MO (United States))

1994-05-01

313

RECOVER - An Automated Burned Area Emergency Response Decision Support System for Post-fire Rehabilitation Management of Savanna Ecosystems in the Western US  

NASA Astrophysics Data System (ADS)

In partnership with the Department of Interior's Bureau of Land Management (BLM) and the Idaho Department of Lands (IDL), we are building and evaluating the RECOVER decision support system. RECOVER - which stands for Rehabilitation Capability Convergence for Ecosystem Recovery - is an automatically deployable, context-aware decision support system for savanna wildfires that brings together in a single application the information necessary for post-fire rehabilitation decision-making and long-term ecosystem monitoring. RECOVER uses state-of-the-art cloud-based data management technologies to improve performance, reduce cost, and provide site-specific flexibility for each fire. The RECOVER Server uses Integrated Rule-Oriented Data System (iRODS) data grid technology deployed in the Amazon Elastic Compute Cloud (EC2). The RECOVER Client is an Adobe Flex web map application that is able to provide a suite of convenient GIS analytical capabilities. In a typical use scenario, the RECOVER Server is provided a wildfire name and geospatial extent. The Server then automatically gathers Earth observational data and other relevant products from various geographically distributed data sources. The Server creates a database in the cloud where all relevant information about the wildfire is stored. This information is made available to the RECOVER Client and ultimately to fire managers through their choice of web browser. The Server refreshes the data throughout the burn and subsequent recovery period (3-5 years) with each refresh requiring two minutes to complete. Since remediation plans must be completed within 14 days of a fire's containment, RECOVER has the potential to significantly improve the decision-making process. RECOVER adds an important new dimension to post-fire decision-making by focusing on ecosystem rehabilitation in semiarid savannas. A novel aspect of RECOVER's approach involves the use of soil moisture estimates, which are an important but difficult-to-obtain element of post-fire rehabilitation planning. We will use downscaled soil moisture data from three primary observational sources to begin evaluation of soil moisture products and build the technology needed for RECOVER to use future SMAP products. As a result, RECOVER, BLM, and the fire applications community will be ready customers for data flowing out of new NASA missions, such as NPP, LDCM, and SMAP.

Weber, K.; Schnase, J. L.; Carroll, M.; Brown, M. E.; Gill, R.; Haskett, G.; Gardner, T.

2013-12-01

314

76 FR 63841 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...the Alderbrook Spa & Resort annual firework display...the Alderbrook Spa & Resort Fireworks display will...Puget Sound Waterways Management, Coast Guard; telephone...Alderbrook Resort & Spa...Puget Sound Joint Harbor Operations Center (JHOC)...

2011-10-14

315

Multi-year black carbon emissions from cropland burning in the Russian Federation utilizing satellite fire data and agricultural statistics  

NASA Astrophysics Data System (ADS)

Cropland fires are an important source of black carbon (BC) emissions. Previous research has suggested that springtime cropland burning in Eastern Europe, and more specifically Russia, is a main source of BC in the Arctic atmosphere, acting as a short-lived climate forcer strongly influencing snow-ice albedo and radiation transmission in the atmosphere above the Arctic. BC emissions from cropland burning were estimated for the Russian Federation for years 2003 through 2009 using three satellite fire products, the 1 km MODIS Active Fire Product, 0.5° MODIS Fire Radiative Power monthly climate modeling grid product, and the 500 m MODIS Burned Area Product. Agricultural statistics published by the Russian government were also used to estimate BC emissions from a modified approach developed and published by the All-Russian Institute of Organic Peat and Fertilizers to estimate farm- and regional-level residue loading based on straw surplus left after grain harvesting, while accounting for agricultural management and agrometeorological inputs. The satellite-based emission calculations utilized several different land cover classification schemas for defining croplands in Russia for both the 1 km MODIS Land Cover Product and the 300m MERIS GlobCover v2.2 data sets. In general, the peaks of BC emissions from cropland burning occurred during the spring (April - May), summer (July - August), and the fall (October). 2008 had the highest annual BC emissions. The range of average annual BC emissions from cropland burning calculated from the different satellite products was 2.49 Gg to 22.2 Gg, with the agricultural statistics approach annual average equal to 8.90 Gg. The Global Fire Emissions Database (GFED) version 3 estimated average annual BC emissions from agricultural fires in Russia for this time period to be 11.9 Gg. The majority of BC emissions from the Fire Radiative Power, Burned Area, and Active Fire satellite analyses originated in European Russia, followed by smaller contributions from West Siberia, Far East Russia, and East Siberia macro-regions, respectively. This presentation will further explore the uncertainties in the calculations of BC emissions from satellite and official statistics approaches, including input variables such as emission factors, fuel loads, and combustion efficiency. For example, a comparison of GIS field masks of three oblasts in European Russia with different levels of agricultural intensification revealed that between 22 to 42% of cropland fires detected by the MODIS 1 km Active Fire Product were incorrectly classified using the 1 km MODIS Land Cover data set's land cover classes of croplands and croplands/natural vegetation mosaic.

McCarty, J.; Ellicott, E.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.

2012-04-01

316

A 30-year chronosequence of burned areas in Arizona: effects of wildfires on vegetation in Sonoran Desert Tortoise (Gopherus morafkai) habitats  

USGS Publications Warehouse

Fire is widely regarded as a key evolutionary force in fire-prone ecosystems, with effects spanning multiple levels of organization, from species and functional group composition through landscape-scale vegetation structure, biomass, and diversity (Pausas and others, 2004; Bond and Keeley 2005; Pausas and Verdu, 2008). Ecosystems subjected to novel fire regimes may experience profound changes that are difficult to predict, including persistent losses of vegetation cover and diversity (McLaughlin and Bowers, 1982; Brown and Minnich, 1986; Brooks, 2012), losses to seed banks (Esque and others, 2010a), changes in demographic processes (Esque and others, 2004; DeFalco and others, 2010), increased erosion (Soulard and others, 2013), changes in nutrient availability (Esque and others, 2010b), increased dominance of invasive species (Esque and others, 2002; Brooks and others, 2004), and transitions to alternative community states (Davies and others, 2012). In the deserts of the Southwestern United States, fire size and frequency have increased substantially over the last several decades because of an invasive grass/fire feedback cycle (Schmid and Rogers, 1988; D’Antonio and Vitousek, 1992; Swantek and others, 1999; Brooks and Matchett, 2006; Esque and others, 2010a), in which invasive annual species are able to establish fuel loads capable of sustaining large-scale wildfires following years of high rainfall (Esque and Schwalbe, 2002). Native perennial vegetation is not well-adapted to fire in these environments, and widespread, physiognomically dominant species such as creosote bush (Larrea tridentata), Joshua tree (Yucca brevifolia), giant saguaro cactus (Carnegiea gigantea), and paloverde (Parkinsonia spp.) may be reduced or eliminated (Brown and Minnich, 1986; Esque and others, 2006; DeFalco and others, 2010), potentially affecting wildlife populations including the Sonoran and federally threatened Mojave Desert Tortoises (Gopherus morafkai and Gopherus agassizii, respectively; Brooks and Esque, 2002; Esque and others, 2003; Drake and others, in press).

Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia C.

