Science.gov

Sample records for annual plant populations

  1. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  2. Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals.

    PubMed

    Huxman, Travis E; Kimball, Sarah; Angert, Amy L; Gremer, Jennifer R; Barron-Gafford, Greg A; Venable, D Lawrence

    2013-07-01

    Global change requires plant ecologists to predict future states of biological diversity to aid the management of natural communities, thus introducing a number of significant challenges. One major challenge is considering how the many interacting features of biological systems, including ecophysiological processes, plant life histories, and species interactions, relate to performance in the face of a changing environment. We have employed a functional trait approach to understand the individual, population, and community dynamics of a model system of Sonoran Desert winter annual plants. We have used a comprehensive approach that connects physiological ecology and comparative biology to population and community dynamics, while emphasizing both ecological and evolutionary processes. This approach has led to a fairly robust understanding of past and contemporary dynamics in response to changes in climate. In this community, there is striking variation in physiological and demographic responses to both precipitation and temperature that is described by a trade-off between water-use efficiency (WUE) and relative growth rate (RGR). This community-wide trade-off predicts both the demographic and life history variation that contribute to species coexistence. Our framework has provided a mechanistic explanation to the recent warming, drying, and climate variability that has driven a surprising shift in these communities: cold-adapted species with more buffered population dynamics have increased in relative abundance. These types of comprehensive approaches that acknowledge the hierarchical nature of biology may be especially useful in aiding prediction. The emerging, novel and nonstationary climate constrains our use of simplistic statistical representations of past plant behavior in predicting the future, without understanding the mechanistic basis of change. PMID:23838034

  3. Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region

    PubMed Central

    Köchy, Martin

    2008-01-01

    Background To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by ± 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by ± 20%. Results Increasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions. Conclusion More rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for

  4. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change.

    PubMed

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  5. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change

    PubMed Central

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  6. Rainfall effects on rare annual plants

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2008-01-01

    1. Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood. 2. We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future. 3. Species showed 9 to 100-fold between-year variation in plant density over the 5-12 years of censusing, including a severe drought and a wet El Nin??o year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants. 4. Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect. 5. Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life

  7. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  8. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  9. The Plant Population Explosion

    ERIC Educational Resources Information Center

    Swaminathan, M. S.

    1973-01-01

    Results achieved by researchers in the field of genetic plant engineering are described. However, it is believed that if their efforts were more decentralized, more farmers, especially in developing countries, could benefit and substantial advances made in production. (BL)

  10. Analysis of population genetic structure and gene flow in an annual plant before and after a rapid evolutionary response to drought

    PubMed Central

    Welt, Rachel S.; Litt, Amy; Franks, Steven J.

    2015-01-01

    The impact of environmental change on population structure is not well understood. This study aimed to examine the effect of a climate change event on gene flow over space and time in two populations of Brassica rapa that evolved more synchronous flowering times over 5 years of drought in southern California. Using plants grown from seeds collected before and after the drought, we estimated genetic parameters within and between populations and across generations. We expected that with greater temporal opportunity to cross-pollinate, due to reduced phenological isolation, these populations would exhibit an increase in gene flow following the drought. We found low but significant FST, but no change in FST or Nm across the drought, in contrast to predictions. Bayesian analysis of these data indicates minor differentiation between the two populations but no noticeable change in structure before and after the shift in flowering times. However, we found high and significant levels of FIS, indicating that inbreeding likely occurred in these populations despite self-incompatibility in B. rapa. In this system, we did not find an impact of climate change on gene flow or population structuring. The contribution of gene flow to adaptive evolution may vary by system, however, and is thus an important parameter to consider in further studies of natural responses to environmental change. PMID:25818074

  11. Analysis of population genetic structure and gene flow in an annual plant before and after a rapid evolutionary response to drought.

    PubMed

    Welt, Rachel S; Litt, Amy; Franks, Steven J

    2015-01-01

    The impact of environmental change on population structure is not well understood. This study aimed to examine the effect of a climate change event on gene flow over space and time in two populations of Brassica rapa that evolved more synchronous flowering times over 5 years of drought in southern California. Using plants grown from seeds collected before and after the drought, we estimated genetic parameters within and between populations and across generations. We expected that with greater temporal opportunity to cross-pollinate, due to reduced phenological isolation, these populations would exhibit an increase in gene flow following the drought. We found low but significant FST, but no change in FST or Nm across the drought, in contrast to predictions. Bayesian analysis of these data indicates minor differentiation between the two populations but no noticeable change in structure before and after the shift in flowering times. However, we found high and significant levels of FIS, indicating that inbreeding likely occurred in these populations despite self-incompatibility in B. rapa. In this system, we did not find an impact of climate change on gene flow or population structuring. The contribution of gene flow to adaptive evolution may vary by system, however, and is thus an important parameter to consider in further studies of natural responses to environmental change. PMID:25818074

  12. [Population genetics of plant pathogens].

    PubMed

    Zhu, Wen; Zhan, Jia-Sui

    2012-02-01

    Comparing to natural ecosystems, the evolution of plant pathogens in agricultural ecosystems is generally faster due to high-density monocultures, large-scale application of agrochemicals, and international trade in agricultural products. Knowledge of the population genetics and evolutionary biology of plant pathogens is necessary to understand disease epidemiology, effectively breed and use resistant cultivars, and control plant diseases. In this article, we outlined the aims of population genetic studies in plant pathogens, discuss contributions of five evolutionary forces (i.e., mutation, gene flow, recombination, random genetic drift, and natural selection) to origin, maintenance, and distribution of genetic variation in time and space, and gave an overview of current research status in this field. PMID:22382057

  13. Annual production of a cottontail population

    USGS Publications Warehouse

    Conaway, C.N.; Wight, H.M.; Sadler, K.C.

    1963-01-01

    Adult females in a cottontail (Sylvilagus floridanus) population produced seven or eight litters during the 1961 breeding season. A synchrony of the conception dates was maintained throughout the breeding season. Data about ovulation rate, prenatal mortality, and litter size for each litter are presented. The first litter was smallest, averaging about three young, and the remaining litters ranged between five and six young. The last four litters may be slightly smaller than the second and third litters of the season. The total annual production of young by an adult female would be approximately 35.

  14. Population and community ecology of the rare plant amsinckia grandiflora

    SciTech Connect

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  15. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  16. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  17. Population Processes and Plant Virus Evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of studies detailing levels of sequence diversity within plant virus populations are growing at a rapid pace. At the same time, recent work has provided empirical estimates of parameters important in the life cycle of plant viruses, which in turn can help in understanding observed pattern...

  18. Competition between alien annual grasses and native annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2000-01-01

    Alien annual grasses in the genera Bromus and Schismus are widespread and abundant in the Mojave Desert, and negative correlations between these aliens and native annual plants suggest that competition may occur between them. Effects of competition were evaluated by thinning alien annual grass seedlings and measuring the responses of native annual plants at three sites in the central, southcentral and southwestern Mojave Desert during 2 y of contrasting plant productivity. Effects of Bromus and Schismus were evaluated separately in the microhabitat where each was most abundant, beneath the north side of creosote bushes (Larrea tridentata) for Bromus and in the open interspace between shrubs for Schismus. Thinning of Bromus and Schismus significantly increased density and biomass of native annuals at all three sites, only during a year of high annual plant productivity and species richness. Effects of thinning were greatest for Amsinckia tesselata and for a group of relatively uncommon native annuals. Thinning also significantly increased the density and biomass of the alien forb, Erodium cicutarium. These results show that alien annual grasses can compete with native annual plants and an alien forb in the Mojave Desert and that effects can vary among years.

  19. Ornamental Annual Plants and Their Uses. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with ornamental annual plants and their uses. Included in the script are narrations for use with a total of 254 slides illustrating 97 different plants. At least two slides are provided for each plant: one shows the growth habits of the…

  20. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  1. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  2. Phenotypic selection favors missing trait combinations in coexisting annual plants.

    PubMed

    Kimball, Sarah; Gremer, Jennifer R; Huxman, Travis E; Lawrence Venable, D; Angert, Amy L

    2013-08-01

    Trade-offs among traits are important for maintaining biodiversity, but the role of natural selection in their construction is not often known. It is possible that trade-offs reflect fundamental constraints, negative correlational selection, or directional selection operating on costly, redundant traits. In a Sonoran Desert community of winter annual plants, we have identified a trade-off between relative growth rate and water-use efficiency among species, such that species with high relative growth rate have low water-use efficiency and vice versa. We measured selection on water-use efficiency, relative growth rate, and underlying traits within populations of four species at two study sites with different average climates. Phenotypic trait correlations within species did not match the among-species trade-off. In fact, for two species with high water-use efficiency, individuals with high relative growth rate also had high water-use efficiency. All populations experienced positive directional selection for water-use efficiency and relative growth rate. Selection tended to be stronger on water-use efficiency at the warmer and drier site, and selection on relative growth rate tended to be stronger at the cooler and wetter site. Our results indicate that directional natural selection favors a phenotype not observed among species in the community, suggesting that the among-species trade-off could be due to pervasive genetic constraints, perhaps acting in concert with processes of community assembly. PMID:23852354

  3. Pinellas Plant annual site environmental report for calendar year 1993

    SciTech Connect

    Not Available

    1994-06-10

    Martin Marietta Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high quality Environmental Management Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholder the results of their environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the environmental monitoring, waste management, and environmental restoration programs at the Pinellas Plant for 1993. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major environmental management program initiatives and accomplishments for 1993.

  4. Population identification of western hemisphere shorebirds throughout the annual cycle

    USGS Publications Warehouse

    Haig, Susan M.; Gratto-Trevor, C. L.; Mullins, Thomas D.; Colwell, M.A.

    1997-01-01

    Identification of relationships among geographically distinct populations of migratory species can provide an understanding of breeding and natal philopatry, migration pathways, and population mixing during winter. We used random amplified polymorphic DNA (RAPD) analyses to search for markers specific to difficult-to-differentiate shorebird species (e.g. long-billed dowitcher Limnodromus scolopaceus and short-billed dowitcher L. griseus) as well as geographically distinct breeding populations of Hudsonian godwits Limosa haemastica, red-necked phalaropes Phalaropus lobatus, semipalmated plovers Charadrius semipalmatus, dunlin Calidris alpina, pectoral sandpipers C. melanotos, semipalmated sandpipers C. pusilla and western sandpipers C. mauri. Markers clearly differentiated all shorebird species. Estimates of population differentiation varied greatly among species (FST= 0.095a??0.685) and correlated with interspecific variation in philopatry and geographical separation of breeding populations. We assigned individuals to putative breeding locales with greater certainty in well-differentiated species than in poorly differentiated species. Our findings indicate specific phylogeographical structure varies among species, which has strong implications for conservation of habitats within migratory corridors. We suggest that RAPDs are useful in identifying geographical populations of migratory species and that molecular markers should be considered for tracking migratory birds throughout the annual cycle.

  5. Model of yield response of corn to plant population and absorption of solar energy.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2011-01-01

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species. PMID:21297960

  6. National statistician's annual article on the population: a demographic review.

    PubMed

    Matheson, Jil

    2009-01-01

    This is the third in a series of annual demographic reports of the UK, providing an overview of the latest statistics on the population. This year's article also includes a short section on economic recessions, and a summary of migration following the enlargement of the European Union (EU) in May 2004. In addition to providing a statistical summary of the impact of migration from the 'Accession' countries, mention is made of flows during the current recession. There is discussion of how this complex recent migration has challenged traditional definitions of migration, and how this impacts on the need for ONS and other government agencies to measure these flows accurately. PMID:20120247

  7. Pinellas Plant annual site environmental report for calendar year 1995

    SciTech Connect

    1996-05-01

    Lockheed Martin Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high-quality Environmental, Safety and Health Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholders the results of the Pinellas Plant`s environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the Environmental Monitoring, Waste Management, and Environmental Restoration Programs at the Pinellas Plant for 1995. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major Environmental, Safety and Health Program initiatives and accomplishments for 1995. As a result of the end of the Department of Energy`s Defense Programs mission (weapons production) on September 30, 1994, considerable changes at the Pinellas Plant are occurring. The Department of Energy`s Environmental Management is now the landlord of the Pinellas Plant to facilitate the plant`s new mission of transition to alternate use in support of economic development and safe shutdown. The Department of Energy sold the Pinellas Plant to the Pinellas County Industry Council in March 1995, and it is leasing back a portion of the plant through September 1997, to complete the safe shutdown and transition activities.

  8. Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    PubMed Central

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species. PMID:21297960

  9. An empirical model for estimating annual consumption by freshwater fish populations

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2005-01-01

    Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.

  10. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  11. Survivorship and plant-plant interactions: Maintaining the evolutionary potential of restored populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological models of plant competition predict both low growth rate variance when below-ground competition occurs and high growth rate variance in above-ground competition. Reproductive output in annual plants is highly correlated with plant size, therefore models of plant competition also predict ...

  12. Gene Flow and the Measurement of Dispersal in Plant Populations.

    ERIC Educational Resources Information Center

    Nicholls, Marc S.

    1986-01-01

    Reviews methods of estimating pollen and seed dispersals and discusses the extent and frequency of gene exchange within and between populations. Offers suggestions for designing exercises suitable for estimating dispersal distances in natural plant populations. (ML)

  13. Seasonal changes in spatial patterns of two annual plants in the Chihuahuan Desert, USA

    USGS Publications Warehouse

    Yin, Z.-Y.; Guo, Q.; Ren, H.; Peng, S.-L.

    2005-01-01

    Spatial pattern of a biotic population may change over time as its component individuals grow or die out, but whether this is the case for desert annual plants is largely unknown. Here we examined seasonal changes in spatial patterns of two annuals, Eriogonum abertianum and Haplopappus gracilis, in initial (winter) and final (summer) densities. The density was measured as the number of individuals from 384 permanent quadrats (each 0.5 m ?? 0.5 m) in the Chihuahuan Desert near Portal, Arizona, USA. We used three probability distributions (binomial, Poisson, and negative binomial or NB) that represent three basic spatial patterns (regular, random, and clumped) to fit the observed frequency distributions of densities of the two annuals. Both species showed clear clumped patterns as characterized by the NB and had similar inverse J-shaped frequency distribution curves in two density categories. Also, both species displayed a reduced degree of aggregation from winter to summer after the spring drought (massive die-off), as indicated by the increased k-parameter of the NB and decreased values of another NB parameter p, variance/mean ratio, Lloyd's Index of Patchiness, and David and Moore's Index of Clumping. Further, we hypothesized that while the NB (i.e., Poisson-logarithmic) well fits the distribution of individuals per quadrat, its components, the Poisson and logarithmic, may describe the distributions of clumps per quadrat and of individuals per clump, respectively. We thus obtained the means and variances for (1) individuals per quadrat, (2) clumps per quadrat, and (3) individuals per clump. The results showed that the decrease of the density from winter to summer for each plant resulted from the decrease of individuals per clump, rather than from the decrease of clumps per quadrat. The great similarities between the two annuals indicate that our observed temporal changes in spatial patterns may be common among desert annual plants. ?? Springer 2005.

  14. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  15. Managing Natural and Reintroduced Rare Plant Populations within a Large Government Reservation

    SciTech Connect

    Carlsen, T M; Paterson, L E; Alfaro, T M

    2009-07-15

    California is home to many large government reservations that have been in existence for decades. Many of these reservations were formed to support various Department of Defense and Department of Energy national defense activities. Often, only a very small percentage of the reservation is actively used for programmatic activities, resulting in large areas of intact habitat. In some cases, this has benefited rare plant populations, as surrounding lands have been developed for residential or industrial use. However, land management activities such as the suppression or active use of fire and other disturbance (such as fire trail grading) can also work to either the detriment or benefit of rare plant populations at these sites. A management regime that is beneficial to the rare plant populations of interest and is at best consistent with existing site programmatic activities, and at a minimum does not impact such activities, has the best potential for a positive outcome. As a result, some species may be 'difficult' while others may be 'easy' to manage in this context, depending on how closely the species biological requirements match the programmatic activities on the reservation. To illustrate, we compare and contrast two rare annual plant species found at Lawrence Livermore National Laboratory's Site 300. Although several populations of Amsinckia grandiflora have been restored on the site, and all populations are intensively managed, this species continues to decline. In contrast, Blepharizonia plumosa appears to take advantage of the annual controlled burns conducted on the site, and is thriving.

  16. Mating system in Mexican populations of the annual herb Solanum rostratum Dunal (Solanaceae).

    PubMed

    Vallejo-Marín, M; Solís-Montero, L; Souto Vilaros, D; Lee, M Y Q

    2013-11-01

    Traditionally, annual colonising species are expected to have high rates of self-fertilisation, although recent theoretical and empirical studies have shown that cross-fertilisation can be selected for under heterogeneous pollination environments. Solanum rostratum is a self-compatible annual herb that colonises disturbed habitats. Despite the lack of physiological mechanisms to prevent self-fertilisation, pollen transfer between individuals is expected to be favoured because of its complex floral morphology. In previous studies of S. rostratum it has been shown that anther dimorphism within flowers results in precise pollen placement on the pollinator's body, and the presence of mirror-image floral morphs within plants promotes outcrossing in experimental arrays. However, the mating system of natural populations of S. rostratum has never been assessed, and thus whether it is predominantly selfing or outcrossing remains unknown. We hypothesise that floral and inflorescence morphology of S. rostratum should facilitate cross-fertilisation, making it a predominantly outcrossing despite its lack of a self-incompatibility system. To test this hypothesis, we estimated outcrossing rates by genotyping 700 individuals at 13 microsatellite loci, sampled from four populations across a 690-km transect in the species' native range. We found that populations had mean outcrossing rates of 0.70 ± 0.03, with multiple sires contributing to paternity of each progeny array (average effective number of sires = 8.97 ± 0.57). This indicates that natural populations S. rostratum have relatively high levels of outcrossing, probably facilitated by its floral and inflorescence morphology. We speculate that partial selfing in this species may be an unavoidable consequence of displaying multiple flowers at the same time (geitonogamy), as well as the result of self-pollen transfer by illegitimate visitors. PMID:23294438

  17. Projecting the success of plant restoration with population viability analysis

    USGS Publications Warehouse

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  18. Inter-annual variation in the foraging ecology of a brown bear population in southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Kovach, S. D.; Collins, G. H.; Farley, S. D.; Rye, R. O.; Hinkes, M. T.

    2010-12-01

    Brown bear (Ursus arctos) population size correlates with density of high-quality food resources. We report on a ten-year study (1993 - 2003) of brown bear nutritional ecology in southwestern Alaska during which changes in resource availability and density occurred. The diets of 21 female bears captured multiple years were characterized by stable isotope analysis (δ13C, δ15N, and δ34S) of guard hairs and putative diet items, followed by application of a Bayesian mixing model to derive assimilated diet estimates. Diet estimates were subsequently used to characterize individual-level resource specialization. Over the entire study period, salmon accounted for the highest proportion of bear diets (42.1%), followed by berries (24.5%), mammals (13.5%), freshwater fish (11.2%), and other plant matter (8.7%). The average salmon contribution to bear diets declined significantly from 48% to 34% following a precipitous reduction in salmon escapement mid-way through the study, after which the bear population shifted toward a more generalist diet. However, evaluation of individual animals recaptured multiple times during the study revealed variation in inter-annual dietary habits unrelated to the salmon crash. Individual variation presumably reflects local density changes in a variety of resources, with concomitant annual shifts in the degree of individual specialization. We also relate these patterns to other individual traits, such as reproductive status, home range, and habitat use to better constrain foraging habits. This study provides unique insights into the nutritional ecology of Alaskan brown bears and complements traditional wildlife studies by offering important covariates to better understand changes in population vital rates.

  19. QTL ANALYSIS OF FIBER COMPONENTS AND CRUDE PROTEIN IN AN ANNUAL X PERENNIAL RYEGRASS POPULATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual (Lolium multiflorum Lam.) and perennial (Lolium perenne L.) ryegrass are two common forage species in temperate regions. Improving the digestibility of forage by decreasing fiber content is a major goal in forage crop breeding programs. An annual X perennial ryegrass population was used to ma...

  20. 78 FR 54622 - Proposed Information Collection; Comment Request; Current Population Survey, Annual Social and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Census Bureau Proposed Information Collection; Comment Request; Current Population Survey, Annual Social... concerning the Annual Social and Economic Supplement (ASEC) to be conducted in conjunction with the February... others with a casual attachment to the labor market. The income data from the ASEC are used by...

  1. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.

    PubMed

    Prevéy, Janet S; Seastedt, Timothy R

    2015-11-01

    Shifting precipitation patterns resulting from global climate change will influence the success of invasive plant species. In the Front Range of Colorado, Bromus tectorum (cheatgrass) and other non-native winter annuals have invaded grassland communities and are becoming more abundant. As the global climate warms, more precipitation may fall as rain rather than snow in winter, and an increase in winter rain could benefit early-growing winter annuals, such as B. tectorum, to the detriment of native species. In this study we measured the effects of simulated changes in seasonal precipitation and presence of other plant species on population growth of B. tectorum in a grassland ecosystem near Boulder, Colorado, USA. We also performed elasticity analyses to identify life transitions that were most sensitive to precipitation differences. In both study years, population growth rates were highest for B. tectorum growing in treatments receiving supplemental winter precipitation and lowest for those receiving the summer drought treatment. Survival of seedlings to flowering and seed production contributed most to population growth in all treatments. Biomass of neighboring native plants was positively correlated with reduced population growth rates of B. tectorum. However, exotic plant biomass had no effect on population growth rates. This study demonstrates how interacting effects of climate change and presence of native plants can influence the population growth of an invasive species. Overall, our results suggest that B. tectorum will become more invasive in grasslands if the seasonality of precipitation shifts towards wetter winters and allows B. tectorum to grow when competition from native species is low. PMID:26227366

  2. Cotton Planting Date and Plant Population Effects on Yield and Quality in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton producers in the Mississippi Delta plant in early spring, but wet, cold weather often develops then and may reduce plant population directly or indirectly. Producers must occasionally decide if replanting is necessary. The objective of these studies was to determine planting date and plant ...

  3. Effects of colonization processes on genetic diversity: differences between annual plants and tree species.

    PubMed Central

    Austerlitz, F; Mariette, S; Machon, N; Gouyon, P H; Godelle, B

    2000-01-01

    Tree species are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than trees. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for trees. This explanation is problematic because it relies on equilibrium hypotheses. Because trees have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest trees, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of trees are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in trees and annual species by much less diversity and much more differentiation than nuclear genes. PMID:10757772

  4. Models of plant populations and communities

    SciTech Connect

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  5. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2014-01-01

    The moisture content of crusted and non-crusted habitats on sand was measured.Higher available water characterized the non-crusted habitats during drought years.Non-crusted habitats had higher species diversity, density and biomass.Crusts exert a negative effect on annual plants during droughts.Mobile sand serve as fertility belts for annual plants during drought years.

  6. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies.

    PubMed

    Flockhart, D T Tyler; Pichancourt, Jean-Baptiste; Norris, D Ryan; Martin, Tara G

    2015-01-01

    Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (<1000 individuals) >5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and

  7. Herbivory: effects on plant abundance, distribution and population growth

    PubMed Central

    Maron, John L; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant–consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics. PMID:17002942

  8. Inherited variability in multiple traits determines fitness in populations of an annual legume from contrasting latitudinal origins

    PubMed Central

    Milla, Rubén; Escudero, Adrián; Iriondo, Jose María

    2009-01-01

    Background and Aims Variation in fitness depends on corresponding variation in multiple traits which have both genetically controlled and plastic components. These traits are subjected to varying degrees of local adaptation in specific populations and, consequently, are genetically controlled to different extents. In this study it is hypothesized that modulation of different traits would have contrasting relevance for the fitness of populations of diverse origins. Specifically, assuming that environmental pressures vary across a latitudinal gradient, it is suggested that inherited variation in traits differentially determines fitness in annual Lupinus angustifolius populations from contrasting latitudinal origins in western Spain. Methods Seeds of L. angustifolius from three contrasting origins were grown in a common garden. Traits related to more plastic vegetative growth and more genetically conserved phenology were measured, together with estimates of reproductive success. Fitness was estimated by the number of viable seeds per plant. Structural Equation Models were used to infer causal relationships among multiple traits and fitness, separating the direct and indirect effects of morphological, phenological and reproductive traits. Key Results Phenological, vegetative and reproductive traits accounted for most of the fitness variation. Fitness was highest in plants of southernmost origin, mainly due to earlier flowering. Fitness within each seed origin was controlled by variation in different traits. Southern origin plants that grew to a larger size achieved higher fitness. However, plant size in plants of northernmost origin was irrelevant, but early flowering promoted higher fitness. Variation in fruit and seed set had a greater effect on the fitness of plants of central origin than phenological and size variation. Conclusions It is concluded that modulation of a functional trait can be relevant to fitness in a given population (i.e. affecting intensity and

  9. Do transgenic plants affect rhizobacteria populations?

    PubMed Central

    Filion, Martin

    2008-01-01

    Summary Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date. PMID:21261867

  10. Variation in photosynthetic response to temperature in a guild of winter annual plants.

    PubMed

    Gremer, Jennifer R; Kimball, Sarah; Angert, Amy L; Venable, D Lawrence; Huxman, Travis E

    2012-12-01

    How species respond to environmental variation can have important consequences for population and community dynamics. Temperature, in particular, is one source of variation expected to strongly influence plant performance. Here, we compared photosynthetic responses to temperature across a guild of winter annual plants. Previous work in this system identified a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) that predicts species differences in population dynamics over time, which then contribute to long-term species coexistence. Interestingly, species with high WUE invest in photosynthetic processes that appear to maximize carbon assimilation, while high-RGR species appear to maximize carbon gain by increasing leaf area for photosynthesis. In high-WUE species, higher rates of carbon acquisition were associated with increased investment into light-driven electron transport (J(max)). We tested whether such allocation allows these plants to have greater photosynthetic performance at lower temperatures by comparing the temperature sensitivity of photosynthesis across species in the community. Six species were grown in buried pots in the field, allowing them to experience natural changes in seasonal temperature. Plants were taken from the field and placed in growth chambers where photosynthetic performance was measured following short-term exposure to a wide range of temperatures. These measurements were repeated throughout the season. Our results suggest that high-WUE species are more efficient at processing incoming light, as measured by chlorophyll fluorescence, and exhibit higher net photosynthetic rates (A(net)) than high-RGR species, and these advantages are greatest at low temperatures. Sampling date differentially affected fluorescence across species, while species had similar seasonal changes in A(net). Our results suggest that species-specific responses to temperature contribute to the WUE-RGR trade-off that has been shown to

  11. Do plant population and planting date make a difference in corn production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One management practice that can positively or negatively impact corn yield is plant population. Yield potential can also be influenced by the date of planting, which is strongly linked to the at-planting and in-season weather and climatic conditions. Even when considering management changes, we nee...

  12. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  13. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  14. A computer program for estimating fish population sizes and annual production rates

    SciTech Connect

    Railsback, S.F.; Holcomb, B.D.; Ryon, M.G.

    1989-10-01

    This report documents a program that estimates fish population sizes and annual production rates in small streams from multiple-pass sampling data. A maximum weighted likelihood method is used to estimate population sizes (Carle and Strub, 1978), and a size-frequency method is used to estimate production (Garman and Waters, 1983). The program performs the following steps: (1) reads in the data and performs error checking; (2) where required, uses length-weight regression to fill in missing weights; (3) assigns length classes to the fish; (4) for each date, species, and length class, estimates the population size and its variance; (5) for each date and species, estimates the total population size and its variance; and (6) for each species, estimates the annual production rate and its variance between sampling dates selected by the user. If data from only date are used, only populations are estimated. 9 refs.

  15. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  16. Annual Fluctuations of Early Immigrant Populations of Sogatella furcifera (Hemiptera: Delphacidae) in Jiangxi Province, China.

    PubMed

    Zhang, Guo; Wu, Yan; Li, Xi-Jie; Hu, Gao; Lu, Ming-Hong; Zhong, Ling; Duan, De-Kang; Zhai, Bao-Ping

    2016-08-01

    The white-backed planthopper, Sogatella furcifera (Horváth), is a destructive migratory pest in east and southeast Asia. Huge populations stemming from annual migrations by this insect have caused a series of devastating losses to rice production. There have been numerous early immigrations in five of the past 10 yr but few early immigrations in the others. The annual fluctuation in early immigration is evident, but the mechanism behind these annual fluctuations is unclear. This research aimed to determine the underlying causes for the annual fluctuations in early immigration. We used trajectory analysis to explore the source areas and investigated the meteorological conditions to determine the reason for the annual fluctuations. The results showed that 1) the source areas of S. furcifera are mainly located west of Guangdong and east of Guangxi; 2) the annual fluctuations of the immigrant population size is significantly correlated with the frequency of prevailing winds; and 3) early immigration is influenced by both winter and spring temperatures in the south central Indochina peninsula. These results indicated that an allopatric prediction and sustainable management of rice planthoppers would be difficult to implement within one country. International cooperation and information exchange about this pest between China and other countries in Southeast Asia should be implemented. PMID:27377378

  17. Population-Based Age Group Specific Annual Incidence Rates of Symptomatic Age-Related Macular Degeneration

    PubMed Central

    Saari, Jukka M

    2014-01-01

    Purpose To study the population-based annual incidence rates of exudative, dry and all cases of symptomatic age-related macular degeneration (AMD) in different age and sex groups. Methods. This is a one year, prospective, population-based study on all consecutive new patients with AMD in the hospital district of Central Finland. The diagnosis was confirmed in all patients with slit lamp biomicroscopy, optical coherence tomography (OCT) using a Spectralis HRA + OCT device, and the Heidelberg Eye Explorer 1.6.2.0 program. Fluorescein angiograms were taken when needed. Results. The population-based annual incidence rates of all cases of symptomatic AMD increased from 0.03% (95% CI, 0.01-0.05%) in the age group 50-59 years to 0.82% (95% CI, 0.55-1.09%) in the age group 85-89 years and were 0.2% (95% CI, 0.17-0.24%) in exudative, 0.11% (95% CI, 0.09-0.14%) in dry, and 0.32% (95% CI, 0.28-0.36%) in all cases of AMD in the age group 60 years and older. During the next 20 years in Central Finland the population-based annual incidence rates can be estimated to increase to 0.27% (95% CI, 0.24-0.30%) in exudative, to 0.13% (95% CI, 0.11-0.15%) in dry, and to 0.41% (95% CI, 0.37-0.45%) in all cases of AMD in the age group 60 years and older. The population-based annual incidence of AMD did not show statistically significant differences between males and females (p>0.1). Conclusion: The population-based age-group specific annual incidence rates of symptomatic AMD of this study may help to plan health care provision for patients of AMD. PMID:25674187

  18. Dworshak Reservoir Kokanee Population Monitoring, Annual Report 2001.

    SciTech Connect

    Maiolie, Melo; Stark, Eric

    2003-03-01

    Onsite testing of strobe lights was conducted to determine if they repelled kokanee Oncorhynchus nerka away from the turbine intakes at Dworshak Dam. We tested a set of nine strobe lights flashing at a rate of 360 flashes/min placed near the intake of a 90 mW turbine. A split-beam echo sounder was used to determine the effect of strobe light operation on fish density (thought to be mostly kokanee) in front of the turbine intakes. On five nights between December 2001 and January 2002, fish density averaged 110 fish/ha when no lights were flashing. Mean density dropped to 13 fish/ha when the strobe lights were turned on during five additional nights of sampling. This 88% decline in density was significant at the P = 0.009 level of significance based on a paired Student's t test. There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicate that a single set of nine lights may be sufficient to repel kokanee from a turbine intake during the night. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2001. Estimated abundance of kokanee has continued to increase since the spring of 1996 when high entrainment losses occurred. Based on hydroacoustic surveys, we estimated 3,276,000 kokanee in Dworshak Reservoir in early July 2001. This included 2,069,000 age-0 kokanee (90% CI {+-} 16.4%), 801,000 age-1 kokanee (90% CI {+-} 17.8%), and 406,000 age-2 kokanee (90% CI {+-} 20.5%). Entrainment sampling was also conducted with split-beam hydroacoustics a minimum of one continuous 24 h period per month. The highest entrainment rates occurred at night with lower discharges and shallower intake depths. Fish movement patterns suggested that they swam 'at will' in front of the intakes and may have chosen to move into the turbine intakes. Based on monthly hydroacoustic sampling in the forebay, we found that kokanee density was low in July and August during a period of high discharge

  19. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  20. Signaling among neighboring plants and the development of size inequalities in plant populations

    SciTech Connect

    Ballare, C.L. |; Scopel, A.L. |; Jordan, E.T.; Vierstra, R.D.