2015-01-01

317

Near-real-time global biomass burning emissions product from geostationary satellite constellation  

NASA Astrophysics Data System (ADS)

Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter <2.5 ?m) and 1.18 × 1011kg of CO globally (excluding most parts of boreal Asia, the Middle East, and India because of no coverage from geostationary satellites). The biomass burning emissions were mostly released from forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned area and fuel loading. However, the daily emissions estimated from GOES FRP over the United States are generally consistent with those modeled from GOES burned area and MODIS (Moderate Resolution Imaging Spectroradiometer) fuel loading, which produces an overall bias of 5.7% and a correlation slope of 0.97 ± 0.2. It is expected that near-real-time hourly emissions from GBBEP-Geo could provide a crucial component for atmospheric and chemical transport modelers to forecast air quality and weather conditions.

Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

2012-07-01

318

2009 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analysis  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Wate Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2009. This annual summary report presents data and conclusions from the FY 2009 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

NSTec Environmental Management

2010-03-15

319

Control of Invasive Weeds with Prescribed Burning 1  

Microsoft Academic Search

Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also

JOSEPH M. DiTOMASO; MATTHEW L. BROOKS; EDITH B. ALLEN; RALPH MINNICH; PETER M. RICE; GUY B. KYSER

2006-01-01

320

Carburetion type burning apparatus  

Microsoft Academic Search

A carburetion type burning apparatus is described having a carburetion chamber for evaporating liquid fuel which comprises a timer for counting time from the initiation of burning operation. An ion current detecting device is positioned in the flames for measuring an ion current in the flames (if) at the time after a predetermined time counted by the timer in which

Kasada

1987-01-01

321

“Chemical Changes: Burning  

NSDL National Science Digital Library

This lesson demonstrates how students can apply the process of identifying main idea and supporting details to show the different ways burning can chemically change matter. The students can identify these changes and discuss the details that support these changes, which will help them further understand how burning matter is considered a chemical change.

Kris Ryan

2012-07-25

322

2013 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada; Review of the Performance Assessments and Composite Analyses  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2013. This annual summary report presents data and conclusions from the FY 2013 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2013 include the following: • Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2013 • Evaluation of new or revised waste streams by special analysis • Development of version 4.115 of the Area 5 RWMS GoldSim PA/CA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2013 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. The conclusion of the annual review is that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates that no significant changes have occurred. The FY 2013 PA results, generated with the Area 5 RWMS v4.115 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2013. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter the CAs results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Yucca Flat Underground Test Area (Corrective Action Unit [CAU] 97) source term, is scheduled for FY 2024, following the completion of the Corrective Action Decision Document/Corrective Action Plan in FY 2015. Inclusion of the Frenchman Flat Underground Test Area (CAU 98) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 Closure Report in FY 2015. Near-term R&D efforts will focus on continuing development of the PA, CA, and inventory models for the Area 3 and Area 5 RWMS.

Shott, Gregory [NSTec] [NSTec

2014-03-01

323

Stress disorder and PTSD after burn injuries: a prospective study of predictors of PTSD at Sina Burn Center, Iran  

PubMed Central

Background: A burn injury can be a traumatic experience with tremendous social, physical, and psychological consequences. The aim of this study was to investigate the existence of post-traumatic stress disorder (PTSD) and predictors of PTSD Checklist score initially and 3 months after injury in burns victims admitted to the Sina Burn Center in north-west Iran. Methods: This prospective study examined adult patients aged 16–65 years with unintentional burns. The PTSD Checklist was used to screen for PTSD. Results: Flame burns constituted 49.4% of all burns. Mean PTSD score was 23.8 ± 14.7 early in the hospitalization period and increased to 24.2 ± 14.3, 3 months after the burn injury. Twenty percent of victims 2 weeks into treatment had a positive PTSD screening test, and this figure increased to 31.5% after 3 months. The likelihood of developing a positive PTSD screening test increased significantly after 3 months (P < 0.01). Using multivariate regression analysis, factors independently predicting PTSD score were found to be age, gender, and percentage of total body surface area burned. Conclusion: PTSD was a problem in the population studied and should be managed appropriately after hospital admission due to burn injury. Male gender, younger age, and higher total body surface area burned may predict a higher PTSD score after burn injury. PMID:21857783

Sadeghi-Bazargani, Homayoun; Maghsoudi, Hemmat; Soudmand-Niri, Mohsen; Ranjbar, Fatemeh; Mashadi-Abdollahi, Hossein

2011-01-01

324

Hand chemical burns.  

PubMed

There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes. PMID:25653184

Robinson, Elliot P; Chhabra, A Bobby

2015-03-01

325

JAMA Patient Page: Burn Injuries  

MedlinePLUS

... of the American Medical Association JAMA PATIENT PAGE Burn Injuries B urns, most commonly caused by fire, ... burn injuries in the United States. TYPES OF BURNS FOR MORE INFORMATION • World Health Organization www.who. ...

326

Temporal changes in species composition in Fescue Prairie: relationships with burning history, time of burning, and environmental conditions  

Microsoft Academic Search

Historically, fires occurred throughout the year in the Fescue Prairie of Canada, but little is known about plant community\\u000a responses to burning at different times of the year. Composition of plant communities was determined annually for 6 years\\u000a after burning one or three times in a remnant Fescue Prairie in central Saskatchewan. A multiple-response permutation procedure\\u000a indicated that plant community composition

D. V. Gross; J. T. Romo

2010-01-01

327

Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China  

NASA Astrophysics Data System (ADS)

In China, many pollutants are released because of crop residue burning in the field, resulting in serious pollution of ambient air. Suqian with 4523 km 2 of total area under cultivation was selected as a case to be studied, where wheat-rice double cropping system is widely adopted. Based on the data of crop output from 2001 to 2005, the annual average amount of crop residue generated was estimated as 3.04×10 6 t. About 82% of wheat straw and 37% of rice straw were burned in the field, so the proportion of crop residue burned in the field was about 43%. In combination with emission factors proposed by some literatures, the total amounts, the amounts in summer harvest and in autumn harvest of TSP, PM 10, SO 2, NO x, NH 3, CH 4, EC, OC, VOC, CO, and CO 2, emitted from crop residue burning in the field, were estimated. The total amounts of them were 11,051, 7572, 525, 3280, 1707, 3544, 905, 4331, 20,606, 120,747, and 1,988,376 t, respectively, and about 78% of them were emitted in summer harvest. During the summer harvest from June 4 to 13 in 2006, influenced by crop residue burning in the field, the daily average concentrations of PM 10, NO 2, and SO 2 were 0.266, 0.051, and 0.063 mg m -3, respectively. And the daily average concentration of PM 10 kept exceeding 0.250 mg m -3, the Third Standard Level of National Ambient Air Quality (China). Based on hourly concentration changes of PM 10 and meteorological condition, crop residue burning in the field was characterized. According to the field survey, it is regarded that combine harvester acts as an important role in crop residue burning in the field.

Yang, Shijian; He, Hongping; Lu, Shangling; Chen, Dong; Zhu, Jianxi

328

A man with severe leg burns.  

PubMed

A 52-year-old Hispanic male was transported to the emergency department after sustaining severe bilateral lower extremity burns in an electroplating factory. His examination revealed circumferential burns to the lower extremities with spotting in the perineum. The epidermis was stained green and sloughed off with gentle pressure. The underlying dermis was white and non-blanching, consistent with a full thickness burn. His feet were partially protected by his work boots where he had small areas of pink, blanchable, partial thickness burns (Fig. 1). Pertinent initial studies included a lactic acid level of 3.1 mmol/L and a creatinine of 1.02 mg/dL. PMID:23992444

Chapman, A J; Deschler, D; Judge, B S

2013-11-01

329

Burning mouth and saliva.  