    1994-10-11

    Transgenic tobacco plants that express an oat phytochrome gene (phyA) under control of the cauliflower mosaic virus (CaMV) 35S promoter and display altered photophysiology were used to test the role of light as a vehicle of information in dominance relationships between neighboring plants. Compared with the isogenic wild type, phyA-overexpressing plants showed dramatically reduced morphological responsivity to changes in the red/far red ratio of the incident light and to the proximity of neighboring plants in spacing experiments. In transgenic canopies an increase in stand density caused the small plants of the population to be rapidly suppressed by their neighbors. In wild-type canopies, plants responded to increased density with large morphological changes, and there appeared to be an inverse relationship between the magnitude of this morphological response and the ranking of the individual plant in the population size hierarchy. In these wild-type populations, size inequality increased only moderately with density within the time frame of the experiments. The results suggest that, in crowded stands, the ability of individual plants to acquire information about their light environment via phytochrome plays a central role in driving architectural changes that, at the population level, delay the development of size differences between neighbors.

  1. Signaling among neighboring plants and the development of size inequalities in plant populations.

    PubMed Central

    Ballaré, C L; Scopel, A L; Jordan, E T; Vierstra, R D

    1994-01-01

    Transgenic tobacco plants that express an oat phytochrome gene (phyA) under control of the cauliflower mosaic virus (CaMV) 35S promoter and display altered photophysiology were used to test the role of light as a vehicle of information in dominance relationships between neighboring plants. Compared with the isogenic wild type, phyA-overexpressing plants showed dramatically reduced morphological responsivity to changes in the red/far red ratio of the incident light and to the proximity of neighboring plants in spacing experiments. In transgenic canopies an increase in stand density caused the small plants of the population to be rapidly suppressed by their neighbors. In wild-type canopies, plants responded to increased density with large morphological changes, and there appeared to be an inverse relationship between the magnitude of this morphological response and the ranking of the individual plant in the population size hierarchy. In these wild-type populations, size inequality increased only moderately with density within the time frame of the experiments. Our results suggest that, in crowded stands, the ability of individual plants to acquire information about their light environment via phytochrome plays a central role in driving architectural changes that, at the population level, delay the development of size differences between neighbors. PMID:7937843

  2. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  3. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    PubMed

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  4. Peak fire temperatures and effects on annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2002-01-01

    Very little is known about the behavior and effects of fire in the Mojave Desert, because fire was historically uncommon. However, fire has become more frequent since the 1970s with increased dominance of the invasive annual grasses Bromus rubens and Schismus spp., and land managers are concerned about its ecological effect. In this paper, I describe patterns of peak fire temperature and their effect on annual plants in creosote bush scrub vegetation of the Mojave Desert. Temperatures were monitored among microhabitats and distances from the soil surface, and between spring and summer. Microhabitats ranged from high amounts of fuel beneath creosote bush (Larrea tridentata) canopies, to intermediate amounts at the canopy drip line, to low amounts in the interspaces between them. Distances from the soil surface were within the vertical range where most annual plant seeds occur (-2, 0, 5, and 10 cm). I also compare temperature patterns with postfire changes in soil properties and annual plant biomass and species richness to infer potential mechanisms by which fires affect annual plants. Peak fire temperatures were most affected by the microhabitat fuel gradient, and the effects of fire on annual plants varied among microhabitats. Beneath creosote bushes, lethal fire temperatures for annual plant seeds occurred above- and belowground, resulting in four postfire years of reduced annual plant biomass and species richness due most likely to seed mortality, especially of Bromus rubens and native forbs. At the canopy drip line, lethal fire temperatures occurred only aboveground, reducing annual plant biomass for 1 yr and species richness for 2 yr, and increasing biomass of Schismus sp., the alien forb Erodium cicutarium, and native annuals after 3 yr. Negligible changes were caused by fire in interspaces or between spring and summer. Fire effects models for creosote bush scrub vegetation must account for patterns of peak fire temperature along the shrub-intershrub gradient

  5. Epistasis in natural populations of a predominantly selfing plant

    PubMed Central

    Volis, S; Shulgina, I; Zaretsky, M; Koren, O

    2011-01-01

    Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F1) and two generations of segregated progeny (F2 and F3) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F1, F2 and F3 plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F3 generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F1 and outbreeding depression in F2 were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred. PMID:20551977

  6. Annual harvests of Corbicula populations prevent clogging of nuclear reactor heat exchangers

    SciTech Connect

    Harvey, R.S.

    1983-01-01

    An annual program for removal of millions of Corbicula from upstream cooling water basins has prevented reclogging of nuclear reactor heat exchanger distributor plates at the Savannah River Plant during the past seven years. There are nine 32-megaliter basins in the three operating reactor areas where some settling of particulates occurs before cooling water is passed through screens in route to heat exchangers. Annual cleanings keep silt/clam substrate levels low and clam sizes small. Data are presented on the size/age distribution for clams recolonizing basins between cleanings.

  7. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data

    PubMed Central

    Wallace, Cynthia S.A.; Thomas, Kathryn A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  8. An annual plant growth proxy in the Mojave Desert using MODIS-EVI data

    USGS Publications Warehouse

    Wallace, C.S.A.; Thomas, K.A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R 2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  9. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.

    PubMed

    Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M

    2016-07-29

    Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions. PMID:27471303

  10. Source population characteristics affect heterosis following genetic rescue of fragmented plant populations

    PubMed Central

    Pickup, M.; Field, D. L.; Rowell, D. M.; Young, A. G.

    2013-01-01

    Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations. PMID:23173202

  11. The Effects of Plant Compensatory Regrowth and Induced Resistance on Herbivore Population Dynamics.

    PubMed

    Stieha, Christopher R; Abbott, Karen C; Poveda, Katja

    2016-02-01

    Outbreaks of herbivorous insects are detrimental to natural and agricultural systems, but the mechanisms driving outbreaks are not well understood. Plant responses to herbivory have the potential to produce outbreaks, but long-term effects of plant responses on herbivore dynamics are understudied. To quantify these effects, we analyze mathematical models of univoltine herbivores consuming annual plants with two responses: (1) compensatory regrowth, which affects herbivore survival in food-limited situations by increasing the amount of food available to the herbivore; and (2) induced resistance, which reduces herbivore survival proportional to the strength of the response. Compensatory regrowth includes tolerance, where plants replace some or all of the consumed biomass, and overcompensation, where plants produce more biomass than was consumed. We found that overcompensation can cause bounded fluctuations in the herbivore density (called outbreaks here) by itself, whereas neither tolerance nor induced resistance can cause an outbreak on its own. Food limitation and induced resistance can also drive outbreaks when they act simultaneously. Tolerance damps these outbreaks, but overcompensation, by contrast, qualitatively changes the conditions under which the outbreaks occur. Not properly accounting for these interactions may explain why it has been difficult to document plant-driven insect outbreaks and could undermine efforts to control herbivore populations in agricultural systems. PMID:26807745

  12. Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants.

    PubMed

    Huxman, Travis E; Barron-Gafford, Greg; Gerst, Katharine L; Angert, Amy L; Tyler, Anna P; Venable, D Lawrence

    2008-06-01

    We studied a guild of desert winter annual plants that differ in long-term variation in per capita reproductive success (lb, the product of per capita survival from germination to reproduction, l, times per capita reproduction of survivors, b) to relate individual function to population and community dynamics. We hypothesized that variation in lb should be related to species' positions along a trade-off between relative growth rate (RGR) and photosynthetic water-use efficiency (WUE) because lb is a species-specific function of growing-season precipitation. We found that demographically variable species have greater RGR and greater leaf carbon isotope discrimination (Delta, a proxy inversely related to WUE). We examined leaf nitrogen and photosynthetic characteristics and found that, in this system, variation in Delta is a function of photosynthetic demand rather than stomatal regulation of water loss. The physiological characteristics that result in low Delta in some species may confer greater photosynthetic performance during the reliably moist but low temperature periods that immediately follow winter rainfall in the Sonoran Desert or alternatively during cool periods of the day or early growing season. Conversely, while species with high Delta and high RGR exhibit low leaf N, they have high biomass allocation to canopy leaf area display. Such trait associations may allow for greater performance during the infrequent conditions where high soil moisture persists into warmer conditions, resulting in high demographic variance. Alternatively, high variance could arise from specialization to warm periods of the day or season. Population dynamic buffering via stress tolerance (low RGR and Delta) correlates negatively with buffering via seed banks, as predicted by bet-hedging theory. By merging analyses of population dynamics with functional trait relationships, we develop a deeper understanding of the physiological, ecological, and evolutionary mechanisms involved in

  13. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive. PMID:20532919

  14. Population Genomics for Understanding Adaptation in Wild Plant Species.

    PubMed

    Weigel, Detlef; Nordborg, Magnus

    2015-01-01

    Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature. PMID:26436459

  15. Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle.

    PubMed

    Rushing, Clark S; Ryder, Thomas B; Marra, Peter P

    2016-01-27

    Worldwide, migratory species are undergoing rapid declines but understanding the factors driving these declines is hindered by missing information about migratory connectivity and the lack of data to quantify environmental processes across the annual cycle. Here, we combined range-wide information about migratory connectivity with global remote-sensing data to quantify the relative importance of breeding and non-breeding environmental processes to persistent long-term population declines of a migratory songbird, the wood thrush (Hylocichla mustelina). Consistent with theoretical predictions about population limitation of migratory birds, our results suggest that habitat loss and climate have contributed to the observed declines in wood thrush breeding abundance, yet the relative importance of breeding versus non-breeding factors is population-specific. For example, high-abundance core breeding populations appear to be more limited by habitat loss, whereas low-abundance, peripheral populations appear to be limited by climate-driven seasonal interactions. Further, our analysis indicates that the relative impact of breeding habitat loss is at least three to six times greater than the impact of equivalent non-breeding habitat loss and therefore the steepest regional declines have likely been driven by the loss of breeding habitat. These results underscore the need for population-specific conservation strategies implemented throughout the annual cycle to reverse long-term declines. PMID:26817774

  16. Effects of host-plant population size and plant sex on a specialist leaf-miner

    NASA Astrophysics Data System (ADS)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  17. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  18. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation

    PubMed Central

    Ægisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-01-01

    Background and Aims Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Methods Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. Key Results High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G′ST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. Conclusions The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species

  19. Annual risk of tuberculosis infection in rural China: a population-based prospective study.

    PubMed

    Gao, Lei; Bai, Liqiong; Liu, Jianmin; Lu, Wei; Wang, Xinhua; Li, Xiangwei; Du, Jiang; Chen, Xinchun; Zhang, Haoran; Xin, Henan; Sui, Hongtao; Li, Hengjing; Su, Haoxiang; He, Jian; Pan, Shouguo; Peng, Hong; Xu, Zuhui; Catanzaro, Antonino; Evans, Thomas G; Zhang, Zongde; Ma, Yu; Li, Mufei; Feng, Boxuan; Li, Zhen; Guan, Ling; Shen, Fei; Wang, Zhijian; Zhu, Tao; Yang, Shumin; Si, Hongyan; Wang, Yi; Tan, Yunhong; Chen, Tianzhu; Chen, Chen; Xia, Yinyin; Cheng, Shiming; Xu, Weiguo; Jin, Qi

    2016-07-01

    Prospective population data on the incidence of tuberculosis (TB) infection has been sparsely reported in the global literature.A population-based prospective study was conducted in rural China to investigate the annual risk of TB infection, and its persistence using serial tuberculin skin tests (TSTs) and an interferon-γ release assay. In total, 13 580 eligible participants from four rural sites, identified as TST negative (<10 mm) or QuantiFERON-TB Gold In-Tube (QFT) (an interferon-γ release assay) negative from a baseline survey, were included in the first year's follow-up examination.The annual conversion rate of QFT among the study sites ranged between 2.1% and 4.9% (average 3.1%), and the incidence of TST conversion ranged between 6.0% and 31.1% (average 14.5%). During the second year's follow-up, infection persistence was investigated using 390 subjects with QFT conversions. Among them, 49.7% (164 out of 330) were found to be consistently QFT positive. Both the conversion and the persistence of QFT positivity were found to be significantly increased with increasing age.In conclusion, the annual TB infection rate was suggested to be ∼1.5% based on persistent positive results after QFT conversion in rural China. Therefore, infection control among those high-risk populations, including the elderly, should be prioritised for TB control in China. PMID:27230438

  20. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  1. Pinellas Plant Annual Site Environmental Report for calendar year 1994

    SciTech Connect

    1995-06-01

    This report presents a comprehensive summary of the results of the Environmental Monitoring, Waste Management, and Environmental Restoration Programs at the Pinellas Plant, in Pinellas County, Florida for 1994. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major Environmental, Safety and Health Program initiatives and accomplishments for 1994. As a result of the end of Department of Energy Defense Programs mission production on September 30, 1994, considerable changes at the Pinellas Plant occurred. These changes, which included transitioning the plant toward alternate use in support of economic development and safe shutdown, both increased and heightened Environmental, Safety and Health responsibilities. In December 1994, the Department of Energy announced it had reached an agreement to sell the Pinellas Plant to the Pinellas County Industry Council in March 1995. The plant is being leased back by the Department of Energy through September 1997 to complete safe shutdown, reconfiguration, transfer of equipment to other Department of Energy production facilities, and transition to commercial ventures. Permit modifications and transfers will be completed during 1995 to reflect the new ownership by the Pinellas County Industry Council and to include new tenants as needed.

  2. Adult body mass and annual production/biomass relationships of field populations

    SciTech Connect

    Banse, K.; Mosher, S.

    1980-09-01

    We investigate specific production rates (per unit biomass) of populations using published data on the relation of annual production/mean biomass (P/B). Aquatic and terrestrial invertebrates between the sizes of copepods and clams are emphasized, ranging about 10/sup 5/-fold in body mass upon reaching maturity, and about 10/sup 2/-fold in P/B. Fishes and mammals are briefly treated; phytoplankton is mentioned. For 33 invertebrates living at annual mean temperatures between about 5/sup 0/ and 20/sup 0/C, M/sub s/ is shown to be an efficient and precise estimator, or scaling factor, of the annual P/B. The rate declines markedly with M/sub s/ according to P/B = 0.65M/sub s//sup -0/ /sup 37/. The exponent differs significantly from the -0.25 power of comparative physiology. Most of the measured values of P/B fall within 50 to 200% of predicted values. Much of this variability is associated with the ratio of annual production/annual respiration (P/R): for a given M/sub s/, species achieving about half the predicted P/B have P/R ratios of about 0.1; those achieving twice the predicted P/B have P/R ratios of about 1.0. Age upon reaching maturity contributes some variability, with late-maturing (> 1 yr) species tending towards a higher P/B. The variability is not significantly correlated with phylogenetic relationships (excepting insects for which P/B might not be mass-dependent), trophic type, major habitat, production rate, or biomass of the populations.

  3. Population, Behavioural and Physiological Responses of an Urban Population of Black Swans to an Intense Annual Noise Event

    PubMed Central

    Payne, Catherine J.; Jessop, Tim S.; Guay, Patrick-Jean; Johnstone, Michele; Feore, Megan; Mulder, Raoul A.

    2012-01-01

    Wild animals in urban environments are exposed to a broad range of human activities that have the potential to disturb their life history and behaviour. Wildlife responses to disturbance can range from emigration to modified behaviour, or elevated stress, but these responses are rarely evaluated in concert. We simultaneously examined population, behavioural and hormonal responses of an urban population of black swans Cygnus atratus before, during and after an annual disturbance event involving large crowds and intense noise, the Australian Formula One Grand Prix. Black swan population numbers were lowest one week before the event and rose gradually over the course of the study, peaking after the event, suggesting that the disturbance does not trigger mass emigration. We also found no difference in the proportion of time spent on key behaviours such as locomotion, foraging, resting or self-maintenance over the course of the study. However, basal and capture stress-induced corticosterone levels showed significant variation, consistent with a modest physiological response. Basal plasma corticosterone levels were highest before the event and decreased over the course of the study. Capture-induced stress levels peaked during the Grand Prix and then also declined over the remainder of the study. Our results suggest that even intensely noisy and apparently disruptive events may have relatively low measurable short-term impact on population numbers, behaviour or physiology in urban populations with apparently high tolerance to anthropogenic disturbance. Nevertheless, the potential long-term impact of such disturbance on reproductive success, individual fitness and population health will need to be carefully evaluated. PMID:23024783

  4. Population, behavioural and physiological responses of an urban population of black swans to an intense annual noise event.

    PubMed

    Payne, Catherine J; Jessop, Tim S; Guay, Patrick-Jean; Johnstone, Michele; Feore, Megan; Mulder, Raoul A

    2012-01-01

    Wild animals in urban environments are exposed to a broad range of human activities that have the potential to disturb their life history and behaviour. Wildlife responses to disturbance can range from emigration to modified behaviour, or elevated stress, but these responses are rarely evaluated in concert. We simultaneously examined population, behavioural and hormonal responses of an urban population of black swans Cygnus atratus before, during and after an annual disturbance event involving large crowds and intense noise, the Australian Formula One Grand Prix. Black swan population numbers were lowest one week before the event and rose gradually over the course of the study, peaking after the event, suggesting that the disturbance does not trigger mass emigration. We also found no difference in the proportion of time spent on key behaviours such as locomotion, foraging, resting or self-maintenance over the course of the study. However, basal and capture stress-induced corticosterone levels showed significant variation, consistent with a modest physiological response. Basal plasma corticosterone levels were highest before the event and decreased over the course of the study. Capture-induced stress levels peaked during the Grand Prix and then also declined over the remainder of the study. Our results suggest that even intensely noisy and apparently disruptive events may have relatively low measurable short-term impact on population numbers, behaviour or physiology in urban populations with apparently high tolerance to anthropogenic disturbance. Nevertheless, the potential long-term impact of such disturbance on reproductive success, individual fitness and population health will need to be carefully evaluated. PMID:23024783

  5. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  6. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    NASA Astrophysics Data System (ADS)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  7. Dominance and environmental correlates of alien annual plants in the Mojave Desert, USA

    USGS Publications Warehouse

    Brooks, M.L.; Berry, K.H.

    2006-01-01

    Land managers are concerned about the negative effects of alien annual plants on native plants, threatened and endangered species such as the desert tortoise (Gopherus agassizii), and ecosystem integrity in the Mojave Desert. Management of alien plants is hampered by a lack of information regarding the dominance and environmental correlates of these species. The results of this study indicate that alien plant species comprised a small fraction of the total annual plant flora, but most of the annual plant community biomass. When rainfall was high in 1995, aliens comprised 6% of the flora and 66% of the biomass. When rainfall was low in 1999, aliens comprised 27% of the flora and 91% of the biomass. Bromus rubens, Schismus spp. (S. arabicus and S. barbatus), and Erodium cicutarium were the predominant alien species during both years, comprising 99% of the alien biomass. B. rubens was more abundant in relatively mesic microhabitats beneath shrub canopies and at higher elevations above 800-1000 m, whereas Schismus spp. and E. cicutarium were more abundant in the relatively arid interspaces between shrubs, and, for Schismus spp., at lower elevations as well. Disturbance variables were more reliable indicators of alien dominance than were productivity or native plant diversity variables, although relationships often varied between years of contrasting rainfall. The strongest environmental correlates occurred between dirt road density and alien species richness and biomass of E. cicutarium, and between frequency and size of fires and biomass of B. rubens.

  8. Aerial and soil seed banks enable populations of an annual species to cope with an unpredictable dune ecosystem

    PubMed Central

    Gao, Ruiru; Yang, Xuejun; Yang, Fan; Wei, Lingling; Huang, Zhenying; Walck, Jeffrey L.

    2014-01-01

    Background and Aims Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. Methods Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. Key Results The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. Conclusions The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment. PMID:24918206

  9. Using flowering and heat-loss models for improving greenhouse energy-use efficiency in annual bedding plant production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In temperate climates, annual bedding plants are typically produced in heated greenhouses from late winter through early summer. Temperature, photoperiod, light intensity, and transplant date are commonly manipulated during commercial production so that plants are in flower for predetermined market ...

  10. Evaluate Habitat Use and Population Dynamics of Lampreys in Cedar Creek, 2001 Annual Report.

    SciTech Connect

    Stone, Jennifer; Pirtle, Jody; Barndt, Scott A.

    2002-03-31

    Pacific lamprey (Lampetra tridentata) in the Columbia River Basin have declined to a remnant of their pre-1940s populations and the status of the western brook lamprey (L. richardsoni) is unknown. Identifying the biological and ecological factors limiting lamprey populations is critical to their recovery, but little research has been conducted on these species within the Columbia River Basin. This ongoing, multi-year study examines lamprey populations in Cedar Creek, Washington, a third-order tributary to the Lewis River. This annual report describes the activities and results of the second year of this project. Adult (n = 24), metamorphosed (n = 247), transforming (n = 4), and ammocoete (n = 387) stages from both species were examined in 2001. Lamprey were captured using adult fish ladders, lamprey pots, rotary screw traps, and lamprey electrofishers. Twenty-nine spawning ground surveys were conducted. Nine strategic point-specific habitat surveys were performed to assess habitat requirements of juvenile lamprey.

  11. Roosting, social organization and the annual cycle in a Kenya population of the bat Pipistrellus nanus

    USGS Publications Warehouse

    O'Shea, Thomas J.

    1980-01-01

    The tiny (3.1–3.8 g) vespcrtilionid bat Pipistrellus nanus was studied in Kenya palm-thatched roofs from May 1973 to July 1974. Roosting social organization and related activities and behavior are described. ♂♂ held diurnal roosting territories where ♀♀ gathered in small and compositionally labile groups, attracted to the most vocal ♂♂. Annual variation in population-wide aspects of social organization follows predictable seasonal changes in climate and predator abundance. Variability between individuals follows a common mammalian pattern: high male competition for ♀, variance in presumed male reproductive success, and a mating system resembling one based on resource defense polygyny. Social organization in this population contrasts with that known from studies of other P. nanus populations.

  12. ORGANIC PESTICIDE MODIFICATION OF SPECIES INTERACTIONS USING ANNUAL PLANT COMMUNITIES

    EPA Science Inventory

    A method is proposed and tested for assessing multispecies responses to three pesticides (atrazine, 2,4,D and malathion). Pesticides were applied at two concentrations, mon model plant communities grown in raised beds using soil containing a natural weed bank. over by species was...

  13. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  14. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  15. The influence of geographic location on population exposure to emissions from power plants throughout China.

    PubMed

    Zhou, Ying; Levy, Jonathan I; Evans, John S; Hammitt, James K

    2006-04-01

    This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 x 0(-5)), followed by sulfur dioxide (5 x 10(-6)), sulfate from sulfur dioxide (4 x 10(-6)), and nitrate from nitrogen oxides (4 x 10(-6)). For all pollutants, the intake fractions span approximately an order of magnitude across sites. In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants (R(2) between 0.86 and 0.95 across pollutants), with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling. These findings demonstrate that intake fractions for power plants in China can be estimated with

  16. LIVESTOCK ACTIVITY AND CHIHUAHUAN DESERT ANNUAL-PLANT COMMUNITIES: BOUNDARY ANALYSIS OF DISTURBANCE GRADIENTS

    EPA Science Inventory

    The impact of domestic livestock on soil properties and perennial vegetation is greatest close to water points and generally decreases exponentially with distance from water. We hypothesized that the impact of livestock on annual-plant communities would be similar to that on per...

  17. Are early summer wildfires an opportunity to revegetate exotic annual grass-invaded plant communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medusahead (Taeniatherum caput-medusae (L.) Nevski) is an exotic annual grass reducing biodiversity and altering ecosystem function and processes in rangelands. Revegetation of medusahead-invaded plant communities is needed to improve ecosystem function, increase livestock forage production, and im...

  18. Distinct invasion strategies operating within a natural annual plant system.

    PubMed

    Lai, Hao Ran; Mayfield, Margaret M; Gay-des-Combes, Justine M; Spiegelberger, Thomas; Dwyer, John M

    2015-04-01

    Alien plant species are known to have a wide range of impacts on recipient communities, from resident species' exclusions to coexistence with resident species. It remains unclear; however, if this variety of impacts is due to different invader strategies, features of recipient communities or both. To test this, we examined multiple plant invasions of a single ecosystem in southwestern Australia. We used extensive community data to calculate pairwise segregation between target alien species and many co-occurring species. We related segregation to species' positions along community trait hierarchies and identified at least two distinct invasion strategies: 'exploiters' which occupy high positions along key trait hierarchies and reduce local native species diversity (particularly in nutrient-enriched situations), and 'coexisters' who occupy intermediate trait positions and have no discernable impact on native diversity. We conclude that trait hierarchies, linked to measures of competition, can provide valuable insights about the processes driving different invasion outcomes. PMID:25728390

  19. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2003-01-01

    1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems. 2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America. 3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3.2 g N m-2 year-1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium. 4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens. 5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among individual

  20. Nongenetic Inheritance of Induced Resistance in a Wild Annual Plant.

    PubMed

    Lankinen, Åsa; Abreha, Kibrom B; Alexandersson, Erik; Andersson, Stefan; Andreasson, Erik

    2016-08-01

    Nongenetic inheritance (e.g., transgenerational epigenetic effects) has received increasing interest in recent years, particularly in plants. However, most studies have involved a few model species and relatively little is known about wild species in these respects. We investigated transgenerational induced resistance to infection by the devastating oomycete Phytophthora infestans in Solanum physalifolium, a wild relative of cultivated potato. We treated plants with β-aminobutyric acid (BABA), a nontoxic compound acting as an inducing agent, or infected plants with P. infestans. BABA treatment reduced lesion size in detached-leaf assays inoculated by P. infestans in two of three tested genotypes, suggesting that resistance to oomycetes can be induced by BABA within a generation not only in crops or model species but also in wild species directly collected from nature. Both BABA treatment and infection in the parental generation reduced lesions in the subsequent generation in one of two genotypes, indicating a transgenerational influence on resistance that varies among genotypes. We did not detect treatment effects on seed traits, indicating the involvement of a mechanism unrelated to maternal effects. In conclusion, our study provides data on BABA induction and nongenetic inheritance of induced resistance in a wild relative of cultivated potato, implying that this factor might be important in the ecological and agricultural landscape. PMID:27070426

  1. Regulation of polyamine synthesis in plants. Annual progress report

    SciTech Connect

    Malmberg, R.L.

    1993-02-09

    Polyamines are small positively charged compounds that have been hypothesized to be involved in a wide variety of plant physiological and development functions. The regulation of the polyamine synthesis pathway is uniquely interesting because of the existence of two pathways to putrescine synthesis, and the consequent questions of how these two pathways are compartmentalized and how they interact with each other. The specific directions our research is taking are: (1) A characterization of arginine decarboxylase regulation; we have discovered two post-translational mechanisms for regulating arginine decarboxylase activity. One of these is a novel protease that clips the arginine decarboxylase pre-protein to activate it. We would like to understand this activating protease better, determine its mechanism of action, and determine its importance in the overall scheme of arginine decarboxylase regulation. (2) We have begun a similar characterization of ornithine decarboxylase by purifying it from plants. (3) We are characterizing the polyamine mutant collection we have developed. (4) Finally, we have begun to characterize the evolution of arginine decarboxylase, as an additional approach that could shed light on its functions in plants. Our intent is to understand arginine decarboxylase structure and regulation in detail, and then to further explore regulatory differences between ornithine and arginine decarboxylases.

  2. Population structure of a vector-borne plant parasite.

    PubMed

    Yule, Kelsey M; Koop, Jennifer A H; Alexandre, Nicolas M; Johnston, Lauren R; Whiteman, Noah K

    2016-07-01

    Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation. PMID:27154249

  3. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  4. Cautions on direct gene flow estimation in plant populations.

    PubMed

    Burczyk, Jaroslaw; Chybicki, Igor J

    2004-05-01

    Through simulations we have investigated the statistical properties of two of the main approaches for directly estimating pollen gene flow (m) in plant populations: genotypic exclusion and mating models. When the assumptions about accurately known background pollen pool allelic frequencies are met, both methods provide unbiased results with comparable variances across a range of true m values. However, when presumed allelic frequencies differ from actual ones, which is more likely in research practice, both estimators are biased. We demonstrate that the extent and direction of bias largely depend on the difference (measured as genetic distance) between the presumed and actual pollen pools, and on the degree of genetic differentiation between the local population and the actual background pollen sources. However, one feature of the mating model is its ability to estimate pollen gene flow simultaneously with background pollen pool allelic frequencies. We have found that this approach gives nearly unbiased pollen gene flow estimates, and is practical because it eliminates the necessity of providing independent estimates of background pollen pool allelic frequencies. Violations of the mating model assumptions of random mating within local population affect the precision of the estimates only to a limited degree. PMID:15212377

  5. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    PubMed

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  6. 1995 Annual epidemiologic surveillance report for Pantex Plant

    SciTech Connect

    1998-06-01

    This report provides a summary of epidemiologic surveillance data collected from the Pantex Plant from January 1, 1995 through December 31,1995. The data were collected by a coordinator at Pantex and submitted to the Epidemiologic Surveillance Data Center,located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The data presented apply only to Pantex. The main sections of the report are the same as in previous years; the 1995 report provides additional information describing the work force by age and occupational groups.

  7. Correlations between U.S. county annual cancer incidence and population density

    PubMed Central

    Vares, David AE; St-Pierre, Linda S; Persinger, Michael A

    2015-01-01

    Population density implicitly involves specific distances between living individuals who exhibit biophysical forces and energies. Objective was to investigate major data bases of cancer incidence and population data to help understand the emergent properties of diseases that become apparent only when large populations and areas are considered. Correlation analyses of the annual incidence (years 2007 to 2011) of cancer in counties (2,885) of the U.S. and population densities were convergent with these quantitative predictions and suggested an inflection threshold around 50 people per square mile. The potential role of subtle or even “non-local” factors coupled to averaged population density in the viability and mortality of the human species may serve as alternative explanations to the attribution of malignancy to “chance” factors. Calculations indicated average distances between the electric force dipole of the brains or bodies of human beings generate forces known to affect DNA extension and when distributed over the Compton wavelength of the electron could produce energies sufficient to affect the binding of base nucleotides. An inclusive science of human ecology might benefit from considering subtle forces and energies associated with the individual members within the habitat that could determine the probability of cellular anomalies. PMID:26807326

  8. A Mechanistic Study of Plant and Microbial Controls over R* for Nitrogen in an Annual Grassland

    PubMed Central

    Levine, Jonathan M.; HilleRisLambers, Janneke

    2014-01-01

    Differences in species' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth. PMID:25170943

  9. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    SciTech Connect

    Not Available

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.

  10. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  11. (Restriction of virus infection by plants: Annual report, 1986)

    SciTech Connect

    Bruening, G.

    1986-12-05

    This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to support the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.

  12. [Restriction of virus infection by plants: Annual report, 1986

    SciTech Connect

    Bruening, G.

    1986-12-05

    This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to support the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.

  13. The contribution of germination functional traits to population dynamics of a desert plant community.

    PubMed

    Huang, Zhenying; Liu, Shuangshuang; Bradford, Kent J; Huxman, Travis E; Venable, D Lawrence

    2016-01-01

    Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics. PMID:27008793

  14. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  15. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  16. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  17. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  18. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  19. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    PubMed Central

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  20. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis) weeds and plant community composition.

    PubMed

    Ahrens, Collin W; Auer, Carol A

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  1. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  2. Optimal allocation in annual plants and its implications for drought response

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Smith, Matthew; Purves, Drew

    2015-04-01

    The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.