PubMed

Stomatodynia is the complaint of burning, tickling or itching of the oral cavity, and can be associated with other oral and non-oral signs and symptoms. However, the oral mucosa often appears normal, with no apparent underlying organic cause to account for the symptomatology. The etiology is unknown, though evidence points to the participation of numerous local, systemic and psychological factors. Among the local factors, saliva may play an important role in the symptoms of burning mouth. Saliva possesses specific rheological properties as a result of its chemical, physical and biological characteristics - these properties being essential for maintaining balanced conditions within the oral cavity. Patients with burning mouth present evidence of changes in salivary composition and flow, as well as a probable alteration in the oral mucosal sensory perception related particularly to dry mouth and taste alterations. On the other hand, alterations in salivary composition appear to reflect on its viscosity and symptomatology of burning mouth. Saliva is a field open to much research related to burning mouth, and knowledge of its properties (e.g., viscosity) merits special attention in view of its apparent relationship to the symptoms of burning mouth. The present study describes our clinical experience with burning mouth, and discusses some of the aspects pointing to salivary alterations as one of the most important factors underlying stomatodynia. PMID:12134125

Chimenos-Kustner, Eduardo; Marques-Soares, Maria Sueli

2002-01-01

330

Mapping and monitoring cropland burning in European Russia: a multi-sensor approach  

NASA Astrophysics Data System (ADS)

Short lived aerosols and pollutants transported from high northern latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon (BC) is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Early studies have suggested that cropland burning may be a high contributor to the BC emissions which are directly deposited above the Arctic Circle. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited. Most existing algorithms are focused on mapping hotter and larger wildfire events. The timing of cropland burning differs from wildfire events and their transient nature adds a further challenge to the product development. In addition, the analysis of multi-year cloud cover over Russian croplands, using the Moderate Resolution Imaging Spectroradiometer (MODIS) daily surface reflectance data showed that on average early afternoon observations from MODIS/ Aqua provided 68 clear views per growing period (defined 1st March 2003 - 30th November 2012) with a range from 30 to 101 clear views; whereas MODIS/Terra provided 75 clear views per growing period (defined 1st March 2001 - 30th November 2012) with a range from 37 to 113 clear views. Here we present a new approach to burned area mapping in croplands from satellite imagery. Our algorithm is designed to detect burned area only within croplands and does not have the requirements to perform well outside those. The algorithm focuses on tracking the natural intra-annual development curve specific for crops rather than natural vegetation and works by identifying the subtle spectral nuances between varieties of cropland field categories. Using a combination of the high visual accuracy from very high resolution (VHR, defined as spatial resolution < 5m) imagery and the temporal trend of MODIS data, we are able to differentiate between burned and plowed cropland fields in European Russia. The VHR imagery allows for more accurate identification of field condition (burned, bare, residue) through visual interpretation and by the incorporation of the 1km MODIS Active Fire (MCD14) dataset as a means of independent validation for the selection of burned training and validation samples. Confirmed by active fire and visual assessment, these fields then serve as a subset of training data to extract a larger sample set of burned fields from VHR imagery, using the Near Infrared (NIR) band (760-900 nm). NIR showed the largest statistical differences between the burned and unburned field samples using ANOVA and post-hoc statistics with an f value (625.8) far exceeding the critical F-value of 2.665 at p < 0.05. Early-stage validation of the algorithm has shown notable improvement in accuracy over the existing MODIS-based global (MCD64 and MCD45) and regional approaches. Large confusion is found over the mollisol (dark-soil) regions compared to the lighter soil areas of the north. Further algorithm improvements, which rely on in situ observations and other auxiliary sources of information, are underway. In the future, we plan to expand applications of this algorithm to cover all Russian croplands between 2001 and 2013.

Hall, J.; Loboda, T. V.; Mccarty, G.; McConnell, L.; Woldemariam, T.

2013-12-01

331

Increased expression of atrogenes and TWEAK family members after severe burn injury in non-burned human skeletal muscle  

PubMed Central

Severe burn induces rapid skeletal muscle proteolysis after the injury that persists for up to one year and results in skeletal muscle atrophy despite dietary and rehabilitative interventions. The purpose of this research was to determine acute changes in gene expression of skeletal muscle mass regulators post-burn injury. Biopsies were obtained from the vastus lateralis of a non-burned leg of eight burned subjects (6M, 2F: 34.8 ± 2.7 years: 29.9 ± 3.1% total body surface area burn) at 5.1 ± 1.1 days post-burn injury and from matched controls. mRNA expression of cytokines and receptors in the tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) families, and the ubiquitin proteasome E3 ligases, atrogin-1 and MuRF1, was determined. TNF receptor 1A was over 3.5 fold higher in burn. Expression of TNF-like weak inducer of apoptosis and its receptor were over 1.6 and 6.0-fold higher in burn. IL-6, IL-6 receptor, and glycoprotein 130, were elevated in burned subjects with IL-6 receptor over 13-fold higher. Suppressor of cytokine signaling-3 was also elevated in burn nearly 6-fold. Atrogin-1 and MuRF1, were more than 4- and 3-fold higher in burn. These results demonstrate for the first time that severe burn in humans has a remarkable impact on gene expression in skeletal muscle of a non-burned limb of genes that promote inflammation and proteolysis. Because these changes likely contribute to the acute skeletal muscle atrophy in areas not directly affected by the burn, in the future it will be important to determine the responsible systemic cues. PMID:23816995

Merritt, Edward K.; Thalacker-Mercer, Anna; Cross, James M.; Windham, Samuel T.; Thomas, Steven J.; Bamman, Marcas M.

2012-01-01

332

Obesity and burns.  

PubMed

The population of overweight patients presenting to burn facilities is expected to increase significantly over the next decades due to the global epidemic of obesity. Excess adiposity mediates alterations to key physiological responses and poses challenges to the optimal management of burns. The purpose of this study is to document the general epidemiological aspects of thermal injuries in the obese population, outline relevant physiological aspects associated with obesity, and draw attention to topics relating to the management, rehabilitation, and prognosis of burns in this emerging subpopulation of patients. PMID:22274633

Goutos, Ioannis; Sadideen, Hazim; Pandya, Atisha A; Ghosh, Sudip J

2012-01-01

333

Relationship of Serum Paraoxonase Enzyme Activity and Thermal Burn Injury  

PubMed Central

Objective: This study investigated changes in serum oxidative stress parameters in burn cases compared to healthy controls. Materials and Methods: This study was performed in 41 burn patients with mild to severe thermal burn injuries and 38 healthy volunteers. The burn cases were selected from patients who were hospitalized in the burn unit for the treatment of second- and third-degree burns. Malondialdehyde (MDA) levels and PON-1 paraoxonase and arylesterase activities were measured in patient serum samples. Results: PON-1 paraoxonase activity and MDA levels in patients with major thermal burn injury were significantly higher than healthy controls, but PON-1 arylesterase activities were lower. A significant negative correlation was observed between the burn percentage of the total body surface area and the PON-1 arylesterase activities in patients. Conclusion: Human thermal burn injury was associated with an increase in MDA production and a decrease in PON-1 arylesterase activity, which was proportional to the percentage of total burned surface area. PMID:25610231

Yildirim, Serap; Doganay, Songul; Yildirim, Abdulkadir; Aydin, Osman Enver; Karakoc, Akar; Laloglu, Esra

2012-01-01

334

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Permits for general open burning, agricultural burning, and forestry...49.11021 Permits for general open burning, agricultural burning, and forestry...under § 49.132 Rule for general open burning permits. (b) Beginning...

2010-07-01

335

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Permits for general open burning, agricultural burning, and forestry...49.10411 Permits for general open burning, agricultural burning, and forestry...under § 49.132 Rule for general open burning permits. (b) Beginning...

2010-07-01

336

[Rural Development: First Annual] Report to the Congress on the Availability of Government Services to Rural Areas.  

ERIC Educational Resources Information Center

Information derived from the Federal Information Exchange System on Federal outlays in rural America (160 Federal programs) provides the basis for this initial annual report. Information is reported via narrative and tabular data and relates only to Federal assistance. Highlighting some of the recent rural socioeconomic trends, the narrative…

Rural Development Service (USDA), Washington, DC.

337

A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges  

NASA Astrophysics Data System (ADS)

In this work we compare the annual component of sea level variations derived from 478 worldwide-distributed tide gauges with the annual component computed from a weekly gridded multi-mission altimeter product. Gridded altimetry data products allow for spatio-temporal analyses that are not possible based on along-track altimetry data. However, a precise validation is necessary in the coastal region before the gridded data can be used. Results of the comparisons show that root-mean-square differences (RMSD) between the two datasets are ?2 cm for 76.4% of the sites. RMSD higher than 4 cm are caused by narrow coastal currents, nearby river outflows or other local phenomena. A methodology is proposed to assess the accuracy of the seasonal component of the gridded altimeter product in regions with a low density net of tide gauges. As a case study it is shown that the Southwestern Atlantic coast is a suitable region to study the spatio-temporal variability of the annual cycle of sea level since RMSD between annual altimetry data and in-situ data are lower than 2.1 cm.

Ruiz Etcheverry, L. A.; Saraceno, M.; Piola, A. R.; Valladeau, G.; Möller, O. O.

2015-01-01

338

Mid-Spring Burning Reduces Spotted Knapweed and Increases Native Grasses during a Michigan  

E-print Network

Mid-Spring Burning Reduces Spotted Knapweed and Increases Native Grasses during a Michigan Infestations of the exotic perennial Spotted knapweed (Centaurea maculosa Lam.) hinder the restoration, prescribed burning, Spotted knapweed, warm-season grasses. Introduction Extensive areas of abandoned

Abella, Scott R.

339

Prevalence burn injuries and risk factors in persons older the 15 years in Urmia burn center in Iran  

PubMed Central

Background: Burn injuries in many respects is the most tragic that a person may experience. The purpose of this study was to know the burn casualties prevalence in people over 15 years old to identify the risk and predisposing factors in the province of west Azarbaijan of Iran. Methods: This cross-sectional study was performed from March 2008 to March 2010. The demographic and epidemiologic information about burn and its complications were extracted from the data banks and records. Data were collected and analyzed. Results:Four hundred twenty eight patients (44.9% female and 56.1% male) were studied. Most of the admissions were in 16 to 25 years age bracket. Burning with fire accounted (39.2%) of admission in males and (53.2%) in females which was the most common cause of burning. Percentage patients who had more than 40% body surface area (BSA) burned was 42.0% in males, and 30.1% in females. Patients with >40% BSA burn had a mortality of 73.8%. The mean body surface area burned was 33.8% in males and 25.2% in females. The mean duration of hospitalization was 6.19 days. Conclusion: The results of this study show that the prevalence of burn injuries is relatively high with high mortality rate in those with BSA> 40%. The commonest cause of burn was fire. PMID:24024024

Aghakhani, Nader; Sharif Nia, Hamid; Soleimani, Mohammad Ali; Bahrami, Nasim; Rahbar, Narges; Fattahi, Yadegar; Beheshti, Zahra

2011-01-01

340

Hanna, A., J. Vukovich, S. Arunachalam, D. Loughlin, H.C. Frey, J. Touma, J. Irwin, and V. Isakov, "Assessment of Uncertainty in Benzene Concentration Estimates in the Houston, TX, Area," Proceedings, Annual Meeting of the Air &  

E-print Network

, "Assessment of Uncertainty in Benzene Concentration Estimates in the Houston, TX, Area," Proceedings, Annual & Waste Management Association, Pittsburgh, PA, June 2004 1 Assessment of Uncertainty in Benzene for a particular urban area. We present the results of a case study involving benzene emissions in the Houston area

Frey, H. Christopher

341

Analysis of Alaskan burn severity patterns using remotely sensed data  

USGS Publications Warehouse

Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

2007-01-01

342

Burning Mouth Syndrome  

PubMed Central

Most clinicians dread seeing the patient presenting with a primary complaint of a burning pain on one or more oral mucosal surfaces. Unlike most other clinical conditions presenting in a dental office, burning mouth syndrome is poorly understood with few evidence based remedies. More recently, advances have been made towards clarifying the possible etiology of the disorder and testing the possible therapeutic modalities available. This article attempts to summarize the “state of the art” today. PMID:20690412

Mock, David; Chugh, Deepika

2010-01-01

343

Books2burn  

NSDL National Science Digital Library

Developed by Professor Matthew Weinstein of Kent State University, Books2burn translates text files into a series of audio files, which may then subsequently be converted to mp3's or other formats. This program will be a great boon to scholars and the general public alike, as the application allows for the easy transfer and replication of potentially large and problematic files into a number of audio formats. Books2burn is compatible with all systems running Mac OS X.

Weinstein, Matthew

344

30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.  

Code of Federal Regulations, 2010 CFR

... false Coal mine waste: Burning and burned waste utilization. 816.87 Section...816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...extinguishing operations. (b) No burning or burned coal mine waste shall be removed...

2010-07-01

345

Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA  

NASA Astrophysics Data System (ADS)

We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.

van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.

2014-12-01

346

Area  

NSDL National Science Digital Library

This lesson is designed to develop students' understanding of the concepts of area and how it can relate to perimeter. The shapes explored in this lesson are constructed of adjacent squares on a coordinate plane. This lesson provides links to discussions and activities related to area as well as suggested ways to integrate them into the lesson. Finally, the lesson provides links to follow-up lessons designed for use in succession with the current one. Note, the reading level for this resource’s worksheet is at the grade 8 level.

2011-05-24

347

Cheiloplasty in Post-burn Deformed Lips.  

PubMed

The lip is a part of the face that is frequently affected by burn injury. Post-burn scar sequelae in this area often result in cosmetic disfigurement and psychological upsets in patients, especially young adult females. A burn destroys the aesthetic features and lines of the lip. Plastic and reconstructive surgery of the face has a long history. Many local and regional flaps have been used for reconstruction of surgical or traumatic defects. Procedures to enhance the cosmetic features of the lips have been performed for centuries. Only within the past 25 years, however, has augmentation cheiloplasty become commonplace. Within that time, a number of different techniques have been developed. The goal of reconstruction is to achieve aesthetic results using plastic materials having the same properties as the affected area. This paper describes some clinical situations and possible reconstructive solutions. PMID:21991162

Saadeldeen, W M

2009-06-30

348

Recovery and reuse of asphalt roofing waste burning of asphalt roofing waste  

SciTech Connect

The research described in this report was designed to determine the general feasibility and specific requirements for burning asphalt roofing waste and recovering the energy resource as steam. The study combined technical market research with test burning in a three-task program to identify how to use burning as a means for reocvering the 7 x 10/sup 13/ Btu in roofing waste landfilled annually.