  3. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: Plant-soil relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have examined plant-soil relationships in competitive arenas between exotic and native plants in the western United States. A pair-wise competitive design was used to evaluate plant-soil relationships between seedings of the exotic annual grasses Bromus tectorum and Taentherium caput-med...

  4. Evaluate Habitat Use and Population Dynamics of Lampreys in Cedar Creek, Annual Report 2002.

    SciTech Connect

    Pirtle, Jodi; Stone, Jennifer; Barndt, Scott

    2003-03-01

    Pacific lamprey (Lampetra tridentata) in the Columbia River basin have declined to a remnant of their pre-1940s populations and the status of the western brook lamprey (L. richardsoni) and river lamprey (L. ayresi) is unknown. Identifying the biological and ecological factors limiting lamprey populations is critical to their recovery, but little research has been conducted on these species within the Columbia River basin. This ongoing, multi-year study examines lamprey populations in Cedar Creek, Washington, a third-order tributary to the Lewis River. This annual report describes the activities and results of the third year of this project. Adult (n = 62), metamorphosed (n = 76), transforming (n = 4), and ammocoete (n = 315) stages of Pacific and western brook lamprey were examined in 2002. Lampreys were captured using adult fish ladders, lamprey pots, rotary screw traps, and lamprey electrofishers. In addition, fifty-four spawning ground surveys were conducted during which 124 Pacific lamprey and 13 western brook lamprey nests were identified. Stream gradient of spawning grounds were surveyed to better understand spawning habitat requirements.

  5. 2003 Kansas City Plant Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for the Kansas City Plant. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  6. Habitat invasibility and dominance by alien annual plants in the western Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    1999-01-01

    Patterns of habitat invasibility and alien dominance, respectively measured as species richness and biomass of alien annual plants, were evaluated in association with four habitat factors at the Desert Tortoise Research Natural Area (DTNA) in the western Mojave Desert, USA. Habitat factors varied in levels of disturbance outside (high) and inside (low) the DTNA, and in levels of soil nutrients in washlet (high) and hummock (low) topographic positions, in Larrea-north (high), Larrea-south (medium), and interspace (low) microhabitats near creosote bushes (Larrea tridentata), and during 1995 when rainfall was 207% (high) and 1994 when rainfall was 52% (low) of the long-term average. Dominant alien plants included the annual grasses Bromus rubens, Bromus trinii, and Schismus spp., and the forb Erodium cicutarium. Species richness and dominance of alien annual plants were slightly higher where disturbance was high, and much higher where soil nutrients were high. B. rubens and B. trinii were most dominant in washlets and in the Larrea-north microhabitats during both years. These two species evolved in mesic ecosystems, and appeared to be particularly limited by soil nutrients at this site. Schismus spp. and E. cicutarium were also most dominant in washlets, but their dominance varied between interspaces in 1994 and the Larrea-south microhabitat in 1995. Monitoring to detect the invasion of new annual plants should focus on regions of high rainfall and nitrogen deposition and on washes and beneath-canopy microhabitats. The ecological range of each alien species should be evaluated separately, because their evolutionary origins may greatly affect their patterns of invasion and dominance in the Mojave Desert.

  7. 2003 Pantex Plant Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05

    Annual Illness and Injury Surveillance Program report for 2003 for the Pantex Plant. DOE is commited to assuring the health and safety of its workers. This includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  8. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1977-01-01

    A network of sampling sites throughout the annual grassland region was established to correlate plant growth in stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. Data were analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site, and changing growth conditions.

  9. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  10. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina

    PubMed Central

    Zhang, Shiting; Zhao, Chuan; Lamb, Eric G.

    2011-01-01

    Background and Aims The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. Methods Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. Key Results Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. Conclusions It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness. PMID:21196450

  11. Seasonal timing of first rain storms affects rare plant population dynamics

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  12. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species

    PubMed Central

    Breza, Lauren C; Souza, Lara; Sanders, Nathan J; Classen, Aimée T

    2012-01-01

    Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO2 exchange (GEE) and net ecosystem CO2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations. PMID:22833791

  13. Population genetic structure of annual and perennial populations of Zostera marina L. along the Pacific coast of Baja California and the Gulf of California

    USGS Publications Warehouse

    Munoz-Salazar, R.; Talbot, S.L.; Sage, G.K.; Ward, D.H.; Cabello-Pasini, Alejandro

    2005-01-01

    The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using θ values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest θ (0.13-0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (θ = 0.04-0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Nino Southern Oscillation (ENSO) events along the Pacific coast.

  14. PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schadt, Christopher

    2013-03-01

    Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

  15. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    PubMed

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current

  16. Modeling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae).

    PubMed

    Weiner, J; Kinsman, S; Williams, S

    1998-11-01

    We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately. PMID:21680325

  17. Residue Impacts on Runoff and Soil Erosion for Different Corn Plant Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year to year carry-over effects of biomass additions under different plant populations on runoff and erosion is unclear. The objective of this study was to quantify the impact of different plant populations on residue cover to elucidate the effects of residue cover on runoff and erosion. The res...

  18. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, L.A.; Detling, J.K.; Tracy, C.R.; Warren, S.D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g-1 dry mass). However, total shoot N (mg N m-2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass x concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one

  19. Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant

    USGS Publications Warehouse

    Krushelnycky, Paul D.; Loope, Lloyd L.; Giambelluca, Thomas W.; Starr, Forest; Starr, Kim; Drake, Donald R.; Taylor, Andrew D.; Robichaux, Robert H.

    2013-01-01

    Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate-associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well-protected and relatively abundant species may succumb to climate-induced stresses.

  20. Bidirectional recovery patterns of Mojave Desert vegetation in an aqueduct pipeline corridor after 36 years: II. Annual plants

    USGS Publications Warehouse

    Berry, Kristin H.; Mack, Jeremy S.; Weigand, James F.; Gowan, Timothy A.; LaBerteaux, Denise

    2015-01-01

    We studied recovery of winter annual plants in a 97-m wide disturbed aqueduct corridor in the Mojave Desert 36 years after construction. We established plots at 0, 20, and 40 m from the road verge at the corridor center and at 100 m in undisturbed vegetation. We recorded 47 annual species, of which 41 were native and six were exotic. Exotic species composed from 64 to 91% of total biomass. We describe a bilateral process of recovery: from the road verge to the outward edge of the corridor and from undisturbed habitat into the corridor. Native annual plants significantly increased in richness from road verge to undisturbed vegetation, but not in density, biomass, or cover. In contrast, exotic annual plants increased in density, biomass, cover and richness with increasing distance from the road verge. The species of colonizing shrubs and type of canopy cover affected density, biomass, and richness of annuals. Species composition of native annuals differed significantly by distance, suggesting secondary succession. In general, native annuals were closer to achieving recovery on the 40-m plots than at the road verge. Recovery estimates were in centuries and dependent on location, canopy type, and whether considering all annuals or natives only.

  1. F-box gene family is expanded in herbaceous annual plants Arabidopsis and rice relative to woody perennial plant Populus

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Jawdy, Sara; Gunter, Lee E; Yin, Tongming; Tschaplinski, Timothy J; Weston, David; Ranjan, Priya; Tuskan, Gerald A

    2008-01-01

    F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteosome pathway. In plants, F-box genes influence a variety of biological processes such as leaf senescence, branching, self-incompatibility and responses to biotic and abiotic stresses. The number of F-box genes in Populus (~320) is less than half that found in Arabidopsis (~660) or rice (~680), even though the total number of genes in Populus is equivalent to that in rice and 1.5 times that in Arabidopsis. We performed comparative genomic analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and rice in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure and gene expression. The set of F-box genes shared by these three species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and rice. The present study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.

  2. Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2014-01-01

    Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( λ ¯ = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.

  3. Host Preferences of Arbuscular Mycorrhizal Fungi Colonizing Annual Herbaceous Plant Species in Semiarid Mediterranean Prairies

    PubMed Central

    Torrecillas, E.; Roldán, A.

    2012-01-01

    In this study, we have analyzed and compared the diversities of the arbuscular mycorrhizal fungi (AMF) colonizing the roots of five annual herbaceous species (Hieracium vulgare, Stipa capensis, Anagallis arvensis, Carduus tenuiflorus, and Avena barbata) and a perennial herbaceous species (Brachypodium retusum). Our goal was to determine the differences in the communities of the AMF among these six plant species belonging to different families, using B. retusum as a reference. The AMF small-subunit rRNA genes (SSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Thirty-six AMF phylotypes, belonging to Glomus group A, Glomus group B, Diversispora, Paraglomus, and Ambispora, were identified. Five sequence groups identified in this study clustered to known glomalean species or isolates: group Glomus G27 to Glomus intraradices, group Glomus G19 to Glomus iranicum, group Glomus G10 to Glomus mosseae, group Glomus G1 to Glomus lamellosum/etunicatum/luteum, and group Ambispora 1 to Ambispora fennica. The six plant species studied hosted different AMF communities. A certain trend of AMF specificity was observed when grouping plant species by taxonomic families, highlighting the importance of protecting and even promoting the native annual vegetation in order to maintain the biodiversity and productivity of these extreme ecosystems. PMID:22752164

  4. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  5. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    SciTech Connect

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  6. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids.

    PubMed

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H Charles J; Liu, Xiang-Dong

    2016-04-01

    Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids. PMID:26850304

  7. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  8. Population rules can apply to individual plants and affect their architecture: an evaluation on the cushion plant Mulinum spinosum (Apiaceae)

    PubMed Central

    Puntieri, Javier G.; Damascos, María A.; Llancaqueo, Yanina; Svriz, Maya

    2010-01-01

    Background and aims Plants are regarded as populations of modules such as axes and growth units (GUs, i.e. seasonally produced axis segments). Due to their dense arrays of GUs, cushion plants may resemble crowded plant populations in the way the number of components (GUs in plants, individuals in populations) relates to their individual sizes. Methodology The morphological differentiation of GUs and its relationship with biomass accumulation and plant size were studied for the cushion subshrub Mulinum spinosum (Apiaceae), a widespread species in dry areas of Patagonia. In 2009, GUs were sampled from one-quarter of each of 24 adult plants. Within- and between-plant variations in GU length, diameter, number of nodes and biomass were analysed and related to whole-plant size. Principal results Each year, an M. spinosum cushion develops flowering GUs and vegetative GUs. Flowering GUs are larger, twice as numerous and contain two to four times more dry mass (excluding reproductive structures) than vegetative GUs. The hemispherical area of the cushions was positively correlated with the biomass of last-year GUs. The biomass of flowering GUs was negatively correlated with the density of GUs. Mulinum spinosum plants exhibited a notable differentiation between flowering and vegetative GUs, but their axes, i.e. the sequences of GUs, were not differentiated throughout the plants. Flowering GUs comprised a major proportion of each plant's photosynthetic tissues. Conclusions A decrease in the size of flowering GUs and in their number relative to the total number of GUs per plant, parallel to an increase in GU density, is predicted as M. spinosum plants age over years. The assimilative role of vegetative GUs is expected to increase in summer because of their less exposed position in the cushion. These GUs would therefore gain more from warm and dry conditions than flowering GUs. PMID:22476077

  9. Annual survival rates of adult and immature eastern population tundra swans

    USGS Publications Warehouse

    Nichols, J.D.; Bart, J.; Limpert, R.J.; Sladen, William J. L.; Hines, J.E.

    1992-01-01

    Tundra swans (Cygnus columbianus ) of the eastern population were neckbanded in Maryland, North Carolina, and Alaska from 1966 through 1990. These swans were resighted and recaptured during autumn, winter, and spring, 1966-1990. Although the original motivation for this study involved swan movements, we wanted to use the resulting data to test hypotheses about sources of variation in swan survival rates. Recaptures of legbanded and neckbanded swans permitted us to estimate neckband loss rates, which were found to vary with age and sex of swans, and number of years since initial application. Estimates of annual neckband retention rate ranged from about 0.50 for adult male swans greater than or equal to 2 years after initial neckbanding to > 0.96 for immature swans and adult females the first year following neckbanding. This variation in neckband loss rates prevented the simple correction of survival estimates to account for such loss. Consequently, we developed a series of multinomial models parameterized with survival, sighting, and neckband retention probabilities for use with the recapture and resighting data.

  10. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  11. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1975-01-01

    A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.

  12. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  13. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism. PMID:26003308

  14. The effects of invertebrate herbivores on plant population growth: a meta-regression analysis.

    PubMed

    Katz, Daniel S W

    2016-09-01

    Over the last two decades, an increasing number of studies have quantified the effects of herbivory on plant populations using stage-structured population models and integral projection models, allowing for the calculation of plant population growth rates (λ) with and without herbivory. In this paper, I assembled 29 studies and conducted a meta-regression to determine the importance of invertebrate herbivores to population growth rates (λ) while accounting for missing data. I found that invertebrate herbivory often induced important reductions in plant population growth rates (with herbivory, λ was 1.08 ± 0.36; without herbivory, λ was 1.28 ± 0.58). This relationship tended to be weaker for seed predation than for other types of herbivory, except when seed predation rates were very high. Even so, the amount by which studies reduced herbivory was a poor predictor of differences in population growth rates-which strongly cautions against using measured herbivory rates as a proxy for the impact of herbivores. Herbivory reduced plant population growth rates significantly more when potential growth rates were high, which helps to explain why there was less variation in actual population growth rates than in potential population growth rates. The synthesis of these studies also shows the need for future studies to report variance in estimates of λ and to quantify how λ varies as a function of plant density. PMID:27017603

  15. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly

    SciTech Connect

    Azadi, Paratoo

    2015-09-24

    The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s mission and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.

  16. Influence of Nonhost Plants on Population Decline of Rotylenchulus reniformis

    PubMed Central

    Caswell, E. P.; DeFrank, J.; Apt, W. J.; Tang, C. S.

    1991-01-01

    The influence of Chloris gayana, Crotalaria juncea, Digitaria decumbens, Tagetes patula, and a chitin-based soil amendment on Hawaiian populations of Rotylenchulus reniformis was examined. Chloris gayana was a nonhost for R. reniformis. The nematode did not penetrate the roots, and in greenhouse and field experiments, C. gayana reduced reniform nematode numbers at least as well as fallow. Tagetes patula was a poor host for reniform nematode and reduced reniform nematode numbers in soil better than did fallow. Crotalaria juncea was a poor host for R. reniformis, and only a small fraction of the nematode population penetrated the roots. Crotalaria juncea and D. decumbens reduced reniform nematode populations at least as well as fallow. A chitin-based soil amendment, applied at 2.24 t/ha to fallow soil, did not affect the population decline of reniform nematode. PMID:19283098

  17. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska

    PubMed Central

    Pérez-Hernández, Oscar; Giesler, Loren J.

    2014-01-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160

  18. Population based mortality surveillance in carbon products manufacturing plants.

    PubMed Central

    Teta, M J; Ott, M G; Schnatter, A R

    1987-01-01

    The utility of a population based, corporate wide mortality surveillance system was evaluated after a 10 year observation period of one of the company's divisions. The subject population, 2219 white male, long term employees from Union Carbide Corporation's carbon based electrode and specialty products operations, was followed up for mortality from 1974 to 1983. External comparisons with the United States male population were supplemented with internal comparisons among subgroups of the study population, defined by broad job categories and time related variables, adjusting for important correlates of the healthy worker effect. Significant deficits of deaths were observed for all causes and the major non-cancer causes of death. The numbers of deaths due to malignant neoplasms and respiratory cancer were less than, but not statistically different from, expected. There was a non-significant excess of deaths from lymphopoietic cancer, occurring predominantly among salaried employees. When specific locations were examined, operations with potential exposure to coal tar products exhibited a mortality pattern similar to that of the total cohort. The risk for lung cancer was significantly raised (five observed, 1.4 expected) in one small, but older, location which did not involve coal tar products during the period of employment of these individuals, but which historically used asbestos materials for several unique applications. Although these findings are limited by small numbers and a short observation period, the population based surveillance strategy has provided valuable information regarding the mortality experience of the population, directions for future research, and the allocation of epidemiological resources. PMID:3593661

  19. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  20. Grazing maintains native plant diversity and promotes community stability in an annual grassland.