Zolnick, E.L.; Markus, A.R.; Seigfried, J.N.; Powers, T.J.; Shepherd, P.B.; Graziano, G.J.; Battles, R.L.

1986-09-15

349

Severe adult burn survivors. What information about skin allografts?  

E-print Network

as possible after the onset of the injury, and excised areas are covered by skin grafts. Ideal coverage1 Severe adult burn survivors. What information about skin allografts? Sonia Gaucher MD PhD1 head: Burn survivors. Skin allograft information. Tables: 3 inserm-00766733,version1-18Dec2012 Author

Paris-Sud XI, Université de

350

Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil  

Microsoft Academic Search

Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from

J. P. Greenberg; P. R. Zimmerman; L. Heidt; W. Pollock

1984-01-01

351

Estimation of Burning Rates in Solid Waste Combustion Furnaces  

Microsoft Academic Search

For a furnace burning solid wastes, one of the key areas in design is the sizing of the furnace which is often determined on the basis of empirically selected furnace heat release rate and grate burning rate. An independent estimation of these factors would require the knowledge of physical processes of refuse combustion such as drying and heating of the

J. T. KUO

1998-01-01

352

Clean burning grate for fireplaces and wood stoves  

SciTech Connect

An improved grate and method for burning solid fuel having a support for the fuel, a fan, a multiplicity of preheated air jets uniformly distributed across the entire area of the grate and directed through the support generally upwardly into the lower burning surface of the solid fuel, and a trough for collecting a layer of glowing coals located immediately below the jets and in close proximity to the burning lower surface of the solid fuel. The grate provides the cleanest burning and lowest fuel consumption occurs when only one layer of solid fuel is placed on the grate.

Van Grouw, S. J.; Smith, R. D.

1985-05-07

353

Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China  

NASA Astrophysics Data System (ADS)

Open crop residue burning is one of the major sources of air pollutants including the precursors of photooxidants like ozone and secondary organic aerosol. We made measurements of trace gases including nonmethane volatile organic compounds (NMVOCs) in a rural area in central East China in June 2010. During the campaign, we identified six biomass burning events in total through the simultaneous enhancement of carbon monoxide and acetonitrile. Four cases represented fresh plumes (<2 h after emission), and two cases represented aged plumes (>3 h after emission), as determined by photochemical age. While we were not able to quantify formic acid, we identified an enhancement of major oxygenated volatile organic compounds (OVOCs) as well as low molecular alkanes and alkenes, and aromatic hydrocarbons in these plumes. The observed normalized excess mixing ratios (NEMRs) of OVOCs and alkenes showed dependence on air mass age, even in fresh smoke plumes, supporting the view that these species are rapidly produced and destructed, respectively, during plume evolution. Based on the NEMR data in the fresh plumes, we calculated the emission factors (EFs) of individual NMVOC. The comparison to previous reports suggests that the EFs of formaldehyde and acetic acid have been overestimated, while those of alkenes have been underestimated. Finally, we suggest that open burning of wheat residue in China releases about 0.34 Tg NMVOCs annually. If we applied the same EFs to all crops, the annual NMVOC emissions would be 2.33 Tg. The EFs of speciated NMVOCs can be used to improve the existing inventories.

Kudo, Shinji; Tanimoto, Hiroshi; Inomata, Satoshi; Saito, Shinji; Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Wang, Zifa; Chen, Hongyan; Dong, Huabin; Zhang, Meigen; Yamaji, Kazuyo

2014-06-01

354

Characterization of burns using hyperspectral imaging technique - a preliminary study.  

PubMed

Surgical burn treatment depends on accurate estimation of burn depth. Many methods have been used to asses burns, but none has gained wide acceptance. Hyperspectral imaging technique has recently entered the medical research field with encouraging results. In this paper we present a preliminary study (case presentation) that aims to point out the value of this optical method in burn wound characterization and to set up future lines of investigation. A hyperspectral image of a leg and foot with partial thickness burns was obtained in the fifth postburn day. The image was analyzed using linear spectral unmixing model as a tool for mapping the investigated areas. The article gives details on the mathematical bases of the interpretation model and correlations with clinical examination pointing out the advantages of hyperspectral imaging technique. While the results were encouraging, further more extended and better founded studies are being prepared before recognizing hyperspectral imaging technique as an applicable method of burn wound assessment. PMID:24997530

Calin, Mihaela Antonina; Parasca, Sorin Viorel; Savastru, Roxana; Manea, Dragos

2015-02-01

355

[Risk factors for development of hypomagnesemia in the burned patient].  

PubMed

Electrolyte abnormalities are common in the severely burned patient. There is little information with regard to the frequency and magnitude of hypomagnesemia, as well as on risk factors for this condition. We performed an observational, retrospective analysis of 35 burned patients treated at the Plastic and Reconstructive Surgery Service at the Hospital Central Sur PEMEX, Mexico City. We determined serum magnesium behavior and divided patients into two groups: the first included 11 patients with burns and hypomagnesemia, and the second, 24 patients with burns but without hypomagnesemia. Risk factor identification was performed. We found patient at risk was the one with more than 40% of 2nd or 3rd degree total burned body area, in day 4 or 10 after the burn, and with hypokalemia, hypocalcemia, or both, and without intravenous (i.v.) supplementation of magnesium. The best way to prevent or avoid major complications is to identify the high-risk patient, or to diagnose earlier. PMID:15633562

Durán-Vega, Héctor César; Romero-Aviña, Francisco Javier; Gutiérrez-Salgado, Jorge Eduardo; Silva-Díaz, Teresita; Ramos-Durón, Luis Ernesto; Carrera-Gómez, Francisco Javier

2004-01-01

356

Monitoring the transport of biomass burning emissions in South America  

Microsoft Academic Search

The atmospheric transport of biomass burning emissions in the South American and African continents is being monitored annually using a numerical simulation of air mass motions; we use a tracer transport capability developed within RAMS (Regional Atmospheric Modeling System) coupled to an emission model. Mass conservation equations are solved for carbon monoxide (CO) and particulate material (PM2.5). Source emissions of

Saulo R. Freitas; Karla M. Longo; Maria A. F. Silva Dias; Pedro L. Silva Dias; Robert Chatfield; Elaine Prins; Paulo Artaxo; Georg A. Grell; Fernando S. Recuero

2005-01-01

357

Decadorial of a burn center in Central India  

PubMed Central

Introduction: Burn injuries are a serious public health problem. In our study we have identified different epidemiological factors based on 10 years of our experience at a burn unit in central India and recommend some strategies to prevent burn injuries. Materials and Methods: This is a retrospective analysis (2001-2010) of database from burn unit of S.S. Medical College, Rewa, India. Results: 2499 patients with burn injury were analysed. 66.8% and 38.2% patients were females and males respectively, with a median age of 25 years. Flame (80.1%) was most common cause, home (96%) was most common place, traditional Indian stove (28.8%), kerosene lamp (26.7%), hot liquid (12.2%) and kerosene stove (10.4%) were common causes. Median Total Body Surface Area (TBSA) burn was 40.0%; females had significantly greater (P < 0.001) burn than males (median 50% vs 26.0%). High mortality (40.3%) seen; female sex (OR 3.22, 95% CI 2.65-3.92); young age (15-29 year) (OR 3.48, 95% CI 2.45-4.94); flame burn (OR 12.9, 95% CI 1.69-98.32); suicidal burn OR 6.82 95%CI 4.44-10.48) and TBSA > 76% (OR 3099, 95%CI 1302-7380) were significant risk factors for death. Median hospital stays was 8 days; shorter hospital stays seen among TBSA burn > 76% (2 days), suicidal intent (4 days), and those who expired (4 days). Septicemia (45.8%) and burn shock (41%) were the major cause for death. Conclusions: Cooking and lighting equipments are major cause of burn injury among females and young age group. Equipment modification to improve safety features and public awareness programs are necessary to reduce burn incidents. PMID:24678209

Bain, Jayanta; Lal, Shyam; Baghel, Vijay Singh; Yedalwar, Vinod; Gupta, Rachna; Singh, Anil Kumar

2014-01-01

358

A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001-2010  

NASA Astrophysics Data System (ADS)

Biomass burning (BB) emissions from forest fires, agricultural waste burning, and peatland combustion contain large amounts of greenhouse gases (e.g., CO2, CH4, and N2O), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate change. With the help of recently released satellite products, biomass density based on satellite and observation data, and spatiotemporal variable combustion factors, this study developed a new high-resolution and multi-year emissions inventory for BB in Southeast Asia (SEA) during 2001-2010. The 1-km grid was effective for quantifying emissions from small-sized fires that were frequently misinterpreted by coarse grid data due to their large smoothed pixels. The average annual BB emissions in SEA during 2001-2010 were 277 Gg SO2, 1125 Gg NOx, 55,388 Gg CO, 3831 Gg NMVOC, 553 Gg NH3, 324 Gg BC, 2406 Gg OC, 3832 Gg CH4, 817,809 Gg CO2, and 99 Gg N2O. Emissions were high in western Myanmar, Northern Thailand, eastern Cambodia, northern Laos, and South Sumatra and South Kalimantan of Indonesia. Emissions from forest burning were the dominant contributor to the total emissions among all land types. The spatial pattern of BB emissions was consistent with that of the burned areas. In addition, BB emissions exhibited similar temporal trends from 2001 to 2010, with strong interannual and intraannual variability. Interannual and intraannual emission peaks were seen during 2004, 2007, 2010, and January-March and August-October, respectively.

Shi, Yusheng; Yamaguchi, Yasushi

2014-12-01

359

Burning trees and bridges  

NASA Technical Reports Server (NTRS)

Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

Levine, Joel S.

1990-01-01

360

Global biomass burning - Atmospheric, climatic, and biospheric implications  

NASA Technical Reports Server (NTRS)

The present volume discusses the biomass burning (BMB) studies of the International Global Atmospheric Chemistry project, GEO satellite estimation of Amazonian BMB, remote sensing of BMB in West Africa with NOAA-AVHRR, an orbital view of the great Chinese fire of 1987, BMB's role in tropical rainforest reduction, CO and O3 measurements of BMB in the Amazon, effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna, an assessment of annually-burned biomass in Africa, and light hydrocarbon emissions from African savanna burnings. Also discussed are BMB in India, trace gas and particulate emissions from BMB in temperate ecosystems, ammonia and nitric acid emissions from wetlands and boreal forest fires, combustion emissions and satellite imagery of BMB, BMB in the perspective of the global carbon cycle, modeling trace-gas emissions from BMB, NO(x) emissions from BMB, and cloud-condensation nuclei from BMB.

Levine, Joel S. (editor)

1991-01-01

361

Methane production from global biomass burning  

SciTech Connect

Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

Wei Min Hao; Ward, D.E. [Department of Agriculture, Missoula, MN (United States)

1993-11-20

362

Burning Down the House  

NSDL National Science Digital Library

In this demonstration, the teacher will use a potato and hydrogen peroxide to generate oxygen in a closed environment. Students can then observe its effects on a burning wooden splint and on burning steel wool. They will understand that a large amount of energy can be released by the process of oxidation. As an extension, the teacher can discuss how the appearance of oxygen (produced by cyanobacteria) in Earth's early atmosphere initially resulted in the formation of large deposits of iron oxide (Banded Iron Formations) and then aided in the evolution of more complex life forms.

Glenn Dolphin

363

Science at Burning Man  

NSDL National Science Digital Library

Recently, the Exploratorium Museum in San Francisco sent a dedicated crew to check out the activities at the Burning Man festival in Nevada. The results of their journey and explorations can be seen here, and interested parties can learn about pyrotechnics, flight, dust devils, and rainbows. The site contains several dozen short films that feature Exploratorium scientists like Paul Doherty investigating the properties of alkali and a rare double rainbow sighting. One of the most impressive videos is a bird's eye view from an 88-NV plane over the Burning Man site. Finally, visitors are also encouraged to share these resources with others via social media sites, including Twitter and Facebook.

364

2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of version 2.102 of the Area 3 RWMS GoldSim PA model; and (5) Development of version 4.113 of the Area 5 RWMS GoldSim PA model. Analysis of the latest available data using the Area 5 RWMS v4.113 GoldSim PA model indicates that all performance objectives can be met. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. In FY 2011, there were no operational changes, monitoring results, or R and D results for the Area 3 RWMS that would impact PA validity. Despite the increase in waste volume and inventory at the Area 3 RWMS since 1996 when the PA was approved, the facility performance evaluated with the Area 3 RWMS PA GoldSim model, version 2.0 (with the final closure inventory), remains well below the performance objectives set forth in U.S. Department of Energy Order DOE O 435.1, 'Radioactive Waste Management' (DOE, 2001). The conclusions of the Area 3 RWMS PA remain valid. A special analysis was prepared to update the PA and CA results for the Area 3 RWMS in FY 2011. Release of the special analysis is planned for FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. Inclusion of the Frenchman Flat Underground Test Area (UGTA) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the closure report for the Frenchman Flat UGTA corrective action unit (CAU) in FY 2015. An industrial site, CAU 547, with corrective action sites near the Area 3 RWMS was found to have a significant plutonium inventory in 2009. CAU 547 will be evaluated for inclusion of future revisions or updates of the Area 3 RWMS CA. The revision of the Area 3 RWMS CA, which will include the UGTA source terms, is expected in FY 2024, following the completion of the Yucca Flat CAU Corrective Action Decision Document, scheduled for FY 2023. Near-term R and D efforts will focus on continuing development of the Are

NSTec Environmental Management

2012-03-20

365

Ethnicity and etiology in burn trauma.  