    PubMed

    Beck, Jared J; Hernández, Daniel L; Pasari, Jae R; Zavaleta, Erika S

    2015-07-01

    Maintaining native biodiversity in grasslands requires management and mitigation of anthropogenic changes that have altered resource availability, grazing regimes, and community composition. In California (USA), high levels of atmospheric nitrogen (N) deposition have facilitated the invasion of exotic grasses, posing a threat to the diverse plant and insect communities endemic to serpentine grasslands. Cattle grazing has been employed to mitigate the consequences of exotic grass invasion, but the ecological effects of grazing in this system are not fully understood. To characterize the effects of realistic N deposition on serpentine plant communities and to evaluate the efficacy of grazing as a management tool, we performed a factorial experiment adding N and excluding large herbivores in California's largest serpentine grassland. Although we observed significant interannual variation in community composition related to climate in our six-year study, exotic cover was consistently and negatively correlated with native plant richness. Sustained low-level N addition did not influence plant community composition, but grazing reduced grass abundance while maintaining greater native forb cover, native plant diversity, and species richness in comparison to plots excluding large herbivores. Furthermore, grazing increased the temporal stability of plant communities by decreasing year-to-year variation in native forb cover, native plant diversity, and native species richness. Taken together, our findings demonstrate that moderate-intensity cattle grazing can be used to restrict the invasive potential of exotic grasses and maintain native plant communities in serpentine grasslands. We hypothesize that the reduced temporal variability in serpentine plant communities managed by grazing may directly benefit populations of the threatened Edith's Bay checkerspot butterfly (Euphydryas editha bayensis). PMID:26485954

  1. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies. PMID:27531607

  2. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    SciTech Connect

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  3. Temporal changes in secondary production of a population of the subtidal sand snail Umbonium costatum in Hakodate Bay, northern Japan: importance of annual change in age structure

    NASA Astrophysics Data System (ADS)

    Noda, Takashi

    1997-05-01

    Year-to-year changes in age structure, biomass ( B), annual secondary production ( P) and {P}/{overlineB} ratio are described of a population of the subtidal snail Umbonium costatum in Hakodate Bay, northern Japan, during a 6-y period (1982-1988). Population structure and values of biomass and production were highly variable from year to year; the ranges of the annual mean biomass, annual production and {P}/{overlineB} ratio were 3.71-9.22 g dry tissue m -2, 1.01-4.92 g dry tissue m -2 y -1 and 0.13-1.33 y -1 respectively. Change in the age structure was the most important single factor affecting temporal changes in annual production in this population. The annual production of the population was high when young individuals, which have a small body size and high growth rate, dominated the population. While annual {P}/{overlineB} ratios in 1983 and 1984 fell within the range of values reported for various other gastropods, those in 1985, 1986, 1987 and 1988 were markedly lower, if the relation between the population {P}/{overlineB} ratio and life span is taken into account. This demonstrates that production estimates from annual biomass and life-span values may lead to incorrect results in a recruitment-limited population.

  4. The Influence of Precipitation-Driven Annual Plant Growth on Dust Emission in the Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Fulton, R. E.

    2009-12-01

    Sparsely vegetated drylands are an important source for dust emission. However, little detail is known about dust generation in response to timing of precipitation and the consequent effects on soil and vegetation dynamics in these settings. This deficiency is especially acute at intermediate landscape scales, tens of meters to several hundred meters. It is essential to consider dust emission at this scale, because it links dust generation at scales of grains and wind tunnels with regional-scale dust examined using remotely sensed data from satellites. Three sites of slightly different geomorphic settings in the vicinity of Soda (dry) Lake were instrumented (in 1999) with meteorological and sediment transport sensors to measure wind erosion through saltating particle detection during high winds. Changes in vegetation in close proximity to the instrumented sites were bi-annually documented through measurements of plant type, cover, and repeat photographic imagery. Whereas high wind events are the dominant driver of saltation and dust emission, emissive conditions prevail only when annual plants are sparse or absent. Results show that wind erosion and dust emission at two study sites are highly variable and that such variability is dominantly related to vegetation type and cover as influenced by the amount and timing of antecedent precipitation. Secondary controls on dust emission are availability of new sediment related to flood deposits at the sites and seasonally differential wind strength. At sites where annual plants respond quickly and advantageously to precipitation, emissive conditions typically shut down because of vegetation growth within two to three months. This cover of annual plants, even when dead, persists in the desert landscape as a stabilizing agent for varying amounts of time, ten months to three years depending on the amount and vegetation type and subsequent input of precipitation and further annual plant growth. The lasting stabilization effect

  5. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants.

    PubMed

    Salama, Hediat M H; Al Watban, Ahlam A; Al-Fughom, Anoud T

    2011-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400-700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400-700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400-700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g(-1) f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g(-1) f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g(-1) f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all

  6. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. PMID:26548947

  7. Influence of Planting Date and Water Management on Reniform Nematode Populations in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting dates and water management practices were examined for potential impact on reniform nematode (Rotylenchulus reniformis) populations in cotton (Gossypium hirsutum). A field trial conducted in 2005 and 2006 in Stoneville, MS examined the influence of early (April 1) or normal (May 1) planting...

  8. A LABORATORY BIOASSAY FOR MONITORING RESISTANCE IN TARNISHED PLANT BUG POPULATIONS TO NEONICOTINOID INSECTICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed for testing tarnished plant bug populations for resistance development to the neonicotinoid insecticides imidacloprid and thiamethoxam. The bioassay allows for the determination of LC50 values by feeding known doses of the insecticides to adult tarnished plant bu...

  9. Resistance to Acephate in Tarnished Plant Bug (Heteroptera: Miridae) Populations in the Mississippi River Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A monitoring program to detect resistance in tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), populations in the delta of AR, LA, and MS, was conducted by testing populations collected from weeds with a glass-vial bioassay at 20 different delta locations from the fall of 2001 through the...

  10. Natural and introduced Fusarium verticillioides populations in ears of field-grown corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn may be colonized by the fungus, Fusarium verticillioides, resulting in both plant disease and mycotoxin contamination. The purpose of the current research was to compare frequencies of three F. verticillioides populations in kernels of corn grown under field conditions. The populations assess...

  11. Row Spacing and Plant Population Effects on Cotton Produced With or Without Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted from 2006 through 2008 to evaluate the effects of twin-row spacings, populations, and irrigation on cotton (Gossypium hirsutum L.) lint yields. Twin row systems, consisting of twin 18-, 25- and 38-cm rows on a 1-m bed at populations of 111,000 and 148,000 plants/acre, w...

  12. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". PMID:23317522

  13. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  14. Introduction beyond a species range: a relationship between population origin, adaptive potential and plant performance

    PubMed Central

    Volis, S; Ormanbekova, D; Yermekbayev, K; Song, M; Shulgina, I

    2014-01-01

    The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation. PMID:24690758

  15. Annual survival and recruitment in a Ruby-throated Hummingbird population, excluding the effect of transient individuals

    USGS Publications Warehouse

    Hilton, B.; Miller, M.W.

    2003-01-01

    We estimated annual apparent survival, recruitment, and rate of population growth of breeding Ruby-throated Hummingbirds (Archilochus colubris), while controlling for transients, by using 18 years of capture-mark-recapture data collected during 1984-2001 at Hilton Pond Center for Piedmont Natural History near York, South Carolina. Resident males had lower apparent survival (0.30 +/- 0.05 SE) than females (0.43 +/- 0.04). Estimates of apparent survival did not differ by age. Point estimates suggested that newly banded males were less likely than females to be residents, but standard errors of these estimates overlapped (males: 0.60 +/- 0.14 SE; females: 0.67 +/- 0.09). Estimated female recruitment was 0.60 +/- 0.06 SE, meaning that 60% of adult females present in any given year had entered the population during the previous year. Our estimate for rate of change indicated the population of female hummingbirds was stable during the study period (1.04 +/- 0.04 SE). We suggest an annual goal of greater than or equal to 64 adult females and greater than or equal to 64 immature females released per banding area to enable rigorous future tests for effects of covariates on population dynamics. Development of a broader cooperating network of hummingbird banders in eastern North America could allow tests for regional or metapopulation dynamics in this species.

  16. Absolute consistency: individual versus population variation in annual-cycle schedules of a long-distance migrant bird.

    PubMed

    Conklin, Jesse R; Battley, Phil F; Potter, Murray A

    2013-01-01

    Flexibility in scheduling varies throughout an organism's annual cycle, reflecting relative temporal constraints and fitness consequences among life-history stages. Time-selection can act at different scales, either by limiting the range of alternative strategies in the population, or by increasing the precision of individual performance. We tracked individual bar-tailed godwits Limosa lapponica baueri for two full years (including direct observation during non-breeding seasons in New Zealand and geolocator tracking of round-trip migrations to Alaska) to present a full annual-cycle view of molt, breeding, and migration schedules. At both population and individual scales, temporal variation was greater in post-breeding than pre-breeding stages, and greater in molts than in movements, but schedules did not tighten across successive stages of migration toward the breeding grounds. In general, individual godwits were quite consistent in timing of events throughout the year, and repeatability of pre-breeding movements was particularly high (r = 0.82-0.92). However, we demonstrate that r values misrepresent absolute consistency by confounding inter- and intra-individual variation; the biological significance of r values can only be understood when these are considered separately. By doing so, we show that some stages have considerable tolerance for alternative strategies within the population, whereas scheduling of northbound migratory movements was similar for all individuals. How time-selection simultaneously shapes both individual and population variation is central to understanding and predicting adaptive phenological responses to environmental change. PMID:23342168

  17. Managing breaches of containment and eradication of invasive plant populations

    PubMed Central

    Fletcher, Cameron S; Westcott, David A; Murphy, Helen T; Grice, Anthony C; Clarkson, John R

    2015-01-01

    Containment can be a viable strategy for managing invasive plants, but it is not always cheaper than eradication. In many cases, converting a failed eradication programme to a containment programme is not economically justified. Despite this, many contemporary invasive plant management strategies invoke containment as a fallback for failed eradication, often without detailing how containment would be implemented. We demonstrate a generalized analysis of the costs of eradication and containment, applicable to any plant invasion for which infestation size, dispersal distance, seed bank lifetime and the economic discount rate are specified. We estimate the costs of adapting eradication and containment in response to six types of breach and calculate under what conditions containment may provide a valid fallback to a breached eradication programme. We provide simple, general formulae and plots that can be applied to any invasion and show that containment will be cheaper than eradication only when the size of the occupied zone exceeds a multiple of the dispersal distance determined by seed bank longevity and the discount rate. Containment becomes proportionally cheaper than eradication for invaders with smaller dispersal distances, longer lived seed banks, or for larger discount rates. Both containment and eradication programmes are at risk of breach. Containment is less exposed to risk from reproduction in the ‘occupied zone’ and three types of breach that lead to a larger ‘occupied zone’, but more exposed to one type of breach that leads to a larger ‘buffer zone’. For a well-specified eradication programme, only the three types of breach leading to reproduction in or just outside the buffer zone can justify falling back to containment, and only if the expected costs of eradication and containment were comparable before the breach. Synthesis and applications. Weed management plans must apply a consistent definition of containment and provide sufficient

  18. Population status of the American alligator on the Savannah River Plant, South Carolina

    SciTech Connect

    Murphy, T.M.

    1981-04-01

    Estimates are presented of alligator numbers, size distribution, sex ratios, reproductive effort, and population trends for all major components of the entire Savannah River Plant (SRP) alligator population. Savannah River Plant operations have impacted the alligator population in many different ways. The formation of man-made reservoirs has dramatically increased the amount of aquatic habitat available to alligators and has therefore increased the carrying capacity of the SRP site for this species. The thermal alteration of aquatic habitats on the SRP has also impacted the resident alligator population. Temperature elevations of aquatic habitat to greater than 38/sup 0/C result in the loss of this habitat to alligators. Moderate thermal increases on the other hand are responded to by alligator movement. The current information available on the alligators of the SRP suggests the following future trends: low density populations distant from thermally altered areas will continue at a low density with the exception of localized increases.

  19. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused

  20. Ecotypic variation in growth responses to simulated herbivory: trade-off between maximum relative growth rate and tolerance to defoliation in an annual plant

    PubMed Central

    Camargo, Iván D.; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-01-01

    It has been hypothesized that slow-growing plants are more likely to maximize above-ground biomass and fitness when defoliated by herbivores than those with an already high relative growth rate (RGR). Some populations of the annual herb Datura stramonium L. can tolerate foliar damage better than others. The physiological basis of this difference is examined here in a comparative study of two ecotypes that differ in tolerance and maximum growth rate, using a growth analytical approach. One hundred and fifty-four plants of each ecotype grown under controlled conditions were suddenly defoliated (35 % of total leaf area removed) and a similar sample size of plants remained undefoliated (control). Ontogenetic plastic changes in RGR and its growth components [net assimilation rate (NAR), specific leaf area and leaf weight ratio (LWR)] after defoliation were measured to determine whether these plastic changes maximize plant growth and fitness. Different ontogenetic phases of the response were discerned and increased RGR of defoliated plants was detected at the end of the experimental period, but brought about by a different growth component (NAR or LWR) in each ecotype. These changes in RGR are putatively related to increases in fitness in defoliated environments. At the intra-specific scale, data showed a trade-off between the ability to grow under benign environmental conditions and the ability to tolerate resource limitation due to defoliation. PMID:25725085

  1. 77 FR 58510 - Proposed Information Collection; Comment Request; Current Population Survey (CPS), Annual Social...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ...; ] DEPARTMENT OF COMMERCE Census Bureau Proposed Information Collection; Comment Request; Current Population... whole and selected population groups of interest. Government planners and researchers use these data to..., recovery, and so on, and their differential effects on various population groups. A prime statistic...

  2. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state. PMID:26384860

  3. Genetic diversity of high-elevation populations of an endangered medicinal plant

    PubMed Central

    Nag, Akshay; Ahuja, Paramvir Singh; Sharma, Ram Kumar

    2015-01-01

    Intraspecific genetic variation in natural populations governs their potential to overcome challenging ecological and environmental conditions. In addition, knowledge of this variation is critical for the conservation and management of endangered plant taxa. Found in the Himalayas, Podophyllum hexandrum is an endangered high-elevation plant species that has great medicinal importance. Here we report on the genetic diversity analysis of 24 P. hexandrum populations (209 individuals), representing the whole of the Indian Himalayas. In the present study, seven amplified fragment length polymorphism (AFLP) primer pairs generated 1677 fragments, of which 866 were found to be polymorphic. Neighbour joining clustering, principal coordinate analysis and STRUCTURE analysis clustered 209 individuals from 24 populations of the Indian Himalayan mountains into two major groups with a significant amount of gene flow (Nm = 2.13) and moderate genetic differentiation Fst(0.196), G′st(0.20). This suggests that, regardless of geographical location, all of the populations from the Indian Himalayas are intermixed and are composed broadly of two types of genetic populations. High variance partitioned within populations (80 %) suggests that most of the diversity is restricted to the within-population level. These results suggest two possibilities about the ancient population structure of P. hexandrum: either all of the populations in the geographical region of the Indian Himalayas are remnants of a once-widespread ancient population, or they originated from two types of genetic populations, which coexisted a long time ago, but subsequently separated as a result of long-distance dispersal and natural selection. High variance partitioned within the populations indicates that these populations have evolved in response to their respective environments over time, but low levels of heterozygosity suggest the presence of historical population bottlenecks. PMID:25416728

  4. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation. PMID:23738758

  5. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    NASA Astrophysics Data System (ADS)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  6. Extinction rate estimates for plant populations in revisitation studies: Importance of detectability

    USGS Publications Warehouse

    Kery, M.

    2004-01-01

    Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.

  7. Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

    PubMed Central

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012–2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  8. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China.

    PubMed

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012-2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  9. Status of India's population education programme--the subject of tripartite projects review and annual country review.