PubMed

The purpose of this study was to retrieve data from the British Columbia Professional Firefighters Burn Unit registry, with a focus on ethnicity and how it is involved in burn trauma. It is hypothesized that mechanism, severity, and other patient characteristics are significantly different among different ethnic groups. Furthermore, it is believed that these data can be used to augment burn prevention strategies. Data for burn patients admitted from 1979 to 2009 were reviewed from the burn registry. The main focus was with differences seen among the four main ethnicities throughout the analysis, Caucasian, Aboriginal, Asian, and Indoasian, reflecting the population distribution of the region. Age and sex were also considered when looking at burn mechanism, severity, contributing and copresenting factors. Caucasians were the largest group (79.1%) and included the largest male:female ratio (3.3:1), with high numbers of flame injury (53.9%). Caucasians presented with the highest mortality (6.6% compared with 4.1% for all other ethnicities; P < .006). Asian patients (8.1%) showed significantly higher occurrences of urban (64%) and workplace (28.9%) injuries with a larger proportion of scald injury (38.9%). Indoasian patients included larger numbers of women (36.4%) and household scald injuries (33.9%) whereas Aboriginals suffered the most flame injuries (60.1%) in rural areas with more frequent contributing factors such as alcohol. The study found multiple significant differences in the burn injury population when segmented by ethnicity. Though the exact reasons for these differences are difficult to say with certainty, it allows a unique opportunity to focus communication and prevention efforts to specific communities. PMID:24503965

Papp, Anthony; Haythornthwaite, Jordan

2014-01-01

366

Noninvasive determination of burn depth in children by digital infrared thermal imaging  

NASA Astrophysics Data System (ADS)

Digital infrared thermal imaging is used to assess noninvasively the severity of burn wounds in 13 pediatric patients. A delta-T (?T) parameter obtained by subtracting the temperature of a healthy contralateral region from the temperature of the burn wound is compared with the burn depth measured histopathologically. Thermal imaging results show that superficial dermal burns (IIa) show increased temperature compared with their contralateral healthy region, while deep dermal burns (IIb) show a lower temperature than their contralateral healthy region. This difference in temperature is statistically significant (p<0.0001) and provides a way of distinguishing deep dermal from superficial dermal burns. These results show that digital infrared thermal imaging could be used as a noninvasive procedure to assess burn wounds. An additional advantage of using thermal imaging, which can image a large skin surface area, is that it can be used to identify regions with different burn depths and estimate the size of the grafts needed for deep dermal burns.

Medina-Preciado, Jose David; Kolosovas-Machuca, Eleazar Samuel; Velez-Gomez, Ezequiel; Miranda-Altamirano, Ariel; González, Francisco Javier

2013-06-01

367

Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment  

MedlinePLUS

... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

368

The utilization of orbital images as an adequate form of control of preserved areas. [Araguaia National Park, Brazil  

NASA Technical Reports Server (NTRS)

The synoptic view and the repetitive acquisition of LANDSAT imagery provide precise information, in real-time, for monitoring preserved areas based on spectral, temporal and spatial properties. The purpose of this study was to monitor, with the use of multispectral imagery, the systematic annual burning, which causes the degradation of ecosystems in the National Park of Araguaia. LANDSAT imagery of channel 5 (0.6 a 0.7 microns) and 7 (0.8 a 1.1 microns), at the scale of 1:250.000, were used to identify and delimit vegetation units and burned area, based on photointerpretation parameter of tonality. The results show that the gallery forest can be discriminated from the seasonally flooded 'campo cerrado', and that 4,14% of the study area was burned. Conclusions point out that the LANDSAT images can be used for the implementation of environmental protection in national parks.

Dejesusparada, N. (principal investigator); Dossantos, J. R.

1981-01-01

369

Postburn roof stability analysis for the TONO CRIP UCG burn  

SciTech Connect

During the Ninth Annual Underground Coal Gasification Symposium, Sutherland, Hommert, Taylor, and Benzley presented a preburn prediction for the burn, roof fall and surface subsidence for the TONO CRIP UCG site in Washington state. That burn has now been completed and postburn measurements of cavity sizes have become available. In this manuscript we show that the preburn predictions are, in general, in good agreement with the postburn examination of the burn site. Discrepancies between the predictions and the measurements are shown to arise for two reasons. The first is that the burn sequence analyzed in the prediction was not followed during the course of the experiment due to experimental difficulties. The second reason is that the stratigraphic section analyzed in the preburn predictions is slightly different from that observed above the burn. To clarify the discrepancies, the roof stability of the measured burn cavity is analyzed using the two analysis schemes that were used in the preburn analysis. The first technique is the Rubble model. It uses a continuum description of the rubblization process that occurs as roof material fails and falls into the cavity below it. This technique is based on a standard finite element numerical analysis scheme. The second technique is the BLOCKS model. This technique divides the geologic strata into a collection of discrete, individual blocks and monitors all the collisions which occur between them. Both techniques yield very good descriptions of the roof stability for the measured burn cavity. 10 refs., 7 figs.

Taylor, L.M.; Sutherland, H.J.; Kuszmaul, J.S.

1985-01-01

370

Cimetidine kinetics during resuscitation from burn shock.  

PubMed

Severely burned patients suffer from rapidly changing metabolic and hemodynamic abnormalities that could alter drug kinetics. The kinetics of cimetidine, commonly used in the prophylaxis of acute stress erosions, were studied during fluid resuscitation of 11 patients with mean burn sizes of 45% total body surface area. Six patients were studied after the completion of fluid resuscitation. Total clearance, steady-state volume of distribution, and cimetidine t1/2 did not change between the early period after burn and after fluid resuscitation, but before the completion of fluid resuscitation patients had lower renal and greater nonrenal cimetidine clearance than after resuscitation. The increase in nonrenal cimetidine clearance resulted in decreased urinary recovery of unchanged drug, 50.7 +/- 14% during fluid resuscitation and 81.0% +/- 6% after resuscitation. PMID:6744781

Ziemniak, J A; Watson, W A; Saffle, J R; Smith, I L; Russo, J; Warden, G D; Schentag, J J

1984-08-01

371

Survival after burn in a sub-Saharan burn unit: Challenges and opportunities  

PubMed Central

Background Burns are among the most devastating of all injuries and a major global public health crisis, particularly in sub-Saharan Africa. In developed countries, aggressive management of burns continues to lower overall mortality and increase lethal total body surface area (TBSA) at which 50% of patients die (LA50). However, lack of resources and inadequate infrastructure significantly impede such improvements in developing countries. Methods This study is a retrospective analysis of patients admitted to the burn center at Kamuzu Central Hospital in Lilongwe, Malawi between June 2011 and December 2012. We collected information including patient age, gender, date of admission, mechanism of injury, time to presentation to hospital, total body surface area (TBSA) burn, comorbidities, date and type of operative procedures, date of discharge, length of hospital stay, and survival. We then performed bivariate analysis and logistic regression to identify characteristics associated with increased mortality. Results A total of 454 patients were admitted during the study period with a median age of 4 years (range 0.5 months to 79 years). Of these patients, 53% were male. The overall mean TBSA was 18.5%, and average TBSA increased with age—17% for 0–18 year olds, 24% for 19–60 year olds, and 41% for patients over 60 years old. Scald and flame burns were the commonest mechanisms, 52% and 41% respectively, and flame burns were associated with higher mortality. Overall survival in this population was 82%; however survival reduced with increasing age categories (84% in patients 0–18 years old, 79% in patients 19–60 years old, and 36% in patients older than 60 years). TBSA remained the strongest predictor of mortality after adjusting for age and mechanism of burn. The LA50 for this population was 39% TBSA. Discussion Our data reiterate that burn in Malawi is largely a pediatric disease and that the high burn mortality and relatively low LA50 have modestly improved over the past two decades. The lack of financial resources, health care personnel, and necessary infrastructure will continue to pose a significant challenge in this developing nation. Efforts to increase burn education and prevention in addition to improvement of burn care delivery are imperative. PMID:23768710

Tyson, Anna F.; Boschini, Laura P.; Kiser, Michelle M.; Samuel, Jonathan C.; Mjuweni, Steven N.; Cairns, Bruce A.; Charles, Anthony G.