    PubMed

    1981-12-01

    A 3-step monitoring of India's population education program was undertaken in 1981 in order to determine the level of implementation and progress of the program. This monitoring program, conducted by the Unesco Mobile Team in collaboration with other institutions, followed 3 procedures: Project Progress Report (PPR); Tripartite Project Review (TPR); and Annual Country Review (ACR). The review meetings of the 10 state population education projects were organized at Chandigarh and Madras during August. The states covered in the review were Bihar, Haryana, Madhaya Pradesh, Punjab, Rajasthan, Chandigarh, Gujarat, Karnataka, Maharashtra, and Tamil Nadu. The Tripartite Review identified the following as problems which were hindering the smooth implementation of the population education program: 1) difficulty in spending funds unless certain formalities were completed by the governments of the states; 2) administrative problems such as getting printing paper for instructional materials, waiving the sales tax for equipment to be purchased under the project, and uncertainty regarding the admissible rates of per diem to be paid to the participants in various training programs; 3) the lack of experience of project staff; 4) problems created by having more than 1 cell in a state such as Rajasthan; and 5) an inadequate time frame within which the project should complete all its activities and make population education an integral part of the school system. The following were among the recommendations made: 1) the Project should be made coterminous with the 6th Five-Year Plan up to March 31, 1985; and 2) there should be only 1 Population Education Cell in every state. Among the points discussed at the annual country review, held during October, were the following: rephasing of the program from a 3 to 5 year project to synchronize it with the 6th plan; and the need for additional funds in view of inflation. PMID:12264113

  10. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination

    PubMed Central

    Turner, Monte E.; Stephens, J. Claiborne; Anderson, Wyatt W.

    1982-01-01

    The population genetic consequences of nearest-neighbor pollination in an outcrossing plant species were investigated through computer simulations. The genetic system consisted of two alleles at a single locus in a self-incompatible plant that mates by random pollen transfer from a neighboring individual. Beginning with a random distribution of genotypes, restricted pollen and seed dispersal were applied each generation to 10,000 individuals spaced uniformly on a square grid. This restricted gene flow caused inbreeding, a rapid increase in homozygosity, and striking microgeographic differentiation of the populations. Patches of homozygotes bordered by heterozygotes formed quickly and persisted for many generations. Thus, high levels of inbreeding, homozygosity, and patchiness in the spatial distribution of genotypes are expected in plant populations with breeding systems based on nearest-neighbor pollination, and such observations require no explanation by natural selection or other deterministic forces. Images PMID:16593140

  11. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. PMID:25953075

  12. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer.

    PubMed

    Martel, C; Réjasse, A; Rousset, F; Bethenod, M-T; Bourguet, D

    2003-02-01

    The phytophagous insects that damage crops are often polyphagous, feeding on several types of crop and on weeds. The refuges constituted by noncrop host plants may be useful in managing the evolution in pest species of resistance to the Bacillus thuringiensis toxins produced by transgenic crops. However, the benefits of these refuges may be limited because host-plant diversity may drive genetic divergence and possibly even host-plant-mediated sympatric speciation. The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), is the main pest of maize in Europe and North America, where it was introduced early in the 20th century. It has a wide host range but feeds principally on mugwort (Artemisia vulgaris L.) and maize (Zea mays L.). O. nubilalis is found on mugwort only in the northern part of France, whereas it is found on maize throughout France. The extent of genetic variation at allozyme markers was investigated in populations collected from the two host plants over the entire geographical distribution of the European corn borer on mugwort in France. Allelic differentiation between pairs of populations and hierarchical analyses of pools of samples from each host plant indicate that the group of populations feeding on maize differed from the group of populations feeding on mugwort. Our results suggest (1) host-plant-related divergent selection at the genomic region surrounding the Mpi locus and (2) limited gene flow between the populations feeding on mugwort and those infesting maize fields. These data indicate that adults emerging from mugwort would not be useful for managing the evolution of resistance to the B. thuringiensis toxins in European corn borer populations. PMID:12634820

  13. Effects of long-term chronic exposure to radionuclides in plant populations.

    PubMed

    Geras'kin, S; Evseeva, T; Oudalova, A

    2013-07-01

    The results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hairgrass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate the effects of long-term chronic exposure to radionuclides are discussed. Plant populations growing in areas with relatively low levels of pollution are characterized by an increased level of both cytogenetic disturbances and genetic diversity. Although ionizing radiation causes primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable from the knowledge of elementary mechanisms of cellular effects formation. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage could be accompanied by a decrease in reproductive capacity. However, in less contaminated sites, because of the scarcity of data available, a steady relationship between cytogenetic effects and reproductive capacity was not revealed. Under radioactive contamination of the plant's environment, a population's resistance to exposure may increase. However, there are radioecological situations where an enhanced radioresistance has not evolved or has not persisted. PMID:22483340

  14. The demography of climate-driven and density-regulated population dynamics in a perennial plant.

    PubMed

    Dahlgren, Johan P; Bengtsson, Karin; Ehrlén, Johan

    2016-04-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes. PMID:27220206

  15. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae).

    PubMed

    Kitamura, Koshi; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Tainaka, Kei-Ichi; Yoshimura, Jin

    2016-01-01

    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer. PMID:27327439

  16. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae)

    PubMed Central

    Kitamura, Koshi; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Tainaka, Kei-ichi; Yoshimura, Jin

    2016-01-01

    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer. PMID:27327439

  17. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  18. 75 FR 69049 - Endangered and Threatened Wildlife and Plants; Proposed Listings for Two Distinct Population...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... proposed rule (75 FR 61904) to list the Carolina and South Atlantic DPSs of Atlantic sturgeon as endangered... Plants; Proposed Listings for Two Distinct Population Segments of Atlantic Sturgeon in the Southeast...), Commerce. ACTION: Notice of two public hearings. SUMMARY: In December 2010, we (NMFS) will hold two...

  19. Agronomics and economics of plant population density on processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed analysis of the effect of plant population density on processing sweet corn is lacking in the peer-reviewed literature. Therefore, field experiments were conducted utilizing six hybrids commonly grown in the North Central Region (NCR), a primary production region of processing sweet corn ...

  20. Influence of maize and pigweed on tarnished plant bug (Hemiptera: Miridae) populations infesting cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of maize, lea mays L., and pigweed, Amaranthus spp., on populations of tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), adults infesting cotton, Gossypium hirsucum L., in the Mississippi Delta was studied using stable isotope analyses. Cotton fields adjacent to maize and th...

  1. A Bioassay for Determining Resistance Levels in Tarnished Plant Bug Populations to Neonicotinoid Insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed and used to test field populations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), for resistance development to the neonicitinoid insecticides imidacloprid (Trimax®) and thiamethoxam (Centric®). The bioassay determined LC50 values by feeding...

  2. After Mexico: NGOs and the Follow-Up to the International Conference on Population. Summary Report of the Annual NGO/UNFPA Consultation on Population in New York (4th, Church Centre, New York, March 6, 1985).

    ERIC Educational Resources Information Center

    Cassidy, Kevin, Ed.

    This document consists of three parts. Part I is a summary report of the Fourth Annual Non-Governmental Organizations/United Nations Fund for Population Activities (NGO/UNFPA) Consultation on Population. It includes: an opening statement by David Poindexter; presentations by Bradman Weerakoon ("Opportunities for Action") and Sheldon Segal ("Global…

  3. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  4. Plant regeneration methods for rapid generation of a large scale Ds transposant population in rice.

    PubMed

    Xuan, Yuan Hu; Huang, Jin; Yi, Gihwan; Park, Dong-Soo; Park, Soo Kwon; Eun, Moo Young; Yun, Doh Won; Lee, Gang-Seob; Kim, Tae Ho; Han, Chang-deok

    2013-01-01

    To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes. PMID:23918423

  5. Influence of Habitat Modifications on Habitat Composition and Anadromous Salmonid Populations in Fish Creek, Oregon, 1983-1988 Annual Report.

    SciTech Connect

    Reeves, Gordon H.; Everest, Fred H.; Hohler, David B.

    1990-05-01

    Modification of degraded habitats to increase populations of anadromous salmonids is a major focus of management agencies throughout the Pacific Northwest. Millions of dollars are spent annually on such efforts. Inherent in implementing habitat improvements is the need for quantitative evaluation of the biological and physical effects of such work. Reeves et al. (in press), however, noted that such evaluations are rare, making it difficult to assess the true results of habitat work. While it is not economically possible to thoroughly evaluate every habitat project, it is essential that intensive evaluations be done on selected representative projects. One such evaluation program has been underway since 1982 on Fish Creek, a tributary of the Clackamas River near Estacada, OR. Habitat modification has been done by the USDA Forest Service, Estacada Ranger District, Mt. Hood National Forest with funding provided in part by the Bonneville Power Administration (BPA). The USDA Forest Service, Anadromous Fish Habitat Research Unit, Pacific Northwest Research Station (PNW), Corvallis, OR is charged with: (1) evaluating the biological and physical responses to habitat modifications on a basin scale; and (2) developing a cost-benefit analysis of the program. Preliminary results have been reported in a series of annual publications, Everest and Sedell 1983, 1984 and Everest et al. 1985, 1986, 1987, 1988. The objectives of this paper are to: (1) report 1988 observations of biological and physical changes in habitat, salmonid populations, and smolt production in Fish Creek, and (2) examine preliminary trends in fish habitat and populations related to habitat improvement over the period 1983-1988. We have prefaced the trends in the latter objective as preliminary because we believe it could take a minimum of 10 years before the full biological and physical responses to habitat work are realized. We therefore urge caution in interpreting these preliminary results.

  6. Modelling the structural response of cotton plants to mepiquat chloride and population density

    PubMed Central

    Gu, Shenghao; Evers, Jochem B.; Zhang, Lizhen; Mao, Lili; Zhang, Siping; Zhao, Xinhua; Liu, Shaodong; van der Werf, Wopke; Li, Zhaohu

    2014-01-01

    Background and Aims Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize. Methods To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year's field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches. Key Results Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities. Conclusions The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions. PMID:24489020

  7. Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields

    PubMed Central

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2011-01-01

    Background and Aims Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence. Methods The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species. Key Results It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods. Conclusions These results underline the functional role of delayed germination and light for survival of seeds in the soil

  8. Evaluate Habitat Use and Population Dynamics of Lampreys in Cedar Creek, 2000 Annual Report.

    SciTech Connect

    Stone, Jennifer

    2001-03-31

    Pacific lamprey (Lampetra tridentata) in the Columbia River Basin have declined to a remnant of their pre-1940s populations and the status of the western brook lamprey (L. richardsoni) is unknown. Identifying the biological and ecological factors limiting lamprey populations is critical to their recovery, but little research has been conducted on these species within the Columbia River Basin. This ongoing, multi-year study examines lamprey populations in Cedar Creek, Washington, a third-order tributary to the Lewis River. Adult (n = 40), metamorphosed (n = 116), transforming (n = 10), and ammocoete (n = 870) stages from both species were examined in 2000. Lamprey were captured using adult fish ladders, rotary screw traps, and lamprey electrofishers, and spawning ground surveys were conducted. US Forest Service level II and strategic point-specific habitat surveys were conducted to assess habitat requirements of both adult and larval lamprey. Multivariate statistics will be applied to determine relationships between abundance and habitat.

  9. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  10. Host-plant dependent population genetics of the invading weevil Hypera postica.

    PubMed

    Iwase, S-I; Nakahira, K; Tuda, M; Kagoshima, K; Takagi, M

    2015-02-01

    Population genetics of invading pests can be informative for understanding their ecology. In this study, we investigated population genetics of the invasive alfalfa weevil Hypera postica in Fukuoka Prefecture, Japan. We analyzed mitochondrial tRNALeu-COII, nuclear EF-1α gene fragments, and Wolbachia infection in relation to three leguminous host plants: Vicia angustifolia, Vicia villosa, and a new host Astragalus sinicus cultivated as a honey source and green manure crop. A parsimony network generated from mitochondrial gene sequences uncovered two major haplotypic groups, Western and Egyptian. In contrast to reported Wolbachia infection of the Western strain in the United States, none of our analyzed individuals were infected. The absence of Wolbachia may contribute to the stable coexistence of mitochondrial strains through inter-strain reproductive compatibility. Hypera postica genetic variants for the mitochondrial and nuclear genes were associated neither with host plant species nor with two geographic regions (Hisayama and Kama) within Fukuoka. Mitochondrial haplogroups were incongruent with nuclear genetic variants. Genetic diversity at the nuclear locus was the highest for the populations feeding on V. angustifolia. The nuclear data for A. sinicus-feeding populations indicated past sudden population growth and extended Bayesian skyline plot analysis based on the mitochondrial and nuclear data showed that the growth of A. sinicus-feeding population took place within the past 1000 years. These results suggest a shorter history of A. sinicus as a host plant compared with V. angustifolia and a recent rapid growth of H. postica population using the new host A. sinicus. PMID:25336385

  11. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    SciTech Connect

    1997-02-01

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  12. Annual water quality data report for the Waste Isolation Pilot Plant

    SciTech Connect

    Lyon, M.L. )

    1989-04-01

    This is the fourth Annual Water Quality Data Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the United States Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of transuranic radioactive wastes generated by the defense activities of the United States Government. This report presents water quality data collected from January 1988 through December 1988 from 16 designated pre-operational (WIPP facility) monitoring wells, two additional wells, and 10 privately-owned wells in the vicinity of the WIPP. Additionally, water samples were collected from the Air Intake Shaft during shaft construction activities at the WIPP. This report lists pertinent information regarding the monitoring wells sampled, sampling zone, dates pumped, and types of samples collected during 1988. Comparative data from previous samplings of all wells can be found in Uhland and Randall (1986), Uhland et al. (1987), Randall et al. (1988), as well as in this report. The data reported by the Water Quality Sampling Program in this and previous reports indicate that serial sampling is a very useful tool in determining sample representativeness from wells in the WIPP vicinity. Serial sample field chemistry data are demonstrated to be highly accurate and precise as indicated by the excellent overall average percent spike recovery values and low RPD values reported for the sampling events. Serial sample field chemistry data and laboratory water quality parameter analyses gathered by the WQSP since January 1985 are the foundation for a pre-operational water quality baseline at the WIPP. 32 refs., 66 figs., 96 tabs.

  13. Tillage Requirments for integrating winter-annual grazing in peanut production: Plant water status and productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of crop rotation systems involving winter-annual grazing can help peanut (Arachis hypogaea L.) producers increase profitability, although winter-annual grazing could result in excessive soil compaction, which can severely limit yields. We conducted a 3-yr field study on a Dothan loamy sand i...

  14. Population structure and genetic diversity of a medicinal plant species Retama raetam in southern Tunisia.

    PubMed

    Abdellaoui, Raoudha; Yahyaoui, Faouzia; Neffati, Mohamed

    2014-01-15

    Retama raetam is a stem-assimilating, C3, evergreen, medicinal plant species, desert legume common to arid ecosystems around the Mediterranean basin. This study addresses the genetic diversity and relationship among and within three populations collected from different habitats in southern Tunisia by Random Amplified Polymorphic DNA (RAPD). Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were determined. Results showed that population from the Island Djerba has the lowest Nei's gene diversity; this also was for Shannon diversity index. An analysis of molecular variance indicated that the majority of variation existed within populations (68%) and that there was significant differentiation among populations (phiPT = 0.316, p < 0.001). Genetic distance (phiPT based values) between pairwise populations ranged from 0.098 to 0.505 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the coefficient of gene differentiation (Gst), gene flow (Nm) was estimated and was found to vary from 0.490 to 4.609 between pair-wise populations and 1.42 among populations. The results of UPGMA cluster analysis and PCoA analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of R. raetam in southern Tunisia and will be useful for conservation managers to work out an effective strategy to protect this important species. PMID:24783800

  15. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Brodie, Eoin

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  16. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lebeis, Sarah

    2013-03-01

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  17. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  18. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Banks, Jody [Purdue University

    2013-01-22

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  19. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Banks, Jody

    2012-03-21

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  20. The Challenges and Opportunities for Extending Plant Genomics to Climate (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Weston, David

    2013-03-01

    David Weston of Oak Ridge National Laboratory on "The challenges and opportunities for extending plant genomics to climate" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  1. Delineating Molecular Interaction Mechanisms in an In Vitro Microbial-Plant Community (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Larsen, Peter

    2013-03-01

    Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  2. Analysis of ontogenetic spectra of populations of plants and lichens via ordinal regression

    NASA Astrophysics Data System (ADS)

    Sofronov, G. Yu.; Glotov, N. V.; Ivanov, S. M.