2013-01-01

372

Tundra burning in Alaska: Linkages to climatic change and sea ice retreat  

E-print Network

fire in the tundra of the Alaskan Arctic. This fire burned 1039 km2 of the tundra on Alaska's North Slope, doubling the area burned north of 68°N in that region since record keeping began in 1950 (FiguresTundra burning in Alaska: Linkages to climatic change and sea ice retreat Feng Sheng Hu,1 Philip E

Hu, Feng Sheng

373

Outcome predictors and quality of life of severe burn patients admitted to intensive care unit  

Microsoft Academic Search

BACKGROUND: Despite significant medical advances and improvement in overall mortality rate following burn injury, the treatment of patients with extensive burns remains a major challenge for intensivists. We present a study aimed to evaluate the short- and the long-term outcomes of severe burn patients (total body surface area, TBSA > 40%) treated in a polyvalent intensive care unit (ICU) and

Vittorio Pavoni; Lara Gianesello; Laura Paparella; Laura Tadini Buoninsegni; Elisabetta Barboni

2010-01-01

374

Crystalloids, colloids and kids: a review of paediatric burns in intensive care  

Microsoft Academic Search

This is a retrospective review of all burns patients admitted to a paediatric intensive care unit (PICU) over a 7 year period. Resuscitation fluid therapy and clinical course are presented. Ninety-eight new burns victims were admitted with a mortality rate of 10.2%, all in burns of greater than 25% body surface area (BSA). The incidence of ARDS was 20%, with

Amanda J Cocks; Anthony O'Connell; Hugh Martin

1998-01-01

375

77 FR 33308 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Within the Captain of the Port, Puget Sound Area of Responsibility AGENCY: Coast Guard...displays in the Captain of the Port, Puget Sound area of responsibility during the dates...authorized by the Captain of the Port, Puget Sound or Designated Representative....

2012-06-06

376

77 FR 38179 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Within the Captain of the Port, Puget Sound Area of Responsibility AGENCY: Coast Guard...displays in the Captain of the Port, Puget Sound area of responsibility during the dates...authorized by the Captain of the Port, Puget Sound or his Designated Representative....

2012-06-27

377

33 CFR 165.1332 - Safety Zones; annual firework displays within the Captain of the Port, Puget Sound Area of...  

Code of Federal Regulations, 2014 CFR

...displays within the Captain of the Port, Puget Sound Area of Responsibility. 165.1332...displays within the Captain of the Port, Puget Sound Area of Responsibility. (a) Safety...safety zones: (1) All waters of Puget Sound, Washington, extending to a 450...

2014-07-01

378

76 FR 55261 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Within the Captain of the Port, Puget Sound Area of Responsibility AGENCY: Coast Guard...displays in the Captain of the Port, Puget Sound area of responsibility on September 10...Mukilteo Lighthouse Festival in Possession Sound, WA and on December 3, 2011 for...

2011-09-07

379

76 FR 33646 - Safety Zones; Annual Firework Displays Within the Captain of the Port, Puget Sound Area of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Within the Captain of the Port, Puget Sound Area of Responsibility AGENCY: Coast Guard...displays in the Captain of the Port, Puget Sound area of responsibility during the dates...authorized by the Captain of the Port, Puget Sound or Designated Representative....

2011-06-09

380

Global biomass burning - Atmospheric, climatic and biospheric implications  

NASA Technical Reports Server (NTRS)

Changes in the trace gas composition of the atmosphere due to global biomass burning are examined. The environmental consequences of those changes which have become areas of international concern are discussed.

Levine, Joel S.

1990-01-01

381

13. Southwest corner of burning hood and incinerator. North wall ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. Southwest corner of burning hood and incinerator. North wall of scrubber cell room. Looking southwest. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

382

PRESCRIBED BURN CERTIFICATION AFFIDAVIT  

E-print Network

PRESCRIBED BURN CERTIFICATION AFFIDAVIT State of County I, (name) (title) Being an employee study of materials provided by mail prior to the program, followed by a two-day training session of study materials. How to Register: Online at www.ugatiftonconference.org or Mail your registration form

Scott, Robert A.

383

Gas Hydrates Burning  

USGS Multimedia Gallery

An image of gas hydrates burning. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

384

Burn Scar Neoplasm  

PubMed Central

Summary Marjolin's ulcer is a rare and aggressive cutaneous malignancy that occurs in previously traumatized and chronically inflamed skin, especially after burns. The majority of burn scar carcinomas are seen after a lag period in burns that were not grafted following injury. Between 2000 and 2006, 48 patients with Marjolin's ulcer were treated in our centre (Sulaimani Teaching Hospital and Emergency Hospital). All the lesions were secondary to burns from various causes. The medical records of these 48 patients were reviewed prospectively. The mean age at tumour diagnosis was 40 yr and the ratio of male to female was 2:1 (67% males and 33% female). Upon histological examination, all the cases were diagnosed as well-differentiated squamous cell carcinoma. The scalp was most frequently affected (16 patients = 33.3%), followed by the lower limb (14 patients = 29.1%). Treatment of the neoplasm consisted of excision and grafting in 36 patients (75.0%), excision and reconstruction with flaps in eight patients (16.6%), and amputation in three patients (6.2%). A chemotherapy combination of the above treatments was used in two patients (4.1%). Local recurrence was noted in 16 patients (33.3%) out of the 48, and all died from these recurrences. PMID:21991095

Kadir, A.R.

2007-01-01

385

Carburetion type burning apparatus  

Microsoft Academic Search

A carburetion type burning apparatus is described which comprises a needle for opening and closing a nozzle orifice, a carburetion chamber, a fuel tank for receiving fuel, a pump for feeding the fuel to the carburetion chamber from the fuel tank, a heater element for vaporizing the fuel. The nozzle orifice receives the vaporized fuel from the carburetion chamber. The

Kasada

1987-01-01

386

Burn a Peanut  

NSDL National Science Digital Library

In this activity, learners burn a peanut, which produces a flame that can be used to boil away water and count the calories contained in the peanut. Learners use a formula to calculate the calories in a peanut and then differentiate between food calories and physicist calories as well as calories and joules.

Paul Doherty

2000-01-01

387

The Earth Could Burn.  

ERIC Educational Resources Information Center

Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…

Yarrow, Ruth

1982-01-01

388

Resilience and Severe Burns.  

ERIC Educational Resources Information Center

Incorporated findings of a general literature review with opinions offered by 39 burn survivors. Results indicate that care factors influencing resiliency include social support (cultural influences and community, school, personal, and familial support), cognitive skills (intelligence, coping style, personal control, and assignment of meaning),…

Holaday, Margot; McPhearson, Ruth W.

1997-01-01

389

TRIAL BURNS: METHODS PERSPECTIVE  

EPA Science Inventory

When conducting a trial burn, it is necessary to make a number of measurements in order to adequately define the performance of the incinerator. n addition to flue gas emissions for particulate matter, HCl, and selected organics, it is also necessary to measure selected organics ...

390

Fast burn booster technology  

NASA Astrophysics Data System (ADS)

Advances in solid rocket booster motors in the Solid Propellant Booster Development (SPBD) Program are addressed. The technologies discussed include cheaper nondetonable versatile burn rate propellant, advanced performance tapered composite case, lower-cost lighter-weight nozzles, laser ignition, and improved combustion modelling and performance. The demonstration of these technologies in a series of motor static tests is reviewed.

Burnett, Jimmy; McCain, J. W.

1992-05-01

391