    2015-03-01

    Ontogenetic spectra of plants and lichens tend to vary across the populations. This means that if several subsamples within a sample (or a population) were collected, then the subsamples would not be homogeneous. Consequently, the statistical analysis of the aggregated data would not be correct, which could potentially lead to false biological conclusions. In order to take into account the heterogeneity of the subsamples, we propose to use ordinal regression, which is a type of generalized linear regression. In this paper, we study the populations of cowberry Vaccinium vitis-idaea L. and epiphytic lichens Hypogymnia physodes (L.) Nyl. and Pseudevernia furfuracea (L.) Zopf. We obtain estimates for the proportions of between-sample variability in the total variability of the ontogenetic spectra of the populations.

  3. Food preference and performance of the larvae of a specialist herbivore: variation among and within host-plant populations

    NASA Astrophysics Data System (ADS)

    Leimu, Roosa; Riipi, Marianna; Stærk, Dan

    2005-11-01

    Specialist herbivores are suggested to be unaffected by or attracted to the defense compounds of their host-plants, and can even prefer higher levels of certain chemicals. Abrostola asclepiadis is a specialist herbivore whose larvae feed on the leaves of Vincetoxicum hirundinaria, which contains toxic alkaloids and is unpalatable to most generalist herbivores. The food choice, leaf consumption and growth of A. asclepiadis larvae were studied to determine whether there is variation among and within host-plant populations in their suitability for this specialist herbivore. There was significant variation in food preference and leaf consumption among host-plant populations, but no differences were found in larval growth and feeding on different host-plant populations. A. asclepiadis larvae preferred host-plant populations with higher alkaloid concentrations, but did not consume more leaf material from plants originating from such populations in a no-choice experiment. There was also some variation in food preference of larvae among host-plant individuals belonging to the same population, suggesting that there was variability in leaf chemistry also within populations. Such variation in larval preference among host-plant genotypes and populations may create potential for coevolutionary dynamics in a spatial mosaic.

  4. Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191

  5. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

    PubMed

    York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A

    2015-01-01

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474

  6. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program

    PubMed Central

    York, Paul H.; Carter, Alex B.; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A.

    2015-01-01

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474

  7. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions.

    PubMed

    Li, Dapeng; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-01-01

    Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway. PMID:27135234

  8. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions

    PubMed Central

    Li, Dapeng; Baldwin, Ian T.; Gaquerel, Emmanuel

    2016-01-01

    Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different “omic” techniques can be used to exploit the natural variation that occurs in this important signaling pathway. PMID:27135234

  9. Wood mouse and box turtle populations in an area treated annually with DDT for five years

    USGS Publications Warehouse

    Stickel, L.F.

    1951-01-01

    A 117-acre area of dense woodland on the Patuxent Research Refuge received an aerial application of DDT in oil at the rate of 2 pounds per acre gnnually for five years. DDT reached ground level in a much smaller amount (thousandths to hundredths of a pound per acre). Treatment was made during the first week of June of each year from 1945 through 1949. Field studies of the wood mouse population in DDT and check areas showed no significant differences in the two areas before and after the 1949 DDT treatment. There was no significant difference between trapping samples taken in DDT and check areas in 1945 and those taken in 1949. Field studies of the box turtles in DDT and check areas in 1945 and 1949 showed no significant difference in population size. Growth of the four young turtles taken in the DDT area in both 1945 and 1949 appeared to be normal in comparison with growth of check area turtles.

  10. Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations : FY2001 Annual Report.

    SciTech Connect

    Hoffman, Thomas A.

    2001-12-01

    Juvenile and adult chum salmon were monitored in fiscal year 2001 to continue evaluating factors limiting production. Total adult salmon caught (in weirs or by carcass surveys) in Hardy Creek and Hamilton Springs in 2000 was 25 and 130 fish, respectively. Fifty-two fish captured in the main stem Columbia River, Hamilton Springs, Hardy Creek, or Bonneville Dam were implanted with radio tags and tracked with an array of fixed aerials and underwater antennae. Males tended to move greater distances than females. Population estimates in Hardy Creek and Hamilton Springs were 37{+-}2 and 157{+-}5, respectively. Chum smolt emigration began in Hamilton Springs 25 February 2001 and 2 March 2001 in Hardy Creek. Total catches in Hardy Creek and Hamilton Springs were 2,955 and 14,967, respectively. Population abundance estimates were 11,586{+-}1,836 in Hardy Creek and 84,520{+-}9,283 in Hamilton Springs.

  11. Modeling power-plant impacts on multipopulation systems: application of loop analysis to the Hudson River white perch population

    SciTech Connect

    Barnthouse, L.W.

    1981-12-01

    The white perch population of the Hudson River suffers unusually high mortality due to impingement and entrainment at power plants. The long-term consequences of this mortality for the Hudson River ecosystem depend in part on interactions between the white perch population and its prey, competitors, and predators, many of which are themselves subject to mortality at power plants. Size multipopulation models were analyzed, using a technique known as loop analysis, to determine how patterns of interaction affect population responses to stress and to identify the parameters that have the greatest influence on those responses. These theoretical results, together with information on life history and vulnerability to power plants for Hudson River fish and macroinvertebrate populations, were used to assess the likely effects of power plant mortality on the white perch population and its prey, competitors, and predators. The results suggest that effects of interactions with other populations are insufficient to offset the effects of entrainment and impingement on the Hudson River white perch population. The results also suggest that if mortality imposed by power plants does cause a substantial decline in the white perch population, then piscivore populations in the Hudson River should not be noticeably affected, a complementary increase in the abundance of competitors that are relatively invulnerable to power plants should occur, and a shift in the distribution of biomass within the white perch population toward the older age classes should occur.

  12. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    PubMed Central

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  13. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    SciTech Connect

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  14. Comprehensive cooling water study annual report. Volume X: endangered species, Savannah River Plant

    SciTech Connect

    Gladden, J.B.; Lower, M.W.; Mackey, H.E.; Specht, W.L.; Wilde, E.W.

    1985-07-01

    Federally endangered species which occur on the Savannah River Plant (SRP) include the American alligator, red-cockaded woodpecker, the shortnose sturgeon, and the wood stork. Of these species, only the alligator, sturgeon, and wood stork are likely to be affected by the intake or release of cooling water at the SRP. The nearest colony of wood storks to the SRP is the Birdsville Colony, about 40-45 km southwest of potential foraging areas in the SRP Savannah River swamp. In 1983, it contained about six percent of the nesting pairs in the United States and produced about 250 fledglings. Its reproductive success was about the same in 1984. Based on the results of surveys made of foraging areas, both on SRP and offsite in 1983 and 1984, forage fish availability could be reduced by increased water depths in the Steel Creek delta area following L-Reactor restart with once-through cooling. Effluent discharge from SRP facilities probably limits the potential use of the SRP Savannah River swamp by foraging wood storks. The SRP supports a low-to-moderate alligator population. The current information available on the alligators of the SRP suggests that populations in suitable habitats (e.g., Beaver Dam Creek, Steel Creek, and Par Pond) should continue to benefit from the protection provided by the SRP and should remain stable or continue to increase. Based upon information from the literature and fisheries data for the Savannah River, the operations of the SRP do not appear to have adverse effects on the shortnose sturgeon. Based on known life history characteristics, there is no indication that spawning, rearing, or foraging habitats are affected by SRP operations. 64 refs., 20 figs., 12 tabs.

  15. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique

    PubMed Central

    2013-01-01

    Background Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Results Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence

  16. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    PubMed Central

    Gill, Gunbharpur Singh; Haugen, Riston; Matzner, Steven L.; Barakat, Abdelali; Siemens, David H.

    2016-01-01

    Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts. PMID:27135233

  17. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences.

    PubMed

    Gill, Gunbharpur Singh; Haugen, Riston; Matzner, Steven L; Barakat, Abdelali; Siemens, David H

    2016-01-01

    Low elevation "trailing edge" range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts. PMID:27135233

  18. Risk of exotic annual grass-fire cycle in Goose Creek milkvetch habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a concern that habitats surrounding Goose Creek milkvetch populations are at risk of exotic annual grass invasion leading to an exotic annual grass-fire cycle. We sampled plant community and site characteristics to evaluate the risk of these habitats developing an exotic annual grass-fire ...

  19. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    SciTech Connect

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  20. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE PAGESBeta

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  1. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  2. Movements of genes between populations: are pollinators more effective at transferring their own or plant genetic markers?

    PubMed

    Liu, Min; Compton, Stephen G; Peng, Fo-En; Zhang, Jian; Chen, Xiao-Yong

    2015-06-01

    The transfer of genes between populations is increasingly important in a world where pollinators are declining, plant and animal populations are increasingly fragmented and climate change is forcing shifts in distribution. The distances that pollen can be transported by small insects are impressive, as is the extensive gene flow between their own populations. We compared the relative ease by which small insects introduce genetic markers into their own and host-plant populations. Gene flow via seeds and pollen between populations of an Asian fig species were evaluated using cpDNA and nuclear DNA markers, and between-population gene flow of its pollinator fig wasp was determined using microsatellites. This insect is the tree's only pollinator locally, and only reproduces in its figs. The plant's pollen-to-seed dispersal ratio was 9.183-9.437, smaller than that recorded for other Ficus. The relative effectiveness of the pollinator at introducing markers into its own populations was higher than the rate it introduced markers into the plant's populations (ratio = 14 : 1), but given the demographic differences between plant and pollinator, pollen transfer effectiveness is remarkably high. Resource availability affects the dispersal of fig wasps, and host-plant flowering phenology here and in other plant-pollinator systems may strongly influence relative gene flow rates. PMID:25948688

  3. Scrophularia arguta, a widespread annual plant in the Canary Islands: a single recent colonization event or a more complex phylogeographic pattern?

    PubMed

    Valtueña, Francisco Javier; López, Josefa; Álvarez, Juan; Rodríguez-Riaño, Tomás; Ortega-Olivencia, Ana

    2016-07-01

    Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA-trnH and psbJ-petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity. PMID:27386073

  4. The causes of selection on flowering time through male fitness in a hermaphroditic annual plant.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2016-01-01

    Flowering is a key life-history event whose timing almost certainly affects both male and female fitness, but tests of selection on flowering time through male fitness are few. Such selection may arise from direct effects of flowering time, and indirect effects through covariance between flowering time and the environment experienced during reproduction. To isolate these intrinsically correlated associations, we staggered planting dates of Brassica rapa families with known flowering times, creating populations in which age at flowering (i.e., flowering time genotype) and Julian date of flowering (i.e., flowering time environment) were positively, negatively, or uncorrelated. Genetic paternity analysis revealed that male fitness was not strongly influenced by seasonal environmental changes. Instead, when age and date were uncorrelated, selection through male fitness strongly favored young age at flowering. Strategic sampling offspring for paternity analysis rejected covariance between sire age at flowering and dam quality as the cause of this selection. Results instead suggest a negative association between age at flowering and pollen competitive ability. The manipulation also revealed that, at least in B. rapa, the often-observed correlation between flowering time and flowering duration is environmental, not genetic, in origin. PMID:26596860

  5. Large capacity, multi-fuel, and high temperature working fluid heaters to optimize CSP plant cost, complexity and annual generation

    NASA Astrophysics Data System (ADS)

    Peterseim, J. H.; Viscuso, L.; Hellwig, U.; McIntyre, P.

    2016-05-01

    This paper analyses the potential to optimize high temperature fluid back-up systems for concentrating solar power (CSP) plants by investigating the cost impact of component capacity and the impact of using multiple fuels on annual generation. Until now back-up heaters have been limited to 20MWth capacity but larger units have been realised in other industries. Installing larger units yields economy-of-scale benefits through improved manufacturing, optimised transport, and minimized on-site installation work. Halving the number of back-up boilers can yield cost reduction of 23% while minimizing plant complexity and on-site construction risk. However, to achieve these benefits it is important to adapt the back-up heaters to the plant's requirements (load change, capacity, minimum load, etc.) and design for manufacture, transport and assembly. Despite the fact that biomass availability is decreasing with increasing direct normal irradiance (DNI), some biomass is available in areas suitable for CSP plants. The use of these biomass resources is beneficial to maximise annual renewable energy generation, substitute natural gas, and use locally/seasonally available biomass resources that may not be used otherwise. Even small biomass quantities of only 50,000 t/a can increase the capacity factor of a 50MWe parabolic trough plant with 7h thermal energy storage from 40 to 49%. This is a valuable increase and such a concept is suitable for new plants and retrofit applications. However, similar to the capacity optimisation of back-up heaters, various design criteria have to be considered to ensure a successful project.

  6. Managing soil nitrogen to restore annual grass infested plant communities: an effective strategy or incomplete framework?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical and empirical work has established a positive relationship between resource availability and habitat invasibility. For invasive annual grasses, similar to other invasive species, invader success has been most often tied to increases in nitrogen (N) availability. These observations have...

  7. Population Growth and Characterization of Plant Injuries of Steneotarsonemus spinki Smiley (Acari: Tarsonemidae) on Rice.

    PubMed

    Jaimez-Ruiz, I A; Otero-Colina, G; Valdovinos-Ponce, G; Villanueva-Jiménez, J A; Vera-Graziano, J

    2015-06-01

    Rice is attacked by Steneotarsonemus spinki Smiley, a mite that has dispersed throughout many countries causing important loss on rice production. Rice plants of the variety Morelos A-92 were infested with S. spinki, and its population growth was estimated along plant development. Further, the morphological and histological injuries associated to the mite attack were characterized. The highest infestation level was obtained 13 weeks after plant infestation, with an average of 58.5 mites per plant, predominantly females. Morphological injuries were categorized from level 0 (no injuries from uninfested plants) to level 3, characterized by the highest injuries represented by blotches on the adaxial epidermis of the leaf sheath and on panicles and grains. Plants ranked within levels 0, 1, and 2 for morphological injury did not exhibit clear histological injuries, while those at level 3 exhibited histological injury characterized by destruction of cells of the adaxial epidermis, disorder, color change, and hypertrophy in the mesophyll cells, as well as color change in the abaxial epidermis. Thus, it presented a significant correlation between morphological injuries and mite density level, which can be further adopted to help the control decision-making process for this mite on rice. PMID:26013275

  8. Dworshak Reservoir Kokanee Population Monitoring: Project Progress Report, 1999 Annual Report.

    SciTech Connect

    Maiolie, Melo; Vidergar, Dmitri T.; Harryman, Bill

    2001-08-01

    We used split-beam hydroacoustics and trawling to monitor the kokanee Oncorhynchus nerka population in Dworshak Reservoir during 1999. Estimated abundance of kokanee has continued to increase since the high entrainment losses in the spring of 1996. Based on hydroacoustic surveys, we estimated 1,545,000 kokanee and rainbow trout O. mykiss in Dworshak Reservoir during July 1999. This included 1,144,000 age-0 kokanee (90% CI {+-} 42%), 212,000 age-1 kokanee (90% CI {+-} 15%), and 189,000 age-2 kokanee and stocked rainbow trout (90% CI {+-} 39%). Rainbow trout could not be distinguished from the age-2 kokanee in the echograms since they were of similar size. Age-0 kokanee ranged in length from 40 mm to 90 mm, age-1 from 193 mm to 212 mm, and age-2 kokanee from 219 mm to 336 mm. These sizes indicated kokanee are still growing well. Discharge of water from Dworshak Dam during 1999 did not stop the expansion of the kokanee population based on these results. Counts of spawning kokanee in four tributary streams exceeded 11,000 fish. This index also showed a marked increase from last year's 660 spawning kokanee or the 1997 total of 144 spawning kokanee.

  9. Strategic Grassland Bird Conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes

    USGS Publications Warehouse

    Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C., Jr.; Rideout, Catherine; Sample, David W.

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  10. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    PubMed

    Drum, Ryan G; Ribic, Christine A; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C; Rideout, Catherine; Sample, David

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds. PMID:26569108